煤炭资源储量计算
煤炭资源预测储量计算公式
煤炭资源预测储量计算公式煤炭是一种重要的能源资源,广泛应用于工业生产和生活用能。
对于煤炭资源的储量预测,是煤炭资源开发和利用的重要基础工作。
煤炭资源的储量预测是指根据已知的煤炭地质勘探数据,利用数学模型和统计方法,对煤炭矿区的煤炭储量进行估算和预测。
煤炭资源的储量预测计算公式是进行煤炭资源储量预测的基本工具之一,下面将介绍煤炭资源预测储量计算公式的相关内容。
一、煤炭资源储量预测的基本原理。
煤炭资源的储量预测是通过对煤炭矿区的地质勘探数据进行分析和处理,建立数学模型,对煤炭的储量进行估算和预测。
煤炭资源的储量预测主要包括以下几个步骤,首先,对煤炭矿区的地质勘探数据进行整理和分析,包括煤层的厚度、倾角、产状、品位等地质参数;其次,建立煤炭资源储量预测的数学模型,选择合适的统计方法进行计算和分析;最后,对煤炭资源的储量进行预测和估算,得出煤炭资源的储量预测结果。
二、煤炭资源储量预测的计算公式。
煤炭资源的储量预测计算公式是进行煤炭资源储量预测的基本工具之一。
煤炭资源的储量预测计算公式主要包括两种类型,一种是基于地质参数的计算公式,另一种是基于数学模型的计算公式。
1. 基于地质参数的计算公式。
基于地质参数的计算公式是根据煤炭矿区的地质勘探数据,利用地质参数进行煤炭资源储量的估算和预测。
常用的地质参数包括煤层的厚度、倾角、产状、品位等。
基于地质参数的计算公式一般采用简化的数学模型,通过对地质参数的统计分析,得出煤炭资源的储量预测结果。
2. 基于数学模型的计算公式。
基于数学模型的计算公式是通过建立煤炭资源储量预测的数学模型,利用数学方法进行煤炭资源储量的估算和预测。
常用的数学模型包括地质统计模型、地质数学模型、地质统计学模型等。
基于数学模型的计算公式一般采用复杂的数学模型,通过对地质数据进行数学建模和计算,得出煤炭资源的储量预测结果。
三、煤炭资源储量预测的影响因素。
煤炭资源的储量预测受到多种因素的影响,主要包括地质条件、勘探水平、统计方法等。
单个煤棚储量计算公式
单个煤棚储量计算公式煤炭是一种重要的能源资源,而煤矿储量的计算对于煤炭开采和利用具有重要的意义。
在煤炭储量的计算中,煤棚是一个重要的参数。
煤棚储量计算公式是指用于计算单个煤棚中煤炭储量的公式,它可以帮助煤炭生产企业合理评估煤炭资源的储量,为煤炭的开采和利用提供重要的依据。
煤棚储量计算公式通常是通过对煤炭的物理性质和煤层的地质特征进行分析,然后利用相应的数学模型进行计算得出的。
下面我们将介绍一种常用的煤棚储量计算公式,帮助大家更好地了解煤炭储量的计算方法。
首先,我们需要了解一些基本的概念和参数。
煤炭的储量通常是以吨为单位进行计量的,而煤棚的储量则是指在煤棚内部的煤炭总量。
在进行煤棚储量计算时,我们通常需要考虑以下几个参数:1. 煤层的厚度(H),煤层的厚度是指煤炭在地质层中的厚度,通常以米为单位进行计量。
2. 煤层的面积(A),煤层的面积是指煤炭所覆盖的地表面积,通常以平方米为单位进行计量。
3. 煤炭的密度(ρ),煤炭的密度是指单位体积内煤炭的质量,通常以千克/立方米为单位进行计量。
在了解了这些基本参数之后,我们可以开始计算煤棚的储量了。
煤棚的储量通常可以通过以下公式进行计算:煤棚储量 = 煤层的厚度(H)×煤层的面积(A)×煤炭的密度(ρ)。
通过这个简单的公式,我们就可以比较容易地计算出单个煤棚中煤炭的储量了。
当然,在实际的计算过程中,我们还需要考虑一些其他因素,例如煤炭的含矿量、煤层的倾角和煤层的厚度变化等,这些因素都会对煤棚储量的计算产生影响。
除了单个煤棚储量的计算之外,我们还可以利用类似的方法来计算整个煤矿的储量。
通过对煤炭的物理性质和煤层的地质特征进行全面的分析,然后利用相应的数学模型进行计算,我们可以比较准确地评估出整个煤矿的煤炭储量,为煤炭的开采和利用提供重要的依据。
总的来说,煤棚储量计算公式是一个非常重要的工具,它可以帮助煤炭生产企业合理评估煤炭资源的储量,为煤炭的开采和利用提供重要的依据。
煤炭有效可采储量计算公式
煤炭有效可采储量计算公式煤炭是世界上最重要的能源资源之一,其储量的估算对于能源规划和开发具有重要意义。
煤炭的有效可采储量是指在现有技术条件下可以经济开采的煤炭储量,其计算公式是煤炭资源量乘以采矿率。
煤炭资源量是指地质勘探和评价得出的煤炭储量,通常以亿吨或万亿吨为单位。
采矿率是指在煤矿开采过程中可以实际采出的煤炭占总储量的比例,通常以百分比表示。
煤炭的有效可采储量计算公式可以用数学符号表示为:有效可采储量 = 煤炭资源量×采矿率。
其中,有效可采储量的单位与煤炭资源量的单位相同,通常为亿吨或万亿吨。
