25.2用列举法求概率习题精选(答案)

合集下载

人教版数学九年级上册:25.2 用列举法求概率 同步练习(附答案)

人教版数学九年级上册:25.2 用列举法求概率  同步练习(附答案)

25.2 用列举法求概率1.同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为()A.14B.13C.12D.342.三张外观相同的卡片分别标有数字1,2,3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A.13B.23C.16D.193.小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是()A.12B.13C.23D.164.同时掷两枚质地均匀的骰子,两枚骰子点数的和是5的概率是()A.112B.19C.16D.145.如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A.12B.14C.18D.1166.一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1.卡片除数字不同外其他均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是()A.14B.13C.12D.347.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.19B.16C.13D.238.从1,2,3,4中任取一个数作为十位上的数字,再从余下的数字中任取一个数作为个位上的数字,那么组成的两位数是6的倍数的概率是.9.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的概率是.10.张华和李明两人玩“剪刀、石头、布”的游戏,游戏规则为:剪刀胜布,布胜石头,石头胜剪刀.(1)请用列表法表示出所有可能出现的游戏结果;(2)求张华胜出的概率.剪刀石头布11.周末期间小明和小华到影城看电影,影城同时在四个放映室(1室、2室、3室、4室)播放四部不同的电影,他们各自在这四个放映室任选一个,每个放映室被选中的可能性都相同,则小明和小华选择同一间放映室看电影的概率是.12.某校举行数学青年教师优秀课比赛活动,某天下午在安排2位男选手和2位女选手的出场顺序时,采用随机抽签方式,则第一、二位出场选手都是女选手的概率是.13.从长度分别为1,3,5,7的四条线段中任取三条作边,能构成三角形的概率为()A.12B.13C.14D.1514.若从-1,1,2这三个数中,任取两个分别作为点M 的横、纵坐标,则点M 在第二象限的概率是 .15.在某校运动会4×400 m 接力赛中,甲、乙两名同学都是第一棒,参赛同学随机从四个赛道中抽取赛道,则甲、乙两名同学恰好抽中相邻赛道的概率为 .16.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率是23.(1)求袋子中白球的个数;(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.17.某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A 区域时,所购买物品享受9折优惠,指针指向其他区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其他情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘). (1)若顾客选择方式一,则享受9折优惠的概率为14;(2)若顾客选择方式二,请用列表法列出所有可能,并求顾客享受8折优惠的概率.转盘甲 转盘乙18.如图为甲、乙两个可以自由转动的均匀的转盘,甲转盘被分成3个面积相等的扇形,乙转盘被分成4个面积相等的扇形,每一个扇形都标有相应的数字,同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为m,乙转盘中指针所指区域内的数字为n(若指针指在边界线上,重转一次,直到指针指向一个区域为止).(1)请你用列表的方法求出|m+n|>1的概率;(2)直接写出点(m,n)落在函数y=-x+1图象上的概率.第2课时用树状图法求概率1.在一个不透明的口袋中装有2个白球、2个黑球,这些球除颜色外其他都相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,放回后再随机摸出一个球,两次摸到都是白球的概率是()A.112B.16C.14D.122.某校九年级共有1,2,3,4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()A.18B.16C.38D.123.甲、乙两人用如图所示的两个转盘(每个转盘被分成面积相等的3个扇形)做游戏.游戏规则:转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘,甲获胜的概率是()A.13B.49C.59D.234.经过某十字路口的汽车,可直行,也可向左转或向右转.如果这三种可能性大小相同,那么两辆汽车经过该十字路口时都直行的概率是.5.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.6.有两组卡片,第一组的三张卡片上分别写有数字3,4,5,第二组的三张卡片上分别写有数字1,3,5.现从每组卡片中各随机抽出一张,用抽取的第一组卡片的数字减去抽取的第二组卡片上的数字,差为正数的概率为.7.甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用画树状图的方法表示出两次所得数字可能出现的所有结果;(2)求出两个数字之和能被3整除的概率.8.商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率为;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图法求出他恰好买到雪碧和奶汁的概率.9.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率为()A.23B.12C.13D.1图1 图210.用m,n,p,q四把钥匙去开A,B两把锁,其中仅有钥匙m能打开锁A,仅有钥匙n能打开锁B,则取一把钥匙恰能打开一把锁的概率是()A.18B.16C.14D.1211.从-1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为.12.有3张背面完全相同的卡片,正面分别印有如图的几何图形.现将这3张卡片正面朝下摆放并洗匀,从中任意抽取一张记下卡片正面的图形;放回后再次洗匀,从中任意抽取一张,两次抽到的卡片正面的图形都是中心对称图形的概率是.13.(遵义中考)学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白粽2个,豆沙粽1个,肉粽1个(粽子外观完全一样).(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是;(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白粽子的概率.14.在四边形ABCD中,有下列条件:①AB綊CD;②AD綊BC;③AC=BD;④AC⊥BD.(1)从中任选一个作为已知条件,能判定四边形ABCD是平行四边形的概率是;(2)从中任选两个作为已知条件,请用画树状图法表示能判定四边形ABCD是矩形的概率,并判断能判定四边形ABCD是矩形和是菱形的概率是否相等?15.小颖参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道题有3个选项,第二道题有4个选项,这两道题小颖都不会,不过小颖还有一个“求助”没有使用(使用“求助”可让主持人去掉其中一题中的一个错误选项).(1)若小颖第一道题不使用“求助”,那么小颖答对第一道题的概率是13;(2)若小颖将“求助”留在第二道题使用,求小颖顺利通关的概率; (3)从概率的角度分析,你会建议小颖在答第几道题时使用“求助”?参考答案:25.2 用列举法求概率第1课时用列表法求概率1.A2.A3.B4.B5.D6.B7.C8.14.9.14.10.解:(1)列表如下:(2)由表可知,张华胜出的结果有3种,∴P (张华胜出)=39=13.11.14.12.16.13.C 14. 13.15. 12.16.解:(1)设袋子中白球有x 个,根据题意,得 x x +1=23.解得x =2. 经检验,x =2是所列方程的根,且符合题意. 答:袋子中有白球2个. (2)列表:∴两次都摸到相同颜色的小球的概率为59.17.(1)14;(2)解:列表如下:由表格可知共有其中指针指向每个区域的字母相同的有2种, 所以P (顾客享受8折优惠)=212=16.18.解:(1)列表如下:所以|m +n|>1的概率为512.(2)点(m ,n )落在函数y =-x +1图象上的概率为16.第2课时 用树状图法求概率1.C 2.B 3.C 4. 19.5. 25.6. 59.7.解:(1)画树状图如下:可能出现的结果共6种,分别是(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),它们出现的可能性相等.(2)∵两个数字之和能被3整除的情况共有2种, ∴P (两个数字之和能被3整除)=26=13.8.(1)14;(2)解:画树状图如下:由树状图可知,所有等可能的结果共有12种,满足条件的结果有2种,所以他恰好买到雪碧和奶汁的概率为212=16.9.A 10.C 11. 16.12. 49.13.(1)14;(2)解:画树状图如下:由树状图可知,共有16种等可能的结果,其中恰好取到两个白粽子的结果有4种. ∴P (小明恰好取到两个白粽子)=416=14.14.(1)12;(2)解:画树状图如下:由树状图可知,从中任选两个作为已知条件共有12种等可能的结果,能判定四边形ABCD 是矩形的有4种,能判定四边形ABCD 是菱形的有4种. ∴能判定四边形ABCD 是矩形的概率为412=13,能判定四边形ABCD 是菱形的概率为412=13.∴能判定四边形ABCD 是矩形和是菱形的概率相等.15.(1)13;解:(2)用Z 表示正确选项,C 表示错误选项,画树状图如下:由树状图可知,共有9种等可能的结果,其中小颖顺利通关的结果有1种. ∴在第二道题使用“求助”时,P (小颖顺利通关)=19.(3)若小颖将“求助”留在第一道题使用,画树状图如下:由树状图可知,共有8种等可能的结果,其中小颖顺利通关的结果有1种. ∴在第一道题使用“求助”时,P (小颖顺利通关)=18.∵18>19,∴建议在答第一道题时使用“求助”.。

人教版九年级数学上册《25.2用列举法求概率》练习-带有答案

人教版九年级数学上册《25.2用列举法求概率》练习-带有答案

人教版九年级数学上册《25.2用列举法求概率》练习-带有答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.若从长度分别为3、5、6、9的四条线段中任取三条,则能组成三角形的概率为()A.B.C.D.2.一个口袋中装有3个绿球,2个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出两个球都是绿球的概率是()A.B.C.D.3.小茜课间活动中,上午大课间活动时可以先从跳绳、乒乓球、健美操中随机选择一项运动,下午课外活动再从篮球、武术、太极拳中随机选择一项运动.则小茜上、下午都选中球类运动的概率是()A.B.C.D.4.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于6的概率为()A.B.C.D.5.一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上,每块地砖的大质地完全相同,则该小球最终停留在阴影区域的概率是()A.B.C.D.6.如图,一只松鼠先经过第一道门(A,B或C),再经过第二道门(D或E)出去,则松鼠走出笼子的路线是“先经过A门,再经过E门”的概率是()A.B.C.D.7.用如图所示的两个转盘分别进行四等分和三等分,设计一个“配紫色”的游戏,分别转动两个转盘指针指向区域分界线时,忽略不计,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率为()A.B.C.D.8.现有三张正面分别标有数字 -1 , 2 , 3 的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m,n,则点在第二象限的概率为()A.B.C.D.二、填空题9.同时掷两枚质地均匀的骰子,每枚骰子的六个面上分别刻有1到6的点数,则这两枚骰子向上的一面出现点数都是偶数的概率为.10.小王和小李同学在一次数学能力测试中,对一道单项选择题一点思路都没有,该选择题设有A、B、C、D四个选项,则他们都猜对的概率为.11.新高考“3+1+2”选科模式是指,除语文、数学、外语3门科目以外,学生应在历史和物理2门首选科目中选择1科,在思想政治、地理、化学、生物学4门再选科目中选择2科.某同学从4门再选科目中随机选择2科,恰好选择地理和化学的概率为.12.如图所示,有三个形状与大小完全相同的直角三角形甲、乙、丙,其中任意两个平移后可拼成平行四边形或等腰三角形,则从中任意取出两个,能拼成等腰三角形的概率为.13.一个不透明的布袋内装有三个小球,分别标有数字-1,2,3,它们除数字不同外,其余完全相同,搅匀后,从中随机摸出一个球,记下数字后放回搅匀,再从中随机摸出一个球并记下数字.若两次取得数字之积为,则正比例函数的图象经过一、三象限的概率为.三、解答题14.泰州具有丰富的旅游资源,小明利用周日来泰州游玩,上午从 A ,B两个景点中任意选择一个游玩,下午从C、D 、E三个景点中任意选择一个游玩,用列表或画树状图的方法列出所有等可能的结果.并求小明恰好选中景点和的概率.15.已知电流在一定时间段内正常通过电子元件的概率是0.5,用列表或画树状图的方法分别求在一定时间段内,A、B之间和C、D之间电流能够正常通过的概率.(提示:可用1、0分别表示电子元件的通与不通两种状态)16.小明和小亮玩一种游戏:三张大小,地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和,如果和为奇数,则小明胜,若和为偶数则小亮胜.(1)用列表或画树状图等方法,列出小明和小亮抽出卡片的数字之和出现的所有可能情况;(2)请判断该游戏对双方是否公平?并说明理由.17.在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A,B,C,D表示);(2)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.参考答案:1.A2.B3.A4.A5.D6.D7.A8.D9.10.11.12.13.14.解:列树状图如下:一共有6种可能,出现小明恰好选中景点和两景点的有1种可能∴P(选中景点B和C)=15.解:(1)根据题意画树状图:由图可得,共有4种情况,其中A、B之间的两个元件都通过电流的有一种,故所求的概率P= ;⑵根据题意画树状图:由图可得,总共有4种情况,其中C、D之间两个元件中至少有一个元件通电的情况有3种,故所求的概率P=16.(1)解:画树形图如下:从上面树形图可看出小明和小亮抽得的数字之和可能有是:2,3,4,5,6;(2)解:因为和为偶数有5次,和为奇数有4次所以(小明胜),(小亮胜)而所以:此游戏对双方不公平.17.(1)解:画树状图为:共有12种等可能的结果数(2)解:抽到的两张卡片上的数都是勾股数的结果数为6所以抽到的两张卡片上的数都是勾股数的概率= =。

人教版九年级数学上册25.2用列举法求概率同步练习 附答案解析(二)

人教版九年级数学上册25.2用列举法求概率同步练习 附答案解析(二)

