三角恒等变换知识点总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 三角恒等变换
一、知识点总结
1、两角和与差的正弦、余弦和正切公式:
⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβ
αβαβ
--=
+ ⇒ (()()tan tan tan 1tan tan αβαβαβ-=-+);
⑹()tan tan tan 1tan tan αβ
αβαβ
++=
- ⇒ (()()tan tan tan 1tan tan αβαβαβ+=+-).
2、二倍角的正弦、余弦和正切公式:
⑴sin22sin cos ααα=.2
2
2
)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒ ⑵2
222cos2cos
sin 2cos 112sin ααααα=-=-=-
⇒升幂公式2
sin 2cos 1,2cos 2cos 12
2
α
αα
α=-=+
⇒降幂公式2cos 21cos 2αα+=
,2
1cos 2sin 2
αα-=. ⑶2
2tan tan 21tan ααα
=
-. 3、
⇒(后两个不用判断符号,更加好用)
4、合一变形⇒把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(ϕϖ形式。()sin cos αααϕA +B =
+,其中tan ϕB
=
A
. 5.(1)积化和差公式
sin α·cos β=21[sin(α+β)+sin(α-β)] cos α·sin β=21[sin(α+β)-sin(α-β)] cos α·cos β=21[cos(α+β)+cos(α-β)] sin α·sin β= -2
1
[cos(α+β)-cos(α-β)]
(2)和差化积公式 sin α+sin β=
2
cos
2
sin
2β
αβ
α-+
sin α-sin β=2
sin
2
cos
2β
αβ
α-+
αααα
ααα半角公式cos 1cos 12tan 2cos 12sin ;2cos 12cos :
+-±=-±=+±=2
tan 12tan 1 cos ;2tan 12tan
2
sin :
2
2
2α
α
αααα万能公式+-=+=
cos α+cos β=2cos
2
cos
2β
αβ
α-+ cos α-cos β= -2
sin
2
sin
2β
αβ
α-+
tan α+ cot α=α
αα2sin 2
cos sin 1=
⋅ tan α- cot α= -2cot2α 1+cos α=2
cos 22
α 1-cos α=2
sin
22
α
1±sin α=(2
cos
2
sin
α
α
±)2
6。(1)升幂公式 1+cos α=2
cos 22
α 1-cos α=2
sin
22
α
1±sin α=(2
cos
2
sin α
α
±)2
1=sin 2α+ cos 2α
sin α=2
cos
2
sin
2α
α
(2)降幂公式
sin 2α
2
2cos 1α
-=
cos 2
α
22cos 1α
+=
sin 2α+ cos 2α=1 sin α·cos α=α2sin 2
1
7、三角变换是运算化简的过程中运用较多的变换,提高三角变换能力,要学会创设条件,灵活运用三角公式,掌握运算,化简的方法和技能.常用的数学思想方法技巧如下:
(1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异角,可根据角与角之间的和差,
倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如:
①α2是α的二倍;α4是α2的二倍;α是
2α的二倍;2α是4
α
的二倍; ②2304560304515o o
o
o
o
o
=-=-=;问:=12sin
π ;=12
cos π
; ③ββαα-+=)(;④
)4
(
2
4
απ
π
απ
--=
+;
⑤)4
(
)4
(
)()(2απ
απ
βαβαα--+=-++=;等等
(2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。如在三角函数中正余弦是基础,通常
化切为弦,变异名为同名。
(3)常数代换:在三角函数运算,求值,证明中,有时需要将常数转化为三角函数值,例如常数“1”的
代换变形有: o
o
45tan 90sin cot tan cos sin 12
2
===+=αααα
(4)幂的变换:降幂是三角变换时常用方法,对次数较高的三角函数式,一般采用降幂处理的方法。常用
降幂公式有: ; 。降幂并非绝对,有时需要升幂,如对无理式
αcos 1+常用升幂化为有理式,常用升幂公式有: ; ;