(完整版)二次根式计算题(简单)
二次根式计算题 100 道
![二次根式计算题 100 道](https://img.taocdn.com/s3/m/d88c8d6569dc5022abea004e.png)
二次根式计算题100道——二次根式计算过关题(1) (2) (3) (4)(5)⎪⎪⎭⎫ ⎝⎛-⨯614123 (6) 5433112785⋅⋅⋅-(7)()223411+(8)2221162132⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛(9)5232232⨯÷ (10)⎪⎪⎭⎫⎝⎛-⨯2343233222484554+-+21418122-+-3)154276485(÷+-(11)6812318⨯⨯(12)(--(13(14)21104315732⨯(15②(16)已知2242420,x y x y++-+=(17)⎛⎫÷⎝18)已知a=b=的值。
(19)()()5051015-⨯÷-(20)2143618÷⋅(21)已知x=,求5xx-的值(22+(23)(24)22-(25(26)(27(28)⎛÷⎝(29)(30⎛÷-⎝(31) )()20002001232+ (322440y y -+=,求xy 的值。
(33)(34) (231⎛++ ⎝(35)(()2771+-- (36) ((((22221123(37) 22- (38)(39)32818÷-⨯()(40)()x y x y ++1(41)(()0,0a b -≥≥ (42))0,0a b ÷>>(43(44) 5x (x >0,y >0).(45)3(√3+√2)﹣4(√2﹣√27) (46)(√48+√6)÷√27(47 (48)(3√2﹣2√3)(3√2+2√3)(49) √12﹣√13﹣√113(50) √8﹣√234×√211(51)计算:_________.30×42=_________. (52)计算:217=__________.1226=__________.2632=__________.7.50.15=__________.(53)计算:151000-=__________.(22-36)·2=___________. 25)·5=__________.(54)化简:16+5=__________.22-3=__________.7+57-5=__________.(55)计算:17((56)计算:(8-212+18)=__________. (210-18)÷22=__________.(57)计算:3416a+139a=__________.3a9+524a=__________.(58)计算:x24x+2x21x=__________.y-2y2xy3(y>0)=__________.(59)计算:1b-a·a2-2ab+b2=____________.(60)√18﹣12√12+2√3﹣1(61) 解方程:25x-63=35x(62)(63) -(64) x x-y+y2-xyx-y-x+yx-y(x-y)3(65) 已知()1139322++=+-+-yxxxyx,求的值。
100道二次根式含答案 (2)
![100道二次根式含答案 (2)](https://img.taocdn.com/s3/m/aca63e5b53d380eb6294dd88d0d233d4b04e3f44.png)
100道二次根式题目及答案第一部分:简单题(共50题)1. $\\sqrt{9}$答案:32. $\\sqrt{25}$答案:53. $\\sqrt{81}$答案:94. $\\sqrt{64}$答案:85. $\\sqrt{100}$答案:106. $\\sqrt{121}$答案:11答案:128. $\\sqrt{169}$ 答案:139. $\\sqrt{196}$ 答案:1410. $\\sqrt{225}$ 答案:1511. $\\sqrt{256}$ 答案:1612. $\\sqrt{289}$ 答案:1713. $\\sqrt{324}$ 答案:18答案:1915. $\\sqrt{400}$ 答案:2016. $\\sqrt{441}$ 答案:2117. $\\sqrt{484}$ 答案:2218. $\\sqrt{529}$ 答案:2319. $\\sqrt{576}$ 答案:2420. $\\sqrt{625}$ 答案:25答案:2622. $\\sqrt{729}$ 答案:2723. $\\sqrt{784}$ 答案:2824. $\\sqrt{841}$ 答案:2925. $\\sqrt{900}$ 答案:3026. $\\sqrt{961}$ 答案:3127. $\\sqrt{1024}$ 答案:32答案:3329. $\\sqrt{1156}$ 答案:3430. $\\sqrt{1225}$ 答案:3531. $\\sqrt{1296}$ 答案:3632. $\\sqrt{1369}$ 答案:3733. $\\sqrt{1444}$ 答案:3834. $\\sqrt{1521}$ 答案:39答案:4036. $\\sqrt{1681}$ 答案:4137. $\\sqrt{1764}$ 答案:4238. $\\sqrt{1849}$ 答案:4339. $\\sqrt{1936}$ 答案:4440. $\\sqrt{2025}$ 答案:4541. $\\sqrt{2116}$ 答案:46答案:4743. $\\sqrt{2304}$ 答案:4844. $\\sqrt{2401}$ 答案:4945. $\\sqrt{2500}$ 答案:5046. $\\sqrt{2601}$ 答案:5147. $\\sqrt{2704}$ 答案:5248. $\\sqrt{2809}$ 答案:53答案:5450. $\\sqrt{3025}$答案:55第二部分:中等题(共25题)51. $\\sqrt{10} + \\sqrt{2}$答案:$\\sqrt{10} + \\sqrt{2}$52. $\\sqrt{5} + \\sqrt{20}$答案:$\\sqrt{5} + 2\\sqrt{5} = 3\\sqrt{5}$53. $\\sqrt{15} + \\sqrt{12}$答案:$\\sqrt{15} + \\sqrt{12} = \\sqrt{15} + 2\\sqrt{3}$ 54. $\\sqrt{7} - \\sqrt{8}$答案:$\\sqrt{7} - \\sqrt{8}$55. $\\sqrt{9} - \\sqrt{6}$答案:$\\sqrt{9} - \\sqrt{6} = 3 - \\sqrt{6}$答案:$\\sqrt{26} + \\sqrt{14}$57. $\\sqrt{30} - \\sqrt{10}$答案:$\\sqrt{30} - \\sqrt{10}$58. $\\sqrt{5} \\cdot \\sqrt{10}$答案:$\\sqrt{5} \\cdot \\sqrt{10} = \\sqrt{50}$59. $\\sqrt{10} \\cdot \\sqrt{2}$答案:$\\sqrt{10} \\cdot \\sqrt{2} = 2\\sqrt{5}$60. $\\sqrt{18} \\cdot \\sqrt{3}$答案:$\\sqrt{18} \\cdot \\sqrt{3} = 3\\sqrt{6}$61. $\\sqrt{32} - \\sqrt{8}$答案:$\\sqrt{32} - \\sqrt{8} = 4\\sqrt{2} - 2\\sqrt{2} = 2\\sqrt{2}$ 62. $\\sqrt{24} - \\sqrt{6}$答案:$\\sqrt{24} - \\sqrt{6} = 4\\sqrt{6} - \\sqrt{6} = 3\\sqrt{6}$答案:$(\\sqrt{2} + \\sqrt{3})^2 = 2 + 2\\sqrt{2}\\sqrt{3} + 3 = 5 +2\\sqrt{6}$64. $(\\sqrt{2} - \\sqrt{3})^2$答案:$(\\sqrt{2} - \\sqrt{3})^2 = 2 - 2\\sqrt{2}\\sqrt{3} + 3 = 5 - 2\\sqrt{6}$65. $(\\sqrt{2} + \\sqrt{3})(\\sqrt{2} - \\sqrt{3})$答案:$(\\sqrt{2} + \\sqrt{3})(\\sqrt{2} - \\sqrt{3}) = 2 - 3 = -1$66. $(\\sqrt{5} + \\sqrt{6})(\\sqrt{5} - \\sqrt{6})$答案:$(\\sqrt{5} + \\sqrt{6})(\\sqrt{5} - \\sqrt{6}) = 5 - 6 = -1$67. $3\\sqrt{2}(\\sqrt{2} - \\sqrt{3})$答案:$3\\sqrt{2}(\\sqrt{2} - \\sqrt{3}) = 3\\sqrt{2} \\cdot \\sqrt{2} -3\\sqrt{2} \\cdot \\sqrt{3} = 6 - 3\\sqrt{6}$68. $(\\sqrt{2}\\sqrt{5})(\\sqrt{3}\\sqrt{6})$答案:$(\\sqrt{2}\\sqrt{5})(\\sqrt{3}\\sqrt{6}) = \\sqrt{2\\cdot 5} \\cdot \\sqrt{3\\cdot 6} = \\sqrt{10} \\cdot \\sqrt{18} = \\sqrt{180}$69. $\\frac{\\sqrt{8}}{\\sqrt{2}}$答案:$\\frac{\\sqrt{8}}{\\sqrt{2}} = \\sqrt{4} = 2$70. $\\frac{\\sqrt{15}}{\\sqrt{5}}$答案:$\\frac{\\sqrt{15}}{\\sqrt{5}} = \\sqrt{3}$71. $\\frac{\\sqrt{18}}{\\sqrt{6}}$答案:$\\frac{\\sqrt{18}}{\\sqrt{6}} = \\sqrt{3}$72. $\\frac{\\sqrt{50}}{\\sqrt{2}}$答案:$\\frac{\\sqrt{50}}{\\sqrt{2}} = \\sqrt{25} = 5$73. $\\frac{\\sqrt{35}}{\\sqrt{5}}$答案:$\\frac{\\sqrt{35}}{\\sqrt{5}} = \\sqrt{7}$74. $\\frac{\\sqrt{40}}{\\sqrt{8}}$答案:$\\frac{\\sqrt{40}}{\\sqrt{8}} = \\sqrt{5}$75. $\\frac{\\sqrt{72}}{\\sqrt{18}}$答案:$\\frac{\\sqrt{72}}{\\sqrt{18}} = \\sqrt{4} = 2$第三部分:困难题(共25题)76. $\\sqrt{2} \\cdot \\sqrt{3} + \\sqrt{6}$答案:$\\sqrt{2} \\cdot \\sqrt{3} + \\sqrt{6} = \\sqrt{6} + \\sqrt{6} = 2\\sqrt{6}$答案:$\\sqrt{7} \\cdot \\sqrt{11} - \\sqrt{77} = \\sqrt{7\\cdot11} - \\sqrt{77} = \\sqrt{77} - \\sqrt{77} = 0$78. $(\\sqrt{3} + \\sqrt{5})^2 - (\\sqrt{3} - \\sqrt{5})^2$答案:$(\\sqrt{3} + \\sqrt{5})^2 - (\\sqrt{3} - \\sqrt{5})^2 =4\\sqrt{3}\\sqrt{5} = 4\\sqrt{15}$79. $(\\sqrt{2} + \\sqrt{5})^2 - (\\sqrt{2} - \\sqrt{5})^2$答案:$(\\sqrt{2} + \\sqrt{5})^2 - (\\sqrt{2} - \\sqrt{5})^2 =4\\sqrt{2}\\sqrt{5} = 4\\sqrt{10}$80. $\\sqrt{2\\sqrt{2}}$答案:$\\sqrt{2\\sqrt{2}} = \\sqrt{\\sqrt{2^2}\\sqrt{2}} =\\sqrt{\\sqrt{4}\\sqrt{2}} = \\sqrt{2}\\sqrt{2} = 2$81. $\\sqrt{3\\sqrt{3}}$答案:$\\sqrt{3\\sqrt{3}} = \\sqrt{\\sqrt{3^2}\\sqrt{3}} =\\sqrt{\\sqrt{9}\\sqrt{3}} = \\sqrt{3}\\sqrt{3} = 3$82. $\\sqrt{5\\sqrt{5}}$答案:$\\sqrt{5\\sqrt{5}} = \\sqrt{\\sqrt{5^2}\\sqrt{5}} =\\sqrt{\\sqrt{25}\\sqrt{5}} = \\sqrt{5}\\sqrt{5} = 5$答案:$(\\sqrt{5} + \\sqrt{3})^2 + 2\\sqrt{15} = 5 + 3 + 2\\sqrt{15} = 8 + 2\\sqrt{15}$84. $(\\sqrt{2} - \\sqrt{3})^2 + 2\\sqrt{6}$答案:$(\\sqrt{2} - \\sqrt{3})^2 + 2\\sqrt{6} = 2 - 2\\sqrt{2}\\sqrt{3} + 3 + 2\\sqrt{6} = 5 + 2\\sqrt{6}$85. $3\\sqrt{2} - \\sqrt{8}$答案:$3\\sqrt{2} - \\sqrt{8} = 3\\sqrt{2} - 2\\sqrt{2} = \\sqrt{2}$86. $2\\sqrt{3} + \\sqrt{12}$答案:$2\\sqrt{3} + \\sqrt{12} = 2\\sqrt{3} + 2\\sqrt{3} = 4\\sqrt{3}$87. $\\sqrt{8} + \\sqrt{72}$答案:$\\sqrt{8} + \\sqrt{72} = 2\\sqrt{2} + 6\\sqrt{2} = 8\\sqrt{2}$88. $\\sqrt{5}\\sqrt{10} - \\sqrt{10}$答案:$\\sqrt{5}\\sqrt{10} - \\sqrt{10} = \\sqrt{5\\cdot10} - \\sqrt{10} = \\sqrt{50} - \\sqrt{10} = 5\\sqrt{2} - \\sqrt{10}$89. $\\sqrt{3}\\sqrt{6} + \\sqrt{18}$答案:$\\sqrt{3}\\sqrt{6} + \\sqrt{18} = \\sqrt{3\\cdot6} + \\sqrt{18} =\\sqrt{18} + \\sqrt{18} = 2\\sqrt{18} = 6\\sqrt{2}$90. $\\sqrt{16} - \\sqrt{32}$答案:$\\sqrt{16} - \\sqrt{32} = 4 - 4\\sqrt{2} = 4(1 - \\sqrt{2})$91. $\\sqrt{12} - \\sqrt{20} + \\sqrt{5}$答案:$\\sqrt{12} - \\sqrt{20} + \\sqrt{5} = 2\\sqrt{3} - 2\\sqrt{5} + \\sqrt{5} = 2\\sqrt{3} - \\sqrt{5}$92. $\\sqrt{7}\\sqrt{35} - \\sqrt{7}$答案:$\\sqrt{7}\\sqrt{35} - \\sqrt{7} = \\sqrt{7\\cdot35} - \\sqrt{7} =\\sqrt{245} - \\sqrt{7}$93. $\\sqrt{50} + \\sqrt{200} - \\sqrt{8}$答案:$\\sqrt{50} + \\sqrt{200} - \\sqrt{8} = 5 + 10\\sqrt{2} - 2\\sqrt{2} = 5 + 8\\sqrt{2}$94. $5\\sqrt{2} - 2\\sqrt{18} + \\sqrt{32}$答案:$5\\sqrt{2} - 2\\sqrt{18} + \\sqrt{32} = 5\\sqrt{2} - 2\\cdot3\\sqrt{2} + 4\\sqrt{2} = 9\\sqrt{2}$95. $\\sqrt{72} - \\sqrt{18} + \\sqrt{32} - \\sqrt{8}$答案:$\\sqrt{72} - \\sqrt{18} + \\sqrt{32} - \\sqrt{8} = 6\\sqrt{2} -3\\sqrt{2} + 4\\sqrt{2} - 2\\sqrt{2} = 5\\sqrt{2}$96. $\\sqrt{3}(\\sqrt{15} - \\sqrt{5})$答案:$\\sqrt{3}(\\sqrt{15} - \\sqrt{5}) = \\sqrt{3}\\sqrt{15} -\\sqrt{3}\\sqrt{5} = \\sqrt{45} - \\sqrt{15} = 3\\sqrt{5} - \\sqrt{15}$97. $\\sqrt{2}(\\sqrt{16} - \\sqrt{8})$答案:$\\sqrt{2}(\\sqrt{16} - \\sqrt{8}) = \\sqrt{2}\\cdot4\\sqrt{2} - \\sqrt{2}\\cdot2\\sqrt{2} = 8 - 4\\sqrt{2} = 4(2 - \\sqrt{2})$98. $\\sqrt{5}(\\sqrt{12} + \\sqrt{3})$答案:$\\sqrt{5}(\\sqrt{12} + \\sqrt{3}) = \\sqrt{5}\\cdot2\\sqrt{3} + \\sqrt{5}\\sqrt{3} = 2\\sqrt{15} + \\sqrt{15} = 3\\sqrt{15}$99. $\\sqrt{7}(\\sqrt{7} + \\sqrt{11})$答案:$\\sqrt{7}(\\sqrt{7} + \\sqrt{11}) = \\sqrt{7}\\cdot\\sqrt{7} + \\sqrt{7}\\sqrt{11} = 7 + \\sqrt{77}$100. $\\sqrt{8}(\\sqrt{6} - \\sqrt{2})$答案:$\\sqrt{8}(\\sqrt{6} - \\sqrt{2}) = \\sqrt{8}\\cdot2\\sqrt{2} - \\sqrt{8}\\cdot\\sqrt{2} = 4\\sqrt{2} - 2\\sqrt{2} = 2\\sqrt{2}$结束语本文共提供了100道二次根式题目及其答案。