25.2用列举法求概率同步练习(二)一、单项选择题(本大题共有15小题,每小题3分,共45分)1、甲、乙两名同学在一次用频率去估计概率的实验中,统一用了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是()A. 从一个装有个白球和个红球的袋子中任取两球,取到两个白球的概率B. 任意写一个正整数,它能被整除的概率C. 抛一枚硬币,连续两次出现正面的概率D. 拍一枚正六面的骰子,出现点的概率2、在一个口袋中装有个完全相同的小球,它们的标号分别为,,,,从中随机摸出一个小球记下标号放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于的概率为()A.B.C.D.3、鹰城中学“春雨文学社”为了便于开展工作,社长将全部社员随机分成组进行活动,则小明和小华被分在一组的概率是().A.B.D.4、小强要给刚结识的朋友小林打电话,他只记住了电话号码的前位,后位是、、这三个数字的某一种排列顺序,但具体顺序忘记了,那么小强第一次就拨通电话的概率是.A.B.C.D.5、如图所示的两个转盘,每个转盘均被分成四个相同的扇形,转动转盘时指针落在每一个扇形内的机会均等,同时转动两个转盘,则两个指针同时落在标有奇数扇形内的概率为().A.B.C.D.6、经过某十字路口的汽车,可能直行,也可能左转或者右转,如果这三种可能性大小相同,则经过这个十字路口的两辆汽车一辆左转,一辆右转的概率是().A.B.C.7、哥哥与弟弟玩一个游戏:三张大小、质地都相同的卡片上分別标有数字,,,将标有数字的一面朝下,哥哥从中任意抽取一张,记下数字后放回洗匀,然后弟弟从中任意抽取一张,计算抽得的两个数字之和,如果和为奇数,则弟弟胜;和为偶数,则哥哥胜,该游戏对双方而言赢的机会大,游戏(填“公平”或“不公平”).A. 哥哥,不公平B. 弟弟,不公平C. 哥哥和弟弟,公平D. 不能确定8、如图所示的两个转盘,每个转盘均被分成四个相同的扇形,转动转盘指针落在每个扇形内的机会均等,同时转动两个转盘,则两个指针同时落在标有奇数扇形内的概率为().A.B.C.D.9、—只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机地选择一条路经,则它获得食物的概率为().B.C.D.10、现有、两个大小,质地均匀的小正方体(正方体的每个面上分别标有、、、、、、),用娜娜抛掷正方体朝上的数字为,用莉莉抛掷正方体朝上的数字为,且点的坐标为(,),则她们各投掷一次后,点在一次函数的图像上的概率是().A.B.C.D.11、有两双大小、质地相同,仅有颜色不同的拖鞋(分左右脚,可用、表示一双,用、表示另一双)放置在卧室地板上,若从这四只拖鞋中随机取出两只,恰好配成形同颜色的一双拖鞋的概率是().A.B.C.D.12、书架上有本小说,本散文,从中随机抽取本都是小说的概率为().A.B.C.D.13、质地均匀的骰子六个面分别刻有到的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生可能性最大的是()A. 点数都是偶数B. 点数的和为奇数C. 点数的和小于D. 点数的和小于14、小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为()A.B.C.D.15、一个布袋内只装有个黑球和个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是() A.B.C.D.二、填空题(本大题共有5小题,每小题5分,共25分)16、如图,用红、蓝、黄三色将图中区域、、、着色,要求的公共边界的相邻区域不能涂相同的颜色,满足恰好涂蓝色的概率为.17、从、、三个数字中任取个不同的数作为点的坐标,该点在第三象限的概率是.18、从名男同学和名女同学中任选人参加志愿者活动,所选人中恰好是一名男同学和一名女同学的概率是.19、小红、小芳做游戏时约定用“石头、剪刀、布”的方式确定游戏的先后顺序,两个人都出“石头”的概率是.20、在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,洗匀后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为.三、解答题(本大题共有3小题,每小题10分,共30分)21、在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有个,黄球有个,蓝球有个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:两人各摸次球,先由小明从纸箱里随机摸出个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由.22、小红、小明、小芳在一起做游戏时,需要确定游戏的先后顺序,他们约定用“剪子、锤子、布”的方式确定,问:在一个回合中三个人出手互不相同的情况有哪几种?在一个回合中三个人都出剪子的概率是多少?在一个回合中三个人出手互不相同的情况有多少种?在一个回合中三个人都出剪子的概率是多少?23、一个袋子里装有质地等完全相同的个白球和个黑球,现随意从袋子里摸出一个小球,然后放回,再随意摸出一个,求两次摸的都是白球的概率是多少?25.2用列举法求概率同步练习(二) 答案部分一、单项选择题(本大题共有15小题,每小题3分,共45分)1、甲、乙两名同学在一次用频率去估计概率的实验中,统一用了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是()A. 从一个装有个白球和个红球的袋子中任取两球,取到两个白球的概率B. 任意写一个正整数,它能被整除的概率C. 抛一枚硬币,连续两次出现正面的概率D. 拍一枚正六面的骰子,出现点的概率【答案】A【解析】解:根据统计图可知,实验结果在附近波动,及其概率,计算所给的实验概率约为的是正确答案.①从一个装有个白球和个红球的袋子里任取两球,画树形图得:取得两个白球的概率为;故为正确答案.②任意写一个整数,它能被整除的概率为,故错误.③抛一枚硬币实验的基本事件列表如下:连续出现正面向上的概率为,故错误.④抛一枚正六面体的骰子,出现点的概率为,故错误.故正确答案为:从一个装有个白球和个红球的袋子中任取两球,取到两个白球的概率.2、在一个口袋中装有个完全相同的小球,它们的标号分别为,,,,从中随机摸出一个小球记下标号放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于的概率为()A.B.C.D.【答案】A【解析】解:画树状图为:共有种等可能的结果数,其中两次摸出的小球的标号之和大于的结果数为,所以两次摸出的小球的标号之和大于的概率.故正确答案是:.3、鹰城中学“春雨文学社”为了便于开展工作,社长将全部社员随机分成组进行活动,则小明和小华被分在一组的概率是().A.B.C.D.【答案】D【解析】解:设四个小组分别记作、、、,画树状图如图:由树状图可知,共有种等可能结果,其中小明、小华被分到同一个小组的结果有种,小明和小华同学被分在一组的概率是.故答案为:.4、小强要给刚结识的朋友小林打电话,他只记住了电话号码的前位,后位是、、这三个数字的某一种排列顺序,但具体顺序忘记了,那么小强第一次就拨通电话的概率是.A.B.C.D.【答案】B【解析】解:画树状图为:由树状图可得,三个数排列顺序的总共有种,而能打通的只有种,所以一次能打通的概率为.正确答案是:.5、如图所示的两个转盘,每个转盘均被分成四个相同的扇形,转动转盘时指针落在每一个扇形内的机会均等,同时转动两个转盘,则两个指针同时落在标有奇数扇形内的概率为().A.B.C.D.【答案】D【解析】解:列表得:共有种情况,两个指针同时落在标有奇数扇形内的情况有种情况:和,和,和,和.两个指针同时落在标有奇数扇形内的概率是.故答案选:.6、经过某十字路口的汽车,可能直行,也可能左转或者右转,如果这三种可能性大小相同,则经过这个十字路口的两辆汽车一辆左转,一辆右转的概率是().A.B.C.D.【答案】B【解析】解:“列表”列举出这两辆汽车行驶方向所有可能的结果如图所示:由“列表格”知,两辆汽车一辆左转,一辆右转的结果有种,且所有结果的可能性相等,(两辆汽车一辆左转,一辆右转).故答案选:.7、哥哥与弟弟玩一个游戏:三张大小、质地都相同的卡片上分別标有数字,,,将标有数字的一面朝下,哥哥从中任意抽取一张,记下数字后放回洗匀,然后弟弟从中任意抽取一张,计算抽得的两个数字之和,如果和为奇数,则弟弟胜;和为偶数,则哥哥胜,该游戏对双方而言赢的机会大,游戏(填“公平”或“不公平”).A. 哥哥,不公平B. 弟弟,不公平C. 哥哥和弟弟,公平D. 不能确定【答案】A【解析】解:列树状图得:共有种情况,和为偶数的有种,哥哥赢的概率是,弟弟赢的概率是,该游戏对双方而言,哥哥赢得机会大,游戏不公平.故答案应选:哥哥,不公平.8、如图所示的两个转盘,每个转盘均被分成四个相同的扇形,转动转盘指针落在每个扇形内的机会均等,同时转动两个转盘,则两个指针同时落在标有奇数扇形内的概率为().A.B.C.D.【答案】D【解析】解:根据题意,通过列表可得:、、、、、、、、、、、、、、、、、两个指针同时落在标有奇数扇形内的概率为.故正确答案为.9、—只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机地选择一条路经,则它获得食物的概率为().A.B.C.D.【答案】C【解析】解:根据题意得,蚂蚁寻觅食物的路径共有条,其中有条路径可以获得食物.蚂蚁获得食物的概率为.故正确答案为.10、现有、两个大小,质地均匀的小正方体(正方体的每个面上分别标有、、、、、、),用娜娜抛掷正方体朝上的数字为,用莉莉抛掷正方体朝上的数字为,且点的坐标为(,),则她们各投掷一次后,点在一次函数的图像上的概率是().A.B.C.D.【答案】A【解析】解:如图所示:两个小正方体上的数字一共有种等可能结果,其中在函数图像上的只有,,种等可能结果,所以在函数上的概率为,即,故答案为:.11、有两双大小、质地相同,仅有颜色不同的拖鞋(分左右脚,可用、表示一双,用、表示另一双)放置在卧室地板上,若从这四只拖鞋中随机取出两只,恰好配成形同颜色的一双拖鞋的概率是().A.B.C.D.【答案】B【解析】解:画树状图得:共有种等可能结果,配成一双颜色相同的等可能结果有四种,所以配成一双颜色相同的概率是,即.故答案为:.12、书架上有本小说,本散文,从中随机抽取本都是小说的概率为().A.B.C.D.【答案】A【解析】解:如图所示:所以两次取到都是小说的概率是:,故答案为:.13、质地均匀的骰子六个面分别刻有到的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生可能性最大的是()A. 点数都是偶数B. 点数的和为奇数C. 点数的和小于D. 点数的和小于【答案】C【解析】解:画树状图为:共有种等可能的结果数,其中点数都是偶数的结果数为,点数的和为奇数的结果数为,点数和小于的结果数为,点数和小于的结果数为,所以点数都是偶数的概率为, 点数的和为奇数的概率为,点数和小于的概率为,点数和小于的概率为,所以发生可能性最大的是点数的和小于.14、小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为( ) A. B. C. D. 【答案】C 【解析】解:小强和小华玩“石头、剪刀、布”游戏,所有可能出现的结果列表如下:由表格可知,共有种等可能情况.其中平局的有种:(石头,石头)、(剪刀,剪刀)、(布,布).小明和小颖平局的概率为.15、一个布袋内只装有个黑球和个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()A.B.C.D.【答案】A【解析】解:列表得:共种等可能的结果,两次都是黑色的情况有种,两次摸出的球都是黑球的概率为.二、填空题(本大题共有5小题,每小题5分,共25分)16、如图,用红、蓝、黄三色将图中区域、、、着色,要求的公共边界的相邻区域不能涂相同的颜色,满足恰好涂蓝色的概率为.【答案】【解析】解:画树状图为:由图可知要使有公共边界的相邻区域不能涂相同的颜色,所有可能情况共有种,涂蓝共有种情况.所以恰好涂蓝色的概率为.故正确答案为:.17、从、、三个数字中任取个不同的数作为点的坐标,该点在第三象限的概率是.【答案】【解析】解:画树状图如图,由树状图可得,从这三个数中任取个不同数作为点坐标共有个点,而点在第三象限的有:和,共有个点,故它的概率为.正确答案是:.18、从名男同学和名女同学中任选人参加志愿者活动,所选人中恰好是一名男同学和一名女同学的概率是.【答案】由表格可得,选得的所有可能结果共有种,恰好是一名男同学和一名女同学的有种,所以恰好选一名男同学和一名女同学的概率为.正确答案是:.19、小红、小芳做游戏时约定用“石头、剪刀、布”的方式确定游戏的先后顺序,两个人都出“石头”的概率是.【答案】【解析】解:画树状图为:由树状图得,所有可能的结果共有种情况,而两人同时出“石头”的可能只有种情况,所以两人同时出“石头”的概率为.正确答案是:.20、在四张背面完全相同的卡片上分别印有等腰三角形、平行四边形、菱形、圆的图案,现将印有图案的一面朝下,洗匀后从中随机抽取两张,则抽到卡片上印有的图案都是轴对称图形的概率为.【答案】1/2【解析】解:四种图形中等腰三角形、菱形和圆是轴对称图形,分别用、、、表示等腰三角形、平行四边形、菱形、圆,画树状图得:∵共有$12$种等可能的结果,抽到卡片上印有的图案都是轴对称图形的有$6$种情况,∴抽到卡片上印有的图案都是轴对称图形的概率为:.故正确答案是:三、解答题(本大题共有3小题,每小题10分,共30分)21、在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有个,黄球有个,蓝球有个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:两人各摸次球,先由小明从纸箱里随机摸出个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由.【解析】解:此游戏不公平.理由如下:列树状图如下.由上述树状图或表格知:所有可能出现的结果共有种.(小明赢),(小亮赢).所以此游戏对双方不公平,小亮赢的可能性大.答:此游戏对双方不公平,小亮赢的可能性大.22、小红、小明、小芳在一起做游戏时,需要确定游戏的先后顺序,他们约定用“剪子、锤子、布”的方式确定,问:在一个回合中三个人出手互不相同的情况有哪几种?在一个回合中三个人都出剪子的概率是多少?在一个回合中三个人出手互不相同的情况有多少种?在一个回合中三个人都出剪子的概率是多少?【解析】解:画树状图如图所示,由树状图可知三个人出手情况共有种,在一个回合中三个人出手互不相同的有种,在一个回合中三个人都出剪子情况有种,所以在一个回合中三个人都出剪子的概率为.答:在一个回合中三个人出手互不相同的有种,在一个回合中三个人都出剪子的概率为.23、一个袋子里装有质地等完全相同的个白球和个黑球,现随意从袋子里摸出一个小球,然后放回,再随意摸出一个,求两次摸的都是白球的概率是多少?【解析】解:摸两次所有可能的结果共有(白,白),(白,黑),(黑,白),(黑,黑)种情况,两次摸的都是白球的只有一种,这四种出现的可能性相同,故(两次摸的都是白球).故答案为:.。

人教版九年级数学上册《25.2用列举法求概率》同步练习题(附答案)

人教版九年级数学上册《25.2用列举法求概率》同步练习题(附答案)

人教版九年级数学上册《25.2用列举法求概率》同步练习题(附答案)姓名班级学号成绩一、选择题:(本题共8小题,每小题5分,共40分.)1.将一枚硬币抛掷两次,则这枚硬币两次正面都向上的概率为()A.B.C.D.2.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.3.在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出两个小球,则摸出的两个小球标号之和大于4的概率是()A.B.C.D.4.在一个不透明的纸箱里装有2个红球、1个黄球、1个蓝球,这些球除颜色外完全相同,小明从纸箱里随机摸出1个球,记下颜色后放回,再由小亮随机摸出1个球,则两人摸到的球颜色不同的概率为()A.B.C.D.5.初三(1)班周沫同学拿了A,B,C,D四把钥匙去开教室前、后门的锁,其中A钥匙只能开前门,B钥匙只能开后门,任意取出一把钥匙能够一次打开教室门的概率是()A.B.C.1 D.6.小勇对“新基建”很感兴趣,他收集到了五大细分领域的图标,如图,依次制成编号为的五张卡片(除编号和内容外,其余完全相同).将这五张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张.则抽到的两张卡片恰好是编号为(基站建设)和(人工智能)的概率是()A.B.C.D.7.某超市为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”“10元”“20元”“30元”的字样.规定:顾客在本超市一次性消费满200元,就可以在箱子里先后摸出2个小球(第一次摸出后不放回).某顾客刚好消费200元,则该顾客所获得购物券的金额不低于30元的概率是( )A.B.C.D.8.在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足|m﹣n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是()A.B.C.D.二、填空题:(本题共5小题,每小题3分,共15分.)9.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是.10.小红、小明、小芳在一起做游戏的先后顺序.他们约定用“剪子、包袱、锤子”的方式确定.问在一个回合中三个人都出包袱的概率是.11.有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1、2、3、4、5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是.12.如图,是一个可以自由转动的转盘,盘面被平均,分成6等份,分别标有数字2,3,4,5,6,7.转动转盘,当转盘停止时,指针指向区域所标示的数字即为转出的数字(若指针落在相邻两扇形交界处,重新转动转盘).则转出的数字大于3的概率是.13.如图,在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,任意三个格点组成的三角形面积如果不小于1则称为“离心三角形”,而如果面积恰好等于1则称为“环绕三角形”。

