2015高教社杯全国大学生数学建模竞赛A题太阳影子定位资料

合集下载

全国大学生数学建模2015年国二a题

全国大学生数学建模2015年国二a题

2015高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):太阳影子定位摘要本文研究了太阳影子定位问题,基于天球坐标系相关知识、球面几何理论以及相似度理论,对不同情况下的数据,建立了相应的数学模型并得到了最优的匹配地点与日期。

问题1中,利用球面三角形余弦定理给出了太阳高度角公式,并建立了影子长度变化的数学模型,定性的分析了影子长度关于时角、当地纬度以及赤纬角的变化规律:(1). 时角的绝对值越大,影子长度越大;(2). 在同一经度上(即时角一定),当地纬度与此时的太阳赤纬之差越大,影子长度越大;(3). 在同一纬度不同经度上,当地经度和此时太阳直射点所在的经度之差越大,影子长度越大。

用所建的模型,得到了2015年10月22日北京时间9:00-15:00之间天安门广场3米高的直杆的太阳影子长度的变化曲线。

2015年数学建模国赛A题

2015年数学建模国赛A题
3
因此对于地球来说太阳的曲率可忽略不计,故可将太阳光看作平行光。在太阳高 度角为 时,物体影长如图 1 所示:
太阳光

l
L
地面
图 1 物体影长及太阳高度角示意图 由图可知,物体高度 L 、直杆影长 l 及太阳高度角 满足三角函数关系,故在太 阳光下直杆的影子长度为 L l tan 太阳高度角 的计算公式为 (1) sin =sin sin +cos cos cos w 其中 表示观测地的地理纬度(北纬为正,南纬为负) , 表示太阳赤纬角(太阳 直射点纬度) , w 表示地方时时角,太阳高度角随观测地点地理纬度、地方时时 角及观测日期对应太阳赤纬角的变化而变化。 太阳赤纬角是地球赤道平面与太阳和地球中心的连线之间的夹角, 在地球的 公转运动中,赤纬角在+23 °26′与-23 °26′的范围内移动,其具体值是已知 的且只与 有关,表达式为 0.3723 23.2567sin 0.1149sin 2 0.1712sin 3 (2) 0.758cos 0.3656cos 2 0.0201cos3 式中 称日角,日角满足公式 2 ( N N 0 ) (3) 365.2422 其中 N 表示积日,所谓积日,就是日期在年内的顺序号,例如,1 月 1 日其积日 为 1,平年 12 月 31 日的积日为 365,闰年则为 366,等等。设年份为 T ,则 N 0 可 表示为
表示含义 直杆影子长度 太阳高度角 观测地地理纬度 观测地地理经度 太阳赤纬 积日 地区时角 日角 直杆高度 时间 年份 比例尺
五、 模型建立与求解
在地球上不同地区和不同时间,太阳下物体的影子长度各不相同。根据太阳 影子变化情况,判断物体具体位置和时间在实际生活中有重要意义。通过研究物 体在水平地面上太阳影子随时间变化规律,太阳影子长度与位置、时间的关系, 可根据太阳影子方向及其变化规律了解物体所在的大致位置和时间。 5.1 影子长度变化模型 在不同日期、不同时间,太阳光线照射物体的角度不相同,引起物体影子的 长度和方向随着太阳高度和角度的变化而变化, 因此同一物体在不同时间的太阳 影子长度和方向各不相同。为了建立影子长度变化的模型,根据相关公式,研究 影子长度变化规律。 5.1.1 影长变化模型 物体影子在不同时间的长度和方向均不相同。故假设某物体垂直于水平地 面,高度为 L ,其影子长度为 l 。首先引入太阳高度角,即太阳光的入射方向和 地平面之间的夹角。 太阳半径为 696300 千米, 远大于地球的半径 6371.393 千米,

太阳影子定位-2015高教社杯全国大学生数学建模竞赛题

太阳影子定位-2015高教社杯全国大学生数学建模竞赛题

2015高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题太阳影子定位如何确定视频的拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。

1.建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并应用你们建立的模型画出2015年10月22日北京时间9:00-15:00之间天安门广场(北纬39度54分26秒,东经116度23分29秒)3米高的直杆的太阳影子长度的变化曲线。

2.根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点。

将你们的模型应用于附件1的影子顶点坐标数据,给出若干个可能的地点。

3. 根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点和日期。

将你们的模型分别应用于附件2和附件3的影子顶点坐标数据,给出若干个可能的地点与日期。

4.附件4为一根直杆在太阳下的影子变化的视频,并且已通过某种方式估计出直杆的高度为2米。

请建立确定视频拍摄地点的数学模型,并应用你们的模型给出若干个可能的拍摄地点。

如果拍摄日期未知,你能否根据视频确定出拍摄地点与日期?太阳影子定位摘要本文通过分析物体的太阳影子变化,利用太阳影子定位技术建立确定视频拍摄的地点和日期的模型。

针对问题一,首先通过分析知影子长度的变化主要影响参数为:当地的经度λ、纬度ϕ、时刻t、直杆长度l、季节J(日期N)等,引入地理学参数:太阳赤纬δ、时角α及太阳高度角h 0,建立一个能够刻画影子长度变化和各个参数间关系的模型:⎪⎪⎩⎪⎪⎨⎧=⎥⎦⎤⎢⎣⎡⋅⋅-+-=h l h l t 000tan)cos cos sin sin sin arccos(300151δϕδϕλ;其次以实例对模型进行检验,在误差可允许的范围内,认为模型正确;进而对模型采用控制变量法分析影子长度关于各个参数的变化规律;然后求解出满足条件影子长度12时15分是最短,大约3.674米(表3)。

2015年全国大学生数学建模竞赛A题.

2015年全国大学生数学建模竞赛A题.

