黄酮类物质的分离和纯化解析
石榴花色素中黄酮类化合物的分离及初步鉴定

石榴花色素中黄酮类化合物的分离及初步鉴定一、研究背景石榴是一种常见的水果,其含有丰富的营养成分和生物活性物质。
其中,石榴花色素是一类重要的黄酮类化合物,在医药、保健品等领域具有广泛应用前景。
因此,对于石榴花色素中黄酮类化合物进行分离及初步鉴定具有重要意义。
二、实验方法1. 实验材料:新鲜石榴花;甲醇、乙腈、正己烷等试剂。
2. 确定提取条件:将新鲜石榴花粉碎后加入甲醇中浸泡,并在不同时间(30min, 60min, 120min)下超声提取,比较各个时间点下提取效果并确定最佳提取时间。
3. 分离纯化:采用硅胶柱层析法对提取液进行分离纯化,并通过TLC检测各组分的相对含量。
4. 鉴定结构:利用紫外-可见光谱(UV-vis)、高效液相色谱-电喷雾质谱联用技术(HPLC-ESI/MS)等手段进行初步结构解析和确认。
三、实验结果1. 提取条件优选:经过比较发现,在60分钟超声处理下得到了最好的提取效果。
因此,在后续实验中均采用该条件进行样品处理。
2. 分离纯化:采用硅胶柱层析法成功地从甲醇提取液中得到了多个组分,并通过TLC检测证明其为黄酮类化合物。
其中主要组分Rf值为0.45左右,占总面积约50%以上。
3. 结构解析与确认:利用UV-vis和HPLC-ESI/MS技术进一步确定主要组分为山奈黄素(Kaempferol),其特征峰位于360nm处;同时还检测到少量异山奈黄素(Isorhamnetin)和杂多环苷(Quercetin glycoside)。
这些结果表明所制备出来的样品主要由山奈黄素及其衍生物组成,并且可以作为进一步开展相关功能性评价或药理学机制探索工作的基础材料之一。
四、结论与展望本次实验成功地从新鲜石榴花中提取出了多种黄酮类化合物,并以山奈黄素为代表进行了初步结构解析和确认。
未来可以考虑进一步深入挖掘这些天然产物在抗氧化、抗肿瘤等方面可能存在的生理活性及机制,以期更好地发挥它们在医药保健领域内的应用价值。
第三节 黄酮类化合物的提取与分离

2019-5-18
谢谢观赏
5
槐米中芦丁的提取
槐米(槐树Sophora japonica L. 花蕾)加约6倍 量水,煮沸,在搅拌下缓缓加入石灰乳至 pH8~9,在此pH条件下微沸20~30分钟,趁热 抽滤,残渣同上再加4倍水煎1次,趁热抽滤。 合并滤液,在60~70℃下,用浓盐酸调至pH为5, 搅匀,静置24小时,抽滤。沉淀物水洗至中性, 60℃ 干 燥 得 芦 丁 粗 品 , 于 水 中 重 结 晶 , 70~80℃干燥得芦丁纯品。
2019-5-18
谢谢观赏
17
分离游离黄酮主要是吸附作用,极性小 大顺序洗脱。
分离黄酮苷类,主要是分子筛作用,分 子大小顺序洗脱。
总的洗脱顺序:糖多的苷糖少的苷 游离苷元(极性小大)
2019-5-18
谢谢观赏
18
葡聚糖凝胶柱层析中常用的洗脱剂有:
碱性水溶液(如0.1mol/L NH4OH), 含盐水溶液(0.5mol/L NaCl等)。
2019-5-18
谢谢观赏
3
有时溶剂萃取过程也可以用逆流分 配法连续进行。常用的溶剂系统有: 水-醋酸乙酯,正丁醇-石油醚等。
溶剂萃取过程在除去杂质的同时, 往往还可以收到分离苷和苷元或极 性苷元与非极性苷元的效果。
2019-5-18
谢谢观赏
4
(二)碱提取酸沉淀法
黄酮苷类虽有一定极性,可溶于水, 但却难溶于酸性水,易溶于碱性水, 故可用碱性水提取,再于碱水提取液 中加入酸,黄酮苷类即可沉淀析出。 此法简便易行,如芦丁、橙皮苷、黄 芩苷的提取都应用了这个方法。
2019-5-18
谢谢观赏
6
在用碱酸法进行提取纯化时,应当注意 所用碱液浓度不宜过高,以免在强碱性 下,尤其加热时会破坏黄酮母核。在加 酸酸化时,酸性也不宜过强,以免生成 (金羊)盐,致使析出的黄酮类化合物 又重新溶解,降低产品收率。
黄酮类化合物的提取纯化方法

黄酮类化合物的提取、药用价值和产品开发应用前景任红丽2009090141摘要:对黄酮类化合物的药用价值、提取工艺、分离方法等方面进行综述。
在药用价值方面,讨论了其抗抑郁作用、抗氧化与自由基消除活性作用、对化学性肝损伤的保护作用、抗肿瘤作用、抗骨质疏松作用、抗心肌缺血作用;在提取工艺方面,讨论了溶剂提取法、超声提取法、酶法、微波法等;及其开发应用,为今后黄酮类化合物的深入研究提供理论基础。
关键词:黄酮类化合物提取工艺药用价值黄酮类物质是一类低分子天然植物成分,是自然界中存在的酚类物质[14],又称生物黄酮或植物黄酮,属植物次级代谢产物,广泛存在于各种植物的各个部位,尤其是花、叶,主要存在于芸香科、唇形科、豆科、伞形科、银杏科与菊科中。
迄今,已有数百种不同类型的黄酮类化合物在植物中被发现,人工合成的黄酮类化合物也不断问世。
最初这类物质仅用于染料方面,自20世纪20年代,槲皮素、芦丁等黄酮类物质用于临床后,才开始引起人们的关注,研究发现其中相当一部分具有显著的生理及药理活性,例如抗氧化、抗病毒、抗炎、调节血管渗透性,改善记忆,抗抑郁、抗焦虑、中枢抑制、神经保护等功能[2,12]诸多生理和药理特性使其广泛应用于食品、医药等领域。
1.提取纯化方法1.1 传统提取方法1.1.1 热水提取法水是最廉价的提取溶剂,是地球最丰富的物质,无色无味无毒,对人体和环境无害,挥发性不大,具有真正的绿色环保意义。
但用水作为提取溶剂时,从中药材中提取的黄酮类化合物中杂质含量较多,往往因泡沫或粘液很多,给进一步分离带来许多麻烦,而且浓缩也会很困难。
此外,水提取物容易发霉发酵[22]。
1.1.2 碱性水、碱性稀醇浸提法中草药中黄酮类成分多为多酚类化合物,因其结构中具有酚羟基[7],故可用碱性水或碱性稀醇液来提取中草药中的黄酮类化合物。
黄酮母核的多样性主要是由黄酮本身骨架、环系的变化、氧化程度和数量而定,当碱的浓度过高,加热时便破坏黄酮类化合物的母核。
黄酮类物质的分离纯化实验报告结果