部编数学九年级上册25.2用列举法求概率(解析版)含答案

部编数学九年级上册25.2用列举法求概率(解析版)含答案

2022-2023学年九年级数学上册章节同步实验班培优题型变式训练(人教版)25.2 用列举法求概率【题型1】列举法求概率1.(2022·全国·九年级课时练习)假定按同一种方式掷两枚均匀硬币,如果第一枚出现正面朝上,第二枚出现反面朝上,就记为(正,反),如此类推,出现(反,反)的概率是( )A .13B .34C .12D .14【点睛】本题考查了列举法求概率,解本题的关键在熟练掌握概率公式.概率=所求情况数与总情况数之比.【变式1-1】2.(2021·四川·平昌县中小学教学研究室九年级期末)如图所示的电路中,当随机闭合开关123,,S S S 中的两个时,能够让灯泡发光的概率为_________.【题型2】列表法或树状图法求概率1.(2022·山西吕梁·九年级期末)第十四届全国运动会会徽吉祥物发布,吉祥物朱朱、熊熊、羚羚、金金的设计方案是以陕西秦岭独有的四种国宝级动物“鹮朱、大熊猫、羚牛、金丝猴”为创意原型.小明和小彬各从四个吉祥物中选择一个制作成绘画作品,参与学校举办的绘画展,则他们选中“朱朱”和“金金”的概率为( )A.12B.16C.18D.112【变式2-1】2.(2022·全国·九年级单元测试)经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,那么两辆汽车经过这个十字路口时,第一辆车向左转,第二辆车向右转的概率是__.共有9种等可能的结果,其中第一辆车向左转,第二辆车向右转的结果有∴第一辆车向左转,第二辆车向右转的概率为19,故答案为:19.【题型3】游戏的公平性1.(2022·全国·九年级单元测试)甲、乙两人玩“石头,剪刀,布”的游戏,约定只玩一局,描述错误的是()A.甲,乙获胜的概率均低于0.5B.甲,乙获胜的概率相同C.甲,乙获胜的概率均高于0.5D.游戏公平【变式3-1】2.(2022·全国·九年级专题练习)如图,有8张标记数字1-8的卡片.甲、乙两人玩一个游戏,规则是:甲、乙两人轮流从中取走卡片;每次可以取1张,也可以取2张,还可以取3张卡片(取2张或3张卡片时,卡片上标记的数字必须连续);最后一个将卡片取完的人获胜.若甲先取走标记2,3的卡片,乙又取走标记7,8的卡片,接着甲取走两张卡片,则________(填“甲”或“乙”)一定获胜;若甲首次取走标记数字1,2,3的卡片,乙要保证一定获胜,则乙首次取卡片的方案是________.(只填一种方案即可)【答案】甲取走标记5,6,7的卡片(答案不唯一)【分析】由游戏规则分析判断即可作出结论.【详解】解:若甲先取走标记2,3的卡片,乙又取走标记7,8的卡片,接着甲取走两张卡片,为4,5或5,6,则剩余的卡片为1,6或1,4,然后乙只能取走一张卡片,最后甲将一张卡片取完,则甲一定获胜;若甲首次取走标记数字1,2,3的卡片,乙要保证一定获胜,则乙首次取卡片的方案5,6,7,理由如下:乙取走5,6,7,则甲再取走4和8中的一个,最后乙取走剩下的一个,则乙一定获胜,故答案为:甲;5,6,7(答案不唯一).【点睛】本题考查游戏公平性,理解游戏规则是解答的关键.一.选择题1.(2022·全国·九年级单元测试)掷一枚质地均匀的骰子,前3次都是6点朝上,掷第4次时6点朝上的概率是()A.1B.56C.23D.16【点睛】本题考查简单随机事件的概率,理解概率的意义是正确解答的前提,列举出所有等可能出现的结果情况是解决问题的关键.2.(2021·辽宁大连·一模)把标号为1,2,3的三个小球放入一个不透明的口袋中,随机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球的标号的和大于3的概率是()A.13B.49C.59D.233.(2021·辽宁阜新·中考真题)小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是()A.12B.23C.16D.56则所有可能的结果数为6种,其中恰好为红色帽子和红色围巾的结果数为1种,根据概率公式,恰好为红色帽子和红色围巾的概率是16.故选:C.【点睛】本题考查了简单事件的概率,常用列表法或画树状图来求解.4.(2022·全国·九年级单元测试)甲、乙两人玩“石头,剪刀,布”的游戏,约定只玩一局,描述错误的是()A.甲,乙获胜的概率均低于0.5B.甲,乙获胜的概率相同C.甲,乙获胜的概率均高于0.5D.游戏公平5.(2022·广东广州·中考真题)为了疫情防控,某小区需要从甲、乙、丙、丁4名志愿者中随机抽取2名负责该小区入口处的测温工作,则甲被抽中的概率是()A.12B.14C.34D.512故选:A.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.6.(2022·全国·九年级专题练习)某市有6名教师志愿到四川地震灾区的甲、乙、丙三个镇去支教,每人只能去一个镇,则恰好其中一镇去4名,另两镇各去1名的概率为()A.2081B.1081C.5243D.10243二、填空题7.(2021·天津东丽·九年级期末)一个不透明的口袋中有三个完全相同的小球,小球上分别写有数字4、5、6,随机摸取1个小球然后放回,再随机摸取一个小球(1)用画树状图或列表的方法表示出可能出现的所有结果;(1)求两次抽出数字之和为奇数的概率.8.(2022·全国·九年级单元测试)不透明的袋子中有两个小球,上面分别写着数字“1”、“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是______.由表可知,共有4种等可能结果,其中两次记录的数字之和为3的有2种结果,所以两次记录的数字之和为3的概率为21 42 =.故答案为:12.【点睛】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.9.(2018·山西·九年级专题练习)小明和小亮做游戏,先是各自背着对方在纸上写一个自然数,然后同时呈现出来.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;否则,小亮获胜.这个游戏对双方_____.(填“公平”或“不公平”).由图可知:共有四种等可能结果出现,其中小明获胜的有两种,小亮获胜的也有两种,∴P(小明获胜)=2142=,P(小亮获胜)=2142=,∴P(小明获胜)=P(小亮获胜),∴该游戏是“公平”的.故答案为公平.点睛:本题的解题要点有两点:(1)能够画出符合题意的树状图;(10.(2018·湖南娄底·中考真题)从2018年高中一年级学生开始,湖南省全面启动高考综合改革,学生学习完必修课程后,可以根据高校相关专业的选课要求和自身兴趣、志向、优势,从思想政治、历史、地理、物理、化学、生物6个科目中,自主选择3个科目参加等级考试.学生A已选物理,还想从思想政治、历史、地理3个文科科目中选1科,再从化学、生物2个理科科目中选1科.若他选思想政治、历史、地理的可能性相等,选化学、生物的可能性相等,则选修地理和生物的概率为___________.【点睛】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.11.(2022·内蒙古兴安盟·模拟预测)疫情期间,进入学校都要进入测温通道,体温正常才可进入学校.某校有3个测温通道,分别记为A,B,C通道.学生可随机选取其中的一个通道测温进校园,某日早晨,小王和小李两位同学在进入校园时,恰好选择不同通道测温进校园的概率是_____________.12.(2022·湖南永州·模拟预测)现有两个不透明的盒子,其中一个装有标号分别为1,2的两张卡片,另一个装有标号分别为1,2,3的三张卡片,卡片除标号外其他均相同,若从两个盒子中各随机抽取一张卡片,则两张卡片标号恰好相同的概率是____.共有6种情况,两张卡片标号恰好相同有2种情况,所以,两张卡片标号恰好相同的概率是P=21 63 =.故答案为1 3【点睛】本题考核知识点:求概率.解题关键点:列表求出所有情况.三、解答题13.(2022·江苏·星港学校八年级期末)2022年冬奥会在北京举办.现有如图所示“2022·北京冬梦之约”的四枚邮票供小明选择,依次记为A,B,C,D,背面完全相同.将这四枚邮票背面朝上,洗匀放好(1)小明从中随机抽取一枚,恰好抽到是B(冰墩墩)概率是 (2)小颖从中随机抽取一枚不放回,再从中随机抽取一枚.请用列表或画树状图的方法,求小颖同学抽到的两枚邮票恰好是B(冰墩墩)和C(雪容融)的概率.14.(2022·全国·九年级单元测试)一个箱子里共3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中任意摸出一个球是白球的概率是______;(2)从箱子中任意摸出一个球后,放回箱子,搅匀后再摸出一个球,请画树状图或列表求2次摸出的球都是白球的概率.(3)小明向箱中放入n个红球后搅匀,然后从箱子中随机摸出一个球是白球的概率为14,求n的值.根据表格可知:总的可能情况有6种,两次都是白球的情况有即两次都是摸出白球的概率为:2÷6=13;(3)加入红球后球的总个数:1284¸=,则加入红球的个数为:n=8-3=5,即n值为5.15.(2021·吉林·中考真题)第一盒中有1个白球、1个黑球,第二盒中有1个白球,2个黑球.这些球除颜色外无其他差别,分别从每个盒中随机取出1个球,用画树状图或列表的方法,求取出的2个球都是白球的概率.共有6种等可能出现的结果情况,其中两球都是白球的有1种,所以取出的2个球都是白球的概率为16.答:取出的2个球都是白球的概率为16.【点睛】本题考查简单事件的概率,正确列表或者画树状图是解题关键.16.(2022·江苏·九年级专题练习)某校计划在下个月第三周的星期一至星期四开展社团活动.(1)若甲同学随机选择其中的一天参加活动,则甲同学选择在星期三的概率为______;(2)若乙同学随机选择其中的两天参加活动,请用画树状图(或列表)的方法求其中一天是星期二的概率.总的可能情况数为12种,含星期二(B)的情况有则乙同学选的两天中含星期二的概率为:6÷12=.即所求概率为12【点睛】本题考查了基本的概率公式和用树状图或列表法求解概率的知识.明确题意准确的作出列表是解答本题的关键.17.(2022·辽宁沈阳·中考真题)为了调动同学们学习数学的积极性,班内组织开展了“数学小先生”讲题比赛,老师将四道备讲题的题号1,2,3,4,分别写在完全相同的4张卡片的正面,将卡片背面朝上洗匀.(1)随机抽取一张卡片,卡片上的数字是“4”的概率是________;(2)小明随机抽取两张卡片,用画树状图或列表的方法求两张卡片上的数字是“2”和“3”的概率.18.(2022·江苏宿迁·中考真题)从甲、乙、丙、丁4名学生中选2名学生参加一次乒乓球单打比赛,求下列事件发生的概率.(1)甲一定参加比赛,再从其余3名学生中任意选取1名,恰好选中丙的概率是;(2)任意选取2名学生参加比赛,求一定有乙的概率.(用树状图或列表的方法求解).所有所有的等可能的情况数有12种,符合条件的情况数有6种,所以一定有乙的概率为:61=. 122【点睛】本题考查的是利用例举法,列表的方法求解简单随机事件的概率,概率公式的应用,掌握“例举法与列表法求解概率”是解本题的关键.。

人教版九年级数学上册《25.2用列举法求概率》练习题(附带答案)

人教版九年级数学上册《25.2用列举法求概率》练习题(附带答案)

人教版九年级数学上册《25.2用列举法求概率》练习题(附带答案) 学校:___________班级:___________姓名:___________考号:___________一、单选题1.看了《田忌赛马》故事后,数学兴趣小组用数学模型来分析:齐王与田忌的上中下三个等级的三匹马综合指标数如表,每匹马只赛一场,综合指标的两数相比,大数为胜,三场两胜则赢,已知齐王的三匹马出场顺序为6、4、2,若田忌的三匹马随机出场,则田忌能赢得比赛的概率为()马匹等级下等马中等马上等马齐王246田忌135A.13B.16C.19D.1122.本学期我们做过“抢30“的游戏,如果将游戏规则中“不可以连说三个数,谁先抢到30,谁就获胜”.改为“每次最多可以连说三个数,谁先抢到33,谁就获胜.”那么采取适当策略,其结果是()A.先说数者胜B.后说数者胜C.两者都能胜D.无法判断3.在一个不透明纸箱中放有除了数字不同外,其它完全相同2张卡片,分别标有数字1、2,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为()A.14B.13C.12D.344.如图所示,正六边形ABCDEF,任意选择其中三个顶点作为三角形的三个顶点,所得到的三角形恰好是等腰三角形的概率是()A.920B.35C.310D.255.生物学家研究发现,人体许多特征都是由基因决定的.如人的卷舌性状由常染色体上的一对基因决定,决定能卷舌的基因R是显性的,不能卷舌的基因r是隐性的,因此决定能否卷舌的一对基因有RR,Rr,rr 三种,其中基因为RR和Rr的人能卷舌,基因为r r的人不能卷舌,父母分别将他们一对基因中的一个基因446.如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段.在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为()A.B.C.D.7.下列说法错误的是()8.甲、乙两人玩“石头,剪刀,布”的游戏,约定只玩一局,描述错误的是()A.甲,乙获胜的概率均低于0.5B.甲,乙获胜的概率相同C.甲,乙获胜的概率均高于0.5D.游戏公平9.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为()A.B.C.D.10.学生甲手中有4,6,8三张扑克牌,学生乙手中有3,5,10三张扑克牌,现每人从各自手中随机取出一张牌进行比较,数字大者胜,在该游戏中()A.甲获胜的概率大B.乙获胜的概率大C.两人获胜概率一样大D.不能确定二、填空题11.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,那么两辆汽车经过这个十字路口时,第一辆车向左转,第二辆车向右转的概率是.12.现有四张完全相同的刮刮卡,涂层下面的文字分别是“我”、“爱”、“中”、“国”.小亮从中随机抽取两张并刮开,则这两张刮刮卡上的文字恰好是“爱”和“国”的概率是.13.夏天到了,天气炎热,零陵区某学校4月份举行一次“珍爱生命,预防溺水”的知识竞赛活动,该校九年级从预选表现优秀的一位男生和两位女生中任选两位同学参加学校知识竞赛,选中的两位同学恰好是一男一女的概率是.14.从2-,0,2这三个数中,任取两个不同的数分别作为a,b的值,恰好使得关于x的方程20+-=x ax b有实数解的概率为.15.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是.16.小军与小王一起玩“石头、剪刀、布”的游戏,两同学同时出“石头”的概率是.17.如图所示,用图中一个可自由转动的转盘做“配紫色”游戏:自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,转动无效,重新转动)的颜色,若其中一次转出红色,另一次转出蓝色即可配成紫色,那么可配成紫色的概率为.18.甲、乙、丙三名学生各自随机选择到A、B两个书店购书,则甲、乙、丙三名学生到同一个书店购书的概率为.19.小兰和小青两人做游戏,有一个质量分布均匀的六面体骰子,骰子的六面分别标有1,2,3,4,5,6,如果掷出的骰子的点数是偶数,则小兰赢;如果掷出的骰子的点数是3的倍数,则小青赢,那么游戏规则对有利.20.现有两个不透明的盒子,其中一个装有标号分别为1,2的两张卡片,另一个装有标号分别为1,2,3的三张卡片,卡片除标号外其他均相同,若从两个盒子中各随机抽取一张卡片,则两张卡片标号恰好相同的概率是.三、解答题21.为了了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试.并将测试成绩分为A B C D四个成绩,绘制了如下不完整的统计图表.,,,成绩等级频数分布表根据图表信息解答下列问题:()1填空:x=_____,y=_____,扇形统计图中表示A的扇形的圆心角度数为____度;()2甲、乙、丙是A等级中的3名学生.学习决定从这3名学生中随机抽取2名来介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙2学生的概率.22.某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图所示,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元(1)若他选择转动转盘1,则他能得到优惠的概率为多少?(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明.23.某公司在羊年春节晚会上举行一个游戏,规则如下:有4张背面相同的卡片,正面分别是喜羊羊、美羊羊、慢羊羊、懒羊羊的头像,分别对应1000元、600元、400元、200元的奖金,现将4张纸牌洗匀后背面朝上摆放到桌上,让员工抽取,每人有两次抽奖机会,两次抽取的奖金之和作为公司发的年终奖金.现有两种抽取的方案:①小芳抽取方案是:直接从四张牌中抽取两张.①小明抽取的方案是:先从四张牌中抽取一张后放回去,再从四张中再抽取一张.你认为是小明抽到的奖金不少于1000元的概率大还是小芳抽取到的奖金不少于1000元的概率大?请用树形图或列表法进行分析说明.24.小英和小明姐弟二人准备一起去观看端午节龙舟赛.但因家中临时有事,必须留下一人在家,于是姐弟二人采用游戏的方式来确定谁去看龙舟赛.游戏规则是:在不透明的口袋中分别放入2个白色和1个黄色的乒乓球,它们除颜色外其余都相同.游戏时先由小英从口袋中任意摸出1个乒乓球记下颜色后放回并摇匀,再由小明从口袋中摸出1个乒乓球,记下颜色.如果姐弟二人摸到的乒乓球颜色相同.则小英赢,否则小明赢.(1)请用树状图或列表的方法表示游戏中所有可能出现的结果.(2)这个游戏对游戏双方公平吗?请说明理由.25.现有3张正面分别写有数字1,2,3的卡片,将3张卡片的背面朝上洗匀.(1)若从中任意抽取1张,抽到的卡片上的数字恰好为3的概率是_____;(2)若先从中任意抽取1张(不放回),再从余下的2张中任意抽取1张,求抽得的2张卡片上的数字之和是3的倍数的概率.参考答案:1.B2.A3.C4.D5.D6.B7.C8.C9.C10.A11.2 9。