二次根式练习10套(附答案)
![二次根式练习10套(附答案)](https://img.taocdn.com/s3/m/8700ab35a300a6c30c229f97.png)
二次根式练习01一、填空题1、下列和数1415926.3)1( .3.0)2(722)3( 2)4( 38)5(-2)6(π...3030030003.0)7(其中无理数有________,有理数有________(填序号) 2、94的平方根________,216.0的立方根________。
3、16的平方根________,64的立方根________。
4、算术平方根等于它本身的数有________,立方根等于本身的数有________。
5、若2562=x ,则=x ________,若2163-=x ,则=x ________。
6、已知ABC Rt ∆两边为3,4,则第三边长________。
7、若三角形三边之比为3:4:5,周长为24,则三角形面积________。
8、已知三角形三边长n n n n n n ,122,22,1222++++为正整数,则此三角形是________三角形。
9、如果0)6(42=++-y x ,则=+y x ________。
10、如果12-a 和a -5是一个数m 的平方根,则.__________,==m a11、三角形三边分别为8,15,17,那么最长边上的高为________。
12、直角三角形三角形两直角边长为3和4,三角形内一点到各边距离相等,那么这个距离为________。
二、选择题13、下列几组数中不能作为直角三角形三边长度的是( )A. 25,24,6===c b aB. 5.2,2,5.1===c b aC.45,2,32===c b a D. 17,8,15===c b a14、小强量得家里彩电荧屏的长为cm 58,宽为cm 46,则这台电视机尺寸是( )A. 9英寸(cm 23)B. 21英寸(cm 54)C. 29英寸(cm 74)D .34英寸(cm 87)15、等腰三角形腰长cm 10,底边cm 16,则面积( )A.296cmB. 248cmC. 224cmD. 232cm16、三角形三边c b a ,,满足ab c b a 2)(22+=+,则这个三角形是( )A. 锐角三角形B. 钝角三角形C. 直角三角形D. 等腰三角形17、2)6(-的平方根是( )A .6-B .36C. ±6D. 6±18、下列命题正确的个数有:a a a a ==233)2(,)1((3)无限小数都是无理数(4)有限小数都是有理数(5)实数分为正实数和岁实数两类( ) A .1个B. 2个C .3个D.4个19、x 是2)9(-的平方根,y 是64的立方根,则=+y x ( )A. 3B. 7C.3,7D. 1,720、直角三角形边长度为5,12,则斜边上的高( ) A. 6B. 8C.1318 D.1360 21、直角三角形边长为b a ,,斜边上高为h ,则下列各式总能成立的是( )A. 2h ab =B. 2222h b a =+C.h b a 111=+ D.222111hb a =+ 22、如图一直角三角形纸片,两直角边cm BC cm AC 8,6==,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A.cm 2B.cm 3C.cm 4D.cm 5三、计算题23、求下列各式中x 的值:04916)1(2=-x25)1)(2(2=-x8)2)(3(3-=x27)3()4(3=--x24、用计算器计算:(结果保留3个有效数字)15)1(315)2(π-6)3( 2332)4(-四、作图题25、在数轴上画出8-的点。
二次根式200题
![二次根式200题](https://img.taocdn.com/s3/m/bfa46d781eb91a37f1115cff.png)
二次根式200题(含解析)1. 计算:2.先分解因式,再求值:b2-2b+1-a2,其中a=-3,b=+4.3.已知,求代数式(x+1)2-4(x+1)+4的值.4.先化简,再求值:.5.(1)计算:;(2)化简,求值:,其中x=-1.6.先化简、再求值:+,其中x=,y=.7.计算:(1)(-2)2+3×(-2)-()-2;(2)已知x=-1,求x2+3x-1的值.8.先化简,再求值:,其中.9.已知a=2+,b=2-,试求的值.10.先化简,再求值:,其中a=+1,b=.11.先化简,再求值:,其中,.12.先化简,再求值:,其中a=-1.13.先化简,再求值:(x+1)2-2x+1,其中x=.14.化简,将代入求值.15.已知:x=+1,y=-1,求下列各式的值.(1)x2+2xy+y2;(2)x2-y2.16.先化简,再求值:,其中.17.先化简,再求值:,其中.18.求代数式的值:,其中x=2+.19.已知a为实数,求代数式的值.20.已知:a=-1,求的值.21.已知x=1+,求代数式的值.22.先化简,再求值:,其中x=1+,y=1-.23.有这样一道题:计算-x2(x>2)的值,其中x=1005,某同学把“x=1 005”错抄成“x=1 050”,但他的计算结果是正确的,请回答这是怎么回事?试说明理由.24.已知:x=,y=-1,求x2+2y2-xy的值.25.已知实数x、y、a满足:,试问长度分别为x、y、a的三条线段能否组成一个三角形?如果能,请求出该三角形的面积;如果不能,请说明理由.26.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.27.(1)计算28.(2)解不等式组.29.已知a=+2,b=-2,则的值为()30.已知a=2,则代数式的值等于()31.已知x=,则代数式的值为()32.已知x=,则•(1+)的值是()33.若,则的值为()34.已知,则的值为()35.如果最简二次根式与是同类二次根式,则a= .36.若最简根式与是同类二次根式,则ab= .37.计算:①= ;②= .38.化简-= .39.化简-的结果是.40.计算:= .41.计算:+= .42.化简:= .43.化简:-+= .44.计算:= .45.先化简-(-),再求得它的近似值为(精确到0.01,≈1.414,≈1.732).46.化简:的结果为.47.计算:= .48.化简:= .49.化简:+(5-)= .50.计算:= .51.计算:= .52.分解因式:a2-a= ;化简:= ;计算:(-2a)•(a3)= .53.若x=,y=,则x+y的值为.54.计算:= .55.化简:= .56.若x≥0,= .57.当m<3时,=58.计算:-(-3)= ;如图所示,化简= .59.实数a在数轴上的位置如图所示,则化简|a-2|+的结果为.60.已知a<2,则= .61.当x>2时,化简= .62.计算:+|-2|+(2-π)063.计算:.64.计算:-(-2009)0+()-1+|-1|.65.计算:66.计算:(π-1)0++-2.67.计算:.68.计算:.69.计算:70.计算:.71.不使用计算器,计算:.72.计算:73.计算:.74.计算:.75.计算:.76.计算:77.不使用计算器,计算:78.计算:(-2)2-()-1×+(1-)0.79.计算:(-1)-1--(2-tan50°)0.80.计算:(1+)-()0.81.计算:.82.(1)计算:+-;(2)先化简,再求值:(a+b)(a-b)+a(2b-a),其中a=1.5,b=2.83.(1)计算:;(2)化简:.84.计算:|-|+(-2)2+(3.14-π)085.计算:= .86.化简二次根式:= .87.