太阳影子定位(一)摘要根据影子的形成原理和影子随时间的变化规律,可以建立时间、太阳位置和影子轨迹的数学模型,利用影子轨迹图和时间可以推算出地点等信息,从而进行视频数据分析可以确定视频的拍摄地点。

本文根据此模型求解确定时间地点影子的运动轨迹和对于已知运动求解地点或日期。

直立杆的影子的位置在一天中随太阳的位置不断变化,而其自身的所在的经纬度以及时间都会影响到影子的变化。

但是影子的变化是一个连续的轨迹,可以用一个连续的函数来表达。

我们可以利用这根长直杆顶端的影子的变化轨迹来描述直立杆的影子。

众所周知,地球是围绕太阳进行公转的,但是我们可以利用相对运动的原理,将地球围绕太阳的运动看成是太阳围绕地球转动。

我们在解决问题一的时候,利用题目中所给出的日期、经纬度和时间,来解出太阳高度角h,太阳方位角Α,赤纬角δ,时角Ω,直杆高度H和影子端点位置(x0,y o),从而建立数学模型。

影子的端点坐标是属于时间的函数,所以可以借助时间写出参数方程来描述影子轨迹的变化。

问题二中给出了日期和随时间影子端点的坐标变化,可以根据坐标变化求出运用软件拟合出曲线找到在正午时纵坐标最小,横坐标最大,影子最短的北京时间,根据时差与经度的关系,求出测量地点的经度。

根据太阳方位角Α,赤纬角δ,时角Ω,可以求出太阳高度角h。

再结合问题一中的表达式,建立方程求解测量地点的纬度Ф。

我们在求解第三问的思路也是沿用之间的模型,但第三问上需要解出日期。

对于问题四的求解,先获取自然图像序列或者视频帧,并对每一帧图像检测出影子的轨迹点;然后确定多个灭点,并拟合出地平线;拟合互相垂直的灭点,计算出仿射纠正和投影纠正矩阵;进而还原出经过度量纠正的世界坐标;在拟合出经过度量纠正世界坐标中的影子点的轨迹,利用前面几问中的关系求出经纬度。

关键字:太阳影子轨迹Matlab 曲线拟合(二)问题重述确定视频拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。

【全国大学生数学建模竞赛获奖优秀论文作品学习借鉴】2015年全国数学建模竞赛A题全国一等奖论文17

【全国大学生数学建模竞赛获奖优秀论文作品学习借鉴】2015年全国数学建模竞赛A题全国一等奖论文17
杆在某一点的投影与当地经线的夹角为太阳方位角,在只知道投影坐标的情 况下,先建立太阳方位角与经度纬度的函数关系,然后建立太阳方位角与杆投影 坐标的函数关系,接着把经纬度当做参数确定投影坐标与经纬度的关系,最后对 所给数据进行数据处理得到经纬度的值。
4.3. 对问题 3 的分析
问题 3 相比于问题 2,附件的数据中没有给出日期,并且要求根据数据求出 观测数据时的日期。而太阳赤纬角在周年运动中任何时刻的具体值都是严格已知 的,并且可以通过日期(距离 1 月 1 日的天数)计算。在太阳方位角的计算中, 将日期转化为一个参数,通过问题 2 中的拟合同时求出,得到经纬度的值以及日 期。
对于不同时刻的太阳高度角 [2] ,已知杆长,有 tanh H L
结合公式(1)(2)(3)(4)(5),即可求得杆在不同时刻的影子长度关于北京经 纬度、当地时间以及测量日期四个参数的函数关系式
L Htan(arcsin( n m )) nm
6
5.1.2. 模型的求解
北京的纬度为北纬 3954'26'' ,经度为11623'29'' 。以正午 12 点为基准,t0 时
五. 模型的建立与求解
5.1. 问题 1 模型的建立与求解——空间向量模型 5.1.1. 模型的建立
影长随时间的变化是在地球自转和公转影响下产生的地理物理现象,根据地 球的特征,将地球看做一个球体,建立一个空间直角坐标系,地心为坐标系原点, 球的方程为 x2 y2 z2 1,构造空间向量模型。地球自西向东自转,在空间直 角坐标系中,选取一个时间点作为标准,用 x、y 轴坐标的变化来描述地球的自 转(24 小时内时间变化)过程中某一点位置的变化。
针对问题 3:首先,根据附件 2 和附件 3 建立直角坐标系,用日期序数表示 赤纬角;其次,在问题 2 得到的 y 关于 x 与经纬度的函数方程的基础上,增函数 方程的未知参数个数日期序数,得到新的函数方程;然后,用 MATLAB 进行非 线性最小二乘拟合,拟合得到经纬度以及日期序数;最后,根据拟合参数计算杆 长,通过标准差选择最优解。

A题 太阳影子定位

A题 太阳影子定位

A题太阳影子定位摘要一.问题重述如何确定视频的拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。

1.建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并应用你们建立的模型画出2015年10月22日北京时间9:00-15:00之间天安门广场(北纬39度54分26秒,东经116度23分29秒)3米高的直杆的太阳影子长度的变化曲线。

2.根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点。

将你们的模型应用于附件1的影子顶点坐标数据,给出若干个可能的地点。

3. 根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点和日期。

将你们的模型分别应用于附件2和附件3的影子顶点坐标数据,给出若干个可能的地点与日期。

4.附件4为一根直杆在太阳下的影子变化的视频,并且已通过某种方式估计出直杆的高度为2米。

请建立确定视频拍摄地点的数学模型,并应用你们的模型给出若干个可能的拍摄地点。

如果拍摄日期未知,你能否根据视频确定出拍摄地点与日期?二.问题分析本题第一问是研究太阳影子长度随各个参数的变化规律,影响太阳影子长度的因素主要有时间以及地点,也就是当地的经纬度和时间来影响太阳高度角来影响太阳影子长度。

