最新人教版秋季九年级数学上期末测试题(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年秋季九年级数学上期末测试题
一、选择题(每小题3分,共36分)。
1、一元二次方程01x x 22
=+-的一次项系数和常数项依次是( )
A 、-1和1
B 、1和1
C 、2和1
D 、0和1
2、在正三角形、正方形、棱形和圆中,既是轴对称图形又是中心对称图形的个数是
( )
A 、4
B 、3
C 、2
D 、1
3、若抛物线c bx ax y ++=2
的对称轴是,2-=x 则=b a ( ) A.2 B.21 C.4 D.41
4.如图,抛物线c bx x y ++=2
与y 轴交于A 点,与x 轴正半轴交于B ,
C 两点,且BC=3,S △ABC=6,则b 的值是( ) A.b=5 B.b=-5 C.b=±5 D.b=4
5.二次函数2
ax y =(a <0),若要使函数值永远小于零,则自变量x 的取值范围是
( )
A .X 取任何实数 B.x <0 C.x >0 D.x <0或x >0
6、如果两圆的半径分别是4和7,两圆的连心线段长为3,则两圆的位置关系是( ) A 、外离 B 、内含 C 、外切 D 、内切
7、下列事件中,不是随机事件的是( )
A 、掷一次图钉,图钉尖朝上
B 、掷一次硬币,硬币正面朝上
C 、三角形的内角和小于180°
D 、三角形的内角和等于360°
8、一元二次方程0c x 2x 2
=++有两不等实数根,则c 的取值范围是( )
A 、c <1
B 、c ≤1
C 、c=1
D 、c ≠1 9、如图,AB 是⊙O 的直径,D 、C 在⊙O 上,AD ∥OC ,∠DAB=60°,连接AC ,则∠
DAC 等于( )
A 、15°
B 、30°
C 、45°
D 、60° 10、已知关于x 的方程01k kx 2x )1k (2=++--(k 为实数),则其根的情况是( )
A 、没有实数根
B 、有两不等实数根
C 、有两相等实数根
D 、恒有实数根 11、掷一次骰子(每面分别刻有1—6点),向上一面的点数是质数..
的概率等于( ) A 、61 B 、 21 C 、31 D 、 3
2
12、一件商品的标价为108元,经过两次降价后的销售价是72元,求平均每次降价的百分率。若设平均每次降价的百分率为x ,则可列方程( )
A 、72x 1082=
B 、72)x 1(1082=-
C 、72)x 1(1082=-
D 、72x 2108=-
二、填空题(每小题3分,共12分)
13、函数x x y +-=22图象的对称轴是 ,最大值是 . 14、抛物线3)1(22-+-=x y 开口 ,对称轴是 ,顶点坐标
是 .如果y 随x 的增大而减小,那么x 的取值范围是 . 15、如图,以O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,切点为C ,若
AB=32cm ,OA=2cm ,则图中阴影部分(扇形)的面积为 。 16、如图,在平面直角坐标系中,⊙P 的半径等于2,把⊙P 在平面直角坐标系内平移,使得圆与x 、y 轴同时相切,得到⊙Q ,则圆心Q 的坐标为 。
三、解答题(本题共8个小题,共72分。解答应写出文字说明、证明过程或演算步骤)。
17、解方程(每题4分,共8分)。
(1)03x 2x 2=-+; (2)5a 31a a 52+=+-。
18、如图,利用关于原点对称的点的坐标的特点,作出与线段AB•关于原点对称的图形.
19、化简求值(满分8分)。
已知13x 1+=,13x 2-=,是方程0c x b x 2=++的两个根,求代数式
)c
1
b 1(4b )2b (
c b 222+⋅---的值。
20、几何证明(满分8分)。
如图,C 在线段BD 上,△ABC 和△CDE 都是等边三角形,BE 与AD 有什么关系?请用旋转的性质证明........你的结论。(不用旋转性质证明的扣1分)
21、概率与频率(满分8分)。
第一个布袋内装有红、白两种颜色的小球(大小形状相同)共4个,从袋内摸出1个球是红球的概率是0.5;第二个布袋内装有红、黑两种颜色的小球(大小形
-3
-33O B
A
-2-2
1-1
y
x
3
-442
21
-1
状相同)共4个,重复从袋内摸出1个球是红球的频率稳定在0.25。用列举法求:从两个布袋内各摸出一个球颜色不相同
.....的概率。
22、列方程解应用题(满分10分)。
如图,利用一面墙(长度不限),用24m长的篱笆,怎样围成一个面积为70m2的长方形场地?能围成一个面积为80m2的长方形场地吗?为什么?
23、证明与计算(满分10分)。
如图,AB是⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D。
(1)求证:AC平分∠DAB;
(2)连接BC,证明∠ACD=∠ABC;
(3)若AB=12cm,∠ABC=60°,求CD的长。
24、拓展探索(满分12分)。
如图,在△ABC中,BC=6cm,CA=8cm,∠C=90°,⊙O是△ABC的内切圆,点P 从点B开始沿BC边向C以1cm/s的速度移动,点Q从C点开始沿CA边向点A以2cm/s