采矿率是一个在实际开采中不断变化的参数,受到技术、经济、环境等因素的影响,因此在计算有效可采储量时需要对采矿率进行合理的评估和预测。
煤炭资源量的估算是煤炭勘探和评价的重要内容,其方法主要包括地质勘探、地质统计和地质预测等。
地质勘探是通过地质勘探工程来获取煤炭储量信息,包括地质钻探、地质测量、地质化验等技术手段。
地质统计是通过对已知煤炭储量的统计分析来推断未知煤炭储量的方法,主要包括数理统计、地质统计学等技术手段。
地质预测是通过对地质条件和勘探资料进行综合分析,结合地质理论和经验来预测未知煤炭储量的方法,主要包括地质推断、地质预测模型等技术手段。
采矿率的估算是煤炭开采规划和设计的重要内容,其方法主要包括理论计算、实际测量和统计分析等。
理论计算是通过对煤炭开采工艺和条件进行分析和计算来推断采矿率的方法,主要包括采矿工程学、矿山设计学等技术手段。
实际测量是通过对煤炭开采过程中的煤炭产量和矿床储量进行测量和监测来确定采矿率的方法,主要包括矿山测量学、煤矿生产技术等技术手段。
统计分析是通过对历史开采数据和煤炭资源量数据进行统计分析来推断未来采矿率的方法,主要包括数理统计、数据分析等技术手段。
煤炭的有效可采储量计算公式是煤炭资源量和采矿率两个重要参数的乘积,其计算结果直接影响到煤炭资源的合理开发和利用。
因此,对煤炭资源量和采矿率进行准确的估算和预测是非常重要的。
煤层储量计算
第二节 储量计算基本参数的确 定
(2)倾角大于60°时,可将立面投影图上测得的面积换算 成斜面积,
S=S1╳(1/sinα) 式为:S——斜面积,
S1——水平投影面积, α——煤层倾角.
第22页/共44页
第二节 储量计算基本参数的确定
三、煤层厚度的确定 1. 可采厚度的确定 煤层厚度是指煤层顶板至底板间的垂直距离.煤层可采 厚度是指具有工业开采价值的煤层或煤分层厚度。在可 采厚度中,对于有夹矸的煤层的采用厚度,其确定方法 如下: (1) 煤层中夹矸的单层厚度不大于0.05m时,计算煤 层采用厚度时,夹矸与煤分层可合并计算,但合并后全 层的灰分或发热量指标应符合要求。
(4) 对于复杂结构煤层,当各煤分层的总厚度等于或大于所 规定的最低可采厚度,同时夹矸的总厚度不超过煤分层总厚度 的1/2时,可以各煤分层的总厚度作为煤层的采用厚度(C)。
1.5 0.84 1.05
A
0.9 0.2
2.2
B
第24页/共44页
0.85 0.15 0.5 0.25 0.7 0.15
0.9
Mcp=(M1+M2+…+Mn)/n M1,M2,… Mn —各钻孔的可采厚度, n—计算面积内的钻孔数目
第28页/共44页
第二节 储量计算基本参数的确定
3)加权平均厚度 每一个钻孔的见煤厚度,都 有一个影响范围,这称为权。将每一个钻孔见煤 厚度乘上权数后相加,再除以权的总和,称为加 权平均厚度。其计算公式如下i ’ . Mx=(M1F1+M2F2+…+MnF)/(F1+F2+…+Fn)
第3页/共44页
第二节 储量/资源量的估算指标与参数
煤炭储量计算新标准
煤炭储量计算新标准1. 引言煤炭作为一种重要的能源资源,在全球各地广泛应用。
为了科学合理地评估煤炭资源的储量,制定和更新相应的计算标准就显得尤为重要。
本文将介绍煤炭储量计算的新标准,以期为相关领域的研究人员和从业者提供参考。
2. 传统煤炭储量计算方法的局限性在过去的煤炭储量计算中,常用的方法是采用经验公式和统计推算的方式。
这种方法在一定程度上能够估算出煤炭储量,但存在着一些局限性。
首先,传统方法的计算依赖于有限的数据样本,难以全面准确地反映煤炭资源的实际情况。
其次,传统方法未能充分考虑煤炭资源在地质条件、生产技术和市场需求方面的差异,导致储量估算结果存在较大偏差。
3. 新标准的制定背景为了克服传统煤炭储量计算方法的局限性,制定新的计算标准迫在眉睫。
新标准的制定应考虑以下因素:地质条件的多样性、采矿技术的不断创新、市场需求的变化等。
制定新标准的目标是提高煤炭储量计算的准确性和可靠性,为煤炭资源的合理开发和利用提供科学依据。
4. 新标准的框架结构新标准的制定应该从以下几个方面进行:储量计算的基本原则、数据采集和处理方法、计算模型和方法的选择等。
具体的框架结构如下:4.1. 储量计算的基本原则新标准需要明确储量计算的基本原则,包括但不限于:科学性、公正性、可比性、可持续性等。
这些原则将为煤炭储量计算提供指导,保证计算结果的准确性和合理性。
4.2. 数据采集和处理方法新标准应明确数据采集和处理方法,包括但不限于:采集数据的来源、采集时的条件和要求、数据处理的方法和步骤等。
合理的数据采集和处理方法是保证储量计算准确性的基础。
4.3. 计算模型和方法的选择制定新标准时需要选择适用的计算模型和方法。