若a=,b=-2,则a+b= .88.化简:= .89.计算:+-= .90.计算2-(-1)= ,-= ,(a-1)(a+1)=91.计算:+= .92.计算:= .93.如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A⇒B⇒C所走的路程为m.94.计算:-(cos30°)095.计算:.96.计算:.97.计算:98.计算:.99.若a=,b=-2,则a+b= .100.化简:= .101.计算:+-= .102.计算2-(-1)= ,-= ,(a-1)(a+1)= 103.计算:+= .104.计算:= .105.计算:×-= .106.计算:= .107.计算:= .108.定义运算“@”的运算法则为:x@y=,则(2@6)@8= .109.化简:= .110.化简:= .111.当x=时,代数式x2-3x+3的值是.112.已知x=,则的值等于.113.如图,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是.(结果保留根号)114.计算:-(cos30°)0115.已知x=+1,求x2-2x-3的值.116.先化简,再求值,其中a=,b=.117.计算:.118.计算:.119.计算:120.计算:.121.计算:.122.计算:(2-)(2+)+(-1)2010.123.化简:.124.化简或解方程组:(1)(2).125.(1)计算;(2)分解因式(x+2)(x+4)+x2-4.126.化简:(1);127.计算:128.先分解因式,再求值:b2-2b+1-a2,其中a=-3,b=+4.129.先化简,再求值:,其中x=-2.130.先化简,再求值:,其中x=-1.131.先化简,再求值:,其中x=.132.先化简,再求值:,其中a=+1 133.化简求值:,其中x=3-1,y=-2+1.134.已知m=,先化简再求值:.135.先化简,再求值:,其中x=.136.已知a=,求代数式的值.137.化简求值:,其中a=.138.已知x=2,y=,求的值.139.先化简,再求值:,其中x=-2.140.解不等式:+1≥x,并将解集表示在数轴上.141.先化简,再求值:,其中a=b.142.化简求值:,其中a=.143.先化简,再求值:,其中a=,b=.144.先化简,再求值:,其中a=4+.145.先化简,再求值,其中x=.146.先化简,再求值,其中x=.147.化简求值:,其中x=-2.148.先化简,再求值:,其中x=-1.149.先化简,再求值:÷x,其中x=.150.先化简后求值:,其中x=2.151.化简并求值:,其中x=+1.152.已知x=-1,求的值.153.先化简,然后给x赋一个你喜欢的无理数,再求化简后代数式的值.154.计算:(-1)(+1)-(sin35°-)0+(-1)2008-(-2)-2 155.计算:(+3)(3-)156.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:==;(一)=(二)==(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:=(四)(1)请用不同的方法化简.①参照(三)式得=();②参照(四)式得=()(2)化简:.157.计算:= .158.实数a,b在数轴上的位置如图所示,化简|a+b|+= .159.实数a,b在数轴上的位置如图所示,化简|a-b|+= .160.化简:= .161.若x≥0,= .162.当m<3时,=163.计算:-(-3)= ;如图所示,化简= .164.实数a在数轴上的位置如图所示,则化简|a-2|+的结果为.165.已知a<2,则= .166.当x>2时,化简= .167.计算:+|-2|+(2-π)0168.计算:.169.计算:-(-2009)0+()-1+|-1|.170.计算:171.计算:(π-1)0++-2.172.计算:.173.计算:.174.计算:175.计算:.176.计算:.177.计算:178.计算:.179.计算:.180.计算:.181.计算:182.计算:183.计算:(-2)2-()-1×+(1-)0.184.计算:(-1)-1--(2-tan50°)0.185.计算:(1+)-()0.186.计算:.187.计算:188.计算:.189.已知:x=+1,y=-1,求下列各式的值.(1)x2+2xy+y2;(2)x2-y2.190.先化简,再求值:,其中.191.已知x=1+,求代数式的值.192.先化简,再求值:,其中x=1+,y=1-.193.对于题目“化简并求值:+,其中a=”,甲、乙两人的解答不同.甲的解答:+=+=+-a=-a=;乙的解答:+=+=+a-=a=.请你判断谁的答案是错误的,为什么?194.化简求值:已知x=,y=,求x2-y2的值.195.先化简再求值:,其中.196.已知:,,求代数式x2-xy+y2值.197.先化简,再求值:,其中.198. 先化简,后求值:,其中x=-2.199. .200.某公路规定行驶汽车的速度每小时不得超过70千米,当发生交通事故时,交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,所用的经验公式是v=16,其中v表示车速(单位:千米/小时),d表示刹车后车轮滑过的距离(单位:米),f表示摩擦系数.经测量,d=20米,f=1.25,请你帮助判断一下,肇事汽车当时的速度是否超出了规定的速度?解析:1.解:原式=2+(2+)-(7+4)=--5.2.当a=-3,b=+4时,原式=×(+6)=3+6.3.解:原式=(x+1-2)2=(x-1)2,当时,原式==3.4.解:原式=-===.当时,=.5.解:(1)原式=4--4+2=;(2)原式===x+1,当x=-1时,原式=.6.解:原式=-===x-y,当x=,y=时,原式=()-()=-=2.(2)方法一:当x=-1时,x2+3x-1=(-1)2+3(-1)-1=2-2+1+3-3-1=-1;方法二:因为x=-1,所以x+1=,所以(x+1)2=()2即x2+2x+1=2,所以x2+2x=1所以x2+3x-1=x2+2x+x-1=1+x-1=-1.8.解:原式====-x-4,当时,原式===.9.解:∵a=2+,b=2-,∴a+b=4,a-b=2,ab=1.而=,∴===8.10.原式==,∵∴.11.解:===,把,代入上式,得原式=.12.解:====;当a=-1时,原式====-(-1)=1.13.解:原式=x2+2x+1-2x+1=x2+2;当.14.解:原式=•=x-3;当x=3-,原式=3--3=.15.解:(1)当x=+1,y=-1时,原式=(x+y)2=(+1+-1)2=12;(2)当x=+1,y=-1时,原式=(x+y)(x-y)=(+1+-1)(+1-+1)=4.16.解:===x-2;当时,原式=.17.解:原式=a2-3-a2+6a=6a-3,当a=时,原式=6+3-3=6.18.解:原式=+=+=;当x=2+时,原式==.19.解:∵-a2≥0∴a2≤0而a2≥0∴a=0∴原式=.20.解:原式=,当a=-1时,原式=.21.解:原式=-==,当x=1+时,原式=.22.解:原式===;当x=1+,y=1-时,原式=.23.解:原式==+-x2=-x2=-2.∵化简结果与x的值无关,∴该同学虽然抄错了x的值,计算结果却是正确的.24.解:当时,x2+2y2-xy==.25.解:根据二次根式的意义,得,解得x+y=8,∴+=0,根据非负数的意义,得解得x=3,y=5,a=4,∴可以组成三角形,且为直角三角形,面积为6.26.解:(1)S=,=;P=(5+7+8)=10,又S=;(2)=(-)=,=(c+a-b)(c-a+b)(a+b+c)(a+b-c),=(2p-2a)(2p-2b)•2p•(2p-2c),=p(p-a)(p-b)(p-c),∴=.(说明:若在整个推导过程中,始终带根号运算当然也正确)27.解:27.(1)原式=3--+1=3--+1=+1;28.(2)由①得x+1>3-x,即x>1;由②得4x+16<3x+18,即x<2;不等式组的解集为1<x<2.29.解:原式=====5.30.解:当a=2时,=2-=2-=2-3-2=-3.31.解:=.32.当x=时,=-1,∴原式=1-()=2-.33.解:原式==•-•=a-b,34.解:∵a==,b==,∴==5.35.解:∵最简二次根式与是同类二次根式,∴3a-8=17-2a,解得:a=5.36.解:∵最简根式与是同类二次根式,∴,解得:,∴ab=1.37.解:①×===4;②-=2-=.38.解:原式=2-3=-.39.解:原式=2-=.故答案为:.40.解:原式=3-4+=0.41.解:原式=2+=3.42.解:原式=4-=3.43.