最短路径(将军饮马造桥选址)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平移的方法有四种:三个桥长都平移 到A点处;都平移到B点处;MN、PQ 平移到A点处;PQ、GH平移到B点处
M N P Q
G
H
B
问题解决 A
A1
沿垂直于河岸方向依次把A点平 A 2 移至A1、A2、A3,使AA1 A3 =MN,A1A2 =PQ,A2A3 =GH ; 连接A3B交于B点相邻河岸于H 点,建桥GH; 连接A2G交第二河与G对岸的P 点,建桥PQ; 连接A1P交第一条河与A的对岸 于N点,建桥MN. 此时从A到B点路径最短.
M N
P Q
G H
B
问题解决
沿垂直于河岸方向依次把A点平 移至A1、A2、A3,使AA1 =MN,A1A2 =PQ,A2A3 =GH ; 连接A3B交于B点相邻河岸于H 点,建桥GH; 连接A2G交第二河与G对岸的P 点,建桥PQ; 连接A1P交第一条河与A的对岸 于N点,建桥MN. 此时从A到B点路径最短.
B
Q+QB.
思维方法二
沿垂直于第一条河岸方
A
向平移A点至A1 点,沿 A1
垂直于第二条河岸方向平移
B点至B1点,连接A1B1
M
分别交A、B的对岸于N、P 两点,建桥MN和PQ.
N P
最短路径 AM+MN+NP+PQ+QB转化为
AA1+A1B1+BB1.
Q B
思维方法三
沿垂直于河岸方向依次把 B点平移至B1、B2,使 BB1=PQ,B1B2 =MN ; 连接B2A交于A点相邻河 岸于M点,建桥MN; 连接B1N交B1的对岸于 P点,建桥PQ; 从A点到B点的最短路径 为AM+MN+NP+MN +NP+PQ+QB转化 为AB2+B2B1+B1B.
A
M
N
P
Q
B2
B1
B
问题延伸二
A
如图,A和B两地之间 有三条河,现要在两 条河上各造一座桥MN、 PQ和GH.桥分别建在 何处才能使从A到B的 路径最短?(假定河 的两岸是平行的直线 ,桥要与河岸垂直)
B
思维分析
A
如图,问题中所走总路径是 AM+MN+NP+PQ+QG+GH+HB.
桥MN、PQ和GH在中间,且方 向不能改变,仍无法直接利用 “两点之间,线段最短”解决问 题,只有利用平移变换转移到 两侧或同一侧先走桥长.
在△A1N1B中,由线段公理知A1N1+BN1>A1B 因此AM1+M1N1+BN1> AM+MN+BN
问题延伸一
如图,A和B两地之间
A
有两条河,现要在两
条河上各造一座桥MN
和PQ.桥分别建在何处
才能使从A到B的路径
最短?(假定河的两
岸是平行的直线,桥
要与河岸垂直)
B
思维分析
如图,问题中所走总路径是
最短路径 问题
将军饮马 造桥选址
问题
问题
最短路径问题
①垂线段最短。
B L
A
②两点之间,线段最短。
A L
C B
问题1 如图,牧马人从A地出发,到一条笔直的河边l饮马,然后到B
地.牧马人到河边的什么地方饮马,可使所走的路径最短?
A C
B
L
两种情形
① 点A,B分别是直线l异 侧的两个点
A
C
l
B
② 点A,B分别是直线l同 侧的两个点 B
1、2两种方法改变了. 怎样调整呢?
把A或B分别向下或上平移一个桥长
那么怎样确定桥的位置呢?
问题解决
A
如图,平移A到A1,使A
A1等于河宽,连接A1B
A1
M
交河岸于N作桥MN,此
时路径AM+MN+BN
最短.
N
理由;另任作桥M1N1,连接AM1,BN1,A1N1.
M1N1B源自由平移性质可知,AM=A1N,AA1=MN=M1N1,AM1=A1N1. AM+MN+BN转化为AA1+A1B,而AM1+M1N1+BN1 转 化为AA1+A1N1+BN1.
M
P
N
P
Q Q
连接A1P交A1的对岸于N点,在N点处建桥MN.
问题解决
沿垂直于河岸方向依次把 A点A1、A2,使AA 1=MN,A1A2 =
A
A1 A2
PQ ;
M
连接A2B交于B点相邻
河岸于Q点,建桥PQ; 连接A1P交A1的对岸
N P
于N点,建桥MN;
Q
从A点到B点的最短路径
为AM+MN+NP+P
A
AM+MN+NP+PQ+QB.
桥MN和PQ在中间,且方向不 能改变,仍无法直接利用“两点 之间,线段最短”解决问题,只 有利用平移变换转移到两侧或 同一侧先走桥长.