这些模型和方法应考虑到煤炭资源的地质特征、采矿技术以及市场需求等因素,以提高储量计算的准确性和可靠性。
5. 新标准的应用案例为验证新标准的有效性和可行性,本文提供一个应用案例。
以某煤矿为例,对其煤炭储量进行计算,并与传统方法进行对比分析。
煤矿常用计算公式
煤矿常用计算公式煤矿常用的计算公式主要涉及以下几个方面:煤矿生产能力、煤矿设计和开采参数、矿井工程和矿山安全等。
以下是一些常用的计算公式:1.煤矿生产能力计算公式:煤矿生产能力(t/y)=煤层产前储量(t)/矿井生产寿命(年)2.煤矿设计和开采参数计算公式:(1)岩石的堆积密度计算公式:岩石堆积密度(t/m^3)=岩石的容重(t/m^3)×(1+含水量)(2)煤炭的资源量计算公式:煤炭资源量(t)=采区面积(m^2)×煤层厚度(m)×煤层的堆积密度(t/m^3)(3)矿井排水量计算公式:矿井排水量(m^3/d)=采区面积(m^2)×煤层厚度(m)×煤层的含水量(%)(4)矿井高度计算公式:矿井高度(m)=矿井深度(m)-井底煤层厚度(m)-井顶底板距离(m)3.矿井工程计算公式:(1)矿井调度周期计算公式:矿井调度周期(年)=采区面积(m^2)/矿井生产面积流量(m^2/d)(2)采场回采期计算公式:采场回采期(天)=采场煤炭储量(t)/日产量(t/d)(3)矿井支护设计计算公式:矿井支护的设计高度(m)=煤层强度(MPa)×矿井高度(m)/支护巷道宽度(m)4.矿山安全计算公式:(1)瓦斯抽放能力计算公式:瓦斯抽放能力(m^3/min)= 瓦斯含量(%)× 瓦斯抽放效率(%)× 矿井生产瓦斯排放量(m^3/min)(2)煤与瓦斯突出危险预警公式:煤与瓦斯突出危险指数=α×Q/(α1+α2)(3)慢性顶板突出危险指数计算公式:慢性顶板突出危险指数=(H×L)/(E×S)以上只是煤矿常用的一些计算公式,根据具体情况还有其他公式或参数可供使用。
在煤矿生产和矿山安全管理中,正确应用这些计算公式对于提高生产效能和保障矿山安全具有重要意义。
煤炭储量可开采量计算公式
煤炭储量可开采量计算公式煤炭是世界上最重要的能源资源之一,它在工业生产、生活和交通运输中起着重要作用。
煤炭的储量和可开采量是煤炭资源开发利用的重要指标,对于煤炭资源的合理开发和利用具有重要意义。
在煤炭资源的评价和规划中,需要对煤炭储量和可开采量进行科学的评估和计算。
煤炭储量和可开采量的计算是一个复杂的过程,需要考虑到许多因素,包括地质条件、矿床类型、矿床规模、采矿技术和经济条件等。
在这些因素的影响下,煤炭储量和可开采量的计算公式也会有所不同。
下面我们将介绍一种常用的煤炭储量可开采量计算公式。
煤炭储量可开采量计算公式一般可以分为两个部分,煤炭储量的计算和可开采量的计算。
首先,我们来看一下煤炭储量的计算公式。
煤炭储量一般通过勘探和测量来确定,其计算公式为:煤炭储量 = 煤层面积×煤层厚度×煤层平均密度。
其中,煤层面积是指煤矿的面积,煤层厚度是指煤层的厚度,煤层平均密度是指煤层的平均密度。
这个公式是一个简化的计算公式,实际的煤炭储量计算可能会考虑到更多的因素,比如煤层的倾角、断层和构造等。
接下来,我们来看一下煤炭可开采量的计算公式。
煤炭可开采量是指在煤炭储量中可以被开采出来的部分,其计算公式为:煤炭可开采量 = 煤炭储量×开采率。
其中,开采率是指在煤炭储量中可以被开采出来的比例,其数值一般在0.5-0.8之间。
开采率的大小受到煤炭的品位、矿床的地质条件和采矿技术等因素的影响。
除了上述的计算公式外,还有一些其他的因素也会对煤炭储量和可开采量的计算产生影响,比如煤层的赋存形式、煤的品位、矿床的地质构造、采矿技术和经济条件等。
因此,在实际的煤炭资源评价和规划中,需要综合考虑这些因素,采用适当的方法和模型进行煤炭储量和可开采量的计算。
总之,煤炭储量和可开采量的计算是一个复杂的过程,需要充分考虑到煤炭资源的地质特征、矿床规模、采矿技术和经济条件等因素。
只有通过科学的评估和计算,才能更好地指导煤炭资源的合理开发和利用,为社会经济的可持续发展做出贡献。
煤炭储量计算方法之储量计算的基本参数
煤炭储量计算方法之储量计算的基本参数煤炭储量计算方法二、储量计算的基本参数(一)计算面积的确定根据储量计算一般要求及通用公式.计算储量时所使用的面积有如下几种:(1)当煤层倾角小于15。
时.可以直接采用在煤层底板等高线图上测定的水平面积;(2)当煤层倾角在15。
~60。
时.就需要将煤层底板等高线图上所测定的水平面积换算成真面积.换算公式为S = S’/cosa式中.S为真面积;S’为在煤层底板等高线图上测定的水平面积;a为煤层倾角。
(3)当煤层倾角大于60。
时就需要将煤层立面图(即立面投影图)上量得的立面面积换算成真面积.换算公式为:S = S” / sina式中.S为真面积;S”为在煤层立面投影图上测定的立面面积;a为煤层倾角。