太阳高度角:对于地球上的某个地点,太阳高度角是指太阳光的入射方向和地平面之间的夹角,专业上讲太阳高度角是指某地太阳光线与通过该地与地心相连的地表切线的夹角。

根据太阳高度角的计算公式:sin h=sin φ sin δ+cos φ cosδ cos t即求出太阳高度角就能算出太阳影子长度。

本题第二问是根据第一问的模型通过最小二乘法拟合来判断大致的经纬度,从而确定地点。

三.模型的建立与求解第一问,求出太阳高度角就可以求出太阳影子长度。

太阳高度角随着地方时和太阳的赤纬的变化而变化。

太阳赤纬(与太阳直射点纬度相等)以δ表示,观测地地理纬度用φ表示(太阳赤纬与地理纬度都是北纬为正,南纬为负),地方时(时角)以t表示,有太阳高度角的计算公式:sin h=sin φ sin δ+cos φ cosδ cos t即一般时间的太阳高度角,由日期可求出太阳直射点,即太阳赤纬角。

太阳影子定位-2015年全国数学建模比赛a题全国二等奖论文

太阳影子定位-2015年全国数学建模比赛a题全国二等奖论文

太阳影子定位摘要本文研究的问题是分析直杆在太阳的照射下,影子的角度和长度的变化,再结合相关地理知识和数学几何模型,推算出具体的所在地点和具体日期。

该模型可以用于太阳影子定位技术中,根据物体在阳光照射下影子的变化进行定位。

对于问题一,我们首先根据地球与太阳的位置关系列出太阳赤纬角,太阳高度角,太阳时角的计算式,其中需对较粗略的太阳赤纬角计算式进行修正,得出精准的计算式。

再建立数学几何模型,根据太阳高度角,影长与杆长形成的角边关系,列出影长的计算式。

最后建立一个太阳日照影长模型,该模型以太阳高度角计算式,太阳赤纬角计算式,太阳时角计算式为子函数,以太阳赤纬角,太阳日角,太阳时角,时间初值为中间变量,以当地经纬度,从1月1日到测量日的天数,时间,杆长,年份为自变量的复合函数数学模型。

然后采用由内到外计算法对此复合函数进行求解,计算出从九点到十五点的影长和太阳高度角的变化,得出直杆的太阳影子长度的变化曲线。

对于问题二,我们首先分析因为时间日期已给出,所以根据太阳赤纬角计算式可知太阳赤纬角为已知量,接着我们将影长的计算式进行等式移项变换,得到一个拟合杆长及经纬度的非线性最小二乘模型,该模型将问题一中太阳日照影长模型作为参数拟合对象,以杆长和影长与太阳高度角正切值之积的差值最小误差平方和为目标函数,以太阳高度角计算式,太阳时角计算式为约束条件,以测量时间,天数,影长为已知量。

将该模型在1stopt 软件中运行,采用麦夸尔特算法和通用全局最优化法对该模型进行迭代计算,对实验结果统计分析后得出该直杆相应的北纬为19.29392848度,东经为108.7225248度(海南岛的西海岸)。

对于问题三,除了需要拟合杆长和经纬度以外,还需拟合日期,同样参照影长等式移项变换公式,得到一个拟合杆长、经纬度及日期的非线性最小二乘模型。

同样采用问题二的计算方法得到多组结果,其中附件二最优解地点为新疆维吾尔自治区喀什地区巴楚县(40.0025°N,79.6587°E),附件三最优解地点为湖北省十堰市郧西县(32.9638°N,110.277°E )。

2015年全国大学生数学建模竞赛A题

2015年全国大学生数学建模竞赛A题

太阳影子定位技术问题的数学模型摘要本文涉及的是太阳影子定位技术问题。

在已知视频中物体的太阳影子变化的情况下,要确定视频的拍摄地点和拍摄日期。

首先,分析了文中四个问题的关系,发现前三个问题的已知条件逐步减少,问题难度依次递进。

第四问则给出一个实际问题,该问题需要转化成数学模型利用前三问的方法求解;随后,建立了L-G模型、MinZ-模型等,并应用非线性最小二乘法、遗传算法等算法对模型求解。

得到基于模型的合理结果。

最后,将第四问的实际问题转化数学模型并求解,进而解决问题。

对于问题一,要解决的问题是杆长与影子长度的关系,根据天文、几何知识,我们建立了模型来刻画问题给出的参数之间联系,如赤纬角模型、时角模型、太阳高度角模型、影子长度模型(L-G模型)等;分析了各参数对影子长度的影响;最后运用MATLAB绘制出具体给定参数下的3米高直杆的影子变化曲线;从曲线可以看出在9:00到15:00这段时间里,影子长度先变短后变长,最短为3.627米,最长为7.182米。

问题二提供了一个关于时间、影子坐标的附件1,杆长未知,为了确定直杆所处的地点,本问建立了MinZ-模型,首先将经度、纬度、杆长离散化,搜索出大概的可行解,然后运用非线性最小二乘算法,选取matlab中的lsqcurvefit命令,以可行解为初值,再运用非线性最小二乘算法,选取MATLAB中的lsqcurvefit命令,在控制残差在10−8之内范围的情况下得到了三个可能地点皆在海南省昌江县内,最小误差的地点为海南省江黎族自治县,北纬19.3025°,东经108.6988°,此时对应直杆高度为2.0219m。