25.2用列举法求概率(含答案).doc

25.2用列举法求概率(含答案).doc

25.2 用列举法求概率一、选择题1.某电视台举行歌手大奖赛,每场比赛都有编号为1~10号共10道综合素质测试题共选手随机抽取作答。

在某场比赛中,前两位选手分别抽走了2号,7号题,第3位选手抽中8号题的概率是( )。

(A)110 (B)19 (C)18 (D)172.某市民政部门:“五一”期间举行“即开式福利彩票”的销售活动,发行彩票10万张(每张彩票2元),在这此彩票中,设置如下奖项:如果花2元钱购买1张彩票,那么所得奖金不少于50元的概率是( ) (A)1200 (B) 3500 (C) 1500 (D) 120003.一个均匀的立方体各面上分别标有数字1,2,3,4,6,8,其表面展开图是如图3所示,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面上的数字的2倍的概率是( )(A)16 (B)13 (C)12 (D)234.有一对酷爱运动的年轻夫妇给他们12个月大的婴儿3块分别写有“20”, “08”和“北京”的字块,如果婴儿能够拼排成“2008北京”或者“北京2008”,则他们就给婴儿奖励.假设婴儿能将字块横着排列,那么这个婴儿能得到奖励的概率是( ) (A)16 (B)14 (C)13 (D)12 二、填空题5.如图4,是一个圆形转盘,现按1∶2∶3∶4分成四个部分,分别涂上红,黄,蓝,绿四种颜色,自由转动转盘,停止后指针落在绿色区域的概率为 .6.要在一只不透明的袋中放入若干个只有颜色不同的乒乓球,搅匀后,使得从袋中任意摸图42 16 4 3 8 图3出一个乒乓球是黄色的概率是25,可以怎样放球 (只写一种)7.有4条线段,分别为3cm ,4cm ,5cm ,6cm ,从中任取3条,能构成直角三角形的概率是______。

三、解答题8.袋中共有5个大小相同的红球、白球,任意摸出一球为红球的概率是25。

(1)袋中红球、白球各有几个?(2)任意摸出两个球均为红球的概率是________________________。

数学人教版九年级上册25.2 用列举法求概率同步练习(有答案)

数学人教版九年级上册25.2 用列举法求概率同步练习(有答案)

数学人教版九年级上册25一、选择题1.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时失掉的两个球的颜色中有〝一红一黄〞的概率是()A. 16B. 29C. 13D. 232.同时抛掷三枚质地平均的硬币,至少有两枚硬币正面向上的概率是()A. 38B. 58C. 23D. 123.如图是一次数学活动课制造的一个转盘,盘面被等分红四个扇形区域,并区分标有数字−1,0,1,2.假定转动转盘两次,每次转盘中止后记载指针所指区域的数字(当指针恰恰指在分界限上时,不记,重转),那么记载的两个数字都是正数的概率为( )A. 18B. 16C. 14D. 124.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是()A. 16B. 13C. 12D. 235.三名初三先生坐在仅有的三个座位上,起身后重新就坐,恰恰有两名同窗没有坐回原座位的概率为()A. )19B. )16C. )14D. )126.从九年级一班3名优秀班干部和九二班2名优秀班干部中随机抽取两名先生担任升旗手,那么抽取的两名先生刚好一个班的概率为()A. 15B. 25C. 35D. 457.从长为3,5,7,10的四条线段中恣意选取三条作为边,能构成三角形的概率是()A. 14B. 12C. 34D. 18. 小王家新锁的密码是6位数,他记得前两位数是23,后两位数是32,中间两位数忘了,那么他一次按对的概率是( )A. 120B. 150C. 190D. 1100 9. 某校高一年级往年方案招四个班的重生,并采取随机摇号的方法分班,小明和小红既是该校的高一重生,又是好冤家,那么小明和小红分在同一个班的时机是( )A. 14B. 13C. 12D. 34 10. 假定一个袋子中装有外形与大小均完全相反有4张卡片,4张卡片上区分标有数字−2,−1,2,3,现从中恣意抽出其中两张卡片区分记为x ,y ,并以此确定点P(x,y),那么点P 落在直线y =−x +1上的概率是( )A. 12B. 13C. 14D. 16 二、填空题 11. 有5张看上去无差异的卡片,正面区分写着1,2,3,4,5,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰恰是两个延续整数的概率是______ .12. 箱子里放有2个黑球和2个红球,它们除颜色外其他都相反,现从箱子里随机摸出两个球,恰恰为1个黑球和1个红球的概率是______ .13. 假设恣意选择一对有序整数(m,n),其中|m|≤1,|n|≤3,每一对这样的有序整数被选择的能够性是相等的,那么关于x 的方程x 2+nx +m =0有两个相等实数根的概率是______ .14. 从−1,−2,12,23四个数中,任取一个数记为k ,再从余下的三个数中,任取一个数记为b.那么一次函数y =kx +b 的图象不经过第四象限的概率是______ .15. 从−1,0,2,3这四个数中,任取两个数作为a ,b ,区分代入一元二次方程ax 2+bx +2=0中,那么一切能够的一元二次方程中有实数解的一元二次方程的概率为______ .三、计算题16.一袋中装有外形大小都相反的四个小球,每个小球上各标有一个数字,区分是1,4,7,8.现规则从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌平均,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规则失掉一切能够的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.17.近年来,手机微信红包迅速盛行起来.去年春节,小米的爷爷也尝试用微信发红包,他区分将10元、30元、60元的三个红包发到只要爷爷、爸爸、妈妈和小米的微信群里,他们每人只能抢一个红包,且抢就任何一个红包的时机均等(爷爷只发不抢,红包里钱的多少与抢红包的先后顺序有关).(1)求小米抢到60元红包的概率;(2)假设小米的奶奶也参与〝抢红包〞的微信群,他们四团体中将有一团体抢不到红包,那么这种状况下,求小米和妈妈两团体抢到红包的钱数之和不少于70元的概率.18.假定n是一个两位正整数,且n的个位数字大于十位数字,那么称n为〝两位递增数〞(如13,35,56等).在某次数学兴趣活动中,每位参与者需从由数字1,2,3,4,5,6构成的一切的〝两位递增数〞中随机抽取1个数,且只能抽取一次.(1)写出一切个位数字是5的〝两位递增数〞;(2)请用列表法或树状图,求抽取的〝两位递增数〞的个位数字与十位数字之积能被10整除的概率.【答案】1. C2. D3. C4. D5. D6. B7. B8. D9. A10. B11. 2512. 2313. 1714. 1615. 1416. 解:(1)画树状图:共有16种等能够的结果数,它们是:11,41,71,81,14,44,74,84,17,47,77,87,18,48,78,88;(2)算术平方根大于4且小于7的结果数为6,所以算术平方根大于4且小于7的概率=616=38.17. 解:(1)小米抢到60元红包的概率=13;(2)画树状图为:共有24种等能够的结果数,其中小米和妈妈两团体抢到红包的钱数之和不少于70元的结果数为8,所以小米和妈妈两团体抢到红包的钱数之和不少于70元的概率=824=13.18. 解:(1)依据题意一切个位数字是5的〝两位递增数〞是15、25、35、45这4个;(2)画树状图为:共有15种等能够的结果数,其中个位数字与十位数字之积能被10整除的结果数为3,所以个位数字与十位数字之积能被10整除的概率=315=15.。

课时作业2:25.2用列举法求概率(2)

课时作业2:25.2用列举法求概率(2)

25.2用列表法求概率(2)1.口袋中装有1个红球,1个白球,从中任意取1个球,问用试验的方法估计摸到白球的概率是( )A .大于B .小于C .等于D .约为2.把一对骰子掷一次,得到不同的结果有( ) A .6种 B . 36种 C .种 D .无数种 3.下列说法中,错误的是( ) A .试验所得的概率一定等于理论概率 B .试验所得的概率不一定等于理论概率 C .试验所得的概率有可能为o D .试验所得的概率有可能为14.下面情况,出现的概率是的事件是( )A .抛一质地均匀的正方体骰子,出现偶数点B .在26个英文字母中,随机抽取一个,为元音字母C .在1,2,3,4,5,6六个数字中,随机抽取一张能被6整除D .在1,2,3,4,5,6六个数字中,随机抽取一张数字能被3整除 利用树形图求事件发生的概率5.口袋中有1个1元硬币和2个5角硬币,搅匀后从中摸出1个硬币,可能会出现的结果为,将硬币放回再搅匀后摸出1个硬币,2次都是1元硬币的机会为 ,都是5角硬币的机会为 .若用树形图表示如下,请填全:6.口袋中装有一个圆球及两个骰子,搅匀后从中摸出一样,出现结果用下列哪幅树状图表示准确( )12121212137.图33—2—1是“配紫色”游戏的两个转盘,你能用树状图的方法求出配成紫色的概率吗?8.张丽的口袋里有一元硬币和五角硬币,现每次拿一枚,然后放回,连续拿两次,可能会出现哪些结果,出现的机会各是多少?画树形图予以说明.9.掷两枚普通的正六面体骰子,所得点数之和有多少种可能,点数之和是多少出现的概率最大?10.抛三枚普通硬币,有几种等可能的结果,用树形图表示出来,都是正面的概率是多少?11.“石头、剪刀、布”是个广为流传的游戏,游戏时甲乙双方每次做“石头”、“剪刀”、“布”三种手势中的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,同种手势不分胜负需继续比赛.假定甲、乙两人每次都是等可能地做这三种手势,那么一次比赛时两人分出胜负的概率是多少?甲胜的概率是多少?请用树状图的方法解决.12.足球比赛规则如下:胜一场,得二分;平一场,得一分;负一场,得。

25.2 用列举法求概率(含答案)

25.2 用列举法求概率(含答案)

25.2 用列举法求概率一、基础·巩固·达标1.五张标有1、2、3、4、5的卡片,除数字外其他没有任何区别.现将它们背面朝上,从中任取一张得到卡片的数字为偶数的概率是__________.2.一副扑克牌,任意从中抽一张.求:(1)抽到大王的概率;(2)抽到 A 的概率;(3)抽到红桃的概率;(4)抽到红牌的概率;(5)抽到红牌或黑牌的概率.3.如图25-2-3,是一个游戏转盘,它被分成了面积相等的6个扇形,让转盘自由转动,自己停止时,求下列各事件的概率:(1)P(指针指向1); (2)P(指针指向6); (3)P(指针指向7); (4)P(指针指向奇数);(5)P(指针指向偶数); (6)P(指针指向小于5的数); (7)P(指针指向大于5的数);(8)P(指针指向3的倍数); (9)P(指针指向不小于2的数).图25-2-34.两个布袋中分别装有除颜色外,其他都相同的2个白球,1个黑球,同时从这两个布袋中摸出一个球,请用列表法表示出可能出现的情况,并求出摸出的球颜色相同的概率.5.一布袋中有红、黄、白三种颜色的球各一个,它们除颜色外其他都一样.小亮从布袋中摸出一个球后放回去摇匀,再摸出一个球.请你利用列举法(列表或画树形图)分析并求出小亮两次都能摸到白球的概率.6.小明和小刚用如图25-2-4的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由;若不公平,如何修改规则才能使游戏对双方公平?图25-2-4二、综合·应用·创新7.某电脑公司现有A ,B ,C 三种型号的甲品牌电脑和D ,E 两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑. (1)写出所有选购方案(利用树形图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,那么A 型号电脑被选中的概率是多少? (3)现知希望中学购买甲、乙两种品牌电脑共36台(价格如图25-2-5所示),恰好用了10万元人民币,其中甲品牌电脑为A 型号电脑,求购买的A 型号电脑有几台.图25-2-5三、回顾·热身·展望8.冰柜里装有四种饮料:5瓶特种可乐、12瓶普通可乐、9瓶橘子水、6瓶啤酒,其中特种可乐和普通可乐是含有咖啡因的饮料,那么从冰柜里随机取一瓶饮料,该饮料含有咖啡因的概率是( ) A.325 B.83 C.3215 D.32179.在一个暗箱里放入除颜色外其他都相同的3个红球和11个黄球,搅拌均匀后随机任取一个球,取到红球的概率是( ) A.113 B.118C.143D.141110.随机掷一枚均匀的硬币两次,两次正面都朝上的概率是( )A.41 B.21 C.43D.111.某校八年级将举行班级乒乓球对抗赛,每个班必须选派出一对男女混合双打选手参赛.八年级一班准备在小娟、小敏、小华三名女选手和小明、小强两名男选手中,选男、女选手各一名组成一对参赛,一共能够组成哪几对?如果小敏和小强的组合是最强组合,那么采用随机抽签的办法,恰好选出小敏和小强参赛的概率是多少?12.如图25-2-6是从一副扑克牌中取出的两组牌,分别是黑桃2、3、4和方块2、3、4,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,那么摸出的两张牌的牌面数字之和等于5的概率是多少?请你用列表或画树形图加以分析说明.图25-2-6参考答案一、基础·巩固·达标1.五张标有1、2、3、4、5的卡片,除数字外其他没有任何区别.现将它们背面朝上,从中任取一张得到卡片的数字为偶数的概率是__________.提示:所有可能出现的结果:1号卡、2号卡、3号卡、4号卡球、5号卡,5种可能,摸到卡片的数字为偶数的可能出现的结果有:2号卡、4号卡两种可能,所以得到卡片的数字为偶数的概率是52. 答案:52 2.一副扑克牌,任意从中抽一张.求:(1)抽到大王的概率;(2)抽到 A 的概率;(3)抽到红桃的概率; (4)抽到红牌的概率;(5)抽到红牌或黑牌的概率.提示:一副牌只有54张,大、小王各一张.红桃、方块、梅花、黑桃各13张,红牌即红桃和方块,黑牌即黑桃和梅花,除大小王外,一张牌有4种花色.解:P (抽大王)=541. P (抽A )=544. P (抽红桃)=5413. P (抽红牌)=541313 =5426. P (抽红牌或黑牌)=5452.3.如图25-2-3,是一个游戏转盘,它被分成了面积相等的6个扇形,让转盘自由转动,自己停止时,求下列各事件的概率:(1)P(指针指向1); (2)P(指针指向6); (3)P(指针指向7); (4)P(指针指向奇数); (5)P(指针指向偶数); (6)P(指针指向小于5的数); (7)P(指针指向大于5的数); (8)P(指针指向3的倍数); (9)P(指针指向不小于2的数).图25-2-3提示:转盘被分成了面积相等的6个扇形,说明转盘自己停止时,指针指向每个数字所在扇形的概率相同,都是61. 解:(1)P(指针指向1)=61. (2)P(指针指向6)=61=0. (3)P(指针指向7)=6=0.(4)P(指针指向奇数)=2163=. (5)P(指针指向偶数)=2163=. (6)P(指针指向小于5的数)=3264=. (7)指针指向大于5的数)=61.(8)P(指针指向3的倍数)=3162=. (9)P(指针指向不小于2的数)=65.4.两个布袋中分别装有除颜色外,其他都相同的2个白球,1个黑球,同时从这两个布袋中摸出一个球,请用列表法表示出可能出现的情况,并求出摸出的球颜色相同的概率. 提示:由题意可列下表:答案:P (同)=39=. 5.一布袋中有红、黄、白三种颜色的球各一个,它们除颜色外其他都一样.小亮从布袋中摸出一个球后放回去摇匀,再摸出一个球.请你利用列举法(列表或画树形图)分析并求出小亮两次都能摸到白球的概率.列表如下:6.小明和小刚用如图25-2-4的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由;若不公平,如何修改规则才能使游戏对双方公平?图25-2-4答案:P (积为奇数)=1,P (积为偶数)=2.31×2=1×32, ∴这个游戏对双方公平. 二、综合·应用·创新7.某电脑公司现有A ,B ,C 三种型号的甲品牌电脑和D ,E 两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.图25-2-5(1)写出所有选购方案(利用树形图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,那么A 型号电脑被选中的概率是多少? (3)现知希望中学购买甲、乙两种品牌电脑共36台(价格如图25-2-5所示),恰好用了10万元人民币,其中甲品牌电脑为A 型号电脑,求购买的A 型号电脑有几台. 解:(1)树形图如下:列表如下:2有6种可能结果:(A ,D ),(A ,E ),(B ,D ),(B ,E ),(C ,D ),(C ,E ). (2)因为选中A 型号电脑有2种方案,即(A ,D )(A ,E ),所以A 型号电脑被选中的概率是31. (3)由(2)可知,当选用方案(A ,D )时,设购买A 型号、D 型号电脑分别为x ,y 台,根据题意,得⎩⎨⎧=+=+.10000005000600036y x y x 解得⎩⎨⎧=-.116,80y x .经检验不符合题意,舍去; 当选用方案(A ,E )时,设购买A 型号、E型号电脑分别为x ,y 台,根据题意,得⎩⎨⎧=+=+.10000020006000,36y x y x 解得⎩⎨⎧==297y x . 所以希望中学购买了7台A 型号电脑. 三、回顾·热身·展望8.冰柜里装有四种饮料:5瓶特种可乐、12瓶普通可乐、9瓶橘子水、6瓶啤酒,其中特种可乐和普通可乐是含有咖啡因的饮料,那么从冰柜里随机取一瓶饮料,该饮料含有咖啡因的概率是( ) A.325 B.83 C.3215 D.3217提示:根据等可能事件发生的概率的计算方法. 答案: D9.在一个暗箱里放入除颜色外其他都相同的3个红球和11个黄球,搅拌均匀后随机任取一个球,取到红球的概率是( ) A.113 B.118C.143D.1411提示:根据红球的个数占总球数的比例即可求解. 答案: C10.随机掷一枚均匀的硬币两次,两次正面都朝上的概率是( )A.41 B.21 C.43D.1提示:我们把掷一枚均匀的硬币两次所能产生的结果全部列举出来,它们是:正正,反反,反正,正反.所有的可能结果共有4个,并且这四个结果出现的可能性相等.其中两次正面都朝上的结果只有一个,所以其概率为41. 答案: A 11.某校八年级将举行班级乒乓球对抗赛,每个班必须选派出一对男女混合双打选手参赛.八年级一班准备在小娟、小敏、小华三名女选手和小明、小强两名男选手中,选男、女选手各一名组成一对参赛,一共能够组成哪几对?如果小敏和小强的组合是最强组合,那么采用随机抽签的办法,恰好选出小敏和小强参赛的概率是多少? 解:由题意可列下表:由表可看出能够组成小娟与小强、小敏与小强、小华与小强、小娟与小明、小敏与小明、小华与小明,共6对,恰好选出小敏和小强参赛的结果共一个,其概率为61. 12.如图25-2-6是从一副扑克牌中取出的两组牌,分别是黑桃2、3、4和方块2、3、4,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,那么摸出的两张牌的牌面数字之和等于5的概率是多少?请你用列表或画树形图加以分析说明.图25-2-6答案:列表如下:(4,2)所以,摸出的两张牌的牌面数字之和等于5的概率是9.。