(2010•聊城)化简:-+= .44.解:原式=2-=.45.解:原式=-(-)=-(-)=-+=3≈3×1.732≈5.196≈5.2046.解:原式=-20=-14.47.解:原式=2-3=-.48.解:=5.49.解:原式=+5-=5.51.解:=5-2=3.52.解:a2-a=a(a-1);5-2=(5-2)=3;(-2a)•(a3)=-a4.53.解:x+y=+=()=×2 =.54.解:原式=3+=4.55.解:原式==2.56.解:∵x≥0,∴原式=•=3.57.解:∵m<3,∴m-3<0,∴=|m-3|=3-m.58.解:-(-3)=3;59.解:由图可得,1<a<2,则a-2<0,a-1>0,化简|a-2|+=2-a+a-1=1.故答案为:1.60.解:因为a<2,所以a-2<0,故=|a-2|=2-a.61.解:∵x>2∴原式==|x-2|=x-2.62.解:原式==.63.解:原式=2-3-+1=-2.65.解:原式==.66.解:原式=1+2+(-5)-2=3+3-5-2=-2.67. 解:原式=68.解:原式=-9+8-+1+3=2.69.解:=.70.解:原式=1-2+2=1.71.解:原式=1+3++1+-1=4+2.72.解:原式=+2-(2-1)-1=+2-2+1-1=.73.解:原式=1+(-1)-×2=1+-1-=0.74.解:原式==8.75.解:原式=2×(+1)-2-1=2-1=1.76.解:原式=-2+3=2(-1)-2+3=1.77.解:原式=3×2+-+1=3-1.78.解:原式=4-+1=3.79.解:原式===.80.解:原式=+2-1=+1.81.解:原式=5+4-3-2-1=3.82. 解:(1)原式=2+1-2=2-1,(2)原式=a2-b2+2ab-a2=-b2+2ab当a=1.5,b=2时,原式=-22+2×1.5×2=2.故答案为2-1、2.83.解:(1)原式=2+1-(-)=3-1=2;(2)原式===x+9.84.解:原式=3+4+1=5+3.85.解:原式=3+=4.86.解:原式=2+3.87.解:a===2-,a+b=2-+-2=0.88.解:原式=-(-1)a=a.89.解:原式=+2-3=0.90.解:2-(-1)=2+1=3,-=-=,(a-1)(a+1)=a2-1.91.解:原式=+2=3.92.解:原式=6-=5.93.解:折线分为AB、BC两段,AB、BC分别看作直角三角形斜边,由勾股定理得AB=BC==米.小明沿图中所示的折线从A⇒B⇒C所走的路程为+=米.94.解:原式===.95.解:原式=.96.解:==.97.解:原式===-1.98.解:原式===.99.解:a===2-,a+b=2-+-2=0.100.解:原式=-(-1)a=a.101.解:原式=+2-3=0.102.解:2-(-1)=2+1=3,-=-=,(a-1)(a+1)=a2-1.103.解:原式=+2=3.104.解:原式=6-=5.105.解:原式=-=3-=2.故答案为:2.106.解:=2-2+2=2.107.解:=(4)=×=.108.解:∵x@y=,∴(2@6)@8=@8=4@8==6,故答案为:6.109.解:=--2=-3+2=-3.110.解:=2+-2=-.111.解:由题意得:x2-3x+3=()2-3+3=2.112.解:∵x===+2,=-2,∴x-=(+2)-(-2)=4.故本题答案为:4.113.解:矩形内阴影部分的面积是(+)•-2-6=2+6-2-6=2-2.114.解:原式===.115.解:原式=(x-3)(x+1),将代入上式得,原式==.116.解:=;因为a=,b=;所以原式=.117.解:原式=.118.解:==.119.解:原式===-1.120.解:原式===.121.原式=3+4-2-2+=5-2+2-2=3.122.解:原式=4-3+1×1-2=1+1-2=0.123.解:原式==2.124.解:(1)原式=(3-2)×+=+=;(2)由①-②得:y=3,∴把y=3代入①得:x=-2,∴方程组的解为.125.解:(1)原式===2;(2)原式=(x+2)(x+4)+(x+2)(x-2)=(x+2)[(x+4)+(x-2)]=(x+2)(2x+2)=2(x+2)(x+1).126.解:(1)原式=3-3-1=-1;127.解:原式=2+(2+)-(7+4)=--5.128.解:b2-2b+1-a2=(b-1)2-a2=(b-1+a)(b-1-a),当a=-3,b=+4时,原式=×(+6)=3+6.129.解:原式=;当x=-2时,原式=.130.解:原式==,当x=-1时,原式=.131.解:原式===,当x=时,原式==1+.132.解:原式=,当a=+1时,原式=.133.解:原式==(2分)=,当x=3-1,y=-2+1时,原式==.134.解:原式====m+2;因为m==,所以,原式==.135.解:原式====,当x=时,原式==+1.136.解:原式=×=,当a=时,原式==.137.解:原式====当a=时,原式==.138.解:原式==;当x=2,时,原式==.139.解:原式==,当x=-2时,原式==.140.解:(1)去分母,得x-1+2≥2x移项,得x-2x≥1-2,解得x≤1;在数轴上表示为:141.解:==,当a=b时,原式====.142.解:原式===-;当a=时,原式=-=1减.143.解:原式=-•=-==,当a=,b=时,原式==.144.解:原式==;当a=4+时,原式==2-.145.解:原式===当x=时,原式==6-4.146.解:==;当x=时,原式==2+2.147.解:原式===;当x=x=-2时,原式==.148.解:原式===;当x=-1时,原式==2+.149.原式=-×==,当x==时,原式==1+.150.解:原式=÷=-=-;当x=2时,原式=-=2-3.151.解:原式===,当x=+1时,原式=.152.解:原式=,当x=-1时,原式=.153.解:原式===;不妨取x=+3,原式=.154.解:原式=3-1-1+1-.155.解:(+3)(3-)=32-()2=9-6=3.156.解:(1)=,=;(2)原式=+…+=++…+=.157.解:原式==2.故答案为:2158.解:由图可知:a>0,b<0,|a|>|b|,∴a+b<0,b-a>0,∴|a+b|+=-(a+b)+(b-a)=-a-b+b-a=-2a.159.解:由图可得,a<0,b>0且|a|>|b|,∴a-b<0,a+b<0∴|a-b|+=b-a-a-b=-2a.160.解:原式==2.161.解:∵x≥0,∴原式=•=3.162.解:∵m<3,∴m-3<0,∴=|m-3|=3-m.163.解:-(-3)=3;由数轴可知a<0,所以=-a.164.解:由图可得,1<a<2,则a-2<0,a-1>0,化简|a-2|+=2-a+a-1=1.故答案为:1.165.解:因为a<2,所以a-2<0,故=|a-2|=2-a.166.解:∵x>2∴原式==|x-2|=x-2.168.解:原式=2-3-+1=-2.169.解:原式=2-1+2+-1=3.170.解:原式==.171.解:原式=1+2+(-5)-2=3+3-5-2=-2.172.解:原式===.173.解:原式=-9+8-+1+3=2.174.解:=.175.解:原式=1-2+2=1.176.解:原式=1+3++1+-1=4+2.177.解:原式=+2-(2-1)-1=+2-2+1-1=.178.解:原式=1+(-1)-×2=1+-1-=0.179.解:原式==8180.解:原式=2×(+1)-2-1=2-1=1.181.解:原式=-2+3=2(-1)-2+3=1.182.解:原式=3×2+-+1=3-1.184.解:原式===.185.解:原式=+2-1=+1.186.解:原式=5+4-3-2-1=3.187.解:原式=5-6+9+11-9=16-6.188.解:原式=(20-18+4)÷=20-18+4=2+4.189.解:(1)当x=+1,y=-1时,原式=(x+y)2=(+1+-1)2=12;(2)当x=+1,y=-1时,原式=(x+y)(x-y)=(+1+-1)(+1-+1)=4.190.解:原式=a 2-3-a2+6a=6a-3,当a=时,原式=6+3-3=6.191.解:原式=-==,当x=1+时,原式=.192.解:原式===;当x=1+,y=1-时,原式=.193.解:甲的解答:a=时,-a=5-=4>0,所以=-a,正确;乙的解答:因为a=时,a-=-5=-4<0,所以≠a-,错误;因此,我们可以判断乙的解答是错误的.194.解:∵x==2-,y==2+,∴原式=(2-)2-(2+)2=[(2-)+(2+)][(2-)-(2+)]=4×[-2]=.195.解:原式=====,当x=时,原式=.196.解:∵,,∴xy=×2=,x-y=∴原式=(x-y)2+xy=5+=.197.解:原式=6-4-6=-,当时,原式=-=-.198. 原式==当x=时,原式==1-.199. 原式=•-1=a+1-1=a.200.解:v=16=16×=16×5=80>70.肇事汽车当时的速度超出了规定的速度.。
