尺规作图(角平分线)PPT课件
合集下载
角平分线的性质ppt课件
B
P D●
C●
O
A
34
知识拓展
如图,在△ABC中,
A
AC=BC,∠C=90°,
AD是△ABC的角平分线,
DE⊥AB,垂足为E。
(1)已知CD=4cm,求 AC的长;
E
(2)求证:AB=AC+CD C
D
B
35
36
·D
何作图角度怎么画?
C·
7
试一试
由上面的探究可以得出作已知角的平分线的方法
已知:∠AOB.
求作:∠AOB的平分线.
A
作法:
⑴以O为圆心,任意长为半径作 弧,交OA于M,交OB于N. ⑵分别以M,N为圆心,大于 1 MN 的长为半径作弧,两弧在 2 ∠AOB的内部交于点C.
⑶作射线OC,
射线OC即为所求.
F
E
C
D
B
26
3、如图,△ABC中,∠C=90°,AC=CB, AD为∠BAC的平分线,DE⊥AB于点E。 求证:△DBE的周长等于AB。
C
D
A
EB
27
思考:
如图所示OC是∠AOB 的平分线,P 是OC上任意 一点,问PE=PD?为什么? O
EA PC
D
B
PD,PE没有垂直OA,OB,它们不是角 平分线上任一点这个角两边的距离, 所以不一定相等.
M C
B
N
0
温馨提示: 作角平分线是最基本的
尺规作图,大家一定要掌握噢! 8
探究2---做一做
• 将∠ AOB对折,再折出一个直角三角形(使 第一条折痕为斜边),然后展开,观察两次折 叠形成的三条折痕,你能得到什么结论? A
A
P D●
C●
O
A
34
知识拓展
如图,在△ABC中,
A
AC=BC,∠C=90°,
AD是△ABC的角平分线,
DE⊥AB,垂足为E。
(1)已知CD=4cm,求 AC的长;
E
(2)求证:AB=AC+CD C
D
B
35
36
·D
何作图角度怎么画?
C·
7
试一试
由上面的探究可以得出作已知角的平分线的方法
已知:∠AOB.
求作:∠AOB的平分线.
A
作法:
⑴以O为圆心,任意长为半径作 弧,交OA于M,交OB于N. ⑵分别以M,N为圆心,大于 1 MN 的长为半径作弧,两弧在 2 ∠AOB的内部交于点C.
⑶作射线OC,
射线OC即为所求.
F
E
C
D
B
26
3、如图,△ABC中,∠C=90°,AC=CB, AD为∠BAC的平分线,DE⊥AB于点E。 求证:△DBE的周长等于AB。
C
D
A
EB
27
思考:
如图所示OC是∠AOB 的平分线,P 是OC上任意 一点,问PE=PD?为什么? O
EA PC
D
B
PD,PE没有垂直OA,OB,它们不是角 平分线上任一点这个角两边的距离, 所以不一定相等.
M C
B
N
0
温馨提示: 作角平分线是最基本的
尺规作图,大家一定要掌握噢! 8
探究2---做一做
• 将∠ AOB对折,再折出一个直角三角形(使 第一条折痕为斜边),然后展开,观察两次折 叠形成的三条折痕,你能得到什么结论? A
A
人教版数学八年级上册 第十二章 12.3 角的平分线的性质 第一课时 课件(共33张PPT)
PD⊥OA,PE⊥OB,且
O
P
PD=PE
E B ∴OP是∠AOB的平分线
动脑想一想
• 我们之间就学习了三角形的角分线,之前 谈到过,三条角分线一定交于一点,不过 当时我们没有给出证明,而只是通过画图 的方法给出了印证。
• 现在我们学习了角分线的性质和判定定理, 怎样证明这个结论呢?我们先看下面的例 题。
DC=BC(已知) ∴ △ADC≌△ABC (SSS) ∴∠DAC=∠BAC(对应角相等) 即 AE平分∠BAD
动脑想一想
• 通过刚才的启发,你能想到怎样画出下面 的角的平分线吗?
A
仅用尺规作图,
已知∠AOB,
求作∠AOB的
平分线
O
B
尺规法画角平分线
A M
O
NB
以点O为圆心,任意适当长度为半径画弧,
• 对折之后的折痕和 这个角有什么关系?
• 如果是木板不能对 折,该怎么平分?