M N P Q
B
平移的方法有三种:两个桥长都平移 到A点处、都平移到B点处、MN平移 到A点处,PQ平移到B点处
思维方法一
1、沿垂直于第一条河岸的方向平移A点至 AA1使AA1=MN,此时问题转化为问题基本题 型两点(A1、B点)和一条河建桥(PQ)
① 作图
A A′
M N
a b
B
② 证明
A A′
a
M′
b
M
N′
N
B
A A′
M′ M
N
证明: a
b
N′ B
练习
1、如图1,台球桌上有一个黑球,一个白球,如何用球杆去击白球使其 撞到AB边反弹后再撞到黑球? 2、如图2,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD 上分别找一点M、N,当△AMN周长最小时,∠AMN+∠ANM的度数为 多少?
A A1
B
2、利用基本问题的解决方法确定桥PQ: (1)在沿垂直于第二条河岸的方向平移A1至A2,
使A1A2=PQ. (2)连接A2B交A2的对岸Q点,在点处建桥PQ.
A A1 A2
P
Q
B
3、确定PQ的位置,也确定了BQ和PQ,此时问题可 转化为由A点、P点和第一条河确定桥MN的位置.
A A1
A A1
D
A 图1
C
A
D
A″
B
N
M
B
A′
C
图2
郧西县河夹镇初级中学 段廉洁
造桥选址问题
如图,A和B两地在一条河的两岸,现要在 河上造一座桥MN.乔早在何处才能使从A到B 的路径AMNB最短?(假定河的两岸是平行 的直线,桥要与河垂直)
A
B
思维分析
A
1、如图假定任选位置造 桥MN,连接AM和BN,从 A到B的路径是AM+MN+BN, 那么怎样确定什么情况下最短 呢?
A l
C
B′
解决问题 1
① 作图 B
A l
C B′
② 证明
B A
C l
C′
B′
A
C′
C
B 证明: l
B′
问题 2 (造桥选址问题)如图,A和B两地在一条河的两岸,现要在河 上造一座桥MN,桥造在何处可使从A到B的路径AMNB最短? (假定河的两岸是平行的直线,桥要与河垂直。)
a
A
M
b
N
B
解决问题 2
M
N B
2、利用线段公理解决问题我们遇到了什 么障碍呢?
思维火花
我们能否在不改变AM+MN+BN的前提 下把桥转化到一侧呢?什么图形变换能帮助 我们呢?
各抒己见
1、把A平移到岸边. 2、把B平移到岸边. 3、把桥平移到和A相连.
4、把桥平移到和B相连.
合作与交流
上述方法都能做到使AM+MN+BN不变呢?请 检验.
M N P Q
G
H
B
问题解决 A
A1
沿垂直于河岸方向依次把A点平 A 2 移至A1、A2、A3,使AA1 A3 =MN,A1A2 =PQ,A2A3 =GH ; 连接A3B交于B点相邻河岸于H 点,建桥GH; 连接A2G交第二河与G对岸的P 点,建桥PQ; 连接A1P交第一条河与A的对岸 于N点,建桥MN. 此时从A到B点路径最短.
M N
P Q
G H
B
问题解决
沿垂直于河岸方向依次把A点平 移至A1、A2、A3,使AA1 =MN,A1A2 =PQ,A2A3 =GH ; 连接A3B交于B点相邻河岸于H 点,建桥GH; 连接A2G交第二河与G对岸的P 点,建桥PQ; 连接A1P交第一条河与A的对岸 于N点,建桥MN. 此时从A到B点路径最短.
B
Q+QB.
思维方法二
沿垂直于第一条河岸方
A
向平移A点至A1 点,沿 A1
垂直于第二条河岸方向平移
B点至B1点,连接A1B1
M
分别交A、B的对岸于N、P 两点,建桥MN和PQ.
N P
最短路径 AM+MN+NP+PQ+QB转化为
AA1+A1B1+BB1.
Q B
思维方法三
沿垂直于河岸方向依次把 B点平移至B1、B2,使 BB1=PQ,B1B2 =MN ; 连接B2A交于A点相邻河 岸于M点,建桥MN; 连接B1N交B1的对岸于 P点,建桥PQ; 从A点到B点的最短路径 为AM+MN+NP+MN +NP+PQ+QB转化 为AB2+B2B1+B1B.
A
M
N
P
Q
B2
B1
B
问题延伸二
A
如图,A和B两地之间 有三条河,现要在两 条河上各造一座桥MN、 PQ和GH.桥分别建在 何处才能使从A到B的 路径最短?(假定河 的两岸是平行的直线 ,桥要与河岸垂直)
B
思维分析
A
如图,问题中所走总路径是 AM+MN+NP+PQ+QG+GH+HB.
桥MN、PQ和GH在中间,且方 向不能改变,仍无法直接利用 “两点之间,线段最短”解决问 题,只有利用平移变换转移到 两侧或同一侧先走桥长.