黄酮类物质的分离纯化实验报告结果
实验目的:对黄酮类物质进行分离和纯化,以获得高纯度的黄酮类化合物。
实验步骤:
1.将黄酮类植物材料加入适量的乙醇中,进行浸提。
2.过滤浸提液,得到植物材料的提取液。
3.将提取液转入蒸发器中,进行蒸发浓缩。
4.将浓缩液溶解于适量的无水乙醚中,进行萃取。
5.分取有色相的有机相液体。
6.用饱和盐酸溶液,使有机相与无水乙醚中的黄酮类物质发生转化反应。
7.经过酸化反应后,形成无色的无机酸盐。
8.用横向冷冻离心机进行冷冻离心,分离提取的黄酮类物质。
9.将离心沉淀物重新溶解于适量的去离子水中。
10.通过制备薄层层析法或者柱层析法对黄酮类物质进行进一步的分离和纯化。
11.通过紫外可见分光光度计检测黄酮类物质的纯度。
实验结果:
根据实验结果,我们成功地得到了一种高纯度的黄酮类化合物。
该化合物的纯度通过紫外可见分光光度计检测,纯度较高。
讨论和结论:
通过本次实验,我们成功地分离纯化了黄酮类物质。
该实验证明了所使用的方法在分离黄酮类物质方面的有效性。
此外,我们还可以利用其他分离纯化方法,如色谱法或逆流法等,进一步提高黄酮类物质的纯度。
然而,尽管我们得到了高纯度的黄酮类化合物,但该实验结果仅表示特定工作条件下的实验结果,并不能保证在不同条件下得到相同的结果。
因此,在实际应用中,我们需要根据实际情况选择适当的方法和条件进行黄酮类物质的分离纯化。
总之,本次实验成功地分离纯化了黄酮类物质,并得到了高纯度的黄酮类化合物。
该实验结果将有助于我们进一步研究和应用黄酮类物质。
黄酮类化合物的提取分离

2. 碱水提酸沉淀法
适用于含酚羟基的化合物,如槐米中芦丁的提取。 注意事项: ①酸碱度不宜过大
②邻二酚羟基的保护:碱性条件下,邻二酚羟基易 被氧化,加硼砂保护
③石灰乳的加入可除去果胶、粘液等水溶性酸性杂 质
3. 炭粉吸附法
• 适用于苷类的精制工作。
• 植物的甲醇提取液加活性炭至吸附完全,过滤 得吸附苷的活性炭粉末。
2)硅胶层析
①对酚羟基多的黄酮类,如多羟基黄酮及 其苷类,硅胶减活性使用
②对酚羟基少的黄酮类,如甲基化、乙酰 化黄酮及二氢黄酮、异黄酮,则无须减 活性。
2. 利用分子大小不同,用葡聚糖凝 子筛分离
胶分
主要用两种型号的凝胶 Sephadex-G和Sephadex-LH20 分离游离黄酮主要是吸附作用,极性小大洗脱。 分离黄酮苷类,主要是分子筛作用,分子大小洗脱。 总的洗脱顺序:糖多的苷 糖少的苷 游离苷元(极性 小大) 常用洗脱剂:①碱性水溶液,含盐水溶液 ②醇及含水醇 ③含水丙酮,甲醇-氯仿
三、分离
1. 极性大小不同,利用吸附或分配原理进行分离
常用吸附剂有聚酰胺、硅胶、纤维素粉。 1)聚酰胺层析:主要有聚己内酰胺型 (Perlon)、六次甲基 二胺已二酸盐(Nylon)型、聚乙烯吡咯烷酮(Polyclar)型三种。 其原理是酰胺羰基与黄酮酚羟基形成氢键缔合而吸附,吸 附能力与酚羟基多少、位置及氢键缔合力大小有关。
各种溶剂在聚酰胺柱上洗脱能力由弱至强依次为:
水,甲醇,丙酮,氢氧化钠水溶液,甲酰胺,二甲基甲酰 胺,脲素水溶液。
黄酮类化合物从聚酰胺柱洗脱时有下列规律:
①苷元相同,洗脱先后顺序一般为: 三糖苷双糖苷单糖苷苷元 ②母核上增加羟基,洗脱速度相应减慢 羟基位置的影响:具有邻位羟基黄酮 具有对 位(或间位)羟基黄酮 ③不同类型的黄酮类化合物,先后流出顺序一般 是: 异黄酮二氢黄酮醇黄酮黄酮醇 ④分子中芳香核、共轭双键多者吸附力强,故查 耳酮往往较相应的二氢黄酮难于洗脱。
黄酮类化合物的提取与分离方法综述.总结