动脑想一想
• 如图是一个平分角的仪器, 其中AB=AD,BC=DC,将 点A放在角的顶点,AB和 AD沿着角的两边放下,则 AC所在直线就是这个角的 平分线。
• 你能说明这是为什么吗?
动脑想一想
证明: 在△ADC和△ABC 中 AB=AD(已知) AC=AC(公共边相等)
角分线上的点到角两边的距离相等
A D
∵OC平分∠AOB,
O
P C PD⊥OA,PE⊥OB
∴PD=PE
EB
动脑想一想
• 如图,要在S区建一个 集贸中心,使它到铁路、 公路的距离相等,并且 离公路与铁路的交叉处 500m,这个集贸中心应 建在哪里?
动脑想一想
• 角分线上的点到角两边的距离相等。 • 到角的两边的距离相等的点是否也在角的
角平分线的性质PPT课件
∵OC是∠AOB的平分线,
PD⊥OA,PE⊥OB ,
∴PD=PE.
应用这个性质所具备的条件:
(1)角的平分线;
(2)点在该平分线上;
(3)垂直距离.
定理的作用:证明两条线段相等.
证明的书写格式:
∵OP 是∠AOB的平分线,
PD⊥OA,PE⊥OB,
∴PD = PE
三者缺一不可,否
则不可证明两线段
相等
5.会用角的平分线的判定解决实际问题.(难点)
6.熟练掌握角的平分线的性质和角的平分线的判定的综合运用.
情景导入
旧知回顾
判定三角形全
SSS:三边分别相等的两个三角形全等
等的基本事实
SAS:两边和它们的夹角分别相等的两个三角形全等
有哪些?
ASA:两角和它们的夹边分别相等的两个三角形全等
AAS:两角分别相等且其中一组等角的对边相等的两个
求证:BD=DF.
点拨:要证BD=DF,可考虑证两线段所在
的△BDE和△FDC全等,两个三角形中已有
一角和一边相等,只要再证DE=CD即可,
这可由AD平分∠CAB及垂直条件证得.
证明:∵AD平分∠CAB,DE⊥AB于E,
∠C=90°,∴DE=DC.
在△BDE和△FDC中,
DE=CD ,
∠DEB=∠C,
在Rt△BDE 和 Rt△CDF中,
DE=DF,
BD=CD,
∴ Rt△BDE ≌ Rt△CDF(HL).
∴ EB=FC.
F
E
B
D
C
新知探究
2.角平分线的性质的应用
如图,在Rt △ABC中,AC=BC,∠C=90°,AP平分∠BAC交BC
于点P,若PC=4,AB=14.
PD⊥OA,PE⊥OB ,
∴PD=PE.
应用这个性质所具备的条件:
(1)角的平分线;
(2)点在该平分线上;
(3)垂直距离.
定理的作用:证明两条线段相等.
证明的书写格式:
∵OP 是∠AOB的平分线,
PD⊥OA,PE⊥OB,
∴PD = PE
三者缺一不可,否
则不可证明两线段
相等
5.会用角的平分线的判定解决实际问题.(难点)
6.熟练掌握角的平分线的性质和角的平分线的判定的综合运用.
情景导入
旧知回顾
判定三角形全
SSS:三边分别相等的两个三角形全等
等的基本事实
SAS:两边和它们的夹角分别相等的两个三角形全等
有哪些?
ASA:两角和它们的夹边分别相等的两个三角形全等
AAS:两角分别相等且其中一组等角的对边相等的两个
求证:BD=DF.
点拨:要证BD=DF,可考虑证两线段所在
的△BDE和△FDC全等,两个三角形中已有
一角和一边相等,只要再证DE=CD即可,
这可由AD平分∠CAB及垂直条件证得.
证明:∵AD平分∠CAB,DE⊥AB于E,
∠C=90°,∴DE=DC.
在△BDE和△FDC中,
DE=CD ,
∠DEB=∠C,
在Rt△BDE 和 Rt△CDF中,
DE=DF,
BD=CD,
∴ Rt△BDE ≌ Rt△CDF(HL).
∴ EB=FC.
F
E
B
D
C
新知探究
2.角平分线的性质的应用
如图,在Rt △ABC中,AC=BC,∠C=90°,AP平分∠BAC交BC
于点P,若PC=4,AB=14.
尺规作图作已知角的平分线 公开课一等奖课件
角平分线 我们已经知道角是轴对称图形,对称轴是这个角的平分 线所在的直线.如图 13-4-13,你能作一个角等于∠ABC 的一半吗?