25.2用列举法求概率(2)(含答案)

25.2用列举法求概率(2)(含答案)

25.2 用列举法求概率(2)——列表法、树状图法求概率◆回顾探索1.列表法求概率是将两种情况按横竖________,_______列出所有的情况,•求出总结果n,用所发生的情况m去______以_______得所求的概率.2.树状图法将若干可能发生的_______,分层_______最后计算出结果的总数n,•用所发生的情况m去除以_______,得出所求的概率.◆课堂测控测试点一列表法求事件的概率1.(过程探究题)随机掷一枚均匀的硬币两次,两次正面朝上的概率是多少?解:列表法:总共结果为_______个,两次正面朝上为_____个,所以P(两次正面朝上)=____.2.(原创题)如图所示,图中的两个转盘分别均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针落在各数上,情况见下表:解:(1)将表上数填满,总共有______种情况.(2)•两个转盘指针都为奇数的情况有_____种.P(两个都为奇数)=________.测试点二用树状图求概率3.(经典名题)“石头、剪刀、布”是广为流传的游戏,•游戏时比赛各方每次做“石头”、“剪刀”、“布”中手势中的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,同种手势或三种手势循环不分胜负继续比赛,假定甲、乙、丙三人每次都是等可能地做这三种手势.(1)求一次比赛中三人不分胜负的概率是多少?(2)求比赛中一人胜,二人负的概率是多少?解:画树状图(1)共有______•种可能出现的结果,•其中不分胜负的有_____,•____,•______,____共_____种,所以不分胜负的概率为______.(2)其中一人胜二人负的有剪刀、布、布,有_____种;布、石头、•石头,•有_____种;石头、剪刀、剪刀,有_____种;共____种.◆课后测控1.从1,1,2这三个数中,任取两个数作为一次函数y=kx+b的系数k,b,•则一次函数y=kx+b的图象不经过第四象限的概率是______.2.甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为a,再由乙猜甲刚才所想数字,把乙所猜数字记为b,且a,b分别取0,1,2,3,若a,b满足│ab│≤1,则称甲、•乙两人“心有灵犀”,•现任意找两个玩这个游戏,•得出“心有灵犀”的概率为_______.3.你喜欢玩游戏吗?现请你玩一个转盘游戏.如图所示,•所示的两个转盘中指针落在每一个数字上的机会均等.现同时自由转动甲、乙两个转盘,转盘停止后,指针各指向一个数字,用所指的两个数字作乘积.(1)列举(用列表或画树形图)所有可能得到的数字之积;(2)求出数字之积为奇数的概率.4.将背面相同,正面分别标有数字1,2,3,4的四张卡片搅匀后,背面朝上放在桌面上.(1)从中随机抽取一张纸片,求该纸片正面向上的数字是偶数的概率.(2)先从中随机抽取一张纸片(不放回),将该纸片正面上的数字作为十位上的数字,再随机抽取一张,将该纸片上面上数字作为个位上的数字,•则组成的两位数恰好是4的倍数的概率是多少?请用树状图或列表法加以说明.5.如图,电路图上有四个开关A,B,C,D和一个小灯泡,闭合开关D或同时闭合开关A,B,C都可使小灯泡发光.(1)任意闭合其中一个开关,则小灯泡发光的概率等于_______.(2)任意闭合其中两个开关,请用画树状图或列表的方法求出小灯泡发光的概率.◆拓展创新6.(生活应用题)两人要去某风景区游玩,•每天某一时刻开往该风景区有三辆汽车(票价相同),但是他们不知道这些车的舒适程度,也不知道汽车开过来的顺序,•两人采用了不同的乘车方案.甲无论如何总是上开来的第一辆车,而乙则是先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况.如果第二辆车的状况比第一辆好,他就上第二辆车;如果第二辆不比第一辆好,他就上第三辆车.如果把这三辆车的舒适程度分为上、中、下三等,请尝试着解决下面的问题:(1)三辆车开出来的先后顺序共有哪几种不同的可能?(2)你认为甲、乙两人采用的方案,•哪一种方案使自己乘坐上等车的可能性大?为什么?答案:回顾探索1.排列,把横或竖的元素放前后排列,除,总情况数n 2.事件,排列,总情况n课堂测控1.4,1,1 42.表中数对(4,3),(8,2),(9,3),(9,5)(1)20 (2)6,3 103.(1)27,(剪刀,剪刀,剪刀),(石头,石头,石头),(布,布,布),(剪刀,石头,布),•9,13(2)3,3,3,9.课后测控1.49(点拨:如下表所示)1 1 21 (1,1)(1,1)(1,2)1 (1,1)(1,1)(1,2)2 (2,1)(2,1)(2,2)2.58(点拨:如下表所示)0 1 2 30 0 |1| |2| |3|1 1 0 |1| |2|2 2 1 0 |1|3 3 2 1 03.解:(1)见下表.(2)P(奇数)=624=14.1 2 3 4 5 61 12345 62 2 4 6 8 10 123 3 6 9 12 15 184 4 8 12 16 20 244.解:(1)P(正面是偶数)=12(2)树状图表示如下:两位数有12,13,14,21,23,24,31,32,34,41,42,43.4的倍数有12,24,32,P(4的倍数)=312=14.5.(1)1 4(2)树状图表示如下:总共有情况:3×4=12种情况,其中AD,BD,CD,DA,DB,DC小灯泡都发光.所以P(小灯泡发光)=612=12.6.解:(1)三辆车开过来的先后顺序有6种可能:(上,中,下),(上,下,中),(中,上,下),(中,下,上),(下,上,中),(下,中,上).(2)由于不知道任何信息,所以只能假定6种顺序出现的可能性相同,我们来研究在各种可能性的顺序之下,甲,乙二人分别会上哪一辆车(列表如下).•于是不难得出:甲乘上等车的概率是13,乙乘上等车的概率是12,所以采取乙的方案乘坐上乘车的可能性大.。

人教版九年级上册25.2 用列举法求概率 同步训练(含答案)

人教版九年级上册25.2 用列举法求概率  同步训练(含答案)

用列举法求概率(原创)一、选择题1.随机掷一枚均匀的硬币两次,一次正面朝上、一次反面朝上的概率是(). A . B . C . D .1.2.从A 地到B 地可坐飞机、火车、汽车、轮船,从B 地到C 地可坐飞机、火车、汽车,小明乘坐以上交通工具,从A 地经B 地到C 地的方法法有()种. A .4 B .6 C .15 D .12.3.有18个型号相同不同颜色的小球,其中白色8个,黑色6个,红色4个.则从中任意取1个,取到绿色小球的概率等于( ).A .31B .92C .0D .944.掷两个普通的正方体骰子,把两个点数相加,则和为7概率的是 ( )A .61B .31C .41D .325.如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在偶数上的概率是( ) .A. 25B .310C .320D .156.(宁波)如图,在2×2的正方形网格中有9个格点,已经取定点A 和B ,在余下的7个点中任取一点C ,使△ABC 为直角三角形的概率是( )412143123453489A.21B.52C.73D. 747. (新疆)在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④,随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是( )A. 161B.163C.41D. 165✱8.用1、2、3这3个数字(数字可重复,如“222”)组成3位数,这个3位数是奇数的概率为( ).A .32B .31C .21D .43二、填空题 9.(盐城)一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为________.10. 从61,π,3,211这四个数中任选一个数,选出的这个数是无理数的概率为________.11.已知函数y =(3k -1)x +4(k 为整数),若从-3≤k ≤3中任取整数k ,则得到的函数是具有性质“y 随x 增加而减少”的一次函数的概率为________.12.若从-1、1、2、0这四个数中,任取两个分别作为点M 的横、纵坐标,则点M 在第四象限的概率是________.三、解答题 13.(遵义)某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A 区域时,所购物品享受9折优惠、指针指向其他区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购物品享受8折优惠,其他情况无优惠.在每个转盘中,指针指向每个区域的可能性相同(若指针指向分界线,则重新转动转盘). (1)若顾客选择方式一,则享受9折优惠的概率为________;(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.第18题图14.(广州)某班为了解学生一学期做义工的时间情况,对全班名学生进行调查,按做义工的时间(单位:小时),将学生分成五类:A类,B类,C类,D类,E类.绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E 类学生有人,补全条形统计图;(2)D 类学生人数占被调查总人数的;(3)从该班做义工时间在的学生中任选人,求这人做义工时间都在中的概率.15.一张圆桌旁有四个座位,A先坐在如图所示的座位上,B,C,D三人随机坐在其他三个座位上,求A与B相邻的概率.16.小红和小明用方块4、黑桃5、黑桃7和梅花7四张纸牌玩游戏,他们将纸牌洗均匀后,背面朝上放在桌面上,小明先抽,小华后抽,抽出的牌不放回.(1)若小明恰好抽到黑桃5,请用列表法求小红抽出的牌的数字比5大的概率;(2)小红和小明约定:若小明抽到的牌的数字比小红的大,则小明胜;反之,则小红胜,你认为这个游戏是否公平?请说明理由. 若游戏不公平,请修改规则.答案 一、 1.B 2.D3.C 4.A5.D 6.D 7.C8.A二、9. 4910.21 11.74 12.61三、13.(1)14;(2)画树状图或列表略,共有12种等可能的结果,分别为(A ,A ),(A ,B ),(A ,E ),(B ,A ),(B ,B ),(B ,E ),(C ,A ),(C ,B )(C ,E ),(D ,A ),(D ,B ),(D ,E ), P (顾客享受8折优惠)=16.14. (1) E 类:(人),统计如图所示(2)(3) 设 人分别为 ,,,,,画树状图:所以这 人做义工时间都在 中的概率为 .15.解:按顺时针方向依次对B ,C ,D 进行排位,如下:三个座位被B ,C ,D 三人随机坐的可能性共有6种,由图可知:P (A 与B 相邻)=64=32.16.(1)32共有(5,4)、(5,7)、(5,7)三种,小红的牌比5大的有2种5P小明(2)不公平,12,把两人牌数和为奇数、偶数作为判断结果。

25.2用列举法求概率(原卷版)

25.2用列举法求概率(原卷版)

25.2 用列举法求概率1、用列举法求概率一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=mn。

2、用列表法求概率当一次试验要涉及两个因素并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常用列表法。

