磁性薄膜材料的制备与应用333333

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要: (1)

Abstract: (1)

前言 (1)

1磁性薄膜材料的基本特点与种类 (1)

1.1 常用薄膜材料的特点 (1)

1.2 磁性薄膜材料的基本特点 (2)

1.3磁性薄膜材料的种类 (3)

2磁性薄膜材料的制备方法 (4)

2.1溅射法 (4)

2.2真空蒸镀法 (4)

2.3分子束外延法 (4)

2.4化学沉积法 (5)

2.5电沉积法 (5)

3磁性薄膜材料的发展与开发 (5)

3.1 磁性薄膜研究的发展 (5)

3.2 新型磁膜的开发 (6)

4 磁性薄膜材料的应用与市场 (7)

参考文献 (9)

摘要:本文对磁性薄膜材料的种类和特点进行了一番介绍,并对国内外近年来制备磁性薄膜的方法进

行了较为系统的总结。包括物理方法和化学方法制备磁性薄膜材料;对不同制备的方法的优点和缺点进行了讲述。介绍了一些磁性薄膜材料在社会中的应用,以及对以后磁性薄膜的发展前景进行了展望。关键词:磁性薄膜材料特点和种类制备方法应用

Abstract:In this paper, the types and characteristics of magnetic thin film material has carried on the introduction, and for the preparation of magnetic thin films in recent years at home and abroad were summarized systematically. Including physical method and chemical method is the preparation of magnetic thin film materials; The advantages and disadvantages of different preparation methods for the story. Introduced some of the application of magnetic thin film material in society, as well as to the future prospects of the development of magnetic thin film is discussed.

Key words: magnetic thin film material characteristics and species The preparation method

前言

随着电子系统向高集成度、高复杂性、轻小、高性能、多功能与高频方向发展,要求在更小的基片上集成更多的元器件。研制小型化、薄膜化的元器件,以减小系统的整体体积和重量,无疑是适应这一要求的一条实际可行的途径。因此,对在电子设备中占据较大体积和重量的磁性器件,如电感器、变压器的小型化、高频化也相应提出了很高的要求。在这种背景下,国际上对于采用磁性薄膜做成的微磁器件的研究以及与半导体器件成为一体的磁性集成电路(IC)的研究十分活跃。这些器件主要用于便携式信息通信设备,如移动电话等。在这些设备中,为保证其工作稳定性及经济性,电源部分的小型化和高效率化是很重要的。所以薄膜化的磁性器件最早是从各种电感器、滤波器、DC/DC变换器中的变压器等开始的。以往用于磁性器件的NiFe合金、铁氧体等,不论是饱和磁通密Bs,还是磁导率μ的频率特性,远不能满足日益发展的新型电子设备的要求。例如为了防止滤波器、变压器的磁饱和,以及在信息存储中为使高密度记录用的高矫顽力介质充分磁化,要求材料的Bs在1.5T以上。另外,很多通信机用环形天线、电感器等,要求能在数百MHz到数GHz的频率范围工作。这些要求都是目前常用的磁性材料无法满足的。

磁性材料的薄膜化为满足上述要求提供了可能。如此,磁性材料的薄膜化是微磁器件的基础,也是将来实现磁性IC的前提之一。

1磁性薄膜材料的基本特点与种类

1.1 常用薄膜材料的特点

众所周知,薄膜材料是典型的二维材料,具有许多与三维材料不同的特点。通过研究

各种薄膜材料生成机理和加工方法,可以制备出有各种特殊功能的薄膜材料来,这也是薄膜功能材料近来成为研究的热点材料的原因。

由于尺寸小,薄膜材料中表面和界面所占的相对比例较大,与表面的有关性质极为突出,存在一系列与表面界面有关的物理效应:

1) 光干涉效应引起的选择性透射和反射;

2) 电子与表面碰撞发生非弹性散射,使电导率、霍耳系数、电流磁场效应等发生变化;

3) 根据需要可以得到单晶、多晶、和非晶的各种结构薄膜。

4) 自组装纳米膜,可根据要探知的气体类型而制备出气体传感器,如纳米SnO2膜和γ-Fe2O3可制备出对不同气体敏感的气体传感器等。

5) 可采用分子束外延(MBE)方法制备具有原子尺度周期性的所谓超晶格结构的多层膜。

6) 通过沉积速率的控制可以容易得到成分不均匀分布的薄膜,如梯度膜等。

7) 还可以容易地将不同材料结合一起制成多层结构的薄膜。薄膜材料一般都是用几层不同功能的膜组合在一起构成器件,如薄膜太阳能电池、多层防反射膜等,或利用层间的界面效应,如制作光导材料、薄膜激光器等。但通常所谓多层膜是特指人为制作的具有周期性结构的薄膜材料,这是一类人工材料,能出现很多特有的性能,在理论上和实用上都引起了人们的关注,例如,磁性多层膜材料出现层间耦合及巨磁阻效应等。

1.2 磁性薄膜材料的基本特点

厚度在1微米以下的强磁性(铁磁性和亚铁磁性)材料,简称磁膜材料,使用时需附于弱磁性材料的基片上。磁膜材料的磁特性取决于其制备方法和工艺条件。其制备方法主要有:真空蒸发法、电沉积法、溅射法等。

磁性薄膜材料也具有上述薄膜材料的特点,而它最突出的基本特点是:

(1) 在薄膜的厚度方向上只有一个磁畴,在静态条件下薄膜的磁化强度是在平面上;

(2) 薄膜平面上的退磁因子极小(约为10-3~10-5),而在垂直于薄膜的方向上却等于1;

(3) 薄膜内无涡流产生,直到超高频频段都是如此;

(4) 由于磁畴结构的特点,薄膜的本征铁磁谐振频率较之厚实的铁磁体大10~100倍,因此,在高频时薄膜仍保持甚大的磁导率;

(5) 在脉冲和正弦交变磁场中,磁薄膜反复磁化极快且损耗很小;

(6) 在许多磁薄膜平面上具有明显的磁各向异性;

(7) 许多磁薄膜都有矩形磁滞回线。

我们知道,铁氧体的制成,把磁性材料的应用推向了高频范围;而磁薄膜技术的出现使得薄型磁性材料得以完成,为磁性薄膜元器件的开发奠定了基础。由于铁氧体和磁薄膜

相关文档
最新文档