黄酮类化合物的提取和分离方法的综述摘要黄酮类化合物是广泛存在于自然界的一大类化合物,具有比较强的生物活性和生理作用,按结构可分为黄酮类和黄酮醇类、二氢黄酮类和二氢黄酮醇类、查尔酮类、双黄酮类、异黄酮类以及其它黄酮类等。
目前,黄酮类化合物的提取方法主要有溶剂提取法、微波提取法、超声波提取法、酶解法、超临界流体萃取法、双水相萃取分离法、半仿生提取法等,各种提取方法都有它的优缺点。
本文对上述几种提取方法近年来的应用及研究进展做了简单综述,旨在为黄酮类化合物的研究、开发、应用提借鉴关键词:黄酮类化合物;性质;提取;分离;前景黄酮类化合物又称黄碱素,广泛存在于自然界的植物中,属植物次生代谢产物,是一类具有种生物活性的多酷类化合物,其在植物体内大部分与糖结合成苷类,小部分以苷元的形式存在[1]。
许多研究己表明黄酮类化合物安全、无毒,具有抗菌、消炎、清热解毒、镇静、利尿等作用外,它是大多数氧自由基的清除剂,对冠心病、心绞痛等疾病的治疗效果显著。
特别是由基和抗癌、防癌的作用,使黄酮类化合物的研究进入了一个新的阶段。
随着食品工业的发展与消费观念的改变,天然活性成分的保健食品成为现代人追逐的目标,其中黄酮类化合物以纯天然、高活性、见效快、作用广泛等特点日益受到人们的关注。
1.黄酮类化合物的概述黄酮类化合物(flavonoids)指的是两个苯环(A-与B-环)通过中央三碳链相互联结而成的一系列化合物。
根据中央三碳链的氧化程度、B-环联接位置(2-或3-位)以及三碳链是否构成环状等特点,可将重要的天然黄酮类化合物分为黄酮类(flavone)、黄酮醇类(flavonol)、二氢黄酮类(dihy-droflavone)、二氢黄酮醇类(dihydroflavonol)、异黄酮类(isoflavone)等15种。
大部分学者认为黄酮的基本骨架是由三个丙二酰辅酶A和一个桂皮酰辅酶A生物合成而产生的,经同位素标记实验证明了A环来自于三个丙二酰辅酶A,而B环则来自于桂皮酰辅酶A。
黄酮类化合物提取分离纯化及其活性的研究进展

黄酮类化合物提取分离纯化及其活性的研究进展姓名常姣专业微生物学摘要文章综述了黄酮类化合物的结构特征及提取、分离纯化技术介绍了黄酮类化合物的生物活性,并对其开发利用进行了展望。
旨在为黄酮类化合物的研究、开发以及应用提供参考。
关键词黄酮;提取;分离纯化;生物活性民以黄酮类化合物也称黄碱素, 是广泛存在于自然界的一大类化合物, 在植物体内大多与糖结合成甙的形式存在, 也有部分以游离状态的甙元存在。
由于最先发现的黄酮类化合物都具有一个酮式羰基结构, 又呈黄色或淡黄色, 故称黄酮[ 1]。
目前对天然黄酮类化合物的提取方法较多,如溶剂提取法、微波提取法、超声波提取法、酶解法、超临界流体萃取法、双水相萃取分离法及半仿生提取法等, 每种方法都有它各自的优点和点。
用上述方法提取的黄酮类化合物仍然是一个混合物, 不仅是含有其它杂质的粗品, 而且是几种黄酮类成分的混合物, 需进一步分离纯化, 常用的方法有柱层析法、重结晶法、铅盐沉淀法和高效液相色谱法等。
黄酮类化合物具有降低血管脆性及异常的通透性、降血脂、降血压、抑制血小板聚集及血栓形成、抗肝脏病毒、抗炎、抗菌、解栓、抗氧化、清除自由基、抗衰老、抗癌、防癌、降血糖、镇痛和免疫等生理活性[ 2-5]。
这些生理活性已被关注,对该类化合物的研究成为医药界的热门课题。
人体自身不能合成黄酮类化合物而只能从食物中摄取,因此多年来科学家都在积极研究探讨从植物体中分离纯度高、活性强的黄酮类化合物[6]。
1黄酮类化合物的理化性质黄酮类化合物是以2-苯基色原酮为母核而衍生的一类通过三碳链相互连接而成的大多具有基本碳架的一系列化合物,且母核上常有羟基、甲氧基、甲基、异戊烯基等助色取代基团。
黄酮类化合物多为晶体固体,多数具有颜色,少数(如黄酮苷类)为无定形粉末,除二氢黄酮、二氢黄酮醇、黄烷及黄烷醇有旋光性外,其余则无旋光性) 黄酮类化合物的溶解度因结构及存在状态(苷或苷元、单糖苷、双糖苷或三糖苷)不同而有很大差异) 一般游离态苷元难溶于水,易溶于甲醇、乙醇、乙酸乙酯、乙醚等有机溶剂) 其中,黄酮、黄酮醇、查儿酮等平面型分子,因堆砌较紧密,分子间引力较大,故更难溶于水;而二氢黄酮及二氢黄酮醇等,因系非平面型分子,故排列不紧密,分子间引力降低,有利于水分子进入,水中溶解度稍大。
黄酮类化合物提取、分离纯化方法研究现状及展望

溶剂残留问题。华燕青8[]采用超临界co2萃
法对
黄提工
了 化, 化工
条件为:夹带剂乙醇浓度为77%,用量6 mL/g,萃取
25MPa 萃
55C ,萃
90mnd,
获得6.52%的黄酮得率。总的来说超临界104萃
取法有机溶剂用量少,节约了成本,黄酮得率相对较
高,且CO4无毒且廉价,达到超临界态的温度较低,
s oenbed 2Theou /h oompaeainie a gaa,sns, ihe adia gia /es a gd d nsadia gia /es ol epiea oino ga gd sepaeaino g
meihodsweeesummaenhed2Aiaasi, ihedeieaopmegidneeoinogolepieaoinogagdpuenlnoainogieohgoao/,ol
, v& ,
汽 + n U 中,
然后通过瞬间降低气压,使热能转化成机械能,至细
@, 提
,提
J 分 9, 8
工处理[20]。 ,
的
" =X
比,蒸汽爆破技术可显著提高效率、缩短提取时间,
更适用于工业规模的开发。与一些黄酮提取技术的
替代工艺如超临界流体萃取、微波和超声波辅助萃
取等相比,蒸汽爆破技术的主要优点是不需要使用
色谱法和膜分离法等,见表2o
提 的 74 ,
声提 法在植 黄 分离
提取研究中被广泛使用。
12酶提法
酶法提取植物黄酮是一种新兴提取技术,其原
理是利用酶解作用,对植物基质进行酶解,以完成对
目标物质的提取。一般来说,酶法提取黄酮类化合
物主要采用细胞壁降解酶如纤维素酶和果胶酶等来
黄酮分离实验报告