二次根式计算专题训练(附答案)
![二次根式计算专题训练(附答案)](https://img.taocdn.com/s3/m/0b2a2632f78a6529657d530f.png)
二次根式计算专题训练一、解答题(共30小题)1.计算:(1)+;(2)(+)+(﹣).2.计算:(1)(π﹣3.14)0+|﹣2|﹣+()-2.(2)﹣4﹣(﹣).(3)(x﹣3)(3﹣x)﹣(x﹣2)2.3.计算化简:(1)++(2)2﹣6+3.4.计算(1)+﹣(2)÷×.5.计算:(1)×+3×2(2)2﹣6+3.6.计算:(1)()2﹣20+|﹣| (2)(﹣)×(3)2﹣3+;(4)(7+4)(2﹣)2+(2+)(2﹣)7.计算(1)•(a≥0)(2)÷(3)+﹣﹣(4)(3+)(﹣)8.计算::(1)+﹣(2)3+(﹣)+÷.9.计算(1)﹣4+÷(2)(1﹣)(1+)+(1+)2.10.计算:(1)﹣4+(2)+2﹣(﹣)(3)(2+)(2﹣);(4)+﹣(﹣1)0.11.计算:(1)(3+﹣4)÷(2)+9﹣2x2•.12.计算:①4+﹣+4;②(7+4)(7﹣4)﹣(3﹣1)2.13.计算题(1)××(2)﹣+2(3)(﹣1﹣)(﹣+1)(4)÷(﹣)(5)÷﹣×+(6).14.已知:a=,b=,求a2+3ab+b2的值.15.已知x,y都是有理数,并且满足,求的值.16.化简:﹣a.17.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.18.计算:.19.已知y=+﹣4,计算x﹣y2的值.20.已知:a、b、c是△ABC的三边长,化简.21.已知1<x<5,化简:﹣|x﹣5|.22.观察下列等式:①==;②==;③==………回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.23.观察下面的变形规律:=,=,=,=,…解答下面的问题:(1)若n为正整数,请你猜想= ;(2)计算:(++…+)×()24.阅读下面的材料,并解答后面的问题:==﹣1==﹣;==﹣(1)观察上面的等式,请直接写出(n为正整数)的结果;(2)计算()()= ;(3)请利用上面的规律及解法计算:(+++…+)().25.计算:(1)6﹣2﹣3(2)4+﹣+4.26.计算(1)|﹣2|﹣+2(2)﹣×+.27.计算.28.计算(1)9+7﹣5+2(2)(2﹣1)(2+1)﹣(1﹣2)2.29.计算下列各题.(1)(﹣)×+3(2)﹣×.30.计算(1)9+7﹣5+2(2)(﹣1)(+1)﹣(1﹣2)2《二次根式计算专题训练》参考答案与试题解析一.解答题(共30小题)1.计算:(1)+= 2+5= 7;(2)(+)+(﹣ = 4+2+2﹣= 6+.2.计算:(1)(π﹣3.14)0+|﹣2|﹣+()﹣2 =1+2﹣﹣4+9=12﹣5;(2)﹣4﹣(﹣)= 2﹣4×﹣+2= +(3)(x﹣3)(3﹣x)﹣(x﹣2)2 =﹣x2+6x﹣9﹣(x2﹣4x+4)=﹣2x2+10x﹣133.计算化简:(1)++= 2+3+2= 5+2;(2)2﹣6+3= 2×2﹣6×+3×4= 144.计算(1)+﹣= 2+4﹣2= 6﹣2.(2)÷×= 2÷3×3= 2.5.计算:(1)×+3×2= 7+30= 37(2)2﹣6+3= 4﹣2+12= 146.计算:(1)()2﹣20+|﹣| = 3﹣1+=(2)(﹣)×=(3﹣)×= 24(3)2﹣3+= 4﹣12+5=﹣8+5(4)(7+4)(2﹣)2+(2+)(2﹣)=(2+)2(2﹣)2+(2+)(2﹣) = 1+1 = 27.计算(1)•(a≥0)= = 6a(2)÷= =(3)+﹣﹣= 2+3﹣2﹣4= 2﹣3(4)(3+)(﹣)= 3﹣3+2﹣5=﹣2﹣8.计算:(1)+﹣=+3﹣2=2;(2)3+(﹣)+÷=+﹣2+=.9.计算:(1)﹣4+÷=3﹣2+=3﹣2+2=3;(2)(1﹣)(1+)+(1+)2 =1﹣5+1+2+5 =2+2.10.计算:(1)﹣4+=3﹣2+=2;(2)+2﹣(﹣)=2+2﹣3+=3﹣;(3)(2+)(2﹣)=12﹣6 =6;(4)+﹣(﹣1)0 =+1+3﹣1 =4.11.计算:(1)(3+﹣4)÷=(9+﹣2)÷4 =8÷4=2;(2)+9﹣2x2•=4+3﹣2x2×=7﹣2=5.12.计算:①4+﹣+4=4+3﹣2+4=7+2;②(7+4)(7﹣4)﹣(3﹣1)2 =49﹣48﹣(45+1﹣6) =﹣45+6.13.计算题(1)××===2×3×5 =30;(2)﹣+2=×4﹣2+2×=2﹣2+=;(3)(﹣1﹣)(﹣+1)=﹣(1+)(1﹣)=﹣(1﹣5) =4;(4)÷(﹣)=2÷(﹣)=2÷=12;(5)÷﹣×+=4÷﹣+2=4+;(6)===.14.已知:a=,b=,求a2+3ab+b2的值.解:a==2+,b=2﹣,则a+b=4,ab=1,a2+3ab+b2=(a+b)2+ab =17.15.已知x,y都是有理数,并且满足,求的值.【分析】观察式子,需求出x,y的值,因此,将已知等式变形:,x,y都是有理数,可得,求解并使原式有意义即可.【解答】解:∵,∴.∵x,y都是有理数,∴x2+2y﹣17与y+4也是有理数,∴解得∵有意义的条件是x≥y,∴取x=5,y=﹣4,∴.【点评】此类问题求解,或是转换式子,求出各个未知数的值,然后代入求解.或是将所求式子转化为已知值的式子,然后整体代入求解.16.化简:﹣a.【分析】分别求出=﹣a,=﹣,代入合并即可.【解答】解:原式=﹣a+=(﹣a+1).【点评】本题考查了二次根式性质的应用当a≥0时,=a,当a≤0时,=﹣a.17.计算:(1)9+5﹣3= 9+10﹣12= 7;(2)2= 2×2×2×= ;(3)()2016(﹣)2015.=[(+)(﹣)]2015•(+)=(5﹣6)2015•(+)=﹣(+)=﹣﹣.18.计算:.解:原式=+()2﹣2+1﹣+=3+3﹣2+1﹣2+=4﹣.19.已知y=+﹣4,计算x﹣y2的值.【分析】根据二次根式有意义的条件可得:,解不等式组可得x的值,进而可求出y的值,然后代入x﹣y2求值即可.【解答】解:由题意得:,解得:x=,把x=代入y=+﹣4,得y=﹣4,当x=,y=﹣4时x﹣y2=﹣16=﹣14.20.已知:a、b、c是△ABC的三边长,化简.【解】解:∵a、b、c是△ABC的三边长,∴a+b>c,b+c>a,b+a>c,∴原式=|a+b+c|﹣|b+c﹣a|+|c﹣b﹣a|=a+b+c﹣(b+c﹣a)+(b+a﹣c)=a+b+c﹣b﹣c+a+b+a﹣c=3a+b﹣c.21.已知1<x<5,化简:﹣|x﹣5|.解:∵1<x<5,∴原式=|x﹣1|﹣|x﹣5| =(x﹣1)﹣(5﹣x)= 2x﹣6.22.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.【分析】(1)根据观察,可发现规律;=,根据规律,可得答案;(2)根据二次根式的性质,分子分母都乘以分母两个数的差,可分母有理化.【解答】解:(1)原式==;)(2)原式=+++…+=(﹣1).23.观察下面的变形规律:=,=,=,=,…解答下面的问题:(1)若n为正整数,请你猜想= ﹣;(2)计算:(++…+)×()解:原式=[(﹣1)+(﹣)+(﹣)+…+(﹣)](+1)=(﹣1)(+1)=()2﹣12 = 2016﹣1 = 2015.24.阅读下面的材料,并解答后面的问题:==﹣1==﹣;==﹣(1)观察上面的等式,请直接写出(n为正整数)的结果﹣;(2)计算()()= 1 ;(3)请利用上面的规律及解法计算:(+++…+)().=(﹣1+﹣+…+﹣)()=(﹣1)(+1)=2017﹣1 =2016.25.计算:(1)6﹣2﹣3= 6﹣5= 6﹣;(2)4+﹣+4= 4+3﹣2+4= 7+2.26.计算(1)|﹣2|﹣+2= 2﹣﹣2+2= ;(2)﹣×+= ﹣×5+= ﹣1+=﹣.27.计算.=(10﹣6+4)÷=(10﹣6+4)÷=(40﹣18+8)÷=30÷=15.28.计算(1)9+7﹣5+2= 9+14﹣20+= ;(2)(2﹣1)(2+1)﹣(1﹣2)2 = 12﹣1﹣1+4﹣12 = 4﹣2.29.计算下列各题.(1)(﹣)×+3= ﹣+=6﹣6+=6﹣5;(2)﹣×= +1﹣= 2+1﹣2.30.计算(1)9+7﹣5+2= 9+14﹣20+= ;(2)(﹣1)(+1)﹣(1﹣2)2=3﹣1﹣(1+12﹣4)=2﹣13+4=﹣11+4.单纯的课本内容,并不能满足学生的需要,通过补充,达到内容的完善教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能。