图 13-4-13
[答案] 把∠ABC 对折,使 BA 与 BC 重合,其折痕就是 ∠ABC 的平分线.
◆ 知识链接——[新知梳理]知识点
13.4.3 作已知角的平分线
13.4.3 作已知角的平分线
例 2 如图 13-4-16 所示,已知∠CAB,以确定的点 B 为顶点作∠ABD,使∠ABD=12∠A.(不写作法,保留作 图痕迹)
图 13-4-16
13.4.3 作已知角的平分线
[解析] 先作∠A 的平分线 AE,以 B 为顶点作∠ABD= ∠EAB,则∠ABD 即为所求.
? 想一想
大家说一说:这些现象有什么危害?
安静是什么
• 安静是修养。
•公共场所是公众活动的地方,任何人都不得以任何 理由对其进行任何形式的独占,而应自觉维护该场 所的秩序,遵守必须的社会公德。
安静是什么
• 安静是文化,是文明。
•文化可以引领人的发展。到了一个非常安静的场所 ,你忍心一个人制造大的声响来引起别人不必要的 注意吗?当大家都停下自己的活动看你时,你会感 觉到脸红,自觉融入到这安静的氛围之中。学校狠 抓安静校园的治理,就是为了建设良好的校园文化 ,提高文明水平。
13.4.3 作已知角的平分线
13.4.3 作已知角的平分线
探究新知
活动1 知识准备 ∠_B_O__C=如_图_12_1_3∠-A4O-C1,2,∠OABOC是=∠_A_2_O_C∠的AO平B分=线__2,__则∠∠BOACO.B=
图 13-4-12
13.4.3 作已知角的平分静是形象。
•文明程度比较高的国家,所有公共场所都是比较安 静的,对来自其他国的游客的喧哗吵闹感到非常惊 诧。如果是黄皮肤、黑头发的游客,就一定认为是 中国人,其潜台词就是:中国游客太闹,文明古国 来的人,文明程度并不高。这就是形象。
图 13-4-13
[答案] 把∠ABC 对折,使 BA 与 BC 重合,其折痕就是 ∠ABC 的平分线.
◆ 知识链接——[新知梳理]知识点
13.4.3 作已知角的平分线
13.4.3 作已知角的平分线
例 2 如图 13-4-16 所示,已知∠CAB,以确定的点 B 为顶点作∠ABD,使∠ABD=12∠A.(不写作法,保留作 图痕迹)
图 13-4-16
13.4.3 作已知角的平分线
[解析] 先作∠A 的平分线 AE,以 B 为顶点作∠ABD= ∠EAB,则∠ABD 即为所求.
? 想一想
大家说一说:这些现象有什么危害?
安静是什么
• 安静是修养。
•公共场所是公众活动的地方,任何人都不得以任何 理由对其进行任何形式的独占,而应自觉维护该场 所的秩序,遵守必须的社会公德。
安静是什么
• 安静是文化,是文明。
•文化可以引领人的发展。到了一个非常安静的场所 ,你忍心一个人制造大的声响来引起别人不必要的 注意吗?当大家都停下自己的活动看你时,你会感 觉到脸红,自觉融入到这安静的氛围之中。学校狠 抓安静校园的治理,就是为了建设良好的校园文化 ,提高文明水平。
13.4.3 作已知角的平分线
13.4.3 作已知角的平分线
探究新知
活动1 知识准备 ∠_B_O__C=如_图_12_1_3∠-A4O-C1,2,∠OABOC是=∠_A_2_O_C∠的AO平B分=线__2,__则∠∠BOACO.B=
图 13-4-12
13.4.3 作已知角的平分静是形象。
•文明程度比较高的国家,所有公共场所都是比较安 静的,对来自其他国的游客的喧哗吵闹感到非常惊 诧。如果是黄皮肤、黑头发的游客,就一定认为是 中国人,其潜台词就是:中国游客太闹,文明古国 来的人,文明程度并不高。这就是形象。
尺规作图.作已知角的平分线 大赛获奖教学课件
新知梳理
► 知识点一 “S.S.S.”基本事实及运用 基本事实:三__边__分别相等的两个三角形全等.简记为 S.S.S.(或边边边).