列表法是用表格的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法。

3、用树形图法求概率当一次试验要涉及3个或更多的因素时,列方形表就不方便了,为不重不漏地列出所有可能的结果,通常采用树形图。

树形图是反映事件发生的各种情况出现的次数和方式,并求出概率的方法。

(1)树形图法同样适用于各种情况出现的总次数不是很大时求概率的方法。

(2)在用列表法和树形图法求随机事件的概率时,应注意各种情况出现的可能性务必相同。

题型一列举法求概率【例1】两人一组,每人在纸上随机写一个不大于3的正整数,两人所写的正整数的和恰好是偶数的概率是()A.59B.49C.12D.13【变式11】株洲市一中音乐节活动中,来自漫画社团、街舞社团、文学社团的三名选手准备在同一节目中依次表演,若他们出场先后的机会是均等的,则按“漫画社团—文学社团—街舞社团”顺序演奏的概率是()A.16B.13C.112D.23【变式12】有四根细木棒,长度分别为3cm,5cm,7cm,9cm,则随机抽出三根木棒,能够组成三角形的概率是()A.12B.13C.14D.34【变式13】由于疫情原因,我校在校门口建立A、B两个体温检测通道,九(3)班甲乙两位同学上午从两个通道中任意一个通道进入校园,求下列事件发生的概率.(1)甲同学从A通道进入的概率是;(2)求甲乙两位同学都从A通道进入的概率.(请写出分析过程)【变式14】不透明的箱子里有三个球,分别标有数字1,2,3,各球除所标的数外其他均相同.从箱子里任意摸出两个球,并记下数.(1)用适当的方法列举出所有的可能结果;(2)求两个数的积是偶数的概率.题型二列表法求概率【例2】某校矩形以《大国重器》为主题的演讲比赛,其中一个环节是即兴演讲,该环节共有三个题目,由电脑随机给每位参赛选手派发一个题目,选手根据题目对应的内容进行90秒演讲.小亮和小敏都参加了即兴演讲,则电脑给他们派发的是同一个题目的概率是()A.13B.16C.14D.12【变式21】箱子中装有除颜色外完全相同的三个小球,其中2个红球一个白球,从箱子中随机摸出两个球,这两个球的颜色相同的概率是.【变式22】将分别标有“中”“国”“心”汉字的三个小球装在一个不透明的口袋中,这些球除汉字外无其它差别.随机摸出一个球后放回搅匀,随机摸出一个球,两次摸出的球上的汉字能组成“中国”的概率是.【变式23】某商场开展购物抽奖活动,抽奖箱中有4个标号分别为1,2,3,4的质地、大小相同的小球,顾客任意摸取一个小球,然后放回,再摸取一个小球,若两次摸出的数字之和为“8”是一等奖,数字之和为“6”是二等奖,数字之和为其他数字则是三等奖,请用列举法分别求出顾客抽中一、二、三等奖的概率.【变式24】第31届世界大学生夏季运动会于2023年7月28日8月8日在成都举行.彬彬和明明申请足球A、篮球B、排球C、乒乓球D.四项赛事中某一项的志愿者,他们被随机分配到这四项赛事中的任意一项的可能性相同.(1)“彬彬被分配到乒乓球D.赛事做志愿者”是___________事件(填“必然”、“不可能”或“随机”).(2)请用画树状图法或列表法,求彬彬和明明被分配到同一项赛事做志愿者的概率.题型三树状图法求概率【例3】一枚质地均匀的正方体骰子,骰子各面分别标有数字1、2、3、4、5、6,掷两次所得点数之和为11的概率为()A.118B.136C.112D.115【变式31】如图,某公园有一个入口,A、B、C三个出口,甲、乙两人进入这个公园,活动后从同一个出口出来的概率是()A.12B.13C.14D.16【变式32】现在从“−3,0,1,3”四个数中任选两个数作为一次函数y=kx+b的系数k,b,则一次函数的图象经过一、二、四象限的概率为.【变式33】一只不透明的袋子中装有1个白球和2个红球,这些球除颜色外都相同,搅匀.(1)从袋子中任意摸出1个球,则摸到的球是红球的概率为___________;(2)从袋子中任意摸出1个球,记录颜色后放回..、搅匀,再从中任意摸出1个球,求两次中至少有一次是红球的概率.【变式34】在2022年高考中,西安某中学考生小玲高考673分,选择报考C9名校西安交通大学.西安交通大学有国家一级专业:A材料科学与工程、B动力工程、C电气工程、D生物医学工程,小玲可以选择填写两个志愿.(填写志愿和顺序无关)(1)小玲填写两个志愿中有A志愿的概率是;(2)小玲的第一志愿在A、B、C、D中选择一个,第二志愿在剩下的三个专业中选择一个,求小玲填写不选C志愿的概率.题型四游戏的公平性【例4】小军和小红用2、3、4三张数字卡片做游戏,如果摆出的三位数是偶数,算小红赢,否则算小军赢,这个游戏规则(填“公平“或“不公平”).【变式41】甲、乙两班进行篮球比赛,裁判员采用同时抛掷两枚完全相同硬币的方法选择比赛场地:若两枚硬币朝上的面相同,则甲班先选择场地;否则乙班先选择场地.为了判断这种方法的公平性,明明画出树状图如图所示,根据树状图,这种选择场地的方法对两个班级.(填“公平”或“不公平”)【变式42】小颖、小明两人做游戏,掷一枚硬币,双方约定:正面朝上小颖胜,反面朝上小明胜,则这个游戏()A.公平B.对小颖有利C.对小明有利D.无法确定【变式43】在一个不透明的盒子中只装2枚白色棋子和2枚黑色棋子,它们除颜色外其余均相同,从这个盒子中随机地摸出2枚棋子.(1)请用画树状图(或列表)的方法,求两次摸出的棋子是不同颜色的概率.(2)若小明、小亮做游戏,游戏规则是:两次摸出的棋子颜色不同则小明得1分,颜色相同小亮得2分.你认为这个游戏公平吗?请说明理由.【变式44】一个不透明的盒子中装有两个白色乒乓球和一个黄色乒乓球,它们只有颜色的不同,甲、乙两人玩摸球游戏,每次只能摸出一个球.规则如下:甲摸一次,摸到黄乒乓球,得1分,否则得0分;乙摸两次,先摸出1个球,放回后,再摸出1个球,如果两次摸到的都是白色乒乓球,则得1分,否则不得分,得分多者获胜,如果平分,则再来一次,问此游戏是否公平,并请通过计算说明理由.。

苏版数学初三上册三年中考真题同步练习:用列举法求概率(有解析)

苏版数学初三上册三年中考真题同步练习:用列举法求概率(有解析)

苏版数学初三上册三年中考真题同步练习:2525.2 用列举法求概率一.选择题(共16小题)1.(2021•广州)甲袋中装有2个相同的小球,分别写有数字1和2:乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是()A.B.C.D.2.(2021•临沂)2021年某市初中学业水平实验操作考试.要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是()A.B.C.D.3.(2021•聊城)小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是()A.B.C.D.4.(2021•山西)在一个不透亮的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.B.C.D.5.(2021•无锡)如图是一个沿3×3正方形方格纸的对角线AB剪下的图形,一质点P由A点动身,沿格点线每次向右或向上运动1个单位长度,则点P由A点运动到B点的不同路径共有()A.4条B.5条C.6条D.7条6.(2021•威海)一个不透亮的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是﹣2,﹣1,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是()A.B.C.D.7.(2021•攀枝花)布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出第二个球,两次都摸出白球的概率是()A.B.C.D.8.(2021•淄博)在一个不透亮的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜那个小球上的数字,记为n.假如m,n满足|m﹣n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是()A.B.C.D.9.(2021•永州)已知从n个人中,选出m个人按照一定的顺序排成一行,所有不同的站位方法有n×(n﹣1)×…×(n﹣m+1)种.现某校九年级甲、乙、丙、丁4名同学和1位老师共5人在毕业前合影留念(站成一行).若老师站在中间,则不同的站位方法有()A.6种B.20种C.24种D.120种10.(2021•贵港)从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是()A.B.C.D.111.(2021•嘉兴)红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是()A.红红不是胜确实是输,因此红红胜的概率为B.红红胜或娜娜胜的概率相等C.两人出相同手势的概率为D.娜娜胜的概率和两人出相同手势的概率一样12.(2021•济南)如图,五一旅行黄金周期间,某景区规定A和B为入口,C,D,E为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A入口进入、从C,D出口离开的概率是()A.B.C.D.13.(2021•济宁)将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透亮的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌平均,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“孔孟”的概率是()A.B.C.D.14.(2021•赤峰)从数字2,3,4中任选两个数组成一个两位数,组成的数是偶数的概率是()A.B.C.D.15.(2021•巴中)下列说法正确的是()A.掷一枚质地平均的正方体骰子,骰子停止转动后,5点朝上是必定事件B.审查书稿中有哪些学科性错误适合用抽样调查法C.甲乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳固D.掷两枚质地平均的硬币,“两枚硬币差不多上正面朝上”这一事件发生的概率为16.(2021•牡丹江)在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球,则两次摸出的小球的标号之和等于5的概率是()A.B.C.D.二.填空题(共10小题)17.(2021•扬州)有4根细木棒,长度分别为2cm,3cm,4cm,5c m,从中任选3根,恰好能搭成一个三角形的概率是.18.(2021•新疆)一天晚上,小伟关心妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是.19.(2021•包头)从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是.20.(2021•咸宁)一个不透亮的口袋中有三个完全相同的小球,它们的标号分别为1,2,3.随机摸出一个小球然后放回,再随机摸出一个小球,则两次摸出的小球标号相同的概率是.21.(2021•滨州)若从﹣1,1,2这三个数中,任取两个分别作为点M的横、纵坐标,则点M在第二象限的概率是.22.(2021•绵阳)现有长分别为1,2,3,4,5的木条各一根,从这5根木条中任取3根,能构成三角形的概率是.23.(2021•襄阳)同时抛掷三枚质地平均的硬币,显现两枚正面向上,一枚正面向下的概率是.24.(2021•雅安)分别从数﹣5,﹣2,1,3中,任取两个不同的数,则所取两数的和为正数的概率为.25.(2021•绥化)在一个不透亮的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.26.(2021•黔东南州)在一个不透亮的箱子中装有4件同型号的产品,其中合格品3件、不合格品1件,现在从这4件产品中随机抽取2件检测,则抽到的差不多上合格品的概率是.三.解答题(共8小题)27.(2021•吉林)一个不透亮的口袋中有三个小球,上面分别标有字母A,B,C,除所标字母不同外,其它完全相同,从中随机摸出一个小球,记下字母后放回并搅匀,再随机摸出一个小球,用画树状图(或列表)的方法,求该同学两次摸出的小球所标字母相同的概率.28.(2021•泸州)为了解某中学学生课余生活情形,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采纳问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并依照调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估量该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.29.(2021•南充)“每天锤炼一小时,健康生活一辈子”.为了选拔“阳光大课间”领操员,学校组织初中三个年级推选出来的15名领操员进行竞赛,成绩如下表:成绩/分78910人数/人2544(1)这组数据的众数是,中位数是.(2)已知获得10分的选手中,七、八、九年级分别有1人、2人、1人,学校预备从中随机抽取两人领操,求恰好抽到八年级两名领操员的概率.30.(2021•苏州)如图,在一个能够自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).31.(2021•江西)今年某市为创评“全国文明都市”称号,周末团市委组织理想者进行宣传活动.班主任梁老师决定从4名女班干部(小悦、小惠、小艳和小倩)中通过抽签方式确定2名女生去参加.抽签规则:将4名女班干部姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.(1)该班男生“小刚被抽中”是事件,“小悦被抽中”是事件(填“不可能”或“必定”或“随机”);第一次抽取卡片“小悦被抽中”的概率为;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出“小惠被抽中”的概率.32.(2021•资阳)当前,“精准扶贫”工作已进入攻坚时期,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.(1)求七年级已“建档立卡”的贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;(3)现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情形,并求出恰好选出一名男生和一名女生的概率.33.(2021•连云港)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋、投放,其中A类指废电池,过期药品等有毒垃圾,B 类指剩余食品等厨余垃圾,C类指塑料、废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直截了当写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.34.(2021•葫芦岛)随着通讯技术的迅猛进展,人与人之间的沟通方式更多样、便利.某校数学爱好小组设计了“你最喜爱的沟通方式”调查问卷(每人必选且只选一种),在全校范畴内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为;(2)将条形统计图补充完整;(3)该校共有1500名学生,请估量该校最喜爱用“微信”进行沟通的学生有多少名?(4)某天甲、乙两名同学都想从“微信”、“QQ”、“”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.参考答案一.选择题(共16小题)1.C.2.D.3.B.4.A.5.B.6.B.7.A.8.B.9.C.10.B.11.A.12.B.13.B.14.A.15.C.16.C.二.填空题(共10小题)17..18..19..20..21..22..23..24..25.26..三.解答题(共8小题)27.解:列表得:A B CA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由列表可知可能显现的结果共9种,其中两次摸出的小球所标字母相同的情形数有3种,因此该同学两次摸出的小球所标字母相同的概率==.28.解:(1)n=5÷10%=50;(2)样本中喜爱看电视的人数为50﹣15﹣20﹣5=10(人),1200×=240,因此估量该校喜爱看电视的学生人数为240人;(3)画树状图为:共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,因此恰好抽到2名男生的概率==.29.解:(1)由于8分显现次数最多,因此众数为8,中位数为第8个数,即中位数为9,故答案为:8、9;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中恰好抽到八年级两名领操员的有2种结果,因此恰好抽到八年级两名领操员的概率为=.30.解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,∴指针所指扇形中的数字是奇数的概率为,故答案为:;(2)列表如下:1231(1,1)(2,1)(3,1)2(1,2)(2,2)(3,2)3(1,3)(2,3)(3,3)由表可知,所有等可能的情形数为9种,其中这两个数字之和是3的倍数的有3种,因此这两个数字之和是3的倍数的概率为=.31.解:(1)该班男生“小刚被抽中”是不可能事件,“小悦被抽中”是随机事件,第一次抽取卡片“小悦被抽中”的概率为,故答案为:不可能、随机、;(2)记小悦、小惠、小艳和小倩这四位女同学分别为A、B、C、D,列表如下:A B C DA﹣﹣﹣(B,A)(C,A)(D,A)B(A,B)﹣﹣﹣(C,B)(D,B)C(A,C)(B,C)﹣﹣﹣(D,C)D(A,D)(B,D)(C,D)﹣﹣﹣由表可知,共有12种等可能结果,其中小惠被抽中的有6种结果,因此小惠被抽中的概率为=.32.解:(1)总数人数为:6÷40%=15人(2)A2的人数为15﹣2﹣6﹣4=3(人)补全图形,如图所示A1所在圆心角度数为:×360°=48°(3)画出树状图如下:故所求概率为:P==33.解:(1)∵垃圾要按A,B,C三类分别装袋,甲投放了一袋垃圾,∴甲投放的垃圾恰好是A类的概率为:;(2)如图所示:由图可知,共有18种可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种,因此,P(乙投放的垃圾恰有一袋与甲投放的垃圾是同类)==;即,乙投放的垃圾恰有一袋与甲投放的垃圾是同一类的概率是:.34.解:(1)喜爱用沟通的人数为20,所占百分比为20%,∴此次共抽查了:20÷20%=100人喜爱用QQ沟通所占比例为:=,∴QQ”的扇形圆心角的度数为:360°×=108°(2)喜爱用短信的人数为:100×5%=5人喜爱用微信的人数为:100﹣20﹣5﹣30﹣5=40补充图形,如图所示:(3)喜爱用微信沟通所占百分比为:×100%=40%∴该校共有1500名学生,请估量该校最喜爱用“微信”进行沟通的学生有:1500×40%=600人(4)列出树状图,如图所示所有情形共有9种情形,其中两人恰好选中同一种沟通方式共有3种情形,甲、乙两名同学恰好选中同一种沟通方式的概率为:=故答案为:(1)100;108°。

人教版 九年级上册数学 25.2 用列举法求概率 同步训练(含答案)

人教版 九年级上册数学 25.2 用列举法求概率 同步训练(含答案)