同时,将结果代入问题一的模型进行检验,验证了模型的稳定性和算法的合理性。

问题三沿用问题一的模型和问题二的算法,由于一个已知量变成一个变量,根据算法特点,在增加一个变量的情况下,算法搜索影长差时只需要增加一重循环。

关于附件2数据,残差最小对应的位置为北纬39.8926°,东经79.7438°,具体地点在新疆维吾尔自治区喀什地区巴楚县。

太阳影子定位模型2015

太阳影子定位模型2015

L sin η l = tan Ω
(3)
tan η = tan hs sin Ω
(4)
反解出影长 l,即有
L tan Ω l = sin arctan (tan hs sin Ω)
(5)
3
可知,影长 l 是一个依赖于杆长 L, 经度 θ, 纬度 φ, 日期 D, 地方时 t 的函数 l = l(t; L, θ, φ, D), 其中 t 为自变量,L, θ, φ, D 均为参数, 因此利用此模型,在已知杆长、经纬度、日期、具体时间的情况 下,可以计算得出相应的影子长度。
对影长求关于纬度的偏导数,会发现得到的结果很复杂,但通过图像,可以很容易的发现这是一 个先减后增的函数。在正午时最低点应为太阳直射点所在纬度,但在非正午时会向太阳直射点所在 半球移动,直到移动到极点。这是由于地球是一个球体,因此影长应是以太阳直射点为圆心以圆周的 模式向周围增加,而这种模式并不是按照纬线圈进行。
3. 在第二问模型的基础上,在反向求解出直杆所在位置的同时,也求解出可能的时间,并利用附件 二、附件三的数据进行验证;
4. 通过分析附件四的视频,确定附件四可能的拍摄地点,同时讨论所给的拍摄时间能否省去。
第一个问题需要建立影子长度的模型,这一模型应当是一个依赖于杆长 L, 经度 θ, 纬度 φ, 日期 D, 地方时 t 的函数 l = l(t; L, θ, φ, D). 因此第一问相当于已知参数 L, θ, φ, D,求 l 关于 t 的具体的 函数表达式,并作出给定参数值的函数图像。
2
小,影响可以忽略。同时,地面不平坦或不水平均会使得问题的复杂程度极大程度地提高,为了简化 研究的对象,假设直杆所在地附近的地面是水平且平坦的。 假设 2 直杆可视为细杆,其直径可以忽略。

2015年全国大学生数学建模竞赛A题优秀论文太阳影子定位模型教程

2015年全国大学生数学建模竞赛A题优秀论文太阳影子定位模型教程
5.1. 旗杆影长的求解 5.1.1. 模型建立
我们依据太阳位置算法[2]( SPA)得到太阳位置的几何模型图如图 1 所示:
图 1 太阳位置的几何模型
图中 为高度角, 为方位角, 为纬度角, 为赤纬角, 为太阳时角, 和 能由下列式子计算得到(公式来源:/1GU1iS):
(1.2)
其中 为一个参数,能通过如下公式得到
2 (d 1) 365
(1.3)
式中, h 为北京时间, 为当地经度, d 为日期,即 1 月 1 日就用 d 1来表
示,假设一年为 365 天,则 d 365表示 12 月 31 日。由式(1.1)可知,相邻两天的赤
纬角 差值几乎为 0,因此当闰年时,我们设定 2 月 28 日的 d 59 ,29 日时 d 59 ,
g( ) (0.006918 - 0.399912 cos( ) 0.070257 sin( ) - 0.006758 cos(2 ) 0.000907 sin(2 ) - 0.002697 cos(3 ) 0.00148 sin(3 ))
(1.1 )
h15 300
关键词:太阳位置算法 最小二乘法 遗传算法 太阳影子定位模型
一. 问题重述
1.1. 问题背景 如何确定视频的拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位
技术就是通过分析视频中物体的太阳影子变化来确定视频拍摄的地点和日期的一种方 法。 1.2. 问题提出 1. 建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并应用建
5.1.2. 模型求解
首先根据问题分析和模型,我们将观测日期代入得到赤纬角 21.8985 ,负号表
示太阳直射点在南半球,然后代入求出太阳时角 和高度角 在不同时刻的值,得到表

2015年数学建模国赛A题全国优秀论文40

2015年数学建模国赛A题全国优秀论文40

三.模型假设
1.假设一天中的太阳赤纬角保持不变; 2.假设附件 4 中视频里的时间为北京时间; 3.假设大气层对太阳光的折射率保持不变; 4.假设影子长度和角度与该点的海拔无关;
四.符号说明
符号
h
表示含义 表示太阳高度角 表示修正后的太阳高度角 表示杆子的长度 表示杆子的影长 表示太阳赤纬角 表示某点的地理纬度 表示某点的地理经度 表示太阳时角 表示大气层的折射率 表示日期 表示某一具体时刻 表示太阳方位角
1
一.问题的背景与重述
1.1 问题的背景 早在 15 世纪时, 定位技术就已经随着海洋探索的开始而产生。 随着社会和科技的不 断发展,我们对定位的需求已不再局限于航海、航空等领域,对于地球上的精确坐标定 位已逐渐成为人们关注的热点问题。对于地球表面经纬度的精确定位,可利用变化的太 阳影子来进行分析,其作为一种直观简便的定位技术,已受到广泛关注。 1.2 问题的重述 太阳影子定位技术是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和 日期的一种方法,请建立合理的数学模型解决以下问题: 1.建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并根据 建立的模型画出 2015 年 10 月 22 日北京时间 9:00-15:00 之间天安门广场 (北纬 39 度 54 分 26 秒,东经 116 度 23 分 29 秒)3 米高的直杆的太阳影子长度的变化曲线。 2.根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆 所处的地点,并将模型应用于附件 1 的影子顶点坐标数据,给出若干个可能的地点。 3. 根据某固定直杆在水平地面上的太阳影子顶点坐标数据, 建立数学模型确定直杆 所处的地点和日期,并将模型分别应用于附件 2 和附件 3 的影子顶点坐标数据,给出若 干个可能的地点与日期。 4.附件 4 为一根直杆在太阳下的影子变化的视频,并且已通过某种方式估计出直 杆的高度为 2 米。请建立确定视频拍摄地点的数学模型,并应用该模型给出若干个可能 的拍摄地点。如果拍摄日期未知,是否可以根据视频确定出拍摄地点与日期。