13.2.5 边边边
► 知识点二 “角角角”不能判定三角形全等 三个角分别相等的两个三角形 不一定 全等. [比较] 如果两个三角形有三组对应相等的元素,可分为四 类:三边、两边一角、一边两角、三角.它们判定三角形是否 全等的情况可归纳如下:
使 A′B′=4,B′C′=5,A′C′=6.△ABC 与△A′B′C′满足对
应相等的条件分别是A__B=A′B′__,_B_C=B′C′__,__AC=A′C_′_,
可以确定△ABC 与△A′B′C′的关系是
全等
.
你能用一句话概括出三角形全等的这种判定方法吗?
◆知识链接——[新知梳理]知识点一
13.2.5 边边边
13.2.5 边边边
探究问题二 灵活运用三角形全等的判定方法证明三角形全等 例 2 如图 13-2-19,BE,CD 相交于点 O,且 AD=
AE,AB=AC. 求证:∠BAO=∠CAO.
图 13-2-19
13.2.5 边边边
[解析] 证△AOD≌△AOE 可得到∠BAO=∠CAO. 证明:证法 1:在△ABE 和△ACD 中, ∵AE=AD,∠BAE=∠CAD(公共角),AB=AC, ∴ △ABE≌△ACD(S.A.S.), ∴∠B=∠C(全等三角形的对应角相等). ∵AB=AC,AD=AE,∴BD=CE. 在△BDO 和△CEO 中, ∵∠B=∠C,∠DOB=∠EOC(对顶角相等),BD=CE, ∴△BDO≌△CEO(A.A.S.), ∴ OD=OE (全等三角形的对应边相等). 在△AOD 和△AOE 中, ∵AD=AE,AO=AO,OD=OE, ∴△AOD≌△AOE(S.S.S.), ∴∠BAO=∠CAO(全等三角形的对应角相等).
► 知识点一 “S.S.S.”基本事实及运用 基本事实:三__边__分别相等的两个三角形全等.简记为 S.S.S.(或边边边).
13.2.5 边边边
► 知识点二 “角角角”不能判定三角形全等 三个角分别相等的两个三角形 不一定 全等. [比较] 如果两个三角形有三组对应相等的元素,可分为四 类:三边、两边一角、一边两角、三角.它们判定三角形是否 全等的情况可归纳如下:
使 A′B′=4,B′C′=5,A′C′=6.△ABC 与△A′B′C′满足对
应相等的条件分别是A__B=A′B′__,_B_C=B′C′__,__AC=A′C_′_,
可以确定△ABC 与△A′B′C′的关系是
全等
.
你能用一句话概括出三角形全等的这种判定方法吗?
◆知识链接——[新知梳理]知识点一
13.2.5 边边边
13.2.5 边边边
探究问题二 灵活运用三角形全等的判定方法证明三角形全等 例 2 如图 13-2-19,BE,CD 相交于点 O,且 AD=
AE,AB=AC. 求证:∠BAO=∠CAO.
图 13-2-19
13.2.5 边边边
[解析] 证△AOD≌△AOE 可得到∠BAO=∠CAO. 证明:证法 1:在△ABE 和△ACD 中, ∵AE=AD,∠BAE=∠CAD(公共角),AB=AC, ∴ △ABE≌△ACD(S.A.S.), ∴∠B=∠C(全等三角形的对应角相等). ∵AB=AC,AD=AE,∴BD=CE. 在△BDO 和△CEO 中, ∵∠B=∠C,∠DOB=∠EOC(对顶角相等),BD=CE, ∴△BDO≌△CEO(A.A.S.), ∴ OD=OE (全等三角形的对应边相等). 在△AOD 和△AOE 中, ∵AD=AE,AO=AO,OD=OE, ∴△AOD≌△AOE(S.S.S.), ∴∠BAO=∠CAO(全等三角形的对应角相等).