人教版 九年级数学 25.2 用列举法求概率 同步训练一、选择题(本大题共10道小题) 1. 2018·大连 一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,从中随机摸出一个小球,记下标号后放回,再从中随机摸出一个小球并记下标号,两次摸出的小球标号之和是偶数的概率是( ) A.13B.49C.12D.592. 假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚鸟卵全部成功孵化,那么三只雏鸟中有两只雌鸟的概率是( ) A.16B.38C.58D.233. 甲、乙两人用如图所示的两个转盘(每个转盘被分成面积相等的3个扇形)做游戏,游戏规则:转动两个转盘各一次,转盘停止后,若指针所在区域的数字之和为偶数,则甲获胜;若数字之和为奇数,则乙获胜;若指针落在分界线上,则重新转动转盘.甲获胜的概率是( )A.13B.49C.59D.234. 在一个箱子里放有1个白球和2个红球,它们除颜色不同外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是( ) A .1B.23C.13D.125. 在▱ABCD中,AC ,BD 是两条对角线,现从以下四个关系式:① AB =BC ,②AC =BD ,③AC ⊥BD ,④ AB ⊥BC 中任选一个作为条件,可推出▱ABCD 是菱形的概率为( )A.12B.14C.34D.256. 2018·梧州 小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种颜色的球各1个,这些球除颜色不同外无其他差别,每人从箱子中随机摸出1个球,然后放回箱子中,轮到下一个人摸球,三人摸到球的颜色都不相同的概率是( ) A.127B.13C.19D.297. 定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V 数”,如“947”就是一个“V 数”.若某三位数十位上的数字为5,从4,6,8中任选两数分别作为个位和百位上的数字,则与5组成“V 数”的概率是( ) A.16B.14C.13D.238. 在-2,-1,0,1,2这五个数中任取两数m ,n ,则二次函数y =(x -m)2+n的图象的顶点在坐标轴上的概率为( ) A.25B.15C.14D.129. 如图,正方形ABCD 内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在阴影区域内的概率为( )A.14B.12C.π8D.π410. 如图,在4×4的正方形网格中,阴影部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂上阴影,使阴影部分的图形仍然构成一个轴对称图形的概率是( )A.613 B.513C.413D.313二、填空题(本大题共7道小题)11. 一个不透明的口袋中有四个完全相同的小球,其上分别标有数字1,2,4,8.随机摸取一个小球后不放回,再随机摸取一个小球,则两次取出的小球上数字之积等于8的概率是________.12. 2019·邵阳不透明袋中装有大小、形状、质地完全相同的4个不同颜色的小球,颜色分别是红色、白色、蓝色、黄色,从中一次性随机取出2个小球,取出2个小球的颜色恰好是一红一蓝的概率是________.13.一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球.从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是________.14. 有三张背面完全相同的数字牌,它们的正面分别印有数字“1”“2”“3”,将它们背面朝上,洗匀后随机从中抽取一张,记录下牌上的数字后并把牌放回,再重复这样的步骤两次,共得到三个数字a ,b ,c ,则以a ,b ,c 为边长正好构成等边三角形的概率是________.15. 任取不等式组⎩⎨⎧k -3≤0,2k +5>0的一个整数解,则能使关于x 的方程2x +k =-1的解为非负数的概率为________.16. 已知电路AB 由如图所示的开关控制,闭合a ,b ,c ,d ,e 五个开关中的任意两个,则能使电路形成通路的概率是________.17. 在-4,-2,1,2四个数中,随机取两个数分别作为函数y=ax2+bx+1中a,b的值,则该二次函数的图象恰好经过第一、二、四象限的概率为________.三、解答题(本大题共4道小题)18. 小美周末来到公园,发现在公园一角有一种“守株待兔”游戏.游戏设计者提供了一只兔子和一个有A,B,C,D,E五个出入口的兔笼,而且笼内的兔子从每个出入口走出兔笼的机会是均等的.规定:①玩家只能将小兔从A,B两个出入口放入;②若小兔进入笼子后选择从开始进入的出入口离开,则可获得一只价值4元的小兔玩具,否则应付费3元.(1)请用画树状图的方法列举出该游戏的所有可能情况;(2)小美玩一次游戏,得到小兔玩具的机会有多大?(3)假设有125人玩此游戏,估计游戏设计者可赚多少元.19. A,B,C三人玩篮球传球游戏,游戏规则:第一次传球由A将球随机地传给B,C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)求两次传球后,球恰好在B手中的概率;(2)求三次传球后,球恰好在A手中的概率.20. 有三张正面分别写有数字-2,-1,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为x的值,放回卡片洗匀后,再从三张卡片中随机抽取一张,以其正面数字作为y的值,两次结果记作(x,y).(1)用画树状图法或列表法表示(x,y)所有可能出现的结果;(2)求使分式x2-3xyx2-y2+yx-y有意义的(x,y)出现的概率;(3)化简分式x2-3xyx2-y2+yx-y,并求使分式的值为整数的(x,y)出现的概率.21. 2019·孝感一个不透明的袋子中装有四个小球,上面分别标有数字-2,-1,0,1,它们除了数字不一样外,其他完全相同.(1)随机从袋子中摸出一个小球,摸出的球上面标的数字为正数的概率是________;(2)小聪先从袋子中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标;然后放回搅匀,接着小明从袋子中随机摸出一个小球,记下数字作为点M的纵坐标.如图10-ZT-3,已知四边形ABCD的四个顶点的坐标分别为A(-2,0),B(0,-2),C(1,0),D(0,1),请用画树状图法或列表法,求点M落在四边形ABCD所围成的图形内(含边界)的概率.人教版九年级数学25.2 用列举法求概率同步训练-答案一、选择题(本大题共10道小题)1. 【答案】D[解析] 列表得:共有9种等可能的结果,其中两次摸出的小球标号之和是偶数的结果有5种,所以两次摸出的小球标号之和是偶数的概率为5 9.2. 【答案】B[解析] 从树状图(C代表雌鸟,X代表雄鸟)中可以看出,三只雏鸟中有两只雌鸟的概率是38.故选B.3. 【答案】C[解析] 列表得:B盘A盘3 4 51 4 5 62 5 6 73 6 7 8所以甲获胜的概率是59.4. 【答案】C5. 【答案】A[解析] ①AB=BC,③AC⊥BD能够推出▱ABCD为菱形,4种情形中有2种符合要求,所以所求概率为24=12.6. 【答案】D[解析] 如图,用A,B,C分别表示红球、黄球、白球,可以发现一共有27种等可能结果,三人摸到球的颜色都不相同的结果有6种,∴P (三人摸到球的颜色都不相同)=627=29.7. 【答案】C[解析] 根据题意,画树状图如下:共有6种等可能的结果,与5组成“V 数”的结果有2种(即658,856),所以从4,6,8中任选两数分别作为个位和百位上的数字,与5组成“V 数”的概率为26=13.8. 【答案】A[解析] 画树状图如下:由树状图可知,共有20种等可能的结果,其中取到0的结果有8种, 所以函数图象的顶点在坐标轴上的概率为820=25.9. 【答案】C[解析] 设正方形ABCD 的边长为2a ,针尖落在阴影区域内的概率=12×π×a24a2=π8. 故选C.10. 【答案】B[解析] 因为根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,共13种情况,而能构成一个轴对称图形的有下列5种情况:所以使图中阴影部分的图形仍然构成一个轴对称图形的概率是513.故选B.二、填空题(本大题共7道小题)11. 【答案】13 [解析] 本题考查了用列举法求概率,关键扣住“不放回”,用列表法列出等可能的结果如下:1 2 4 8 1 2×1=2 4×1=4 8×1=8 2 1×2=2 4×2=8 8×2=16 4 1×4=4 2×4=8 8×4=32 81×8=82×8=164×8=32所以共有12种等可能的结果,其中两次取出的小球上数字之积等于8的结果有4种,所以P(两次取出的小球上数字之积等于8)=412=13.12. 【答案】16 [解析] 画树状图如下:由树状图知,共有12种等可能的结果,其中取出2个小球的颜色恰好是一红一蓝的结果有2种,所以取出2个小球的颜色恰好是一红一蓝的概率为212=16.故答案为16.13.【答案】49【解析】如解图所示,由树状图可知,共有9种情况,而符合两次都摸到红球的情况共有4种,根据计算简单事件的概率公式P =m n =49.14. 【答案】19 [解析] 画树状图如下:∵共有27种等可能的结果,能构成等边三角形的结果有3种,∴以a ,b ,c 为边长正好构成等边三角形的概率是327=19.15. 【答案】13 [解析] 因为不等式组⎩⎨⎧k -3≤0,2k +5>0的解集为-52<k≤3,所以不等式组的整数解为-2,-1,0,1,2,3. 关于x 的方程2x +k =-1的解为x =-k +12. 因为关于x 的方程2x +k =-1的解为非负数, 所以k +1≤0,解得k≤-1,所以能使关于x 的方程2x +k =-1的解为非负数的k 的值为-1,-2, 所以能使关于x 的方程2x +k =-1的解为非负数的概率为26=13.16. 【答案】35 [解析] 列表如下:∴一共有20种等可能的结果,使电路形成通路的结果有12种, ∴使电路形成通路的概率是1220=35.17. 【答案】16 [解析] 函数y =ax2+bx +1的图象一定经过y 轴上的点(0,1),又知其图象经过第一、二、四象限,则图象的开口向上,对称轴在y 轴的右侧,且与x 轴正半轴有两个交点,所以a >0,b <0,b2-4ac >0. 列表如下:由表可知,从-4,-2,1,2四个数中随机取两个数一共有12种等可能的结果,其中只有a =1,b =-4和a =2,b =-4这2种结果符合题意,所以所求概率=212=16.三、解答题(本大题共4道小题)18. 【答案】解:(1)画树状图如下:(2)由树状图知,共有10种等可能的结果,其中兔子从开始进入的出入口离开的结果有2种,所以小美玩一次游戏,得到小兔玩具的概率为210=15. (3)125×(3×45-4×15)=200(元). 答:估计游戏设计者可赚200元.19. 【答案】解:(1)根据题意,画树状图如下:∵共有4种等可能的结果,两次传球后,球恰好在B 手中的结果只有1种, ∴两次传球后,球恰好在B 手中的概率为14.(2)根据题意,画树状图如下:∵共有8种等可能的结果,三次传球后,球恰好在A 手中的结果有2种, ∴三次传球后,球恰好在A 手中的概率为28=14.20. 【答案】解:(1)画树状图如下:所以所有可能出现的结果为(-2,-2),(-2,-1),(-2,1),(-1,-2),(-1,-1),(-1,1),(1,-2),(1,-1),(1,1). (2)要使分式x2-3xy x2-y2+yx -y有意义,则有(x +y)(x -y)≠0,所以只有(-2,-1),(-2,1),(-1,-2),(1,-2)符合条件,所以使分式x2-3xyx2-y2+y x -y 有意义的(x ,y)出现的概率为49. (3)x2-3xy x2-y2+yx -y=x2-3xy (x +y )(x -y )+y (x +y )(x +y )(x -y ) =x2-3xy (x +y )(x -y )+xy +y2(x +y )(x -y ) =x2-3xy +xy +y2(x +y )(x -y ) =x2-2xy +y2(x +y )(x -y ) =(x -y )2(x +y )(x -y )=x -y x +y.将使公式x2-3xy x2-y2+yx -y 有意义的(-2,-1),(-2,1),(-1,-2),(1,-2)分别代入上式,计算可得原式的值分别为13,3,-13,-3, 所以使分式的值为整数的(x ,y)出现的概率为29.21. 【答案】解:(1)14(2)由题意,列表如下:由表可知,点M 的所有等可能的结果有16种,点M 落在四边形ABCD 所围成的图形内(含边界)的结果有(-2,0),(-1,-1),(-1,0),(0,-2),(0,-1),(0,0),(0,1),(1,0),共8个,所以满足条件的概率为P =816=12.。

人教版九年级数学上册《25.2 用列举法求概率》练习题-附参考答案

人教版九年级数学上册《25.2 用列举法求概率》练习题-附参考答案

人教版九年级数学上册《25.2 用列举法求概率》练习题-附参考答案一、选择题1.连续掷三枚质地均与的硬币,三枚硬币都是正面朝上的概率是()A.12B.14C.18D.192.有三张正面分别写有数字1,2,−3的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,记录卡片上的数字,然后放回卡片,再将这三张卡片背面朝上洗匀后随机抽取一张,记录卡片上的数字,则记录的两个数字乘积是正数的概率是()A.12B.13C.23D.593.盒子中装有1个红球和2个绿球,每个球除颜色外都相同,从盒子中任意摸出1个球,不放回,再任意摸出1个球,两球都是绿球的概率是()A.23B.13C.29D.124.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.12B.13C.49D.595.有三张正面分别写有数字﹣2,3,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为点P的横坐标,然后放回再从这三张卡片中随机抽取一张,以其正面的数字作为点P的纵坐标,则点P在第三象限的概率是()A.49B.13C.19D.296.骰子是一种正方体玩具,它的六个面上各写有1,2,3,4,5,6,每面写一个数,每个数写一面,且相对两面的两个数的和为7.用七颗骰子投掷后,规定向上的七个面上的数的和是10时甲胜,如果向上的七个面上的数的和是39时则乙胜.则甲乙二人获胜的可能性是()A.甲大B.乙大C.同样大D.无法确定谁大7.王琳与蔡红在某电商平台购买了同款发卡,并且两人在收货之后都从“好评、一般、差评”中勾选了一项作为反馈,若三种评价是等可能的,则两人中至少有一个给出“差评”的概率是()A.13B.49C.59D.238.某超市为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”“10元”“20元”“30元”的字样.规定:顾客在本超市一次性消费满200元,就可以在箱子里先后摸出2个小球(第一次摸出后不放回).某顾客刚好消费200元,则该顾客所获得购物券的金额不低于30元的概率是( )A.13B.12C.23D.34二、填空题9.两个不透明的袋中都各装有一个红球和一个黄球两个球,它们除颜色外其他均相同.现随机从两个袋中各摸出一个球,两个球的颜色是一红一黄的可能结果有种.10.把一转盘先分成两个半圆,再把其中一个半圆等分成三等份,并标上数字如图所示,任意转动转盘,当转盘停止时,指针落在奇数区域的概率是.11.某校准备从A,B两名女生和C,D两名男生中任选2人代表学校参加沈阳市初中生辩论赛,则所选代表恰好为1名女生和1名男生的概率是.12.从1,2,3,4四个数中,随机选取两个不同的数,分别记为a,c,则关于x的一元二次方程ax2+4x+c=0有实数解的概率是.13.“双减”政策后,各校积极探索“课内提质增效,课后丰富多彩”的有效策略,某校的课后服务活动设置了四大板块课程:A.体育活动;B劳动技能;C经典阅读;D科普活动.若小明和小亮两人随机选择一个板块课程,则两人所选的板块课程恰好相同的概率是.三、解答题14.一个纸箱内装有三张正面分别标有数字﹣4,6,4的卡片,卡片除正面数字外其他均相同.将三张卡片搅匀后,从中随机摸出一张卡片记下数字,放回后搅匀,再从中随机摸出一张卡片并记下数字.请用列表法或画树状图法求两次取得数字的绝对值相等的概率.15.在学校组织的国学比赛中,小明晋级了总决赛,比赛过程分两个环节,参赛选手须在每个环节中抽取一道题目.第一环节:写字注音、成语故事、国学常识、成语接龙(分别用A1,A2,A3,A4表示);第二环节:成语听写、诗词对句、经典诵读(分别用B1,B2,B3表示).求小明参加总决赛抽取题目都是成语题目(成语故事,成语接龙,成语听写)的概率.16.将5个完全相同的小球分装在甲.乙两个不透明的口袋中.甲袋中有3个球,分别标有数字2,3,4;乙袋中有2个球,分别标有数字2,4.从甲、乙两个口袋中各随机摸出一个球.(1)用列表法或画树状图法,求摸出的两个球上的数之和为5的概率.(2)摸出的两个球上的数之和为多少时的概率最大?17.我校开展“阳光体育活动”,决定开设足球、篮球、乒乓球、羽毛球、排球等球类活动,为了了解学生对这五项活动的喜爱情况,随机调查了一些学生(每名学生必选且只能选择这五项活动中的一种).根据以下统计图提供的信息,请解答下列问题:(1)本次被调查的学生有名;补全条形统计图;(2)扇形统计图中“排球”对应的扇形的圆心角度数是;(3)学校准备推荐甲、乙、丙、丁四名同学中的2名参加全市中学生篮球比赛,请用列表法或画树状图法分析甲和乙同学同时被选中的概率.参考答案1.C2.D3.B4.B5.C6.C7.C8.C9.210.1311.2312.1213.1414.解:列树状图如下所示:由树状图可知一共有9种等可能性的结果数∵|−4|=4,|4|=4,|6|=6∴当两次摸到相同的数字,或者摸到一个4,一个-4,那么两次摸到的数的绝对值就相等∴由树状图可知两次取得数字的绝对值相等的结果数有5种.∴P两次取得数字的绝对值相等=5915.解:画树状图如下:共有12种等可能的结果,其中小明参加总决赛抽取题目都是成语题目的结果有2种∴小明参加总决赛抽取题目都是成语题目(成语故事、成语接龙、成语听写)的概率为212=16.16.(1)解:根据题意画出树状图如下:所有等可能的结果总数为6,其中和为5的结果为1种所以摸出的两个球上的数之和为5的概率为16;(2)解:所有可能的结果总数为6,其中和为5的结果为1种,和为4的结果为1种,和为6的结果为2种,和为7的结果为1种,和为8的结果为1种∴摸出的两个球上的数之和为6的概率最大.17.(1)解:100;选择“足球”的人数为35%×100=35(名).补全条形统计图如下:(2)18°(3)解:画树状图如下:共有12种等可能的结果,其中甲和乙同学同时被选中的结果有2种∴甲和乙同学同时被选中的概率为212=16.。

