工程力学大作业1(答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大作业(一)
一、填空题
1、杆件变形的基本形式有(轴向拉伸和压缩)、(剪切)、(扭转)和(弯曲)
2、材料力学所研究的问题是构件的(强度)、(刚度)和(稳定性)。
3、脆性材料的抗压能力远比抗拉能力(强)。
4、同一种材料,在弹性变形范围内,横向应变ε/和纵向应变ε之间有如下关系:(ε/= -με)
5、(弹性模量E )是反映材料抵抗弹性变形能力的指标。
6、(屈服点σs )和(抗拉强度σb )是反映材料强度的两个指标
7、(伸长率δ)和(断面收缩率ψ)是反映材料塑性的指标,一般把(δ>5%)的材料称为塑性材料,把(δ<5%)的材料称为脆性材料。
8、应力集中的程度可以用(应力集中因数K )来衡量 9、(脆性材料)对应力集中十分敏感,设计时必须考虑应力集中的影响 10、挤压面是外力的作用面,与外力(垂直),挤压面为半圆弧面时,可将构件的直径截面视为(挤压面)
11、如图所示,铆接头的连接板厚度t=d ,则铆钉剪应力=
( 2
2d
P πτ= ) ,挤压应力bs =( td P
bs 2=σ )。 P/2
P/2
二、选择题
1、构成构件的材料是可变形固体,材料力学中对可变形固体的基本假设不包括(C )
A 、均匀连续性
B 、各向同性假设
C 、平面假设
D 、小变形假设 2、下列力学性能指标中,(B )是强度指标
A 、弹性模量E
B 、屈服强度s σ
C 、伸长率δ
D 、许用应力σ 3、下列力学性能指标中,(C )是反映塑性的指标
A 、比例极限p σ
B 、抗拉强度b σ
C 、断面收缩率ψ
D 、安全系数n 4、下列构件中,( C )不属于轴向拉伸或轴向压缩 A 、 B 、 C 、 D 、
5、强度计算时,引入安全系数的原因不包括(A)
A、力学性能指标测定方法都不是太科学
B、对构件的结构、尺寸和受力等情况都作了一定程度的简化
C、加工工艺对构件强度的影响考虑的不全面
D、构件需有必要的强度储备
6、一直杆受外力作用如图所示,此杆各段的轴力图为(C)
A、
B、
C、
D、
7、一直杆受外力作用如图所示,此杆各段的轴力为(A)
A、+6(拉力),- 4(压力),4(拉力)
B、-6(压力),- 4(压力),4(拉力)
C、+6(拉力),+ 4(拉力),4(拉力)
D、-6(压力),+ 4(拉力),4(拉力)
8、图所示为两端固定的杆。在C、D两端处有一对力P作用,杆的横截面
面积为A ,弹性模量为E , A 、B 处支座反力(C )
A 、F A =F
B =2F/3 B 、 F A =F B =F/3
C 、F A =F/3 F B =2P/3
D 、F A =2F/3 F B =F/3
9、一钢制阶梯杆如图所示,已知轴向外力P 1=5KN ,P 2=2KN ,各段杆长为l 1=15mm ,l 2=l 3=12mm ,横截面面积A 1=A 2=6mm 2,A 3=3mm 2,钢的弹性模量E=200Gpa ,各段杆的线应变分别为1ε、2ε、3ε,下列选项正确的是(B )
A 、||1ε>||2ε>||3ε
B 、||3ε>||1ε>||2ε
C 、 ||2ε>||3ε>||1ε
D 、||2ε>||1ε>||3ε
11、在研究材料的力学性能时,出现过σ,下列( C )说法是正确的 A 、σ是塑性材料的屈服强度 B 、σ是脆性材料的屈服强度
C 、σ是指试件在卸载后产生数值为%的塑性应变时的应力值
D 、σ是指试件在加载后产生数值为%的应变时的应力值 12、对于脆性材料,下列说法( C )是错误的 A 、试件在受拉过程中,不出现屈服和颈缩现象。 B 、压缩强度极限比拉伸强度极限高出许多 C 、抗冲击性能好
D 、脆性材料拉伸断裂前的变形很少
13、齿轮与轴由平键(b ×h ×L =20 ×12 ×100)连接,它传递的扭矩m =2KNm ,轴的直径d =70mm ,键的许用切应力为[]= 60M Pa ,许用挤压应力为
[]bs σ= 100M Pa ,则键的(B )。
A 、剪切强度和挤压强度都不足
B 、剪切强度和挤压强度都足够
2L
L
P
F
B
C
F B
F A A
C 、剪切强度不足
D 、挤压强度不足 三、计算题
1、一直杆受外力作用如图所示,求此杆各段的轴力,并作轴力图
解:
(1)AB 段:用截面1-1假想将杆截开,取左段研究,设截面上的轴力为正方向,受力如图所示。列平衡方程式:
0=∑x
F
061=-N F
61=N F (拉力)
(2)BC 段,取2-2截面左段研究,FN2设为正向,受力如图所示,列平衡方程式:
0=∑x
F
06102=-+N F
42-=N F (压力);
(3)CD 段,取3-3截面右段研究,FN3设为正,受力如图所示,列平衡方程式:
0=∑x
F
043=-N F
43=N F (拉力)
(4)画轴力图
2、如图所示空心圆截面杆,外径D=20mm ,内径d=15mm ,承受轴向载荷F=20kN ,材料的屈服应力σs=235MPa ,安全因数n=,试问该杆的强度
解:杆件横截面上的正压力
MPa Pa d D F 5.14510455.1)
15.002.0(10204)(482
23
22=⨯=-⨯⨯=-=ππσ 材料的许用应力