磁共振的基本原理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁共振基本原理

磁共振成像的依据是与人体生理、生化有关的人体组织密度对核磁共振的反映不同。要理解这个问题,就必须知道核磁共振和核磁共振的特性。

一、核磁共振与核磁共振吸收的宏观描述

由力学中可知,发生共振的条件有二:一是必须满足频率条件,二是要满足位相条件。

原子核是自旋的,它绕某个轴旋转(颇像个陀螺)。旋转时产生一定的微弱磁场和磁矩。将自旋的原子核放在一个均匀的静磁场中,受磁场作用,原子核的自旋轴会被强制定向,或与磁场方向相同,或与磁场方向相反。重新定向的过程中,原子核的自旋轴将类似旋转陀螺般的发生进动。不同类的原子核有不同的进动性质,这种性质就是旋转比(非零自旋的核具有特定的旋转比),用γ表示。进动的角频率ω一方面同旋转比有关;另一方面同静磁场的磁场强度B有关。其关系有拉莫尔(Larmor)公式(ω又称拉莫尔频率):

ω=γ·B(6-1)

静磁场中的原子核自旋时形成一定的微弱势能。当一个频率也为ω的交变电磁场作用到自旋的原子核时,自旋轴被强制倾倒,并带有较强的势能;当交变电磁场消除后,原子核的自旋轴将向原先的方向进动,并释放其势能。这种现象就是核磁共振现象(换言之,当电磁辐射的圆频率和外磁场满足拉莫尔公式时,原子核就对电磁辐射发生共振吸收),这一过程也称为弛豫过程,释放势能所产生的电压信号就是核磁共振信号.也被称为衰减信号(FID)。显然,核磁共振信号是一频率为ω的交变信号,其幅度随进动过程的减小而衰减。

图6-1表示几种原子核的共振频率与磁场强度的关系。这些频率是在电磁波谱的频带之内,这样的频率大大低于X线的频率,甚至低于可见光的频率。可见它是无能力破坏生物系统的分子的。在实际情况下,由于所研究的对象都是由大量原子核组成的组合体,因此在转入讨论大量原子核在磁场中的集体行为时,有必要引人一个反映系统磁化程度的物理量来描述核系统的宏观特性及其运动规律。这个物理量叫静磁化强度矢量,用M表示。由大量原子核组成的系统,相当于一大堆小磁铁,在无外界磁场时,原子核磁矩μ的方向是随机的,系统的总磁矩矢量为

(6-2)

如果在系统的Z轴方向外加一个强静磁场B。,原子核磁矩受到外磁场的作用,在自身转动的同时又以B。为轴进动,核磁矩取平行于BO的方向。按照波尔兹曼分布,在平衡状态下,处于不同能级的原子核数目不相等,使得原子核磁矩不能完全互相抵消,从而有

(6-3)

此时可以说系统被磁化了,可见M是量度原子核系统被磁化程度的量,是表示单位体积中全部原子核磁矩的矢量和。

图6-1几种原子核的共振频率与磁场强度的关系

系统的核是大量的,位相是随意的,所以位相的分布是均匀的。图6-2(a)是把系统中所有相同进动位相的核的矢量和用一箭头表示,并平移到坐标的O点,由于核进动位相分布服从统计规律,所以其各向进动的核的矢量和用相同长短的

表示处于低能级进动核数在Bo方向箭头表示,这就构成上下两个圆锥,图中M

的矢量和M-表示高能级核数在Bo反方向的矢量和,因低能级核数略多于高能级,所以M+>M-,M+M-方向相反,所以系统出现平行于Bo的净磁化强度Mo,用黑箭头表示,见图6-2(b)。由于M+、M-的位相分布是均匀和对称的,它们在XY平面上的投影互相抵消,所以在垂直于Z轴方向上的分量,即横向分量Mxy就等于0,也就是说系统在平衡态时的核磁化强度矢量M0就等于纵向分量Mz。

图6-2核系统核磁矩矢量和

设固定坐标系统XYZ的Z轴和旋转坐标系统X'Y'Z'的Z'轴重合,X'Y'绕Z轴旋转,当在Z轴方向施加一个静磁场Bo,同时又引人一个旋转电磁场,它的磁矢量B1就在X'轴上,角速度矢量ω的方向沿着Bo相反的方向,即ω/γ与Bo方向相反。当B1在XYZ坐标系统中以角速度ω旋转,X'Y'Z'坐标也以相同的角速度ω旋转,若旋转电磁场(图6-3)的圆频率ω等于核系统磁化强度矢量M的进动频率ωo,即此时静磁场Bo与ω/y完全相互抵消,只剩下在X'轴上的磁场B1,又叫有效磁场。

(6-4)

此时X'Y'Z'坐标系统中的B1;就相当于是作用在M上的静磁场,所以M又绕着B1场进动,其进动的角速度Ω=γB1(Ω为单位时间内M矢量在X'Y'Z'坐标系统中旋转的角度),即

(6-5) 式中θ表示在tp时间内M绕B1转过的角度。

图6-3旋转磁场的运动

由上可见,只要在Bo的垂直方向施加一旋转磁场B1,核磁化矢量M与静磁场Bo方向的偏转角就要不断增大,见图6-4(a)。增大的速度取决于B1与tp。如果射频脉冲的持续时间和强度使M转动一个角度θ(θ角射频脉冲见图6-4(b))。M正好转到XY平面上,则称为司π/2脉冲,见图6-5(b)。

图6-4θ角度的射频脉冲

从XYZ坐标系统来看M的运动,这时M以Ω的角速度绕石B1进动的同时,又以ω的角速度绕Bo进动,其总的运动就呈现如图6-5(a)的锥形转动,由M的顶端划出一个球形的螺旋线,这是一个吸收能量的过程。

图6-5π/2射频脉冲

二、弛像过程与自由感应衰减信号

核系统在平衡状态时,其磁化强度矢量M在Bo方向的分量Mz=Mo,而在XY

平面上的横向分量Mxy=0。如果在Bo垂直方向施加一激发脉冲,Mo就要偏离平衡位置一个角度,因而处于不平衡状态;此时Mz≠Mo。Mxy≠0,当激发脉冲停止作用后,M并不立即停止转动,而是逐渐向平衡态恢复,最后回到平衡位置,这一恢复过程称为弛豫过程,这是一个释放能量的过程。

假设分量Mz,Mxy向平衡位置恢复的速度与它们离开平衡位置的程度成正比,于是这两个分量的时间导数可写成

(6-6)

(6-7)

(6-8)

(6-9)

式中Mxy(max)为弛豫过程开始时横向磁化矢量城Mxy

因不同的物质特性而异的时间常数。它们也是磁共振成像的重要参数。从式(6-8)和式(6-9)可知,恢复到平衡状态时Mz、Mxy是同时进行的两个过程,两个特征量T1、T2具有时间的量纲,称为弛豫时间。由图6-6还可以看出,Mz、Mxy)的恢复服从指数规律。

1.弛豫时间

在弛豫过程中,原子核的自旋不断地与周围环境(晶格)进行着热交换,以达到能量平衡。这个弛豫时间称为自旋-晶格弛豫时间,即T1。因为这个过程是以磁化矢量在Z轴上的纵向分量逐渐恢复为标志的,所以又称为纵向弛豫时间。

图6-6M的弛豫过程

(a)自旋-晶体弛豫(b)自旋-自旋弛豫

相关文档
最新文档