北师大版初中九年级上册数学课件 《角平分线》证明PPT课件
1
2
B
E' D C
得解;(2)有线
E
''
段的和差关系时, 常用截长补短法作
1
2
3
辅助线化和差关系 为相等关系。
角的平分线
线段的垂直平分线
A
D
C
P
M P
O
E
B
A
B
N
定理1:在角的平分线上的点到这个角 定理:线段垂直平分线上的点和这条线段两
的两边的距离相等。
个端点的距离相等。
定理2:到一个角的两边的距离相等的 逆定理:和一条线段两个端点距离相等的
点,在这个角的平分线上。
点,在这条线段的垂直平分线上。
线段的垂直平分线可以看作是和线段两上端 角的平分线是到角的两边距离相等的所点距离相等的所有点的集合 有点的集合
点的集合是一条射线
点的集合是一条直线
作业(必做题):课本:习题,配套练习
问题探讨: 1、如图,如图所示∆ABC中, AD⊥BC于D,∠B=2∠C。求 证:AB+BD=CD。 若在ΔABC中,AD⊥BC于D, AB+BD=DC试问:∠B与∠C是 什2、么在关V型系公?路(∠AOB)内部,
认知结构中去.
问题引入
如图,浑南新区一个工厂,在公路西侧,到公 路的距离与到河岸的距离相等,并且与河上公 路桥较近桥头的距离为300米。你能尝试确定工 厂的位置吗?并说明理由。
北
比例尺1:20000
例1、如图,某开发区有一个工厂在公路西侧, 到公路的距离与到河岸的距离相等,并且与河 上公路桥较近桥头的距离为300米。你能尝试确 定工厂的位置吗?并说明理由。
DA
分析:要证明PD=PE,
角的平分线课件沪教版(上海)数学八年级上册
∵ ∴ △DCF≌△DEB.(SAS) ∴ BD=DF.
例2 如图,AP,CP分别是△ABC的外角∠MAC,∠NCA 的平分线,它们交于点P,PD⊥BM于点D,PF⊥BN于 点F,BP是∠MBN的平分线吗?请说明理由.
解:BP是∠MBN的平分线.理由如下:过点P作PE⊥AC 于点E.又∵AP,CP分别是∠MAC与∠NCA的平分线, 且PD⊥BM,PF⊥BN,∴PD=PE,PF=PE.∴PD=PF.又 ∵PD⊥BM,PF⊥BN,∴点P在∠MBN的平分线 上.∴BP是∠MBN的平分线.
19.5 角的平分线
教学目标
1、理解并掌握角平分线的尺规作法并会证明它的正确性; 2、掌握角的平分线的性质,能运用角平分线的性质进行一些简单的推理; 3、经历探索、猜想、证明的过程,培养学生动手操作能力及合作探索精神,进 一步发展学生的推理证明意识和能力。
教学难点
重点:角平分线的作法,角平分线的性质。 难点:对角平分线的性质理解及角平分线性质的应用。
已知:如图所示,OP平分∠BOA,PD⊥OB,垂足 为D,PC⊥OA,垂足为C. 求证:PD=PC.
【证明】∵OP平分∠AOB.(已知) ∴∠AOP=∠BOP(角平分线定义) 又∵PC⊥OA,PD⊥OB,(已知) ∴∠PCO=∠PDO=90Байду номын сангаас.(垂直的定义) 在△PCO和△PDO中,
AOP BOP, (已证) PCO PDO(, 已证) ∵ OP OP, (公共边)
∴△PCO≌△PDO.(AAS) ∴PC=PD.
由上面的证明,我们可以得出: 角平分线上的点到角两边的距离相等. 到角两边距离相等的点在角的平分线上.
典例精析
例1 如图,在△ABC中,∠C=90°,AD平分∠CAB交 BC于点D,DE⊥AB于点E,点F在AC上,BE=FC.求 证:BD=DF.
八年级数学12.3《角平分线的性质》(共23张PPT)优秀课件
二、重点难点
学生学好数学的信心. 到角两边的距离的正确理解;
2、掌握角平分线性质定理的运用 。
关键:通过情景问题的设计,引导
活动1 给出一个纸片做的角,不利用工具,能不能找出
这个角的角平分线呢? 〔对折〕
再翻开纸片 ,看看折痕与这个角有何关系?
活动 2
如果前面活动中的纸片换成木板、 A 钢板等没法折的角,又该怎么办呢?
C
∴∠CAD=∠CAB〔全等三角形的 E 对应边相等〕
∴AC平分∠DAB〔角平分线的定义〕
B C
根据角平分仪的制作原 理怎样作一个角∠EAF 的平分线?〔不用角平
分仪或量角器〕
A
D
E
B
作法:1.以A为圆心,适当长为半径作弧, AE于点B,交AF于点D;
2.分别以B、D为圆心,大于线段BD 一 半 的 长 为 半 径 作 弧 , 两 弧 在 ∠ EAF 的内部交于点C;
1、如图,是一个角平分仪,其中 AB=AD,BC=DC。将点A放在角的顶 D 点,AB和AD沿着角的两边放下, 过点A、C画一条射线AE,AE就是 角平分线,你能说明它的道理吗?