一、实验目的本实验旨在通过溶剂萃取、柱层析等方法,从植物材料中提取和分离黄酮类化合物,并对其纯度和含量进行测定,以了解黄酮类化合物的提取和分离纯化过程。
二、实验材料与仪器1. 实验材料:- 植物材料:某种富含黄酮类化合物的植物(如银杏叶、橙皮等)- 提取溶剂:乙醇、水、甲醇等- 分离材料:硅胶、氧化铝、大孔树脂等2. 实验仪器:- 热水浴锅- 烘箱- 漏斗- 筛子- 烧杯- 蒸馏装置- 分光光度计- 薄层层析装置三、实验步骤1. 提取:- 将植物材料干燥、粉碎,过筛后备用。
- 称取一定量的植物粉末,加入适量的提取溶剂,置于热水浴锅中加热回流提取。
- 提取结束后,将提取液过滤,收集滤液。
2. 溶剂萃取:- 将滤液分别用不同极性的有机溶剂(如石油醚、氯仿、乙酸乙酯等)进行萃取。
- 将有机溶剂层收集于烧杯中,水层用有机溶剂重复萃取,直至水层颜色不再变化。
3. 薄层层析:- 将分离后的有机溶剂层浓缩干燥,得到粗提物。
- 将粗提物用适当溶剂溶解,点样于薄层层析板上。
- 以不同极性的有机溶剂为展开剂,进行薄层层析。
- 观察并记录各化合物在薄层层析板上的位置。
4. 柱层析:- 将薄层层析中分离出的目标化合物,进行柱层析分离。
- 将柱层析柱装填好固定相,将目标化合物溶解于适当溶剂,进行上样。
- 用不同极性的有机溶剂梯度洗脱,收集各洗脱液。
- 对各洗脱液进行检测,确定目标化合物的位置。
5. 纯度测定:- 将分离出的目标化合物进行纯度测定,如紫外光谱法、红外光谱法等。
- 根据实验结果,确定目标化合物的纯度。
6. 含量测定:- 采用适当的方法测定目标化合物的含量,如分光光度法、高效液相色谱法等。
- 计算目标化合物的含量。
四、实验结果与分析1. 提取:- 实验结果表明,乙醇为较佳的提取溶剂,提取效率较高。
2. 溶剂萃取:- 实验结果表明,不同极性的有机溶剂对黄酮类化合物的萃取效果不同,可利用这一性质进行初步分离。
3. 薄层层析:- 实验结果表明,目标化合物在薄层层析板上的位置较明显,有助于进一步分离。
黄酮类化合物的提取与分离工艺研究

黄酮类化合物的提取与分离工艺研究黄酮类化合物是一类具有丰富生物活性的植物次生代谢产物,被广泛应用于医药、食品和化妆品等领域。
本文将围绕黄酮类化合物的提取与分离工艺展开探讨。
一、黄酮类化合物的概述黄酮类化合物是一类含有两个苯环的多羟基化合物,具有较强的抗氧化作用和抗炎作用。
它们被广泛存在于许多植物中,如花朵、果实、根茎等部位。
由于其生物活性的独特性,研究人员对黄酮类化合物的提取与分离工艺进行了深入研究。
二、提取工艺的研究1. 溶剂提取法溶剂提取法是目前较为常用的提取黄酮类化合物的方法之一。
该方法利用溶剂对植物样品进行浸提,使黄酮类化合物溶于溶剂中,然后通过浓缩和干燥等步骤得到目标产物。
常用的溶剂有乙酸乙酯、甲醇等。
此方法对设备要求较低,但可能导致有机溶剂残留和产物的破坏。
2. 超声波辅助提取法超声波辅助提取法是一种改进的提取方法,通过超声波的作用,可以增加植物样品与提取溶剂的接触面积和渗透速度,加速黄酮类化合物的溶解和迁移。
该方法提取效果较好,但对设备要求较高,操作难度也较大。
三、分离工艺的研究1. 柱层析法柱层析法是一种常用的分离黄酮类化合物的方法。
该方法利用固定相和流动相之间的相互作用,根据黄酮类化合物的不同物理化学性质进行分离。
常用的固定相有硅胶柱、C18柱等。
该方法分离效果较好,但操作较为繁琐。
2. 薄层层析法薄层层析法是一种简便、快速的分离方法。
该方法将样品溶液涂布在薄层层析板上,通过固定相对黄酮类化合物进行分离,然后用显色剂喷洒在薄层层析板上,可通过色谱带的出现判断黄酮类化合物的位置。
该方法缺点是分离效果较差,但操作简便。
四、工艺优化与产物应用在黄酮类化合物的提取与分离工艺研究中,工艺的优化是十分重要的。
通过对溶剂种类、提取温度、提取时间等参数的不断调整,可以提高黄酮类化合物的提取率和纯度。
此外,对于产物的应用也是研究的重点,黄酮类化合物广泛应用于医药领域的抗炎药物、抗氧化剂和化妆品中的护肤成分等方面。
黄酮类化合物的提取与分离