八年级数学二次根式32道典型题(含答案和解析)
![八年级数学二次根式32道典型题(含答案和解析)](https://img.taocdn.com/s3/m/27d2430c0812a21614791711cc7931b765ce7bb9.png)
八年级数学二次根式32道典型题(含答案和解析)1.如果式子√x+1在实数范围内有意义,那么x的取值范围是.答案:x≥-1.解析:二次根式有意义的条件是根号内的式子不小于零,所以x+1≥0,即x≥-1. 考点:式——二次根式——二次根式的基础——二次根式有意义的条件.2.当x 时,√3x+2有意义..答案:x≥−23解析:由题意得:3x+2≥0.解得:x≥−2.3考点:式——二次根式——二次根式的基础——二次根式有意义的条件.3.已知化简√12−n的结果是正整数,则实数n的最大值为().A.12B.11C.8D.3答案:B.解析:当√12−n等于最小的正整数1时,n取最大值,则n=11.考点:式——二次根式.4.如果式子√x+3有意义,那么x的取值范围在数轴上表示出来,正确的是().答案:C.解析:如果式子√x+3有意义,则x+3≥0,即x≥-3,数轴表示为C图.考点:式——二次根式——二次根式的基础——二次根式有意义的条件.5.二次根式√3−x在实数范围内有意义,则x的取值范围是.答案:x≤3.解析:二次根式√3−x在实数范围内有意义,则需满足3-x≥0,即x≤3. 考点:式——二次根式——二次根式的基础——二次根式有意义的条件.6.下列等式成立的是().A.√32=±3B.√172−82=9C.(√−7)2=7D.√(−7)2=7答案:D.解析:√32=3,故A选项错误.√172−82=√225=15,故B选项错误.√−7无意义,故C选项错误.√(−7)2=7,故D选项正确.考点:式——二次根式——二次根式的基础——二次根式化简.7.若x<2,则化简√(x−2)2的结果是().A.2-xB.x-2C.x+2D.x-2√x+2答案:A.解析:∵x<2.∴x-2<0.∴√(x−2)2=|x−2|=2−x.考点:式——二次根式——二次根式的基础——二次根式化简.8.计算√(−2)2的结果是.答案:2.解析:√(−2)2=|−2|=2.考点:式——二次根式——二次根式的基础——二次根式化简.9.若a<1,化简√(a−1)2−1等于.答案:-a.解析:当a<1时,a-1<0.∴√(a−1)2−1=1-a-1=-a.考点:式——二次根式——二次根式的化简求值.10.已知x<1,那么化简√x2−2x+1的结果是().A.x-1B.1-xC.-x-1D.x+1 答案:B.解析:∵x<1.∴x-1<0.∴√x2−2x+1=√(x−1)2=|x−1|=1−x.考点:式——二次根式——二次根式的化简求值.11.结合数轴上的两点a、b,化简√a2−√(a−b)2的结果是.答案:b.解析:由数轴可知,b<0<a.∴a-b>0.∴√a2−√(a−b)2=a−a+b=b.考点:式——二次根式——二次根式的化简求值.12.下列二次根式中,是最简二次根式的是().A.√5abB.√4a2C.√8aD.√a2答案:A.解析:√5ab是最简二次根式,故选项A正确.√4a2=2|a|,不是最简二次根式,故选项B错误.√8a=2√2a,不是最简二次根式,故选项C错误.√a中含有分母,即不是最简二次根式,故选项D错误.2考点:式——二次根式——二次根式的基础——最简二次根式.13.下列各式中,最简二次根式是().A.√0.2B.√18C.√x2+1D.√x2答案:C.,不是最简二次根式,故选项A错误.解析:√0.2=√55√18=3√2,不是最简二次根式,故选项B错误.√x2=|x|,不是最简二次根式,故选项D错误.√x2+1是最简二次根式,故选项C正确.考点:式——二次根式——二次根式的基础——最简二次根式.14. 若m =√13,估计m 的值所在的范围是( ).A.0<m <1B.1<m <2C.2<m <3D.3<m <4 答案:D.解析:3=√9<√13<√16=4.所以3<m <4.考点:数——实数——估算无理数的大小.15. 已知a 、b 为两个连续的整数,且a <√28<b ,则a +b = . 答案:11.解析:∵52=25,62=36.∴a =5,b =6.∴a +b =11.考点:数——实数——估算无理数的大小.16. 已知:x 2−3x +1=0,求√x √x 的值.答案:√5.解析:∵x 2−3x +1=0. ∴x +1x =3.∴(√x √x )2=x +1x +2=5.∴√x √x =√5.考点:式——二次根式——二次根式的化简求值.17. 若实数a ,b 满足(a +√2)2+√b −4=0,则a 2b = .答案:12. 解析:(a +√2)2+√b −4=0.又(a +√2)2≥0,√b −4≥0.∴{a +√2=0√b −4=0. 即a =−√2,b =4.∴a 2b =12. 考点:数——有理数——非负数的性质:偶次方.式——二次根式——二次根式的基础——二次根式化简.18. 若实数x ,y 满足√x −2+(y +√2)2=0,则代数式y x 的值是 . 答案:2.解析:由题意得,x −2=0,y +√2=0.解得x =2,y =−√2.则y x =2.考点:数——有理数——非负数的性质:偶次方.式——二次根式——二次根式的基础——二次根式化简.19. 下列各式计算正确的是( ).A.√2+√3=√5B.4√3−3√3=1C.2√2×3√3=6√3D.√27÷√3=3 答案:D.解析:√2+√3无法计算,故A 错误.4√3−3√3=√3,故B 错误.2√2×3√3=6×3=18,故C 错误.√27÷√3=√273=√9=3,D 正确.考点:式——二次根式——二次根式的乘除法——二次根式的加减法.20. 下列计算正确的是( ).A.√a 2=aB.√a +√b =√a +bC.(√a)2=aD.√ab =√a ×√b 答案:C.解析:√a 2=±a ,所以A 错误.√a +√b 中a 和b 的值未知,故不能进行加减运算,所以B 错误. (√a)2=a ,所以C 正确.√ab =√|a |×√|b |,所以D 错误.考点:式——二次根式——二次根式的混合运算.21. 计算:13√27−√6×√8+√12.答案:−√3.解析:原式=13×3√3−4√3+2√3=−√3.考点:式——二次根式——二次根式的混合运算.22. 计算:(√2−√3)2−(√2+√3)(√2−√3). 答案:6−2√6.解析:原式=2−2√6+3−2+3=6−2√6. 考点:数——实数——实数的运算.23. 计算:√18−4√18−2(√2−1).答案:2.解析:原式=3√2−4×√24−2√2+2=3√2−√2−2√2+2=2.考点:式——二次根式——二次根式的加减法.24. 计算:(12)−2−(π−√7)0+|√3−2|+4×√32.答案:5+√3.解析:原式=4−1+2−√3+2√3=5+√3. 考点:数——实数——实数的运算.25. 计算:|2−√5|−√83+(−12)−2.答案:√5.解析:原式=(√5−2)−2+1(−12)2=√5−2−2+4=√5.考点:数——实数——实数的运算.26. 计算:(√3−√2)2−√3(√2−√3). 答案:8−3√6.解析:原式=3−2√6+2−(√6−3)=5−2√6−√6+3=8−3√6.考点:式——二次根式——二次根式的混合运算.27. 计算:√4−(π−3)0−(12)−1+|−3|.答案:2.解析:原式=2−1−2+3=2.考点:数——实数——实数的运算.28. 计算:(1−√3)0+|2−√3|−√12+√643.答案:7−3√3.解析:原式=1+2−√3−2√3+4=7−3√3.考点:数——实数——实数的运算.29.计算:(√2+1)×(√6−√3).答案:√3.解析:原式=√12−√6+√6−√3=√12−√3=2√3−√3=√3.考点:式——二次根式——二次根式的混合运算.30.计算:√27+√6×√8−6√13.答案:5√3.解析:原式=3√3+4√3−2√3=5√3.考点:式——二次根式——二次根式的加减法.31.计算:√9−√83+|−√2|−(√3−√2)0.答案:√2.解析:原式=3−2+√2−1=√2.考点:数——实数——实数的运算.32.计算:(π−3.14)0+|√3−2|−√48+(13)−2.答案:12−5√3.解析:原式=1+2−√3−4√3+9=12−5√3. 考点:数——实数——实数的运算.。
(完整版)二次根式混合计算练习(附答案)
![(完整版)二次根式混合计算练习(附答案)](https://img.taocdn.com/s3/m/50e59db7580216fc700afdf7.png)
(1)原式=1-1+2 +2-
=2+ ;
(2)原式=
= .