2015数学建模竞赛A题:太阳影子定位技术研究

2015数学建模竞赛A题:太阳影子定位技术研究
针对问题三,题中虽然没有给出采样日期,但其整体思路与问题二是一致的。 在选取假设采样点后,将经度、纬度和日期作为变量,使用问题一中的模型求出 该假设采样点的影子长度。最后使用最小二乘法将这些假设采样点数据与原始影 子长度数据进行拟合,在 MATLAB 中编程计算,得到的结果为:附件 2 中的采样 点在东经 79°,北纬 43°,采样日期为 6 月 12 日;附件 3 中的采样点在东经 107°, 北纬 28°,采样日期为 11 月 25 日。
针对问题二,首先,我们通过影子的顶点坐标得到各个时刻的影子长度。之 后进行数据标准化,消除直杆长度对影子长度的影响。任意选取某一经纬度为假 设采样点,将经度、纬度作为变量,使用问题一中的模型求出该假设采样点的影 子长度。最后使用最小二乘法将这些假设采样点数据与原始影子长度数据进行拟 合,在 MATLAB 中编程计算,得到的最小目标函数值������ = 1.2981 × 10−7 ,该假设 采样点为东经 109°,北纬 17°(见正文图 11),其周边海南三亚市、越南沿海地 区都可以认为是采样点的可能位置。
太阳影子定位技术的研究
摘要
本文针对太阳影子定位问题,通过运用天球模型和最小二乘法,研究了直杆 太阳影子长度与直杆长度、太阳高度角、采样点经纬度、采样日期和采样时间等 参数的关系,实现了利用物体的太阳影子变化来确定视频拍摄地点和日期。
针对问题一,在已知直杆长度的情况下,太阳影子长度和太阳高度角满足一 个确定的函数关系。因此,我们可以将研究对象从太阳影子长度转换为太阳高度 角。引入天球模型后,使用天球坐标系统中的赤道坐标系和地平坐标系来描述太 阳的运动和位置,得到了太阳高度角与采样地点经度、纬度、日期和当天具体时 间的函数关系,进而得到了影子长度与各参数的关系。之后,使用控制变量法分 别得到了影子长度关于直杆长度、经度、纬度、日期和时间这 5 个参数的变化规 律(见正文图 5、6、7、8、9)。最后,运用该模型画出了天安门广场上 3 米高的 直杆的太阳影子长度的变化曲线(见正文图 10)。

2015数学建模.

2015数学建模.

A 题 太阳影子定位摘要本文主要研究了太阳影子定位技术,通过对影子的变化趋势来判断拍摄地点及日期。

针对问题一,我们建立了影子长度随时间变化的角度计算模型。

通过对时角、赤纬角的计算,带入当地纬度,并加入时差的计算,我们得到了太阳高度角的值,并由三角函数关系,求出了影长,绘制出了影长变化曲线。

针对问题二,我们首先利用坐标求出影长,在此基础上利用附件中求得的影长与正午时刻最小的影长做比以及用时差的相关知识求出当地经度。

其次利用已知的坐标与高度角正切值的关系,建立了非线性方程模型:111sinh sin sin cos cos cos t =θα+θα 222sinh sin sin cos cos cos t =θα+θα1221/tanh /tanh L L =sinh sin sin cos cos cos t ϕϕ=δ+δ 再通过MATLAB 编程得出纬度的值。

得到的大致位置为海南和广西。

日期为3月份。

针对问题三,首先根据二中的方法求出经度,附件2的经度为72°03,附件3的经度为107°56′2.40,其次由于日期未知,所以在模型一的基础上将高度角方程增加到3个,经过编程匹配,得到了最可能的地理位置附件2:北纬N38°32′,东经为E72°03′和北纬N 40°18′,东经E72°03′,附件3:北纬N 40°45′东经E 107°56′,北纬N 40°0′东经E 107°56′。

附件2日期为3月份,附件3日期为6月份。

针对问题四,利用MA TLAB 编程以及相似三角形的判定,导出实际的影子长度。

再利用问题二中的数学模型求解得出纬度,北纬N 40°23′48″东经E 110°41′24″和E49°55′12″N110°41′24″若日期不知道,则结合问题三的数学模型求出日期。

2015高教社杯全国大学生数学建模竞赛A题太阳影子定位

2015高教社杯全国大学生数学建模竞赛A题太阳影子定位

摘要通过太阳影子定位技术可以确定视频的拍摄地点和时间,为拍摄出更好的视频,掌握太阳影子的变化规律就变得尤为重要。

本文主要综合运用了地理学、几何学、统计学、数学分析和高等代数等知识,并利用MATLAB,SPSS 和mathematica 等计算机软件,通过建立数学模型来研究影子长度的变化特征,进一步确定视频的拍摄地点和时间。

针对问题一,首先我们通过分析影子长度的影响因素得到与影子长度的关系(见表达式六)整理计算之后,就得到了影子长度的数学模型。

1*tan (arcsin(cos cos cos sin sin ))l L ϕθϕθ-=Ω+然后我们通过分析他们之间的关系,再利用MATLAB 编程,得到了影子长度关于各个参数的变化规律(见图3到图7)。

其次根据我们建立的模型,利用MATLAB 编程画出了给定时间天安门广场3米高的直杆的太阳影子长度的变化曲线(见图8),然后在考虑折射率的情况下又画了一条变化曲线(见图9),最后进行了误差分析(见图10)。

针对问题二,我们采用了测试分析法(数据分析法和计算机仿真相结合),通过分析各个参量之间的关系,先以影长l 为目标做回归,用模型一的模型,通过SPSS 进行拟合得到多组数据,再用MATLAB 进行检验得到符合的两组经纬度。