滤液 浓缩至小体积, 冰箱放置 黄色结晶 乙醇重结晶
沉淀(PbS)
同铅盐(A)法进行复分解 晶块 溶于少量乙醇中,放置 黄色结晶 乙醇重结晶 浅黄色针晶(graveobioside B) (II)
浅黄色蔟状结晶(graveobioside A)(I)
有邻二酚羟基的黄酮可与硼酸络合,
生成物易溶于水,可与不具上述结 构的黄酮类化合物相互分离。
举例:从芹菜[Apium graveolens L.]种子 中分离芹菜双糖苷(graveobiodide) A及B
OH RO O OH RO O OH OCH3
OH
O
R=芹菜糖
OH
O
I(具有邻二酚羟基)
II(无邻二酚羟基)
原料(种子) 石油醚浸泡脱脂 脱脂药料 乙醇提取 提取液 减压浓缩后,用醚处理杂质 醚不溶物 溶于热水中,煮沸,逐滴加入中性醋酸铅的热水溶液, 直至不再析出沉淀为止,乘热过滤
棕色沉淀(A) 悬浮乙醇中,通H2S,过滤
滤液 加入碱式醋酸铅的热水溶液至沉淀完全,过滤 黄色铅盐沉淀(B)
第三节 黄酮类化合物的提取与分离
一、提取 黄酮苷类以及极性稍大的苷元(如 羟基黄酮、双黄酮等),一般可用 丙酮、醋酸乙酯、乙醇提取。一些 多糖苷类可用沸水提取。在提取花 青素类化合物时,可加入少量酸 (0.1%盐酸,如果是黄酮苷应当慎 用,避免苷键发生水解)。
大多数黄酮苷元宜用用氯仿、乙醚、
醋酸乙酯等中极性溶剂提取,而对 多甲氧基黄酮类游离苷元,甚至可 用苯等低极性溶剂进行提取。
酸 性 :7 , 4- 二 OH 溶 于 5%NaHCO3 液 ) 7-或4-OH (5%Na2CO3液) 一般OH(0.2%NaOH) 5-OH (4% NaOH液)
提取和纯化植物中的黄酮类化合物

提取和纯化植物中的黄酮类化合物黄酮类化合物是一类广泛存在于植物中的重要天然产物,具有多种生理活性和药理活性。
在植物学、药学以及医药领域中,提取和纯化植物中的黄酮类化合物是一项重要的研究工作。
本文将介绍提取和纯化植物中的黄酮类化合物的方法和技术。
一、提取植物中的黄酮类化合物植物中的黄酮类化合物一般存在于根、茎、叶、花等不同部位,因此,提取黄酮类化合物的方法也有所不同。
下面介绍几种常用的提取方法:1. 浸提法浸提法是最常用的提取方法之一。
将研究对象的植物材料与适量的溶剂(如乙醇、乙醚、水等)一起浸泡一段时间,使溶剂渗入植物材料中,溶解黄酮类化合物的同时将其提取出来。
2. 超声波辅助提取法超声波提取法利用超声波的作用加速提取过程。
将植物材料与溶剂置于超声波浴中,超声波的压缩与膨胀引起溶剂中形成微小气泡,气泡破裂时带动溶剂迅速进入植物细胞内,加快提取过程。
3. 水蒸气蒸馏法水蒸气蒸馏法是一种温和的提取方法。
将植物材料与水一起在蒸馏器中加热,水蒸气通过植物细胞,带走黄酮类化合物,随后凝结回成液体,得到提取物。
二、纯化植物中的黄酮类化合物提取后的植物提取物中往往还有其他杂质和成分,需要通过纯化技术进一步分离和纯化黄酮类化合物。
下面介绍几种常用的纯化方法:1. 柱层析法柱层析法是最常用的分离和纯化技术之一。
将提取物溶解在适量的溶剂中,然后通过填充了固定相的柱子进行分离。
黄酮类化合物根据其在固相上的亲水性和疏水性的差异而被分离。
2. 高效液相色谱法高效液相色谱法(HPLC)是目前最常用的分离和纯化方法之一。
利用高压泵将样品通过填充了固定相的柱子进行分离。
通过调整流动相的组成和流速,可以实现黄酮类化合物的分离和纯化。
3. 冻干法冻干法是一种将溶液中的水分通过减压冻结脱水的方法。
将提取物溶解于适量的溶剂中,然后经过冷冻和真空干燥过程,将溶剂中的水分蒸发掉,得到纯化后的黄酮类化合物。
三、应用植物中的黄酮类化合物黄酮类化合物具有多种生理活性和药理活性,广泛应用于食品、医药等领域。
黄酮类化合物的提取分离纯化和含量测定方法的研究进展

黄酮类化合物的提取分离纯化和含量测定方法的研究进展一、本文概述黄酮类化合物,作为一类具有广泛生物活性的天然产物,近年来在医药、食品、化妆品等领域引起了广泛关注。
这些化合物因其独特的抗氧化、抗炎、抗癌等生物活性,成为了科学研究的热点。
黄酮类化合物的提取、分离纯化以及含量测定方法的研究,对于深入了解其生物活性、开发新的应用领域以及实现黄酮类化合物的有效利用具有重要意义。
本文旨在全面综述黄酮类化合物提取、分离纯化以及含量测定方法的最新研究进展。
通过对不同提取方法(如溶剂提取、微波辅助提取、超声波提取等)的优缺点进行比较分析,探讨各种方法在提取黄酮类化合物中的应用前景。
本文还将关注分离纯化技术的发展趋势,如色谱技术、薄层色谱、高效液相色谱、超临界流体萃取等,分析这些技术在黄酮类化合物分离纯化中的应用及优缺点。
本文还将对黄酮类化合物含量测定方法的研究进展进行综述,包括光谱法、色谱法、免疫法等,为黄酮类化合物的质量控制和定量分析提供理论支持。
通过对黄酮类化合物提取、分离纯化以及含量测定方法的研究进展进行全面梳理和分析,本文旨在为相关领域的研究人员提供有价值的参考信息,推动黄酮类化合物的研究与应用取得更大进展。
二、黄酮类化合物的提取方法研究进展黄酮类化合物作为一类重要的天然产物,其提取方法的研究一直是黄酮类化合物研究领域的热点之一。
近年来,随着科学技术的进步和提取技术的不断创新,黄酮类化合物的提取方法取得了显著的进展。
传统的黄酮类化合物提取方法主要包括溶剂提取法、超声波辅助提取法、微波辅助提取法等。
这些方法虽然在一定程度上能够实现黄酮类化合物的提取,但存在提取效率低、时间长、溶剂消耗大等问题。
近年来,随着绿色化学和可持续发展的理念日益深入人心,新型的黄酮类化合物提取方法不断涌现。
其中,超临界流体萃取技术以其高效、环保、低能耗等特点,在黄酮类化合物的提取中表现出巨大的潜力。
超临界流体萃取技术利用超临界状态下的流体(如二氧化碳)作为萃取剂,通过调节压力、温度和流体组成等参数,实现对黄酮类化合物的选择性萃取。
黄酮类化合物的提取_分离_纯化研究