B C E
A
2、证明:
在△ACD和△ACB中
AD=AB〔〕
D
B
DC=BC〔〕
CA=CA〔公共边〕
∴ △ACD≌ △ACB〔SSS〕
3.作射线AC。
A
DF
二 角平分线的性质
实验:OC是∠AOB的平分线,点P是角平分线OC上 的任意一点
1.操作测量:取点P的三个不同的位置,分别过点P作PD⊥OA , PE⊥OB,点D、E为垂足,测量PD、PE的长。将三次数据填入下表:
A
D
CD PE
人教版八年级上册数学123角的平分线的性质优秀课件
OP=OP(公共边),
O
P
PD= PE(已知 ),
∴Rt△PDO≌Rt△PEO( HL).
E B
∴∠AOP=∠BOP (全等三角形的对应角相等).
∴点P在∠AOB的平分线上.
探究新知
判定定理:
角的内部到角的两边的距离相等的点在角的平分线上. 应用所具备的条件:
(1)位置关系:点在角的内部; (2)数量关系:该点到角两边的距离相等.
BC=DC.将点A放在角的顶点,AB和AD沿着角的两边
放下,沿AC画一条射线AE,AE就是角平分线,你能
说明它的道理吗?
A
其依据是SSS,两全等三角形的 对应角相等.
D
B
(E)C
探究新知
【思考】如果没有此仪器,我们用数学作图做 请大家找到用尺规作角的平分线的方法,并说明
第一课时
角的平分线的性质
导入新知
下图是一个平分角的仪器,其中AB= AD,BC=DC. 将点A放在角的顶点,AB和AD 沿着角的两边放下,沿 AC画一条射线AE,AE 就是这个角的平分线,你能说
A
明它的道理吗?
D
B
C E
素养目标
3. 熟练地运用角平分线的性质解决实际 问题. 2. 探究并认知角平分线的性质.
P在∠AOB的平分线上.
3
2.如图,AB∥CD,点P到AB,BC,CD的距离相等,则
点P是 ∠ABC的平分线与 ∠BCD 的平分线的交点.
探究新知
知识点 2 三角形的内角平分线
分别画出下列三角形三个内角的平分线,你发现 了什么?
发现:三角形的三条角平分线相交于一点.
探究新知 分别过交点作三角形三边的垂线,用刻度尺量一
角平分线ppt课件
两边距离相(等√) )
B
D A
C
小结
角平分线上的点到角的两边间隔 相等
到角的两边间隔 相等的点在这个角 的平分线上.
结语
谢谢大家!
PDOPEO(AAS)
PDPE全 ( 等三角形的对应等边)相
反过来,到一个角的两边间隔 相等的点是否一
定在这个角度平富乡上呢?
已知:P如 D O图 A P, E , OB
点 D, E为垂足。 求证: P在 点 AO的 B平分线上
证 明 PD : OP A E ,O点 BD,E,
A
为垂足
PD P O E R t O
例 1:已知: A如 B的 图 C角 ,平 B分 M C线 ,N 相交P 于点 求证P : 在 点 BA的 C角平分线上
证明P: D A作 B PE , BC P F , AC
垂足分 DE,F 别 , 为
A
BM 是 AB 的 C平分P在 线 B, M 上点
PD P( E角平分线上的点的到两角边距离相等)D
上任意P点 D O, A P,EOB 垂, 足分D别 E, . 为
求证P: D PE
A
D P
1
O
2
E
C B
证明:
OC是AOB的平分线(已知) 1 2(角平分线的定义) PD O, APE O( B 已知) PDOPEO 90(垂直的定义)
在 PD和 O PE中 O
PDO PEO(已证) 1 ( 2 已证) OP OP(公共边)
从上面实验可以角看是出轴,对称图形 ,对称轴是它的线角所平在分的直线。
假如前面活动中的纸片换成木板,钢 板等没法折叠的角,又该怎么办?
用尺规作图的方法作出角 平分线
B
D A
C
小结
角平分线上的点到角的两边间隔 相等
到角的两边间隔 相等的点在这个角 的平分线上.
结语
谢谢大家!