(19.251,109.645),(24.579,98.1)N E N E然后我们又以太阳方位角K 为目标做回归,得到模型(见表达式12),其计算方法与影长l 做回归目标时一样。

我们分步做了两次拟合,先用MATLAB 拟合出经度,再做回归模型(见表达式14)最后得到经纬度(18.74,109.35)N E 和杆长 1.993L m =。

综上可知,肯定有一地点是在海南,还有一个地点可能在云南。

针对问题三,我们用问题二中的多项式回归,得到回归模型(见表达式17和20) 利用附件二得到的经纬度为(32.83N,110.25E)和杆长L 3.03m = ,得到天数307n =。

2015建模A题太阳影子定位

2015建模A题太阳影子定位

A题太阳影子定位一,摘要(宋体小四号,简明扼要的详细叙述,字数不可以超过一页,不要译成英文)本文针对太阳影子定位技术,通过太阳与地球相对运动的规律,建立杆长、影长、经纬度、时间、日期的关系,建立模型。

综合分析了不同地点,不同的时间,不同的季节时影子长度的形成规律及变化趋势,运用了软件进行分析,得出不同地区影子变化的模型。

最后将具体情况运用到建立的模型中,对实际问题进行可行性分析,根据条件的改变完善对模型的应用和实用性检验。

第一问中,我们通过两种太阳高度角的表示方法建立等式关系,根据控制变量法,分析出影子长度分别与经、纬度、杆长、时间、日期的关系。

然后,根据时差计算关系,当时间在9:00-15:00时,天安门广场的时间,并应用建立的模型。

第二问中,首先根据影子坐标求出影子的长度,拟合时间与影子长度的函数,找出影子长度的最低的点,从而根据时间求出当地经度,由于误差的存在,我们将经度、杆长、纬度给定一定围,根据第一问公式进行搜索,从而确定可能的地点。

关键字:(宋体小四号)真太阳时平太阳时赤纬角太阳高度角熵值法二,问题提出如何确定视频的拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。

1.建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并应用你们建立的模型画出2015年10月22日时间9:00-15:00之间天安门广场(北纬39度54分26秒,东经116度23分29秒)3米高的直杆的太阳影子长度的变化曲线。

2.根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点。

将你们的模型应用于附件1的影子顶点坐标数据,给出若干个可能的地点。

3. 根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点和日期。

将你们的模型分别应用于附件2和附件3的影子顶点坐标数据,给出若干个可能的地点与日期。

2015年全国大学生建模大赛A题太阳影子的定位

2015年全国大学生建模大赛A题太阳影子的定位

太阳影子定位摘要本文通过分析物体的太阳影子变化,利用太阳影子定位技术建立确定视频拍摄的地点与日期的模型。

针对问题一,首先通过分析知影子长度的变化主要影响参数为:当地的经度 λ、纬度ϕ、时刻t 、直杆长度l 、季节J (日期N )等,引入地理学参数:太阳赤纬δ、时角α及太阳高度角h 0,建立一个能够刻画影子长度变化与各个参数间关系的模型:⎪⎪⎩⎪⎪⎨⎧=⎥⎦⎤⎢⎣⎡⋅⋅-+-=h l h l t 000tan )cos cos sin sin sin arccos(300151δϕδϕλ;其次以实例对模型进行检验,在误差可允许的范围内,认为模型正确;进而对模型采用控制变量法分析影子长度关于各个参数的变化规律;然后求解出满足条件影子长度12时15分就是最短,大约3、674米(表3)。

影子长度的变化曲线(图5),9时至12时15分影子长度呈现下降趋势,12时15分之15时影子长度呈现上升趋势;最后考虑太阳照射中发生折射现象的推广。

针对问题二,关键词一、问题重述:如何确定视频的拍摄地点与拍摄日期就是视频数据分析的重要方面,太阳影子定位技术就就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点与日期的一种方法。

1、建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并应用您们建立的模型画出2015年10月22日北京时间9:00-15:00之间天安门广场(北纬39度54分26秒,东经116度23分29秒)3米高的直杆的太阳影子长度的变化曲线。

2、根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点。

将您们的模型应用于附件1的影子顶点坐标数据,给出若干个可能的地点。

3、根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点与日期。

将您们的模型分别应用于附件2与附件3的影子顶点坐标数据,给出若干个可能的地点与日期。

4.附件4为一根直杆在太阳下的影子变化的视频,并且已通过某种方式估计出直杆的高度为2米。

2015年全国大学生数学建模竞赛A题

2015年全国大学生数学建模竞赛A题

太阳影子定位(一)摘要根据影子的形成原理和影子随时间的变化规律,可以建立时间、太阳位置和影子轨迹的数学模型,利用影子轨迹图和时间可以推算出地点等信息,从而进行视频数据分析可以确定视频的拍摄地点。

本文根据此模型求解确定时间地点影子的运动轨迹和对于已知运动求解地点或日期。

直立杆的影子的位置在一天中随太阳的位置不断变化,而其自身的所在的经纬度以及时间都会影响到影子的变化。

但是影子的变化是一个连续的轨迹,可以用一个连续的函数来表达。

我们可以利用这根长直杆顶端的影子的变化轨迹来描述直立杆的影子。

众所周知,地球是围绕太阳进行公转的,但是我们可以利用相对运动的原理,将地球围绕太阳的运动看成是太阳围绕地球转动。

我们在解决问题一的时候,利用题目中所给出的日期、经纬度和时间,来解出太阳高度角h,太阳方位角Α,赤纬角δ,时角Ω,直杆高度H和影子端点位置(x0,y o),从而建立数学模型。