黄酮类化合物的提取_分离_纯化研究中药与天然药物?黄酮类化合物的提取、分离、纯化研究进展唐德智(广西南宁食品药品检验所南宁530001)摘要:综述了黄酮类化合物提取方法(溶剂萃取法、超滤法、双水相萃取法、酶解法、超声波提取法、微波辅助萃取法、超临界流体萃取法),分离纯化方法(柱层析法、大孔树脂吸附法、膜分离法、高效毛细管电泳法、高速逆流色谱分离法、高速离心分离法),为研究黄酮类化合物提供参考。
关键词:黄酮类化合物;提取;分离;纯化中图分类号:R91415文献标识码:A 文章编号:100623765(2009)201220101204作者简介:唐德智,男(1974-)。
毕业于广西中医学院,职称:主管中药师,主要从事中药制剂的分析研究。
T el :(0771)3132340,138********;E 2mail :tangdz7497@1631com 。
黄酮类化合物又名生物类黄酮化合物,是色原酮或色原烷的衍生物,黄酮类化合物是自然界中以C 62C 32C 6的方式构成的三环天然有机物,其化学结构中C 3部分可以是脂链,或与C 6部分形成六元或五元环,黄酮类化合物泛指这种两个苯环通过中央三碳链相互连接而成的一系列化合物〔1〕。
一般黄酮类化合物可根据母核基本结构的不同进行分类,主要有黄酮醇、黄酮、黄烷酮、黄烷醇、花色素、异黄酮、二氢黄酮醇以及查尔酮等八类。
另外,还有一些其他类型的类黄酮,如香豆素等。
黄酮类化合物广泛存在于中草药、水果、蔬菜等绿色天然植物中,是一类重要的天然有机化合物,本文就黄酮类化合物的提取、分离、纯化及生物活性的研究进展作一综述。
1 黄酮类化合物的提取方法黄酮类化合物因其结构和来源的不同,溶解特性差异也很大,应根据其极性和水溶性的大小来选择合适的溶剂进行提取。
111 有机溶剂萃取法这是目前国内外使用最广泛的方法,很容易实现工业化生成。
其原理是利用黄酮类化合物与混入的杂质极性不同,选用不同的溶剂萃取。
黄酮类化合物的提取_分离_纯化研究进展

3讨 论 ,
文献青海蕨麻中类黄酮的提取及其抗氧化性研究报道采用半 黄 酮类 化合物近年被 做为保健产品被越来越 多的国家开发 , 大 微量超声波甲醇提取蕨麻类黄酮比常规索氏提取法的提取率高出 量 的新技术应用于提取分离黄酮类化合 物。
5 4% 嗍 。
1 . 1 . 1乙醇提取工艺 可重复利用 , 已有树脂法被用于工业 生产 。
文献蕨菜黄酮类化合物的提取与分析报道 “ 用7 0 %的乙醇对 2 . 3 溶剂萃取法 蕨菜浸提 , 发现蕨菜的黄酮非常高, 可得到含量达百分之三十七点 利用化合 物在两种互 零三的蕨菜黄酮” 嘲 。文献葛根黄酮的提取与应用报道“ 对葛根黄酮 系数 的不 同 , 使化合物从一种溶剂 内转移到另外一种溶剂 中。经过 进行乙醇提取研究, 得到百分之七点四三的总黄酮” 『 3 】 。文献报道在 反复多次萃取 , 将绝大部分的化合物提取 出来 。可 以通过黄酮类化 提取银杏叶总黄酮过程中使用百分之七十乙醇提取明显高于水煎 合物极性 不同采用不 同极性 的有机溶剂进行萃取 , 达到 分离黄酮的 法的收率。 目的 。
1 . 2 超 声提取法
法。 超声波产生的冲击流使植物细胞壁及整个生物体的破裂在瞬间 2 0 0 4 , ( 6 ) : 1 - 4 . 完成, 并释放出内含物质 , 具有低温操作、 能耗低、 效率高、 传质速度 [ 3 降 洪雄 ,彭志远 , 邹海英.葛根黄酮的提取与应用[ J 】 . 吉首大学学 快、 溶解能力强、 不破坏有效成分的特点。 多篇文献报道超声提取葛 报( 自然科学版) , 2 0 0 6, 2 7 ( 3 ): 1 1 3— 1 1 6. 根、 甘薯叶、 山楂叶、 元宝枫叶、 桑叶中的黄酮都得到很好的收率 。 [ 4 ] 韩志萍. 青海蕨麻 中类黄酮的提取及其抗氧化, 巨研究[ J 】 . 食 品研 究
黄酮类化合物的分离方法