PDOPEO(AAS)
PDPE全 ( 等三角形的对应等边)相
反过来,到一个角的两边间隔 相等的点是否一
定在这个角度平富乡上呢?
已知:P如 D O图 A P, E , OB
点 D, E为垂足。 求证: P在 点 AO的 B平分线上
证 明 PD : OP A E ,O点 BD,E,
A
为垂足
PD P O E R t O
例 1:已知: A如 B的 图 C角 ,平 B分 M C线 ,N 相交P 于点 求证P : 在 点 BA的 C角平分线上
证明P: D A作 B PE , BC P F , AC
垂足分 DE,F 别 , 为
A
BM 是 AB 的 C平分P在 线 B, M 上点
PD P( E角平分线上的点的到两角边距离相等)D
上任意P点 D O, A P,EOB 垂, 足分D别 E, . 为
求证P: D PE
A
D P
1
O
2
E
C B
证明:
OC是AOB的平分线(已知) 1 2(角平分线的定义) PD O, APE O( B 已知) PDOPEO 90(垂直的定义)
在 PD和 O PE中 O
PDO PEO(已证) 1 ( 2 已证) OP OP(公共边)
从上面实验可以角看是出轴,对称图形 ,对称轴是它的线角所平在分的直线。
假如前面活动中的纸片换成木板,钢 板等没法折叠的角,又该怎么办?
用尺规作图的方法作出角 平分线
16.3 角的平分线课件(共23张PPT)
归纳小结
角平分线的性质定理:
角平分线上的点到这个角的两边的距离相等.
角平分线性质定理的逆定理:
到角的两边距离相等的点在角平分线上.
尺规作图:作已知角的平分线
同学们再见!
授课老师:
时间:2024年9月15日
问题
发现:角是轴对称图形,角平分线所在的直线是它的对称轴.
新知探究
一起探究
知识点1 角平分线的性质定理
在一张半透明纸上画出一个角,将纸对折,使这个角的两边重合.你从中能得出什么结论?
思考
如图,OP是∠AOB的平分线,P是OP上的任一点,过点P分别作PC⊥OA,PD⊥OB,点D垂为足,点C为垂足. 你能猜想PC,PD长度间有什么关系吗?证明你的猜想.
随堂练习
1.如图,在△ABC中,∠C=90°,AD平分∠CAB交BC于点D,DE⊥AB于点E,点F在AC上,BE=FC. 求证:BD=DF.
∵ AD平分∠BAC, DE⊥AB, DC⊥AC, ∴ DC=DE.
在△DCF和△DEB中,
证明: ∵ ∠C=90°, ∴ DC⊥AC.
∴ △DCF≌△DEB. (SAS) ∴ BD=DF.
∴ Rt△ APC ≌ Rt△ APD (HL),∴ AC= AD = BC.
3.如图所示,CD⊥AB,BE⊥AC,垂足分别为点 D,E,BE,CD 相交于点O,且 OB = OC.求证:点O在∠BAC的平分线上.
证明:∵CD⊥AB,BE⊥AC, ∴∠BDO=∠CEO=90°. 又∵ OB=OC,(已知) ∠BOD =∠COE,(对顶角相等) ∴△BOD≌△COE(AAS) ∴ OD = OE. ∴点O在∠BAC的平分线上.(角的内部到角两边距离相等的点在角的平分线上)
角平分线的性质定理:
角平分线上的点到这个角的两边的距离相等.
角平分线性质定理的逆定理:
到角的两边距离相等的点在角平分线上.
尺规作图:作已知角的平分线
同学们再见!
授课老师:
时间:2024年9月15日
问题
发现:角是轴对称图形,角平分线所在的直线是它的对称轴.
新知探究
一起探究
知识点1 角平分线的性质定理
在一张半透明纸上画出一个角,将纸对折,使这个角的两边重合.你从中能得出什么结论?
思考
如图,OP是∠AOB的平分线,P是OP上的任一点,过点P分别作PC⊥OA,PD⊥OB,点D垂为足,点C为垂足. 你能猜想PC,PD长度间有什么关系吗?证明你的猜想.
随堂练习
1.如图,在△ABC中,∠C=90°,AD平分∠CAB交BC于点D,DE⊥AB于点E,点F在AC上,BE=FC. 求证:BD=DF.
∵ AD平分∠BAC, DE⊥AB, DC⊥AC, ∴ DC=DE.
