中考数学相似综合练习题附答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、相似真题与模拟题分类汇编(难题易错题)
1.如图,在等腰△ABC中,AB=BC,以BC为直径的⊙O与AC相交于点D,过点D作DE⊥AB交CB延长线于点E,垂足为点F.
(1)判断DE与⊙O的位置关系,并说明理由;
(2)若⊙O的半径R=5,tanC= ,求EF的长.
【答案】(1)解:DE是⊙O的切线,理由如下:如图,连接OD,BD,
∵AB是⊙O的直径,∴∠ADB=∠90°,∴BD⊥AC.
∵AB=BC,∴AD=DC.∵OC=OB,∴OD∥BA,∵DE⊥BC,∴DE⊥OD,∴直线DE是⊙O的切线.
(2)解:过D作DH⊥BC于H,∵⊙O的半径R=5,tanC= ,∴BC=10,设BD=k,CD=2k,∴BC= k=10,∴k=2 ,∴BD=2 ,CD=4 ,∴DH= =4,∴OH= =3,∵DE⊥OD,DH⊥OE,∴OD2=OH•OE,∴OE= ,∴BE= ,∵DE⊥AB,
∴BF∥OD,∴△BFE∽△ODE,∴,即,∴BF=2,∴EF= =
.
【解析】【分析】(1)DE是⊙O的切线,理由如下:如图,连接OD,BD,根据直径所对的圆周角的直角得出∠ADB=∠90°,根据等腰三角形的三线合一得出AD=DC,连接三角形两边中点的线段是三角形的中位线,又三角形的中位线平行于第三边,得出OD∥BA,又DE⊥BC,根据平行线的性质得出DE⊥OD,从而得出结论:直线DE是⊙O的切线;
(2)过D作DH⊥BC于H,根据正切函数的定义,由tanC=,可以设BD=k,CD=2k,根据勾股定理表示出BC,再根据BC=10,列出方程,求解得出k的值,进而得出CD,BD的长,根据面积法即可算出DH的长,再根据勾股定理算出OH的长,然后判断出△ODH与△ODE 相似,根据相似三角形对应边成比例即可得出OD2=OH•OE,根据等积式算出OE,的长,从而根据线段的和差算出BE的长,再判断出△BFE∽△ODE,根据相似三角形对应边成比例
得出,根据比例式即可算出BF,最后根据勾股定理算出FE的长。
2.如图,抛物线经过,两点,与y轴交于点C,连接AB,AC,BC.
(1)求抛物线的表达式;
(2)求证:AB平分;
(3)抛物线的对称轴上是否存在点M,使得是以AB为直角边的直角三角形,若存在,求出点M的坐标;若不存在,请说明理由.
【答案】(1)解:将,代入得:,
解得:,,
抛物线的解析式为
(2)解:,,
,
取,则,
由两点间的距离公式可知,
,,
,
,
在和中,,,,
≌,
,
平分
(3)解:如图所示:抛物线的对称轴交x轴与点E,交BC与点F.
抛物线的对称轴为,则.
,,
,
,
,
,
,
同理:,
又,
,
,
点M的坐标为或
【解析】【分析】(1)利用待定系数法,将点A、B两点坐标分别代入抛物线的解析式,求出a、b的值,即可解答。
(2)利用勾股定理,在Rt△AOC中,求出AC的长,再根据两点间的距离公式求出BD的长,由点B、C的坐标,求出BC的长,可证得BD=BC,然后证明△ABC ≌△ABD ,利用全等三角形的性质,可证得结论。
(3)抛物线的对称轴交x轴与点E,交BC与点F.求出抛物线的对称轴,就可求出AE的长,再利用点A、B的坐标,求出tan∠EAB的值,再由∠M'AB = 90 °,求出tan∠∠M'AE 的值,求出M'E的长,就可得出点M的坐标,再用同样的方法求出点M的坐标,即可解答。
3.如图,AB为的直径,C为上一点,D为BA延长线上一点,.
(1)求证:DC为的切线;
(2)线段DF分别交AC,BC于点E,F且,的半径为5,
,求CF的长.
【答案】(1)解:如图,连接OC,
为的直径,
,
,
,
,
,
,即,
为的切线
(2)解:中,,,,,
,,
∽,
,
设,,
中,,
,
舍或,
,,
,
设,
,
,
,
,
∽,
,
,,
【解析】【分析】(1)要证DC为⊙O 的切线,需添加辅助线:连半径OC,证垂直,根据直径所对的圆周角是直角,可得出∠ BCO + ∠ OCA = 90°,再利用等腰三角形的性质,可得出∠ B = ∠BCO ,结合已知,可推出∠OCD=90°,然后利用切线的判定定理,可证得结论。
(2)根据已知圆的半径和sinB的值,可求出AB、BC的值,再证明△CAD ∽△BCD,得出对应边成比例,得出AD与CD的比值,利用勾股定理求出AD、CD的长,再利用∠CEF=45°去证明CE = CF ,然后证明△ CED ∽△ BFD ,得出对应边成比例,求出CF的长。
4.已知在△ABC中,AB=AC,AD⊥BC,垂足为点D,以AD为对角线作正方形AEDF,DE 交AB于点M,DF交AC于点N,连结EF,EF分别交AB、AD、AC于点G、点O、点H.
(1)求证:EG=HF;
(2)当∠BAC=60°时,求的值;
(3)设 ,△AEH和四边形EDNH的面积分别为S1和S2,求的最大值.
【答案】(1)解:在正方形AEDF中,OE=OF,EF⊥AD,
∵AD⊥BC,
∴EF∥BC,
∴∠AGH=∠B,∠AHG=∠C,
而AB=AC,
∴∠B=∠C,
∴∠AGH=∠AHG,
∴AG=AH,
∴OG=OH,
∴OE-OG=OF-OH,
∴EG=FH
(2)解:当∠BAC=60°时,△ABC为正三角形,