人教版九年级数学上册《25.2用列举法求概率》同步测试题含答案

人教版九年级数学上册《25.2用列举法求概率》同步测试题含答案

人教版九年级数学上册《25.2用列举法求概率》同步测试题含答案学校:___________班级:___________姓名:___________考号:___________
用画树状图法求概率
1.如图,随机闭合开关S1,S2,S3中的两个,能让灯泡L1发光的概率是()
A.1
2B.1
3
C.1
4
D.2
3
2.现有4盒同一品牌的牛奶,其中2盒已过期,随机抽取2盒,至少有一盒过期的概率是()
A.1
2B.2
3
C.3
4
D.5
6
3.甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传给其余两人的机会是均等的,由甲开始传球,共传球三次.
(1)请利用画树状图法列举出三次传球的所有可能情况;
(2)求三次传球后,球回到甲脚下的概率;
(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?
4.(模型观念)如图,甲、乙两个转盘均被分成3个面积相等的扇形,每个扇形中都标有相应的数字.同时转动两个转盘(当指针指在边界线上时视为无效,需重新转动转盘),当转盘停止后,把甲、乙两个转盘中指针所指数字分别记为x,y.请用画树状图法求点(x,y)落在平面直角坐标系第一象限内的概率.
参考答案【分层训练】
1. B
2. D
3.(1)略
.
(2)三次传球后,球回到甲脚下的概率为1
4
(3)球传到乙脚下的概率大.
.
4.点(x,y)落在平面直角坐标系第一象限内的概率为4
9。

25.2用列举法求概率习题精选(答案)

25.2用列举法求概率习题精选(答案)

25.2用列举法求概率附参考答案◆随堂检测1.甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5、6、7的三张扑克牌中.随机抽取一张,放回后,再随机抽取一张,若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽取的两张牌面数字的积为偶数,则乙获胜,这个游戏___________.(填“公平”或“不公平”)2.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1、2、3、4、5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为P(奇数),则P(偶数)_______P(奇数)(填“>”“<”或“=”).3.有形状、大小和质地都相同的四张卡片,正面分别写有A、B、C、D和一个等式,将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.(1)用画树状图或列表的方法表示抽取两张卡片可能出现的所有情况(结果用A、B、C、D表示);(2)小明和小强按下面规则做游戏:抽取的两张卡片上若等式都不成立,则小明胜,若至少有一个等式成立,则小强胜.你认为这个游戏公平吗?若公平,请说明理由;若不公平,则这个规则对谁有利,为什么?◆典例分析把一副扑克牌中的3张黑桃牌(它们的正面牌数字分别为3、4、5)洗匀后正面朝下放在桌面上.小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽取一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽取一张牌,记下牌面数字.当2张牌的牌面数字相同时,小王赢;当2张牌的牌面数字不同时,小李赢.现请你利用树状图或列表法分析游戏规则对双方是否公平?并说明理由.分析:游戏规则公平与否的问题是概率在生活中的一个重要应用.解决这类问题,关键要看双方获胜的概率是否相等,若双方获胜的概率相等,则公平,否则就不公平.所以首先要分别计算牌面数字相同和牌面数字不同的概率值,再比较其大小即可. 解:游戏规则不公平.理由如下:列表,由表可知,所有可能出现的结果共有9种,故3193)(==牌面数字相同P , 3296)(==牌面数字不同P . ∵31<32, ∴此游戏规则不公平,小李赢的可能性大.◆课下作业●拓展提高1.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( ) A .45 B .35 C .25 D .152.一个布袋里装有只有颜色不同的5个球,其中3个红球,2个白球.从中任意摸出1个球,记下颜色后放回,搅匀,再任意摸出1个球.摸出的2个球都是红球的概率是( ) A .35 B .310 C .425 D .9253.如图,将点数为2,3,4的三张牌按从左到右的方式排列,并且按从左到右的牌面数字记录排列结果为234.现在做一个抽放牌游戏:从上述左、中、右的三张牌中随机抽取一张,然后把它放在其余两张牌的中间,并且重新记录排列结果.例如,若第1次抽取的是左边的一张,点数是2,那么第1次抽放后的排列结果是324;第2次抽取的是中间的一张,点数仍然是2,则第2次抽放后的排列结果仍是324.照此游戏规则,两次抽放后,这三张牌的排列结果仍然是234的概率为_________.4.小华和小丽设计了A 、B 两种游戏:游戏A 的规则是:用3张数字分别是2、3、4的扑克牌,将牌洗匀后背面朝上放置在桌面上,第一次随机抽出一张牌记下数字后再原样放回,洗匀后再第二次随机抽出一张牌记下数字,若抽出的两张牌上的数字之和为偶数,则小华获胜;若两数字之和为奇数,则小丽获胜.游戏B 的规则是:用4张数字分别是5、6、8、8的扑克牌,将牌洗匀后背面朝上放置在桌面上,小华先随机抽出一张牌,抽出的牌不放回,小丽从剩下的牌中再随机抽出一张牌,若小华抽出的牌面上的数字比小丽抽出的牌面上的数字大,则小华获胜,否则小丽获胜.请你帮小丽选择其中一种游戏,使她获胜的可能性较大,并说明理由.5.甲、乙两同学用一副扑克牌中牌面数字分别是3、4、5、6的4张牌做抽数游戏,游戏规则是:将这4线牌的正面全部朝下、洗匀,从中随机抽取一张,抽得的数作为十位上的数字,然后,将所抽的牌放回,正面全部朝下、洗匀,再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数,若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?请运用概率知识说明理由.●体验中考1.(2009年,台湾)甲、乙各丢一次公正骰子比大小.若甲、乙的点数相同时,算两人平手;若甲的点数大于乙时,算甲获胜;若乙的点数大于甲时,算乙获胜.求甲获胜的机率是多少? A.31 B.21 C.125 D.1272.(2009年,常德市)甲、乙、丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲、乙各比赛了4局,丙当了3次裁判.问第2局的输者是( )A .甲B .乙C .丙D .不能确定3.(2009年,云南省)在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由.参考答案: ◆随堂检测1.不公平. 甲获胜的概率是49,乙获胜的概率是59,两个概率值不相等,故这个游戏不公平. 2.<.3.解:(1)树状图或列表略.所有情况有12种:AB 、AC 、AD 、BA 、BC 、BD 、CA 、CB 、CD 、DA 、DB 、DC. (2)游戏不公平.这个规则对小强有利.理由如下: ∵P (小明)=61122=,P (小强)=651210=,P (小明)<P(小强) ∴这个规则对小强有利. ◆课下作业 ●拓展提高 1.B. 2.D.3.13. 4.答:选游戏B ,小丽获胜的可能性较大.理由如下:按游戏A ,416(936P ==小丽胜),而按游戏B ,721(1236P ==小丽胜). 5.解:这个游戏不公平,游戏所有可能出现的结果如下表:表中共有16∴63168P ==(甲获胜),105168P ==(乙获胜).∵8583≠,∴这个游戏不公平.●体验中考 1.C. 2.C.3.解:树状图为:或列表为:由上述树状图或表格知:所有可能出现的结果共有16种. ∴P (小明赢)=63168=,P (小亮赢)=105168=. ∴此游戏对双方不公平,小亮赢的可能性大.开始红 红 黄 蓝红 红 黄 蓝红 红 黄 蓝红 红 黄 蓝红 红 黄 蓝。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

25.2用列举法求概率附参考答案
◆随堂检测
1.甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5、6、7的三张扑克牌中.随机抽取一张,放回后,再随机抽取一张,若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽取的两张牌面数字的积为偶数,则乙获胜,这个游戏___________.(填“公平”或“不公平”)
2.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1、2、3、4、5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为P(奇数),则P(偶数)_______P(奇数)(填“>”“<”或“=”).
3.有形状、大小和质地都相同的四张卡片,正面分别写有A、B、C、D和一个等式,将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.
(1)用画树状图或列表的方法表示抽取两张卡片可能出现的所有情况(结果用A、B、C、D表示);
(2)小明和小强按下面规则做游戏:抽取的两张卡片上若等式都不成立,则小明胜,若至少有一个等式成立,则小强胜.你认为这个游戏公平吗?若公平,请说明理由;若不公平,则这个规则对谁有利,为什么?
◆典例分析
把一副扑克牌中的3张黑桃牌(它们的正面牌数字分别为3、4、5)洗匀后正面朝下放在桌面上.小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽取一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽取一张牌,记下牌面数字.当2张牌的牌面数字相同时,小王赢;当2张牌的牌面数字不同时,小李赢.现请你利用树状图或列表法分析游戏规则对双方是否公平?并说明理由.
分析:游戏规则公平与否的问题是概率在生活中的一个重要应用.解决这类问题,关键要看双方获胜的概率是否相等,若双方获胜的概率相等,则公平,否则就不公平.所以首先要分别计算牌面数字相同和牌
面数字不同的概率值,再比较其大小即可. 解:游戏规则不公平.理由如下:列表,
由表可知,所有可能出现的结果共有9种,故3
193)(==
牌面数字相同P , 3
296)(==
牌面数字不同P . ∵
31<3
2, ∴此游戏规则不公平,小李赢的可能性大.
◆课下作业
●拓展提高
1.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( ) A .
45 B .35 C .25 D .15
2.一个布袋里装有只有颜色不同的5个球,其中3个红球,2个白球.从中任意摸出1个球,记下颜色后放回,搅匀,再任意摸出1个球.摸出的2个球都是红球的概率是( ) A .
35 B .310 C .425 D .925
3.如图,将点数为2,3,4的三张牌按从左到右的方式排列,并且按从左到右的牌面数字记录排列结果为234.现在做一个抽放牌游戏:从上述左、中、右的三张牌中随机抽取一张,然后把它放在其余两张牌的中间,并且重新记录排列结果.例如,若第1次抽取的是左边的一张,点数是2,那么第1次抽放后的排列结果是324;第2次抽取的是中间的一张,点数仍然是2,则第2次抽放后的排列结果仍是324.照此游戏规则,两次抽放后,这三张牌的排列结果仍然是234的概率为_________.
4.小华和小丽设计了A 、B 两种游戏:游戏A 的规则是:用3张数字分别是2、3、4的扑克牌,将牌洗匀后背面朝上放置在桌面上,第一次随机抽出一张牌记下数字后再原样放回,洗匀后再第二次随机抽出一张牌记下数字,若抽出的两张牌上的数字之和为偶数,则小华获胜;若两数字之和为奇数,则小丽获胜.游戏B 的规则是:用4张数字分别是5、6、8、8的扑克牌,将牌洗匀后背面朝上放置在桌面上,小华先随机抽出一张牌,抽出的牌不放回,小丽从剩下的牌中再随机抽出一张牌,若小华抽出的牌面上的数字比小丽抽出的牌面上的数字大,则小华获胜,否则小丽获胜.请你帮小丽选择其中一种游戏,使她获胜的可能性较大,并说明理由.
5.甲、乙两同学用一副扑克牌中牌面数字分别是3、4、5、6的4张牌做抽数游戏,游戏规则是:将这4线牌的正面全部朝下、洗匀,从中随机抽取一张,抽得的数作为十位上的数字,然后,将所抽的牌放回,正面全部朝下、洗匀,再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数,若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?请运用概率知识说明理由.
●体验中考
1.(2009年,台湾)甲、乙各丢一次公正骰子比大小.若甲、乙的点数相同时,算两人平手;若甲的点数大于乙时,算甲获胜;若乙的点数大于甲时,算乙获胜.求甲获胜的机率是多少? A.
31 B.21 C.125 D.12
7
2.(2009年,常德市)甲、乙、丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲、乙各比赛了4局,丙当了3次裁判.问第2局的输者是( )
A .甲
B .乙
C .丙
D .不能确定
3.(2009年,云南省)在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1
个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规
则对双方公平吗?请你利用树状图或列表法说明理由.
参考答案: ◆随堂检测
1.不公平. 甲获胜的概率是49,乙获胜的概率是5
9
,两个概率值不相等,故这个游戏不公平. 2.<.
3.解:(1)树状图或列表略.
所有情况有12种:AB 、AC 、AD 、BA 、BC 、BD 、CA 、CB 、CD 、DA 、DB 、DC. (2)游戏不公平.这个规则对小强有利.理由如下: ∵P (小明)=
61122=,P (小强)=6
5
1210=,P (小明)<P(小强) ∴这个规则对小强有利. ◆课下作业 ●拓展提高 1.B. 2.D.
3.1
3
. 4.答:选游戏B ,小丽获胜的可能性较大.理由如下:
按游戏A ,416(936P ==小丽胜)
,而按游戏B ,721
(1236
P ==小丽胜). 5.解:这个游戏不公平,游戏所有可能出现的结果如下表:
表中共有16∴63168P ==(甲获胜),105
168
P ==(乙获胜).∵8583≠,∴这个游戏不公平.
●体验中考 1.C. 2.C.
3.解:树状图为:
或列表为:
由上述树状图或表格知:所有可能出现的结果共有16种. ∴P (小明赢)=
63168=,P (小亮赢)=105
168
=. ∴此游戏对双方不公平,小亮赢的可能性大.
开始
红 红 黄 蓝
红 红 黄 蓝
红 红 黄 蓝
红 红 黄 蓝
红 红 黄 蓝。

相关文档
最新文档