考点:实数的混合运算;2.二次根式的混合运算.
6. .
【解析】
试题分析:先进行二次根式的化简,财进行乘除运算,最后合并同类二次根式即可求出答案.
试题解析:原式=
.
考点: 实数的混合运算.
15.385
【解析】解:因为 ,
,
,
所以 .
16. .
【解析】
试题分析:先化成最简二次根式,再进行计算.
试题解析:
.
考点:二次根式化简.
17. .
【解析】
试题分析:先化成最简二次根式,再进行计算.
试题解析: .
考点:二次根式化简.
18.(1)22; (2)
【解析】
试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案.
=2+1- + =3-3+2=2
9.1+
【解析】
解:原式=4-(3-2 )+
=4-3+2 + =1+
10.(1) ;(2)11 -9 ;(3)-4-2 ;(4)8- .
【解析】(1)利用 =a(a≥0), = (a≥0,b≥0)化简;
(2)可以利用多项式乘法法则,结合上题提示计算;
(3)利用平方差公式;
点评:本题主要考查了二次根式的加减运算.首先把二次根式化为最简二次根式,然后再合并同类二次根式.
4.0
【解析】
试题分析:根据实数的运算法则进行计算即可救出答案.
试题解析:
=
=0
考点:实数的混合运算.
5.(1) 2+ ;(2) .
二次根式练习题50道(含答案)
![二次根式练习题50道(含答案)](https://img.taocdn.com/s3/m/1b93b2824128915f804d2b160b4e767f5acf80bb.png)
二次根式 50 题(含解析)1.计算:2.先分解因式,再求值:b2-2b+1-a2,其中a=-3,b=+4.3.已知,求代数式(x+1)2-4(x+1)+4的值.4.先化简,再求值:.5.(1)计算:;(2)化简,求值:,其中x=-1.6.先化简、再求值:+,其中x=,y=.7.计算:(1)(-2)2+3×(-2)-()-2;(2)已知x=-1,求x2+3x-1的值.8.先化简,再求值:,其中.9.已知a=2+,b=2-,试求的值.10.先化简,再求值:,其中a=+1,b=.11.先化简,再求值:,其中,.12.先化简,再求值:,其中a=-1.13.先化简,再求值:(x+1)2-2x+1,其中x=.14.化简,将代入求值.15.已知:x=+1,y=-1,求下列各式的值.(1)x2+2xy+y2;(2)x2-y2.16.先化简,再求值:,其中.17.先化简,再求值:,其中.18.求代数式的值:,其中x=2+.19.已知a为实数,求代数式的值.20.已知:a=-1,求的值.21.已知x=1+,求代数式的值.22.先化简,再求值:,其中x=1+,y=1-.23.有这样一道题:计算-x2(x>2)的值,其中x=1005,某同学把“x=1 005”错抄成“x=1 050”,但他的计算结果是正确的,请回答这是怎么回事?试说明理由.24.已知:x=,y=-1,求x2+2y2-xy的值.25.已知实数x、y、a满足:,试问长度分别为x、y、a的三条线段能否组成一个三角形?如果能,请求出该三角形的面积;如果不能,请说明理由.26.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.27.(1)计算28.(2)解不等式组.29.已知a=+2,b=-2,则的值为()30.已知a=2,则代数式的值等于()31.已知x=,则代数式的值为()32.已知x=,则•(1+)的值是()33.若,则的值为()34.已知,则的值为()35.如果最简二次根式与是同类二次根式,则a=.36.若最简根式与是同类二次根式,则ab=.37.计算:①= ;②=.38.化简-= .39.化简-的结果是.40.计算:= .41.计算:+=.42.化简:= .43.化简:-+=.44.计算:= .45.先化简-(-),再求得它的近似值为(精确到0.01,≈1.414,≈1.732).46.化简:的结果为.47.计算:= .48.化简:= .49.化简:+(5-)=.50.计算:= .解析:1.解:原式=2+(2+)-(7+4)=--5.2.当a=-3,b=+4时,原式=×(+6)=3+6.3.解:原式=(x+1-2)2=(x-1)2,当时,原式==3.4.解:原式=-===.当时,=.5.解:(1)原式=4--4+2=;(2)原式===x+1,当x=-1时,原式=.6.解:原式=-===x-y,当x=,y=时,(2)方法一:当x=-1时,x2+3x-1=(-1)2+3(-1)-1=2-2+1+3-3-1=-1;方法二:因为x=-1,所以x+1=,所以(x+1)2=()2即x2+2x+1=2,所以x2+2x=1所以x2+3x-1=x2+2x+x-1=1+x-1=-1.8.解:原式====-x-4,当时,原式===.9.解:∵a=2+,b=2-,∴a+b=4,a-b=2,ab=1.而=,∴===8.10.原式==,∵∴.11.解:===,把,代入上式,得原式=.12.解:====;当a=-1时,原式====-(-1)=1.13.解:原式=x2+2x+1-2x+1=x2+2;当.14.解:原式=•=x-3;当x=3-,原式=3--3=.15.解:(1)当x=+1,y=-1时,原式=(x+y)2=(+1+-1)2=12;(2)当x=+1,y=-1时,原式=(x+y)(x-y)=(+1+-1)(+1-+1)=4.16.解:===x-2;当时,原式=.17.解:原式=a2-3-a2+6a=6a-3,当a=时,原式=6+3-3=6.18.解:原式=+=+=;当x=2+时,原式==.19.解:∵-a2≥0∴a2≤0而a2≥0∴a=0∴原式=.20.解:原式=,当a=-1时,原式=.21.解:原式=-==,当x=1+时,原式=.22.解:原式===;当x=1+,y=1-时,原式=.23.解:原式==+-x2=-x2=-2.∵化简结果与x的值无关,∴该同学虽然抄错了x的值,计算结果却是正确的.24.解:当时,x2+2y2-xy==.25.解:根据二次根式的意义,得,解得x+y=8,∴+=0,根据非负数的意义,得解得x=3,y=5,a=4,∴可以组成三角形,且为直角三角形,面积为6.26.解:(1)S=,=;P=(5+7+8)=10,又S=;(2)=(-)=,=(c+a-b)(c-a+b)(a+b+c)(a+b-c),=(2p-2a)(2p-2b)•2p•(2p-2c),=p(p-a)(p-b)(p-c),∴=.(说明:若在整个推导过程中,始终带根号运算当然也正确)27.解:27.(1)原式=3--+1=3--+1=+1;28.(2)由①得x+1>3-x,即x>1;由②得4x+16<3x+18,即x<2;不等式组的解集为1<x<2.29.解:原式=====5.30.解:当a=2时,=2-=2-=2-3-2=-3.31.解:=.32.当x=时,=-1,∴原式=1-()=2-.33.解:原式==•-•=a-b,34.解:∵a==,b==,∴==5.35.解:∵最简二次根式与是同类二次根式,∴3a-8=17-2a,解得:a=5.36.解:∵最简根式与是同类二次根式,∴,解得:,∴ab=1.37.解:①×===4;②-=2-=.38.解:原式=2-3=-.39.解:原式=2-=.故答案为:.40.解:原式=3-4+=0.41.解:原式=2+=3.42.解:原式=4-=3.43.(2010•聊城)化简:-+=.44.解:原式=2-=.45.解:原式=-(-)=-(-)=-+=3≈3×1.732≈5.196≈5.2046.解:原式=-20=-14.47.解:原式=2-3=-.48.解:=5.49.解:原式=+5-=5.50.解:原式=2-+=2.。