(4)急倾斜煤层.其产状沿走向、倾向变化很大.直立倒转频繁.这就需要编制煤层立面展开图.在其上测定的面积.可直接用于储量计算。
以上种种方法均需要从图纸上测定面积.如何测定.以下介绍几种常用的方法。
(1)求积仪法。
利用求积仪测定面积是煤炭储量计算中最常用的一种方法。
过去经常使用的求积仪一种是带有可变臂杆的定极求积仪.一种是固定臂杆的定极求积仪。
而现在又有了精度更高.使用更为方便的求积仪。
每一种求积仪都带有详细的说明书.对其原理和使用说明不再赘述。
(2)透明纸格法。
先将绘有间隔1cm平行线的透明纸蒙在待测的平面图形上.如图2-8-5.整个欲测图形的面积即等于若干小梯形面积之和.每一条被欲测图形所截的横线长度.为梯形的横中线.其高为1。
整个欲测图形面积实际等于被截的每一横线长度之和。
被截的每一横线的长度.可用尺子直接量得.也可用曲线仪测得。
这样求得的面积.再根据平面图的比例尺换算成实际面积。
图2-8-5用曲线仪和透明方格纸测量面积使用本方法要注意两个问题:其一.在用透明格纸蒙欲测图形时.必须注意使图形两端的条带宽度接近或等于0.5cm;其二.为了检查测定结果.可变换透明格纸的位置.再测定一次.两次测定值的误差不超过2%时.取两次测定结果的平均值。
煤炭储量计算新标准
《总则》(92年)的ຫໍສະໝຸດ 量分级根据储量分级三标准的控制程度的不同:准确、详细、 基本、初步、大致,将储量分为A、B、C、D、E五级。 其中: A级是矿山编制采掘计划的储量,由生产部门探求。 B级是矿山建设设计依据的储量,又是地质勘探阶段 求的高级储量,并可起到验证C级储量的作用,一般 分布在矿山先期开采地段。 C级是矿山建设设计依据的储量。 D级其用途有:为进一步布置地质勘探工作和矿山建 设远景规划的储量,对于复杂矿床可作为设计依据。 E级为远景资源。
其中最重要、最常用的几项工业指标是:
1)边界品位:指在圈定矿体时,对单个样品有用组分含量的最 低要求,作为区分矿与非矿的分界标准。
它直接影响着矿体形态的复杂程度、矿石平均品位的高 低、矿石与金属储量的多少。它一般界于尾矿品位与最低工 业品位之间。
2)最低工业品位,是指对工业可采矿体、块段或单个工程中有 用组分平均含量的最低要求,亦即矿物原料回收价值与所付 出费用平衡、利润率为零的有用组分平均含量。
煤炭储量计算新标准
一. 矿产资源及储量的分类与分级
(一) 几个概念:
矿产资源(mineral resources)是现行可采 或潜在可采的天然产出于地壳内或地表的固、 液、气态矿产物质的堆积体(美国矿业局, 1996)。
储量(reserves)已查明且具有现行可开采价 值的那一部分资源量(同上)。
(二) 确定矿床工业指标的原则
1.必须最大限度地合理利用矿产资源 凡是经济上允许的,且采、选、冶技术工艺又能提取回
收的各种有用组分,都应综合利用; 2.应保证技术上的可能性和经济上的合理性
• 技术上的可能性主要是指根据工业指标圈定的矿体以及 矿石品级、类型分布区适合进行工业开采,并能进行分 别选冶;
煤炭储量计算
煤炭储量计算
矿井总储量=能利用储量+暂不能利用储量
能利用储量=工业储量+远景储量工业储量=可采储量+设计损失量
1.矿井总储量是指:井田技术边界范围内经过钻探、巷探、物探及地质填图等手段,查明符合煤炭储量计算标准要求的全部储量。
2.工业储量是指:在能利用储量中,可以作为矿井设计和投资依据的那部分储量。
3.可采储量是指:在工业储量中,预计可以开采出来的那部分储量。
工业储量减去设计损失量即为可采储量。
4. 设计损失量是指:根据煤层的赋存条件,选用不同的开拓方式和不同的采煤方法,以及为保证开采安全等因素,在煤矿开采设计中规定允许永远留在地下的那部分储量。
包含永久煤柱储量、预计地质及水文地质损失量及开采损失量之和。
5. 远景储量是指;在能利用储量中,由于地质研究程度不足,只能作为地质勘探设计和矿井发展远景规划依据的储量。
6. 暂不能利用储量是指:煤层的厚度、质量不能满足当前煤矿开采经济技术条件的要求,或因水文地质条件及开采技术条件特别复杂等原因,目前开采很困难,经济效益特别差的暂时尚不能开采利用,但在将来可能开采利用的储量。
可采储量:Q采=Q工- q s 或Q采=( Q工-P)(1-n)K
Q采—可采储量;Q工—工业储量;q s —设计损失量;
P—永久煤柱储量;n-地质及水文地质损失系数,K-设计采区回采率。
我国煤炭储量分类、分级和计算深度
我国煤炭储量分类、分级和计算深度
全国矿产储量委员会1986年颁发的《煤炭资源地质勘探规范》,对煤炭储量分类、分级和最大计算深度作了明确规定,简要归纳介绍如下:
