初中数学探究式问题与教学的探索

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学探究式问题与教学的探索

成都市龙泉驿区外国语实验学校王川

关键词:初中数学探究式问题设计方法探究式问题教学策略

主要观点及内容:数学问题探究区别于科学探究;探究式问题决定探究式教学方式,探究式问题的设计是探究教学准备的重要内容;探究式问题设计包括背景的设计和探究点的设计;探究式问题教学的策略有:开放性教学策略,问题螺旋式呈现策略,过程性策略。

随着新的课程标准实施,开展探究式数学,有利于学生创新意识和实践能力的培养,探究式教学日益受到老师们青睐,这就对教师数学观念和教学能力提出了挑战。我们知道,数学是思维的体操,问题是数学的心脏,探究式数学无疑更注重思维的活动,它必须是建立在数学问题基础之上创新学习方式。这给我们数学教师提出了一个首要问题:什么是数学探究,如何设计探究式问题并如何进行探究式问题的教学?

一、初中数学探究的涵义

科学探究是通过对知识信息分析,然后提出科学命题,寻求解决问题渠道,应用于实践的探索研究活动。它一般都要经历反复不断试误的长期过程,而数学探究更多的任务仍然是继承前人的知识,受着教学时间和空间的限制;另一方面,由于初中学生抽象思维正在发展之中,思维水平也达不到科学探究的要求。

因此,初中阶段的数学探究并不是真正意义上的科学探究,大多数是“模拟的科学探究”,它是在教师和学习共同体的支持下,提供一定背景材料,根据一定的线索确定正确证据收集方向,并在可能合理的解释中做出决策,并把决策运用于实际的探索活动过程。在这个过程中,背景材料、探究方向、探究内容、实践操作提示等要素概括为数学探究式问题,解释决策的活动(情景感悟、观察猜测、独立思考、类比发现、观点结论归纳总结、方法的交流讨论等)概括为数学探究式问题教学。

二、探究式问题与探究教学之间的关系

从教学因素上思考,探究式课堂教学有三个基本的要素无非是教师、学生、问题,与教师和学生关联是教法和学法,是人的行为方式,问题是探究行为的对象,师生探究是围绕问题而展开的,探究数学为探究问题服务,探究问题的呈现、深入发展过程必须辅之以教和学的方式。教学的过程就是问题的探究过程,不同的问题需要不同的教学探究方法,教法和学法的优劣作用于问题探究成效,因此,探究式问题决定探究式教学方式。

从教学目标上看,探究教学指的是学生建构知识、形成数学基本思想方法、领悟数学研究的一般方法和各种活动,并在此基础上形成技能、方法与能力。它们的形成必须依附一定的载体,这个载体就是“探究式问题”,因此,问题被视为学习的核心,探究式学习有时也被人们称为“问题导向式”的学习。探究教学基本目标是使学生获得方法与能力,终极目标是追求创新意识和实践能力的培养,因此,探究问题的内容并不仅限于科学命题的探究,也有解决、提出问题的方法探究,甚至是经验的总结、实践的感悟、数学生活的体验,正是如此,探究式问题的设计是探究教学准备的重要内容。

我们可以把探究问题从不同角度分为以下几类问题。从数学知识类型分为:形成性问题、应用性问题、建构型问题、数形结合问题、类比归纳问题;从结果的确定性角度:开放式问题、封闭式问题;从教学课型:新授课专题问题、练习巩固问题、综合复习问题。

三、探究问题设计方法

探究问题设计包含两个方面,一方面是问题的背景设计,问题背景指的是产生问题的过程或起因;另一方面是问题探究点设计,探究点指的是问题探究的方向或探究的内容,它是探究问题设计的核心部分。

1、问题探究背景设计方法。

问题运用背景:从探究的必要性出发,为了解决某个问题、研究某个数学规律而设置,这样的探究问题的背景本身就是一个问题,这样的问题背景从解决决问题的必要性和学习需要出发,一般又能联系实际应用,能较好激发学生主动探究热情,它一般作为数学规律、方法建构探究问题的背景,例如,方程的解法、函数性质的探索。

旧知识、旧方法背景:引入旧知识、旧方法,通过延伸、类比等方式发现新的探究问题。如一元一次不等式性质及解法通常在等式性质和一元一次方程的背景进行探究,方式的基本性质、方式的基本运算通常在分数基本知识为背景下进行探究。有于这类问题容易激活原有认知基础,能较好引起差异学生个体的探究兴趣。

特例背景:从特殊入手,列举众多的例子作为背景去观察分析,探索出一般规律,它本身也是一些小的问题。有关背景问题的起点低,容易观察,规律性强,感性和理性容易结合等特点容易引起每个学生兴趣,如在七年级的有理数的学习中,经常使用此类背景。