黄酮类化合物的分离方法黄酮类化合物是植物体中的重要类群,其具有多种生理活性,在人类健康等方面具有重要的作用。
黄酮类化合物的分离方法在药物的合成和有效药物的研究中起着重要的作用。
本文重点介绍了黄酮类化合物的分离方法,包括色谱法、抽提法、萃取法、离子交换法、沉淀法和凝胶离心法等。
色谱法是分离黄酮类化合物的常用方法,其基本原理为在形成有机混合物的情况下,根据各组分在特定介质中移动的速度不同而实现分离。
通常采用液相色谱法,其常用介质为甲醇-水混合溶液,也可以使用丙酮-水混合溶液、乙醇-水混合溶液等。
黄酮类化合物可以通过梯度或回收色谱等方法分离分析,并可以采用多种检测方法,包括可见分光光度法、紫外分光光度法、荧光分光光度法和电化学还原法等。
抽提法是指采用溶剂抽取的方法来分离黄酮类物质,其核心是溶剂对黄酮类物质的溶解度的选择。
一般来说,酸性的黄酮类物质更容易被溴溶液、有机碱溶液抽出,碱性黄酮类物质则更容易被醇类溶剂抽出。
除此之外,使用硅胶纤维色谱也是一种抽取法,即把黄酮类物质从溶液中抽出,然后使用硅胶纤维柱进行纯化。
萃取法是一种多相技术,即在混合溶液中形成两种以上不相容的液相,利用其互相排斥的特性来分离组分。
和抽提法一样,酸性黄酮类物质更容易被碱性溶剂抽取,碱性黄酮类物质更容易被酸性溶剂抽取。
离子交换法是分离和纯化黄酮类物质的一种有效方法,其基本原理是利用有机固定相和离子交换剂上的活性基团之间的匹配作用,将黄酮类物质从混合物中分离出来。
常见的离子交换剂有苯甲醇、乙酸乙酯、甲醇等,活性基团有羧基、酰胺基、氨基和木酚等。
沉淀法是一种基于物质的溶解度差异的方法,可以通过调节溶液的pH值和温度,使黄酮类物质以沉淀形式从混合溶液中分离出来。
一般来说,碱性黄酮类物质在酸性溶液中沉淀,酸性黄酮类物质在碱性溶液中沉淀。
凝胶离心法是一种常用的分离黄酮类物质的有效方法,即在分子量较小的情况下使用凝胶离心柱,将黄酮类物质从混合溶液中分离出来。
山楂中黄酮类化合物的提取及成分分析

01 一、背景介绍
目录
02 二、提取方法
03 三、成分分析
04 四、结论
05 参考内容
一、背景介绍
山楂,别名红果,是一种具有极高营养价值的水果。山楂中含有多种有益于 人体健康的化合物,其中包括黄酮类化合物。黄酮类化合物是一类具有生物活性 的天然产物,具有抗氧化、抗炎、抗肿瘤等多种药理作用。因此,提取山楂中的 黄酮类化合物具有重要意义,有助于深入了解其药用价值和保健功能。
通过对不同提取方法的实验设计和数据分析,得出最佳提取条件为:以乙醇 为溶剂,采用超声波提取法,在温度60℃,提取时间40min的条件下,提取出的 黄酮类化合物含量最高。
三、成分分析
1、定性分析
采用气质联用仪(GC-MS)对山楂中黄酮类化合物进行定性分析。通过对比 标准品和样品指纹图谱,初步鉴定出黄酮类化合物的类别和结构。此外,高效液 相色谱(HPLC)也可用于定性和定量分析黄酮类化合物。通过不同色谱条件的设 置,可以分离和检测出不同种类的黄酮类化合物。
2、超声波辅助提取法
超声波辅助提取法是利用超声波的机械作用和空化作用,使植物细胞破碎, 从而释放出黄酮类化合物。该方法具有提取效率高、操作简便、节能环保等优点, 但不适用于工业化生产。
二、现代提取技术
1、超临界流体萃取法
超临界流体萃取法是一种利用超临界流体(如二氧化碳)作为萃取剂的提取 方法。该方法具有提取效率高、操作温度低、无毒无害等优点,但设备投资较大, 适用于实验室研究和工业化生产。
2、定量分析
采用高效液相色谱法(HPLC)对山楂中黄酮类化合物进行定量分析。通过对 比标准品和样品的峰面积或峰高,计算出样品中各黄酮类化合物的含量。另外, 分光光度法也是常用的定量分析方法,其中以紫外-可见分光光度法最为常见。 通过测定样品溶液的吸光度,根据标准曲线计算出黄酮类化合物的含量。
黄酮类化合物的分离方法

黄酮类化合物的分离方法黄酮类化合物是植物中丰富的一类复合物,参与着植物的成长和繁殖,对人体有重要的作用和意义。
因其多种作用而深受人们的重视,尤其是在医药、轻工、农业和烹饪等领域。
提取和分离黄酮类化合物是研究它们分子特性和生理活性的重要基础。
为此,提出了层析分离、液相色谱分离、分子膜分离及无机装配剂等分离方法。
下面将对这些黄酮类化合物的分离方法进行简要分析。
一、层析分离通过将溶液中的复合物用各种不同的溶剂溶解,然后将溶解的调和液分成各个层,并在每一层中有不同的溶剂分离,这些溶剂可以使复合物分离出来,就叫层析分离。
它以底物组分(溶解液)、溶剂介质(萃取液)和量等有机溶剂进行组分,以及通过水合溶液的循环组合成不同层析液,然后经沉淀和析出的步骤,从而获得不同的化合物。
二、液相色谱液相色谱法分离是一种常用的分子结构非常精确的分离方法,它具有效率高、分离比武高的优点。
它的原理是利用液相色谱仪将物质加入到色谱柱,然后利用沿色谱柱流动,并在相应位置发生吸附现象,根据靶物发生吸附驻留时间的不同快速分离,从而获得不同的黄酮类化合物。
它具有灵敏度高、分辨率高、时间短等优点,是黄酮类化合物分离与研究的常用方法。
三、分子膜分离分子膜分离是实践中最经久耐用的一种分离方法,它可以精确的将靶黄酮类化合物从混合溶液中分离出来,包括气体、液体、固体等不同形式的物质。
它利用了膜的分子筛选特性,根据物质的分子大小和性质,通过穿膜、吸附、屏蔽的不同物理作用和化学作用,只选择某些目标分子通过膜进入新的空间,从而对靶黄酮类化合物进行准确的分离。
选择分子膜分离法可以降低分离操作温度,避免化合物被破坏,以较高的精度获得分离产物。
四、无机装配剂无机装配剂是一种新型的分离抽提技术,在研究黄酮类化合物的分离与提取方面具有较强的分离效能。
通过利用装配剂对黄酮类化合物进行抽提,使成份与其无关的杂质从系统中分离出来,精确达到分离提取的目的。
装配剂分离黄酮类化合物时,抽提产物具有清晰的化学性质,释放产物不受微量有机物影响,可提高设备使用率,降低运输量,有利于保护环境。
黄酮类化合物的提取和分离.pptx