(1) 煤炭储量分类煤炭储量分为两类,第一类,能利用储量:指符合当前煤矿开采经济技术条件的储量;第二类,暂不能利用储量:由于煤层厚度小、灰分高(或发热量低),或水文地质条件及其他开采技术条件特别复杂等原因,因此目前开采有困难,暂不能利用储量。
(2) 煤炭储量分级按勘探和研究程度,将煤炭储量分为A、B、C、D四级,其中A级和B级称为高级储量。
(3) 储量计算的最大深度对拟建大型(年产煤能力120万t以上)和中型(年产煤能力45万t至90万t)矿井的井田,一般不超过垂深1 000m;只适于建小型井(年产煤能力30万t及以下)的地区,一般不超过垂深600m;老矿区的深部,一般不超过垂直深1 200m。
A级储量通过较密集的勘探工程控制,对煤层、煤质、煤类、构造及岩浆岩等地质条件作了详细研究所计算的储量。
B级储量通过系统的勘探工程控制,对煤层、煤质、煤类、构造和岩浆岩等地质条件作了较详细研究所计算的储量,或者由A级储量块段根据规定外推的储量。
C级储量通过一定的勘探工程控制,对煤层、煤质、煤类和构造等地质条件作了一定研究所计算的储量,或者由B级储量块段根据规定外推的储量。
D级储量通过地质填图配合稀疏勘探工程控制,对煤层、煤质、煤类和构造等地质条件作了初步了解所计算的储量。
煤炭资源的煤炭资源评价与储量估算
煤炭资源的煤炭资源评价与储量估算煤炭作为一种重要的能源资源,在全球范围内得到广泛应用。
为了更好地管理和利用煤炭资源,评价和估算煤炭资源的储量成为一个重要的课题。
本文将介绍煤炭资源的评价与储量估算的方法和技术,以及其在煤炭行业的应用。
一、煤炭资源的评价方法煤炭资源的评价是指对煤炭资源进行定量和定性的评估,目的是确定煤炭资源的质量和数量。
评价煤炭资源的方法有多种,其中常用的包括地质勘探和测量、地质模型的建立和更新,以及资源评估技术的应用等。
1. 地质勘探和测量地质勘探是通过采集地质资料和样品,研究地质构造和煤层分布情况,以确定煤炭资源的分布范围和分层情况。
地质勘探的方法包括地表地质勘探和地下地质勘探。
地质测量是通过各种测量手段,例如测绘、遥感和地球物理勘探等,获取地理和地形信息,以便对煤炭资源进行准确的定位和估计。
2. 地质模型的建立和更新地质模型是利用地质勘探和测量数据,结合地质原理和地质逻辑,构建地下煤层分布和结构的数学模型。
地质模型不仅可以直观地展现煤炭资源的空间分布特征,还可以为煤炭资源评价和储量估算提供数据支持。
地质模型的建立是一个动态的过程,需要不断更新和验证,以提高评估结果的准确性和可靠性。
3. 资源评估技术的应用资源评估技术是根据煤炭资源的特征和分布规律,利用统计学和概率论等方法,对煤炭储量进行定量估算的技术手段。
常用的资源评估技术包括概率-统计方法、地质-数学模型和地质统计学等。
资源评估技术能够提供不同置信度下的储量估计结果,帮助决策者制定科学合理的煤炭资源开发计划。
二、煤炭资源的储量估算煤炭资源的储量估算是对勘探获得的地质数据进行科学处理和分析,确定煤炭资源的储量和可采储量。
煤炭资源的储量估算是煤炭行业进行投资、开发和生产决策的重要依据。
1. 储量计算方法储量计算是根据煤炭资源勘探获得的地质数据以及地质模型的结果,结合资源评估技术,对煤炭的储量进行定量计算的过程。
常用的储量计算方法主要有条件均值法、输入输出法和资源动态评估等。
煤炭储量计算方法之关于储量计算的一般概念
书山有路勤为径,学海无涯苦作舟
煤炭储量计算方法之关于储量计算的一般概念
煤炭储量计算方法
一、关于储量计算的一般概念
(一)储量计算的一般含义
煤炭储量计算就是计算煤的储量数。
由于煤是固体,成层状埋藏在地下,因此计算其数量的通用公式就是:Q = SxMxd 式中,Q 为储量;S 为面积;M 为煤层厚度;d 为煤的容重或称体重。
从上式中可以看出煤的储量即煤的面积、煤层厚度和煤的容重的乘积。
关于储量单位要相互统一,如储量为吨(t),则面积为平方米(m2),厚度为米(m),容重为吨/米3 ( t/m3 )。
但煤的储量数一般比较大,一般为万吨,那么相应的面积为万平方米,厚度与容重不变。
(二)储量计算的一般要求
(1)此处的储量为煤的原地储量,而未考虑在开采过程中的损失,也不考虑在洗选和加工方面的损失。
(2)工业指标是指原地储量的工业指标。
(3)储量计算有深度要求,根据我国经济发展状况和技术能力,储量计算垂深,对拟建大、中型矿井的井田,一般不超过1000m,只适于建小型井的地区一般不超过600m,老矿区的深部不超过1200m。
(4)每一煤层储量计算范围必须在勘探区之内。
(5) 一般情况下,分水平开采的井田应分水平计算储量。
采用平硐开拓的井田应分上山、下山分别计算储量。
露天开采应分剖面计算储量。