在△A1N1B中,由线段公理知A1N1+BN1>A1B 因此AM1+M1N1+BN1> AM+MN+BN
问题延伸一
如图,A和B两地之间
A
有两条河,现要在两
条河上各造一座桥MN
和PQ.桥分别建在何处
才能使从A到B的路径
最短?(假定河的两
岸是平行的直线,桥
要与河岸垂直)
B
思维分析
如图,问题中所走总路径是
最短路径 问题
将军饮马 造桥选址
问题
问题
最短路径问题
①垂线段最短。
B L
A
②两点之间,线段最短。
A L
C B
问题1 如图,牧马人从A地出发,到一条笔直的河边l饮马,然后到B
地.牧马人到河边的什么地方饮马,可使所走的路径最短?
A C
B
L
两种情形
① 点A,B分别是直线l异 侧的两个点
A
C
l
B
② 点A,B分别是直线l同 侧的两个点 B
1、2两种方法改变了. 怎样调整呢?
把A或B分别向下或上平移一个桥长
那么怎样确定桥的位置呢?
问题解决
A
如图,平移A到A1,使A
A1等于河宽,连接A1B
A1
M
交河岸于N作桥MN,此
时路径AM+MN+BN
最短.
N
理由;另任作桥M1N1,连接AM1,BN1,A1N1.
M1N1B源自由平移性质可知,AM=A1N,AA1=MN=M1N1,AM1=A1N1. AM+MN+BN转化为AA1+A1B,而AM1+M1N1+BN1 转 化为AA1+A1N1+BN1.
M
P
N
P
Q Q
连接A1P交A1的对岸于N点,在N点处建桥MN.
问题解决
沿垂直于河岸方向依次把 A点A1、A2,使AA 1=MN,A1A2 =
A
A1 A2
PQ ;
M
连接A2B交于B点相邻
河岸于Q点,建桥PQ; 连接A1P交A1的对岸
N P
于N点,建桥MN;
Q
从A点到B点的最短路径
为AM+MN+NP+P
A
AM+MN+NP+PQ+QB.
桥MN和PQ在中间,且方向不 能改变,仍无法直接利用“两点 之间,线段最短”解决问题,只 有利用平移变换转移到两侧或 同一侧先走桥长.
M N P Q
B
平移的方法有三种:两个桥长都平移 到A点处、都平移到B点处、MN平移 到A点处,PQ平移到B点处
思维方法一
1、沿垂直于第一条河岸的方向平移A点至 AA1使AA1=MN,此时问题转化为问题基本题 型两点(A1、B点)和一条河建桥(PQ)
① 作图
A A′
M N
a b
B
② 证明
A A′
a
M′
b
M
N′
N
B
A A′
M′ M
N
证明: a
b
N′ B
练习
1、如图1,台球桌上有一个黑球,一个白球,如何用球杆去击白球使其 撞到AB边反弹后再撞到黑球? 2、如图2,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD 上分别找一点M、N,当△AMN周长最小时,∠AMN+∠ANM的度数为 多少?
A A1
B
2、利用基本问题的解决方法确定桥PQ: (1)在沿垂直于第二条河岸的方向平移A1至A2,
使A1A2=PQ. (2)连接A2B交A2的对岸Q点,在点处建桥PQ.
A A1 A2
P
Q
B
3、确定PQ的位置,也确定了BQ和PQ,此时问题可 转化为由A点、P点和第一条河确定桥MN的位置.
A A1
A A1
D
A 图1
C
A
D
A″
B
N
M
B
A′
C
图2
郧西县河夹镇初级中学 段廉洁
造桥选址问题
如图,A和B两地在一条河的两岸,现要在 河上造一座桥MN.乔早在何处才能使从A到B 的路径AMNB最短?(假定河的两岸是平行 的直线,桥要与河垂直)
A
B
思维分析
A
1、如图假定任选位置造 桥MN,连接AM和BN,从 A到B的路径是AM+MN+BN, 那么怎样确定什么情况下最短 呢?
A l
C
B′
解决问题 1
① 作图 B
A l
C B′
② 证明
B A
C l
C′
B′
A
C′
C
B 证明: l
B′
问题 2 (造桥选址问题)如图,A和B两地在一条河的两岸,现要在河 上造一座桥MN,桥造在何处可使从A到B的路径AMNB最短? (假定河的两岸是平行的直线,桥要与河垂直。)
a
A
M
b
N
B
解决问题 2
M
N B
2、利用线段公理解决问题我们遇到了什 么障碍呢?
思维火花
我们能否在不改变AM+MN+BN的前提 下把桥转化到一侧呢?什么图形变换能帮助 我们呢?
各抒己见
1、把A平移到岸边. 2、把B平移到岸边. 3、把桥平移到和A相连.
4、把桥平移到和B相连.
合作与交流
上述方法都能做到使AM+MN+BN不变呢?请 检验.