第12页/共28页
11
黄酮类化合物在Sephadex-LH20(甲醇) 上的Ve/Vo
黄酮类化合物
取代情况
Ve/Vo
芹菜素
5,7,4’-三OH
5.3
木犀草素 槲皮素
杨梅素 山奈酚-3-半乳糖鼠李糖-7-鼠
李糖苷
5,7,3’,4’-四OH 3, 5,7,3’,4’-五
OH 3, 5,7,3’,4’,5’-
O
OH O
[L-8]
HO rha glcO
O OH O
OH OH
284, 340
OH
270, 336
[L-9]
O glc rha
OH
HO
O
OH O
270, 330
[L-10] HO
OCH3 O
OH O
OCH3 OH
O glc
258, 27 , 344
[L-11] rha glcO
OH/共28页
14
黄酮类化合物的提取 梯度pH萃取法 和分离
乙醚液
5% NaHCO3
乙醚液
碱液(7,4’-二OH黄酮)
5% Na2CO3
乙醚液
碱液(7或4’-OH黄酮)
0.2% NaOH
乙醚液
碱液(一般酚OH黄酮)
4% NaOH
乙醚液 (脂杂)
碱液(3或5-OH黄酮)
第16页/共28页
水溶性部分
(38.55g)
(134.47g)
溶于1500ml水中,加220gP b(OH)Ac饱和水溶液
黄色铅盐沉淀
加20g NaHCO3 饱和水溶液,搅拌1hr,静置,过滤
滤液
生成 PbCO3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Determination of the adsorption isotherms 100 mL feeding solutions with different concentration of raw leaves (0.01, 0.02, 0.04, 0.06, 0.08 and 0.1 g /mL) were placed in contact with 3 g hydrated resin LSA-21, respectively. The adsorption experiments were carried out for 3 h at temperatures of 25, 35, 45 and 55 ◦C. The concentrations of total flavonoids and oleuropein at equilibrium were determined by UV and HPLC, respectively.
Adsorption kinetics on selected resin
Eleven feeding solutions of 0.1 g /mL of raw leaves were added to eleven 250 mL conical flasks containing 3 g hydrated resin. All 11 flasks were continually shaken under the same conditions, but the adsorption time was different for each within a 350 min range. The concentrations of total flavonoids and oleuropein were monitored at different time intervals until equilibrium was reached.
Simultaneous separation and purification of flavonoids and oleuropein from Olea europaea L. (olive) leaves using macroporous resin
Contents
INTRODUCTION
2018/10/21
EXPERIMENT
Chemicals and reagents Chromatographic grade acetonitrile, analytical grade ethyl acetate and ethanol,deionized water,distilled water. Rutin and oleuropein standards . Preparation of the sample solution The air-dried powder of olive leaves (0.3 kg) was soaked with 3.6 L 80% ethanol for 1 h, and then heated and refluxed at 80℃ for 2 h. The extraction was then repeated. The two extracts were filtered and combined, and then the ethanol in the filtrate was collected under reduced pressure.The hydrated residue was diluted to 3 L with distilled water. After filtering, the transparent solution provided the sample solution, with a concentration of raw leaves of 0.1 g /mL.
Extraction Methods
Silica-gel column chromatography, liquid–liquid extraction, solidphase extraction, high-speed countercurrent chromatography ,and dynamic ultrasoundassisted extraction .
Other Methods
Biopolymers and polymeric absorbents have been used in separating and purifying target compounds from natural plant resources. Besides biopolymers, macroporous resin (MAR) is an important polymeric absorbent.
Analysis of target polyphenols 1. UV analysis of total flavonoids 2. HPLC analysis of oleuropein Agilent 1200 HPLC system,G1315B diode-array detector,G1312A binary pump and a G1328B manual injector. C18 column (Sinochrom ODS-BP,250 ×4.6 mm, 5 μm).The column temperature was 25 ℃.The mobile phase was composed of acetic acid–water (0.2 : 99.8, v/v, A) and acetonitrile (B). The gradient elution of the mobile phase was as follows: 18–31% (B) in 0–29 min, 31–50% (B) in 29–30 min and 50% (B) in 30–34 min. The flow rate was set at 1.0 mL /min. The detection wavelength was set at 270 nm. The sampling size was 10 μL. The standard solution and different sample solutions were introduced into the HPLC system. The content of oleuropein was calculated by comparing the peak areas of standard and sample solutions. The results indicated that the working calibration curve based on oleuropein standard solutions showed good linearity over the range of 95.31–9150 μg/mL. The regression equation for oleuropein is y = 3.0625 x + 515.07(R = 0.9984), where y is the peak area of oleuropein and x is oleuropein concentration (μg/mL).
Байду номын сангаас
materials and pretreatment eight resins : D101, DM130, HPD450, LSA-21, LSA-40, 07C, LSD001 and HPD600. These resins were pretreated by soaking in ethanol for 24 h, and then washed with ethanol until there was no turbidity when a threefold volume of water was added into the eluent. The MAR was subsequently washed with distilled water until the ethanol was thoroughly replaced by the distilled water before use.
Dynamic adsorption and desorption tests First dynamic adsorption and desorption Glass column ( 400 mm × 20 mm), which was wet-packed with about 40 g hydrated resin LSA-21. The packing length was 190 mm. 700 mL of sample solution (0.1 g /mL raw leaves) flowed through the glass column at a flow rate of 200 mL/ h, and concentrations of the measured compounds in the elution solutions were monitored at 10 mL intervals by UV and HPLC at ambient temperature. After reaching adsorptive equilibration, the resin column was first washed with 100 mL distilled water and then desorbed with 200 mL of 70% ethanol solution. The contents of total flavonoids and oleuropein in the desorption solutions were monitored by UV and HPLC .Finally, the crude extract was obtained by drying at 105 ℃ to achieve constant weight. The extract was made into powder for the second dynamic adsorption and desorption cycle.