原则上应根据生产的实际需要进行储量计算。
(6)煤的种类不同时,应分煤种计算储量。
煤炭储量计算方法之储量计算的基本参数
煤炭储量计算方法之储量计算的基本参数煤炭储量计算方法二、储量计算的基本参数(一)计算面积的确定根据储量计算一般要求及通用公式,计算储量时所使用的面积有如下几种:(1)当煤层倾角小于15。
时,可以直接采用在煤层底板等高线图上测定的水平面积;⑵当煤层倾角在15。
~60。
时,就需要将煤层底板等高线图上所测定的水平面积换算成真面积,换算公式为S = S ' /cosa式中,S为真面积;S '为在煤层底板等高线图上测定的水平面积;a为煤层倾角。
(3)当煤层倾角大于60。
时就需要将煤层立面图(即立面投影图)上量得的立面面积换算成真面积,换算公式为:S = S ” / sina式中,S为真面积;S”为在煤层立面投影图上测定的立面面积;a为煤层倾角。
(4)急倾斜煤层,其产状沿走向、倾向变化很大,直立倒转频繁,这就需要编制煤层立面展开图,在其上测定的面积,可直接用于储量计算。
以上种种方法均需要从图纸上测定面积,如何测定,以下介绍几种常用的方法。
(1)求积仪法利用求积仪测定面积是煤炭储量计算中最常用的一种方法。
过去经常使用的求积仪一种是带有可变臂杆的定极求积仪,一种是固定臂杆的定极求积仪。
而现在又有了精度更高,使用更为方便的求积仪。
每一种求积仪都带有详细的说明书,对其原理和使用说明不再赘述。
⑵透明纸格法。
先将绘有间隔1cm平行线的透明纸蒙在待测的平面图形上,如图2-8-5,整个欲测图形的面积即等于若干小梯形面积之和,每一条被欲测图形所截的横线长度,为梯形的横中线,其高为1。
整个欲测图形面积实际等于被截的每一横线长度之和。
被截的每一横线的长度,可用尺子直接量得,也可用曲线仪测得。
这样求得的面积,再根据平面图的比例尺换算成实际面积。
图2-8-5用曲线仪和透明方格纸测量面积图2-8-5 用曲线仪和透明方格纸测量面积使用本方法要注意两个问题:其一,在用透明格纸蒙欲测图形时,必须注意使图形两端的条带宽度接近或等于0.5cm;其二,为了检查测定结果,可变换透明格纸的位置,再测定一次,两次测定值的误差不超过2%寸,取两次测定结果的平均值。
煤矿地质学(2013年新版课件)9 煤炭资源储量计算与管理
9 煤炭资源储量计算与管理
9.1 煤炭 资源 /储 量分 类与 计算
9.1.1 煤炭资源/储量分类 9.1.1.1 煤炭资源/储量分类依据
2.经济意义
经济的 边际经济的 次边际经济的 内蕴经济的
9 煤炭资源储量计算与管理
9.1 煤炭 资源 /储 量分 类与 计算
9.1.1 煤炭资源/储量分类 9.1.1.1 煤炭资源/储量分类依据
9.1.2 煤炭资源/储量计算
9.1.2.2划分各类型资源/储量计算块段的基本要求
a) 搜集一切可能利用的地质资料;充分理解设计和 生产对资源/储量计算的要求;审查各种工程的质量。
b)圈定探明储量或基础储量的钻孔见煤点,综合质量 应为甲级;使用物探成果时,要有足够数量的工程验 证;圈定其他类型资源/储量的见煤点综合质量,乙 级以上即可;丙级孔不能作为圈定资源/储量的依据。
9.1 煤炭 资源 /储 量分 类与 计算
煤炭资源量估算指标
煤类
项目
炼焦用煤
长焰煤 不粘煤 弱粘煤 贫煤
无ห้องสมุดไป่ตู้ 煤
褐煤
井采 倾角 煤层厚度
<25° 25°~45°
>45°
露天开采
最高灰分Ad/%
最高硫分St,d/%
最低发热量Qnet,d/(MJ/kg)
≥0.7 ≥0.6 ≥0.5
—
≥0.8
≥0.7
≥0.6 ≥1.0
资源量估算指标
9 煤炭资源储量计算与管理
9.1 煤炭 资源 /储 量分 类与 计算
9.1.2 煤炭资源/储量计算
9.1.2.1煤炭资源/储量估算指标
煤炭资源贫缺地区的资源量计(估)算指标, 由所在省、自治区、直辖市煤炭工业主管部 门规定,但这部分资源量在有关统计表中应 单列,并加以说明。
煤矿常用计算公式汇总
煤矿常用计算公式汇总煤矿是煤炭资源的开发和利用下游产业的重要组成部分。
煤矿的计算公式是煤矿经营管理的基础,能够帮助煤矿进行生产管理和经济决策。
下面将介绍煤矿常用计算公式。
1.煤炭资源量计算公式:煤炭资源量(万吨)=储量(万吨)×回收率其中,储量是指煤炭地质储量,回收率是矿藏利用率。
2.煤炭储量计算公式:储量(万吨)=赋存体积(万立方米)×含煤率(%)×容重(t/m³)3.煤炭产量计算公式:产量(万吨)=出矿量(万吨)-损耗量(万吨)其中,出矿量是指煤炭从矿井或采场运出的数量;损耗量是指煤炭在生产、运输等过程中的损耗。
4.煤炭运输费用计算公式:其中,运输距离是指煤炭从矿井或采场到目的地的距离;运输单价是指单位煤炭运输距离的费用;运输量是指具体的运输数量。