在△DCF和△DEB中,
证明: ∵ ∠C=90°, ∴ DC⊥AC.
∴ △DCF≌△DEB. (SAS) ∴ BD=DF.
∴ Rt△ APC ≌ Rt△ APD (HL),∴ AC= AD = BC.
3.如图所示,CD⊥AB,BE⊥AC,垂足分别为点 D,E,BE,CD 相交于点O,且 OB = OC.求证:点O在∠BAC的平分线上.
证明:∵CD⊥AB,BE⊥AC, ∴∠BDO=∠CEO=90°. 又∵ OB=OC,(已知) ∠BOD =∠COE,(对顶角相等) ∴△BOD≌△COE(AAS) ∴ OD = OE. ∴点O在∠BAC的平分线上.(角的内部到角两边距离相等的点在角的平分线上)
角平分线的性质(课件)人教版数学八年级上册
拓展训练 2.如图,△ABC 中,∠C = 90°,AD 是△ABC 的角
平分线,DE⊥AB 于 E,F 在 AC 上 BD=DF.求证:CF=EB.
证明:∵AD 平分∠CAB,DE⊥AB,∠C= 90°(已知), ∴CD=DE (角的平分线的性质). 在Rt △CDF 和 Rt△EDB 中, CD=DE (已证),DF=DB(已知), ∴ Rt△CDF ≌ Rt△EDB(HL). ∴ CF=EB (全等三角形对应边相等).
互动新授 思考
如图,要在S区建一个集贸市场,使它到公路、铁路的距 离相等,并且离公路与铁路的交叉处500m.这个集贸市场应建 于何处(在图上标出它的位置,比例尺为1:20000)?
S
互动新授
解:在Rt△ABC与Rt△ABD中:
AB=AB
BC=BD
∴ Rt△ABC ≌ Rt△ABD(HL).
∴∠CAB=∠DAB
M
即点B在∠CAD的角平分线上
你能得出什 A么结论呢?
C
D
B S
N
角的平分线的判定: 角的内部到角的两边的距离相等的点在 角的平分线上.
典例精析
例:如图,△ABC的角平分线BM,CN相交于点P.求证:点P 到三边AB、BC、CA的距离相等.
证明:过点P作PD⊥AB交于点D,PE⊥BC交于点E,
PF⊥AC交于点F.
AD=AD,
DC=DE,
∴Rt△ACD≌Rt△AED(HL),
∴AC=AE.
∵AC=BC,
∴AE=BC,
∴△DEB的周长为8cm.
课堂小结
三角形的角 平分线
角的平分线上的点到角的两边的距离相等.
角的内部到角的两边的距离相等的点在 角的平分线上.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 作法:(1)作
O1P1;
• (2)以O为圆心,以
交
;交
作弧, ;
• (3)以为圆心,以
交
;
作弧,
• (4)以 径作弧,交
为圆心,以
半
;
• (5)经过
பைடு நூலகம்
作
即为所求的角。
。则
A C
O
B
D
做一做
• 1、:利用直尺和圆规把一个角
二等分。
你能说
明理由
吗?
可以看出,所画的射线OC是 ∠O的角平分线,根据图中的作图痕迹,
尺规作图画角平分线
九年级数学组
复习
• 看图填空。 • (1)在
上截取
•
=
=
;
(2)以
为圆心,以
为半径作弧,交
于
。
第1题
第2题
• (3)分别以
、
为圆心,
• 以大于 弧交于
1 EF 2
的长为半径作弧,两
、
;
• (4)以O为圆心,以任意为半径作弧,
分别交AOB的两边OA、OB
于
、
。
A C
O
B
D
求作一个角等于已知角POQ,
汇报人:XXX 汇报日期:20XX年10月10日
11
你能画一个角的角平分线 并写出画图步骤吗?
试一试
试把下图所示的角四等分
O
• 任意画一个三角形, 画出三个内角的角平 分线.(不写画法, 保留作图痕迹)
联系知识综合运用
• 已知:两条线段 a、t 求作:直角三角形ABC使直角 的平分线等于t,一直角边 AB=a。
a
t
• 已知:角∠α,线段m。 • 求作:等腰三角形△ABC,使其
顶角∠BAC=∠α, ∠BAC的平 分线为m。
m
• 已知△ABC中,∠A=900,
• 求作⊙P,使圆心P在AC上,且 与AB、BC的两边都相切。
C
A
B
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!