影子的端点坐标是属于时间的函数,所以可以借助时间写出参数方程来描述影子轨迹的变化。

问题二中给出了日期和随时间影子端点的坐标变化,可以根据坐标变化求出运用软件拟合出曲线找到在正午时纵坐标最小,横坐标最大,影子最短的北京时间,根据时差与经度的关系,求出测量地点的经度。

根据太阳方位角Α,赤纬角δ,时角Ω,可以求出太阳高度角h。

再结合问题一中的表达式,建立方程求解测量地点的纬度Ф。

我们在求解第三问的思路也是沿用之间的模型,但第三问上需要解出日期。

对于问题四的求解,先获取自然图像序列或者视频帧,并对每一帧图像检测出影子的轨迹点;然后确定多个灭点,并拟合出地平线;拟合互相垂直的灭点,计算出仿射纠正和投影纠正矩阵;进而还原出经过度量纠正的世界坐标;在拟合出经过度量纠正世界坐标中的影子点的轨迹,利用前面几问中的关系求出经纬度。

关键字:太阳影子轨迹Matlab曲线拟合(二)问题重述确定视频拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要通过太阳影子定位技术可以确定视频的拍摄地点和时间,为拍摄出更好的视频,掌握太阳影子的变化规律就变得尤为重要。

本文主要综合运用了地理学、几何学、统计学、数学分析和高等代数等知识,并利用MATLAB,SPSS 和mathematica 等计算机软件,通过建立数学模型来研究影子长度的变化特征,进一步确定视频的拍摄地点和时间。

针对问题一,首先我们通过分析影子长度的影响因素得到与影子长度的关系(见表达式六)整理计算之后,就得到了影子长度的数学模型。

1*tan (arcsin(cos cos cos sin sin ))l L ϕθϕθ-=Ω+然后我们通过分析他们之间的关系,再利用MATLAB 编程,得到了影子长度关于各个参数的变化规律(见图3到图7)。

其次根据我们建立的模型,利用MATLAB 编程画出了给定时间天安门广场3米高的直杆的太阳影子长度的变化曲线(见图8),然后在考虑折射率的情况下又画了一条变化曲线(见图9),最后进行了误差分析(见图10)。

针对问题二,我们采用了测试分析法(数据分析法和计算机仿真相结合),通过分析各个参量之间的关系,先以影长l 为目标做回归,用模型一的模型,通过SPSS 进行拟合得到多组数据,再用MATLAB 进行检验得到符合的两组经纬度。

(19.251,109.645),(24.579,98.1)N E N E然后我们又以太阳方位角K 为目标做回归,得到模型(见表达式12),其计算方法与影长l 做回归目标时一样。

我们分步做了两次拟合,先用MATLAB 拟合出经度,再做回归模型(见表达式14)最后得到经纬度(18.74,109.35)N E 和杆长 1.993L m =。

综上可知,肯定有一地点是在海南,还有一个地点可能在云南。

针对问题三,我们用问题二中的多项式回归,得到回归模型(见表达式17和20) 利用附件二得到的经纬度为(32.83N,110.25E)和杆长L 3.03m = ,得到天数307n =。

利用附件三得到的经纬度为(39.19N,79.5E) 和杆长L 1.962m = ,得到天数=140n针对问题四,首先运用MATLAB 软件,根据画面灰度,运用MATLAB 软件,把视频转化成二值图,求得影子端点的像素坐标,然后根据相似原理,把像素坐标转化成水平面上的坐标(消去了视角的影响),进而求得影子的长度。

用以上方法求得的数据,运用多次拟合的方法,得到该地的经纬度为(34.32,108.72)N E ,日期未知时,得到的经纬度与其相似。

【关键字】 影子长度 多项式拟合 太阳方位角 画面灰度一、问题重述如何确定视频的拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。

1.建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并应用建立的模型画出已知时间天安门广场3米高的直杆的太阳影子长度的变化曲线。

2.根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点。

将你们的模型应用于附件1的影子顶点坐标数据,给出若干个可能的地点。

3. 根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点和日期。

将你们的模型分别应用于附件2和附件3的影子顶点坐标数据,给出若干个可能的地点与日期。

4.先利用软件提取视频中的数据,再根据数据改善模型,求出若干个可能的拍摄点。

当拍摄日期未知时,确定出拍摄地点与日期。

二、问题分析由题可知,本题具体分析如下:问题一:本题要求建立影子长度变化的数学模型,这需要我们给出影子长度变化的影响因素。

查阅文献了解到各个参量的定义及其表达式,然后联立即可得到影子长度变化的数学模型。

分析影子长度关于各个参数的变化规律,首先我们要在保持其他参数不变的情况下,只改变一个参数,来研究影子长度的变化规律。

对于具体问题的变化曲线,因为参数的值已经给出,带入模型,利用软件编程就可以画出它的变化曲线。

问题二:本题要求根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点,然后将模型应用于附件1的影子顶点坐标数据,给出若干个可能的地点。

先用附件一中给的数据即顶点的x与y坐标,计算出影子的长度l,然后用SPSS做回归拟合,得出的数据再用MATLAB进行检验。

问题三:问题三是问题二的拓展,建立数学模型确定直杆所处的地点和日期,比问题二多了一个未知量,我们可以采用问题二的模型和计算方法来解决本问题。

问题四:问题四是前两问的具体应用,只要求出视频中影子的长度就可以运用前面的模型求解。

对于求取视频中的影长,可以用MATLAB软件编写程序,设定恰当的灰度阀值,把视频转化为二值图像。

从图片右下角开始扫描杆子和方块(杆子底座),求得影子右端、杆子底部的坐标。

由于是在三维空间中拍摄的,图片中物体的长宽比与实际的长宽比不同,可以根据杆子底盘的长宽比求得物体实际的长宽比。

根据相似度原理,由杆子的实际长度、图片中的像素维度等,求得像素与实际长度的比。

最后,用影子右端、杆子底部的坐标、物体长宽比、像素与实际长度的比,求出影子的长度。

得到上述数据之后,应用MATLAB 进行多项式拟合,和应用SPSS 软件进行非线性回归,两次拟合得到经纬度和日期。

三、基本假设(1)一年是365天;(2)地球表面是球表面;(3)地球的公转是正圆;(4)大气层有折射无厚度;(5)视频中杆的底盘是正方形,不考虑厚度;(6)杆没有厚度。