5.煤炭销售收入计算公式:销售收入(万元)=销售量(万吨)×价格(元/吨)其中,销售量是指实际销售数量;价格是指单位煤炭的价格。
6.煤炭成本计算公式:成本(万元)=采掘成本(万元)+运输成本(万元)+其他成本(万元)其中,采掘成本是指矿井或采场的采掘成本;运输成本是指煤炭从矿井或采场到目的地的运输成本;其他成本是指除采掘和运输外的其他费用。
7.煤炭生产效率计算公式:生产效率(吨/人·年)=产量(万吨)/员工数(人)/年工作小时数其中,员工数是指从事煤矿生产的员工数量;年工作小时数是指一年中员工实际工作的小时数。
8.矿井或采场产能计算公式:产能(万吨)=可采薄煤层厚度(米)×采煤工作面长度(米)×采煤工作面工作时间(年)×日产量(吨/米/m²)×采面数其中,可采薄煤层厚度是指矿井或采场所在地的煤层厚度;采煤工作面长度是指采煤工作面的长度;采煤工作面工作时间是指矿井或采场每年可开采的时间;日产量是指采煤工作面每天单位面积可开采的煤炭数量;采面数是指煤矿现有的采煤工作面数量。
煤炭资源储量分类与计算
内蕴经济的
资源量(331)
编码(111-334)说明
- 资源量(2S22)
资源量(332)
推断的 -
资源量(333)
潜在矿产资源 预测的
-
资源量(334)?
第1位数字表示经济意义:1-经济的,2M-边际经济的,2S-次边际经济的,3-内蕴经济的;第
2位数字表示可行性评价阶段:1-可行性研究,2-预可行性研究,3-概略研究;
经济意义 经济的
探明的 可采储量(111)
基础储量(111b)
控制的 -
预可采储量(121) 预可采储量(122)
基础储量(121b) 基础储量(122b)
边际经济的
基础储量(2M11)
-
基础储量(2M21) 基础储量(2M22)
次边际经济的
资源量(2S11) 资源量(2S21)
内蕴经济的
资源量(331)
h
4
可行性
评价程度
2.预可行性研究
是对矿床开发经济意义的初步评价。通常应在详查或 勘探后进行。需要比较系统地对国内外该矿种的资源 储量、生产、消费进行调查和初步分析,并对国内外 市场的需求量、产品品种、质量要求和价格趋势作出 初步预测。
h
5
可行性
评价程度
3.可行性研究
是对矿产开发经济意义的详细评价。通常应在勘探后 进行。首先对国内外该矿种的资源储量、生产、消费 要认真调查、统计和分析;并对国内外市场的需求量、 产品品种、质量要求、价格、竞争能力进行分析研究 和预测。
基础储量(121b) 基础储量(122b)
边际经济的
基础储量(2M11)
-
基础储量(2M21) 基础储量(2M22)
煤炭计算公式大全
煤炭计算公式大全煤炭作为一种重要的能源资源,在工业生产和日常生活中都有着广泛的应用。
在煤炭的开采、加工、运输和使用过程中,常常需要进行各种计算,以确定煤炭的质量、产量、热量等重要参数。
下面将为您详细介绍一些常见的煤炭计算公式。
一、煤炭质量计算1、煤炭水分计算全水分(Mt)计算公式:Mt =(湿煤样质量干煤样质量)/湿煤样质量 × 100%内在水分(Minh)计算公式:Minh =(风干煤样质量烘干煤样质量)/风干煤样质量 × 100%2、煤炭灰分计算灰分(Ad)计算公式:Ad =灼烧后残留物质量/煤样质量 × 100%3、煤炭挥发分计算挥发分(Vdaf)计算公式:Vdaf =(挥发分产率水分含量)/(100 内在水分灰分)× 100%4、煤炭固定碳计算固定碳(FCd)计算公式:FCd = 100 (Ad + Vdaf + Mt)二、煤炭产量计算1、采煤工作面产量计算产量(Q)=采煤工作面长度 ×采高 ×推进度 ×煤的容重 ×回采率2、矿井产量计算矿井产量=∑(各采煤工作面产量+各掘进工作面产量+其他产量)三、煤炭热量计算1、高位发热量(Qgr)计算经验公式:Qgr,ad = 80C + 335(H O/8)+ 22S其中,C 为煤中碳的质量分数,H 为煤中氢的质量分数,O 为煤中氧的质量分数,S 为煤中硫的质量分数。
2、低位发热量(Qnet)计算Qnet,ad = Qgr,ad 54(Had + Mad) 9(Mad)其中,Had 为煤中氢的质量分数,Mad 为煤样的水分质量分数。
四、煤炭运输计算1、铁路运输煤炭量计算运输量(T)=列车车厢数量 ×每节车厢装载量2、公路运输煤炭量计算运输量(T)=车辆数量 ×每辆车装载量五、煤炭储量计算1、地质储量计算地质储量(Q)=煤层面积 ×煤层厚度 ×煤的容重2、可采储量计算可采储量=地质储量 ×可采系数六、煤炭筛分计算1、筛分效率计算筛分效率(η)=(筛下物中小于筛孔尺寸的颗粒质量/入筛物料中小于筛孔尺寸的颗粒质量)× 100%2、粒度组成计算粒度组成通常通过筛分试验获得,统计不同粒度级别的质量或质量分数。