矛盾背景:写出一段有一定认知冲突的材料为背景引出要讨论的探究问题。学生的知识是在不断的认知冲突中不断同化而形成的,学生的困惑之处、错误多发之处、争论之处一般是学生学习的难点,也是探究问题背景设计之源。学生容易犯以偏概全的错误,如“数轴上任意两点之间的距离”,学生根据数形结合的有限例子,认为是表示点的数的差或两数和的绝对值就是两点之间的距离,如果不进行有意识的探究,学生很难形成一般共识;如:已知x+y=k 2x+5y=3 的解都是正数,求k的取值范围,有人认为x、y大于0,则x+y>0,即k>0,让学生容易对错误思维进行辩析;直觉思维和抽象思维之间也容易引起冲突,如解关于x的方程ax=-2,其中a<0,所以结果是x=2/a,理由是a是负数,a与-2负负得正,分析错误原因。实践中,笔者把这样问题设计自学探究问题后,很好地解决了学生的困惑。

迁移背景:提供问题解决思路例子材料,学习材料后模仿解决问题或自主提出并解决问题;或者把问题解决的一般步骤作为背景,然后解释探究原理和思路,这些问题的探究适合学生自主学习。如解出一个一元一次方程,为方程的每个步骤命名并解释每个步骤的原理;给出“平行线间同底等高的两个三角形面积相等”原理,提供一个问题解决的例子,然后模仿解决其它应用型问题。

应用背景:提供应用背景,抽象出探究问题或让学生提出最佳决策,这类探究问题不仅培养学生分析

处理背景信息能力,同时培养学生数学建模的能力。经济和文化生活的繁荣给数学教师带来了广泛的数学问题源,如电讯、出租车、房屋按揭、存款、股票、打折销售、工资待遇、彩票、博彩、运输费用、税收、物价、投资回报、工程造价、旅游价格、最短路径、最经济的设计、文物保护、紧急避险、包含美学的几何图案。

条件方法背景:一类是提供图形或命题成立的固定条件,开放结论;如:给出一个四边形,并顺次连接各边中点,就图形提出问题,给出连接了对角线各边中点,就图形提出问题,给出连接了对角线的梯形和它的中位线,对图形提出问题并证明结论的正确性。二类是条件变换,探究办法。如:有一棵大树,根据各种变化的背景,设计相应的测量方案。三类是图形可能的条件和结论全部抛出,自由组合,猜测证明可能成立的命题,如给出梯形的一腰上底角的角平线、腰上另一底角角平分线、上下底之和等于腰、腰的两端点与另一腰中点的连线、这两线垂直,组合其中的条件,能否得出其它结论?这类问题能满足学生个性特长的发展,培养学生思维的发散性、独特性、创造性有特殊功效。

阅读背景:提供一段含有数据或方法的阅读材料背景,然后提出原因解释或问题解决。常见背景有数学历史、数学故事或数学的研究过程的问题。如勾股定理的历史、无理数的产生过程、乘方的故事、负数的产生过程、概率故事等,把故事的过程作为探究情境,让学生经历科学的发现过程,感受学习探究的方法。来自经济生活和日常生活中的问题。把这些问题设计成为应用型问题,不仅让学生学到了数学知识,激发学生学习兴趣,更能开阔学生应用数学的视野。

2、设计问题探究点。

设计知识的构建点。数学概念、性质及规律是我们课堂教学的重点知识内容,它一般按这样的认知顺序形成:背景材料——形成概念——抽象概括概念特征——特征简单运用,从具体到抽象的概念归纳、形成过程,多个特征的发现,一般是学习的重难点,因此概念形成及特征是重要的问题设计点。探究设计步骤一般为:观察分析材料,列举符合相同例子——找出例子有什么共同特点?(提出探究方向)——用文字或符号语言加以归纳或表述——说明其正确性?

方法构建点。一类解决问题的方法建构,即解决同类问题后探究问题的解决方法。如:两条线段之和等于第三条线段的证明方法构建,两个三角形同一边共一角相似的识别方法的探究,已知等式求代数的值问题变形方法构建,各种图形面积等分问题的方法归纳。教师可设计同类的一组变式训练题目后,让学生归纳思路或方法。另一类是提出问题的方法建构。通过对一般问题的类比、发散联想、集中思考等创作性思维,发现数学新问题,从有限的或特殊例子解决,联想延伸到无限的问题或一般的性结论探究,从简单图形性质过渡到复杂图形性质的探究。如学生在学习四边形之后,联想到三角形全等的判定,自然会产生四边形全等的判定方法的探究;如学习了平行四边形,会类推到什么是平行六边形,它有什么性质;如学生探究了正方体的各种截面的形状后,引导联想到其它几何时截面的探究问题。

综合能力构建点。一类是应用性问题,它是综合能力的集中体现,能充分体现数学建模的过程,可以

相关文档
最新文档