四、主要变量的符号说明为了便于描述问题,本文将问题中涉及的主要变量用下列符号来表示(如下表1所示),有些变量将在文中用到时陆续说明。

表1 符号 代表的含义 符号 代表的含义 L 杆长 l 影子的长度 t 太阳时 θ 太阳赤纬角 ϕ 当地的纬度Ω 时角 ω 太阳的高度角1ω 折射后的太阳高度角 n 日期序号1n 折射率 K 太阳方位角d 原始像素的高度 (,,)x y z 球坐标系 (,,)x y z ***切平面的坐标系五、模型的建立与求解5.1问题一建模和求解5.1.1.影子长度变化的数学模型(1)太阳时()t :太阳时是指以太阳日为标准来计算的时间,时间的计量以地球自转为依据,地球自转一周,计24太阳时,当太阳达到正南处为12:00。

太阳时可以分为真太阳时和平太阳时,平太阳时假设地球绕太阳是标准的圆形,钟表所指的时称为平太阳时(简称为平时),我国采用东经120度经圈上的平太阳时作为全国的标准时间,即“北京时间”。

(2)时角()Ω:时角是以正午12点为0度开始算,每一小时为15度,上午为负下午为正,即10点和14点分别为-30度和30度(因计算需要,把度数换算成了弧度)。

因此,时角的计算公式为()10.261812t t Ω=-- (弧度) (1) 112015t ϕ-= (2) 其中t 为太阳时,1t 是当地时间与北京时间的时间差(单位:小时)。

(3)赤纬角()θ:赤纬角也称为太阳赤纬,即太阳直射纬度,其计算公式近似为 2(284)0.4093sin[]365n πθ+= (3) 其中n 为日期序号,例如,1月1日为1=n ,10月22日为295n =。

(4)太阳高度角()ω:指某地太阳光线与该地作垂直于地心的地表切线的夹角。

由图1可知,三点的坐标为()()cos ,0,sin ,cos ,0,sin ,A B θθϕϕ(cos cos ,cos sin ,sin )C θθθΩΩ由此可得: cos cos cos sin sin sin cos 1OC OBCOB OC OB ϕθϕθω→→→→Ω+=∠== cos cos cos sin sin ϕθϕθ=Ω+即太阳高度角的计算公式sin cos cos cos sin sin ωϕθϕθ=⋅⋅Ω+⋅ (4)其中ω为太阳高度角,Ω为时角,θ为当时的太阳赤纬,ϕ为当地的纬度(北京的纬度为北纬'''395426)。

图1(5)由图2可知tan L l ω=,即 tan L l ω= (5)图2(6)110.2618(12)120152(284)0.4093sin[]365sin cos cos cos sin sintan t t t n L l ϕπθωϕθϕθωΩ=--⎧⎪-⎪=⎪⎪⎪+=⎨⎪⎪=⋅⋅Ω+⋅⎪⎪=⎪⎩ (6)将公式(1)(2)(3)带入(4),得出ω的值之后再代入(5)就能得到影子长度变化的数学模型1*tan (arcsin(cos cos cos sin sin ))l L ϕθϕθ-=Ω+(7)5.1.2影子长度关于各个参数的变化规律根据建立的数学模型,利用MATLAB 编程(见附录),通过改变各个参数的值,观察影子长度的变化规律。

(1) 首先,我们保持其他的变量不变,改变n 的值,由图3我们可以看到每天的最短影子长度在一年内呈周期性变化。

图3(2)接下来我们保持其他的变量不变,改变经度的值,我们选取了东经100和东经130。

由图4可以知道东经的度数越小,影子最短的时刻越往后。

图4(3)其次我们在保持其他的变量不变,改变纬度的值,我们选取了北纬20和北纬70。

由图5,图6可以知道北纬的度数越大,影子越长。

图5图6(4)同样的,我们依然保持其他的变量不变,改变时间t ,由图7可以知道影子最短的时刻在中午附近,越远离正午,影子越长。

图7(5)最后,我们依然保持其他的变量不变,改变杆长L ,由tan L l ω=可知杆长L 与影子的长度l 成正比,即杆长越长,影子越长。

5.1.3应用模型求解具体问题根据我们建立的模型,利用MATLAB 编程画出2015年10月22日北京时间9:00-15:00之间天安门广场3米高的直杆的太阳影子长度的变化曲线如图8所示。

图8然后我们又考虑了折射率,根据111*sin()*sin()( 1.000277)22n n ππωω-=-= (8), 得到的变化曲线如图9所示图9由图8和图9对比可以知道,是否考虑折射率差别小于千分之三,所以画了误差图10以便更好的观察误差。

图10折射率还与大气层的厚度有关,但考虑到公式的复杂程度,这里不作考虑。

5.2. 问题二建模和求解5.2.1用一次拟合做回归5.2.1.1以长度为目标做回归根据问题一建立的数学模型1*tan (arcsin(cos cos cos sin sin ))l L ϕθϕθ-=Ω+(7)用附件一中给的数据即顶点的x 与y 坐标,计算出影子的长度l ,然后根据计算得到日期序号108n =,然后利用SPSS 以影长l 为因变量,不断给定杆长L 、纬度ϕ和1t 一组初值做多次回归拟合(表达式见附录),得到多组数据(部分数据在附录中给出),然后我们利用MATLAB 进行检验。

相关文档
最新文档