储量计算公式范文
储量计算公式范文储量计算是指按照一定的方法和公式,对其中一种资源的量进行估算和计算。
对于自然资源储量的计算通常要考虑多个因素,包括地质条件、矿床特性、勘探程度等。
一般来说,储量计算的方法可以分为定性计算和定量计算两种。
定性计算是指通过对矿区地质特征和矿床类型的了解,进行判断和估算储量的方法;而定量计算则是通过具体的数据和公式进行计算。
下面介绍一些常用的储量计算公式:1.储量估算公式:储量(Reserves)= 面积(Area)× 厚度(Thickness)× 含量(Grade)× 回收率(Recovery)这是最基本的储量估算公式,适用于大部分资源的储量计算。
其中,面积是指矿区的有效面积,厚度是指矿床的厚度变化范围,含量是指矿石中目标元素或化合物的含量,回收率是指从矿石中提取出目标元素或化合物的百分比。
2.矿石储量计算公式:矿石储量(Reserves)= Ore量(Ton)× 含量(Grade)× 回收率(Recovery)/ 平均密度(Density)这个公式适用于矿石储量的计算,其中矿石量是指矿床中矿石的总量,含量和回收率的含义与上述公式相同,平均密度是指矿石的平均密度。
3.煤炭储量计算公式:煤炭储量(Reserves)= 面积(Area)× 厚度(Thickness)× 含碳量(Carbon)× 回收率(Recovery)/ 煤炭特征常数(Coal constant)这个公式是适用于煤炭储量计算的公式,其中面积和厚度的含义与上述相同,含碳量是指煤炭中含有的可燃烧碳的百分比,回收率是指从煤炭中提取出可用的煤的百分比,煤炭特征常数是根据煤的物理特性和化学成分的实测数据计算得出的常数。
需要注意的是,储量计算只是对资源量的估算和计算,并不能完全反映实际的资源量。
由于地质勘探的难度和成本,矿床中一部分资源可能被遗漏或无法探明,因此实际开采的资源量往往会有一定的偏差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三量的划分和计算
(一)开拓煤量
在矿井可采储量范围内已完成设计规定的主井、副井、风井、井底车场、主要石门、集中运输大巷、集中下山、主要溜煤眼和必要的总回风巷等开拓掘进工程所构成的煤储量,并减去开拓区内地质及水文地质损失、设计损失量和开拓煤量可采期内不能回采的临时煤柱及其它开采量,即为开拓煤量。
计算公式:Q开=(LhMD-Q地损-Q呆滞)K
式中:Q开——开拓煤量,t;
L——煤层两翼已开拓的走向长度,m;
h——采区平均倾斜长,m;
M——开拓区煤层平均厚度,m;
D——煤的视密度,t/m3
Q地损——地质及水文地质损失,t;
Q呆滞——呆滞煤量,包括永久煤柱的可回采部分和开拓煤量可采期内不能开采的临时煤柱及其它煤量,t;K——采区采出率。
(二)准备煤量
在开拓煤量范围内已完成了设计规定所必须的采区运输巷、采区回风巷及采区上(下)山等掘进工程所构成的煤储量,并减去采区内地质及水文地质损失、开采损失及准备煤量可采期内不能开采的煤量后,即为准备煤量。
计算公式:Q准=(LhMD-Q地损-Q呆滞)K
式中Q准——准备煤量,t;
L——采区走向长度,m;
h——采区倾斜长度,m;
M——采区煤层平均厚度,m。
在一个采区内,必须掘进的准备巷道尚未掘成之前,该采区的储量不应算作准备煤量。
(三)回采煤量
在准备煤量范围内,按设计完成了采区中间巷道(工作面运输巷、回风巷)和回采工作面开切眼等巷道掘进工程后所构成的煤储量,即只要安装设备后,便可进行正式回采的煤量。
计算公式为:Q回=LhMDK
式中:Q回——回采煤量,t;
L——工作面走向可采长度,m;
h——工作面倾斜开采长度,m;
M——设计采高或采厚,m;
K——工作面回采率。
上述各煤量的计算公式,仅适用于较稳定煤层。
若煤层不稳定,厚度变化较大时,应依具体情况划分块段分别计算煤储量后求和。
三、三量开采期
(一)三量可采期的规定
为了使资源准备在时间上可靠,经济上合理,煤炭工业技术政策对大、中型矿井原则规定的三量合理开采期为:开拓煤量可采期3-5a以上;
准备煤量可采期1a以上;
回采煤量可采期4-6个月以上。
(二)三量可采期的计算
三量可采期的计算公式分别为:
(三)三量的合理可采期
影响三量合理开采期的因素有很多,主要有:
1.矿井地质条件
2.井型和采区布局
3.开拓方式和开采方法
4.机械化程度
四.三量的统计与分析
为了及时掌握生产准备程度与采掘关系,应对三量的动态变化进行统计和分析。
三量的统计与分析是通过绘制和填报相应的图、表、台帐及文字说明来完成的。
其中主要有三量计算图、月末三个煤量动态报表、矿井(露天)期末三个煤量季(年)报表。