2015高教社杯全国大学生数学建模竞赛A题太阳影子定位资料

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要

通过太阳影子定位技术可以确定视频的拍摄地点和时间,为拍摄出更好的视频,掌握太阳影子的变化规律就变得尤为重要。本文主要综合运用了地理学、几何学、统计学、数学分析和高等代数等知识,并利用MATLAB,SPSS 和mathematica 等计算机软件,通过建立数学模型来研究影子长度的变化特征,进一步确定视频的拍摄地点和时间。

针对问题一,首先我们通过分析影子长度的影响因素得到与影子长度的关系(见表达式六)整理计算之后,就得到了影子长度的数学模型。

1*tan (arcsin(cos cos cos sin sin ))l L ϕθϕθ-=Ω+

然后我们通过分析他们之间的关系,再利用MATLAB 编程,得到了影子长度关于各个参数的变化规律(见图3到图7)。其次根据我们建立的模型,利用MATLAB 编程画出了给定时间天安门广场3米高的直杆的太阳影子长度的变化曲线(见图8),然后在考虑折射率的情况下又画了一条变化曲线(见图9),最后进行了误差分析(见图10)。

针对问题二,我们采用了测试分析法(数据分析法和计算机仿真相结合),通过分析各个参量之间的关系,先以影长l 为目标做回归,用模型一的模型,通过SPSS 进行拟合得到多组数据,再用MATLAB 进行检验得到符合的两组经纬度。

(19.251,109.645),(24.579,98.1)N E N E

然后我们又以太阳方位角K 为目标做回归,得到模型(见表达式12),其计算方法与影长l 做回归目标时一样。我们分步做了两次拟合,先用MATLAB 拟合出经度,再做回归模型(见表达式14)最后得到经纬度(18.74,109.35)N E 和杆长 1.993L m =。综上可知,肯定有一地点是在海南,还有一个地点可能在云南。

针对问题三,我们用问题二中的多项式回归,得到回归模型(见表达式17和20) 利用附件二得到的经纬度为(32.83N,110.25E)和杆长L 3.03m = ,得到天数307n =。利用附件三得到的经纬度为(39.19N,79.5E) 和杆长L 1.962m = ,得到天数=140n

针对问题四,首先运用MATLAB 软件,根据画面灰度,运用MATLAB 软件,把视频转化成二值图,求得影子端点的像素坐标,然后根据相似原理,把像素坐标转化成水平面上的坐标(消去了视角的影响),进而求得影子的长度。用以上方法求得的数据,运用多次拟合的方法,得到该地的经纬度为(34.32,108.72)N E ,日期未知时,得到的经纬度与其相似。

【关键字】 影子长度 多项式拟合 太阳方位角 画面灰度

一、问题重述

如何确定视频的拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。

1.建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并应用建立的模型画出已知时间天安门广场3米高的直杆的太阳影子长度的变化曲线。

2.根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点。将你们的模型应用于附件1的影子顶点坐标数据,给出若干个可能的地点。

3. 根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点和日期。将你们的模型分别应用于附件2和附件3的影子顶点坐标数据,给出若干个可能的地点与日期。

4.先利用软件提取视频中的数据,再根据数据改善模型,求出若干个可能的拍摄点。当拍摄日期未知时,确定出拍摄地点与日期。

二、问题分析

由题可知,本题具体分析如下:

问题一:本题要求建立影子长度变化的数学模型,这需要我们给出影子长度变化的影响因素。查阅文献了解到各个参量的定义及其表达式,然后联立即可得到影子长度变化的数学模型。分析影子长度关于各个参数的变化规律,首先我们要在保持其他参数不变的情况下,只改变一个参数,来研究影子长度的变化规律。对于具体问题的变化曲线,因为参数的值已经给出,带入模型,利用软件编程就可以画出它的变化曲线。

问题二:本题要求根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点,然后将模型应用于附件1的影子顶点坐标数据,给出若干个可能的地点。先用附件一中给的数据即顶点的x与y坐标,计算出影子的长度l,然后用SPSS做回归拟合,得出的数据再用MATLAB进行检验。

问题三:问题三是问题二的拓展,建立数学模型确定直杆所处的地点和日期,比问题二多了一个未知量,我们可以采用问题二的模型和计算方法来解决本问题。

问题四:问题四是前两问的具体应用,只要求出视频中影子的长度就可以运用前面的模型求解。对于求取视频中的影长,可以用MATLAB软件编写程序,设定恰当的灰度阀值,把视频转化为二值图像。从图片右下角开始扫描杆子和方块(杆子底座),求得影子右端、杆子底部的坐标。由于是在三维空间中拍摄的,图片中物体的长宽比与实际

的长宽比不同,可以根据杆子底盘的长宽比求得物体实际的长宽比。根据相似度原理,由杆子的实际长度、图片中的像素维度等,求得像素与实际长度的比。最后,用影子右端、杆子底部的坐标、物体长宽比、像素与实际长度的比,求出影子的长度。

得到上述数据之后,应用MATLAB 进行多项式拟合,和应用SPSS 软件进行非线性回归,两次拟合得到经纬度和日期。

三、基本假设

(1)一年是365天;

(2)地球表面是球表面;

(3)地球的公转是正圆;

(4)大气层有折射无厚度;

(5)视频中杆的底盘是正方形,不考虑厚度;

(6)杆没有厚度。

四、主要变量的符号说明

为了便于描述问题,本文将问题中涉及的主要变量用下列符号来表示(如下表1所示),有些变量将在文中用到时陆续说明。

表1 符号 代表的含义 符号 代表的含义 L 杆长 l 影子的长度 t 太阳时 θ 太阳赤纬角 ϕ 当地的纬度

Ω 时角 ω 太阳的高度角

1ω 折射后的太阳高度角 n 日期序号

1n 折射率 K 太阳方位角

d 原始像素的高度 (,,)x y z 球坐标系 (,,)x y z ***

切平面的坐标系

相关文档
最新文档