2005年全国考研数学一真题及解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2005年全国硕士研究生入学统一考试
数学(一)试卷
一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线
x 2
y
的斜渐近线方程为_____________.
2x
1
(2)微分方程xy 2y x ln x
满足
1
y (1)的解为
____________.
9(3)设函数
x 2
y 2
z 2
1
u (,单位向量
{1,1,1}
x ,y ,z )1
n
61218
3
,则
u n
=.________.(1,2,3)
(4)设
是由锥面z
x 2y 2与半球面z R 2x 2
y 2围成的空间区域,

的整个边界的外侧,则
xdydz
ydzdx
zdxdy
____________.
(5)设
ααα均为3维列向量,记矩阵1,2,3
A (α,α,α),
1
2
3
B (ααα,α

4α,α
3
α
9α),
1
2
3
1
2
3
1
2
3
如果A 1,那么B
.
(6)从数1,2,3,4中任取一个数,记为X ,再从1,2,,X 中任取一个数,记为Y ,则
P {Y 2}=____________.
二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一项
符合题目要求,把所选项前的字母填在题后的括号内)
(7)设函数f (x
lim n
1
)
n
x
3n
,则f (x )在
(,)内
(A)处处可导(B)恰有一个不可导点(C)恰有两个不可导点
(D)至少有三个不可导点
(8)设F(x)是连续函数f(x)的一个原函数,"M N"表示"M的充分必要条件是N",则必有
(A)F(x)是偶函数f(x)是奇函数(B)F(x)是奇函数f(x)是偶函

(C)F(x)是周期函数f(x)是周期函数(D)F(x)是单调函数f(x)是单
调函数
x y
(9)设函数
u(x,y)(x y)(x y)(t)dt,其中函数具有二阶导数,
x y
具有一阶导数,则必有
(A)
u
2
x
2
2
u
y
2
(B)
2
u
x
2
2
u
y
2
(C)u
2
x
y 2
u
y
2
(D)
2
u
x
y
2
u
x
2
(10)设有三元方程xy z ln y e xz1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程
(A)只能确定一个具有连续偏导数的隐函数z z(x,y)
(B)可确定两个具有连续偏导数的隐函数x x(y,z)和z z(x,y)
(C)可确定两个具有连续偏导数的隐函数y y(x,z)和z z(x,y)
(D)可确定两个具有连续偏导数的隐函数x x(y,z)和y y(x,z)
(11)设是矩阵A的两个不同的特征值,对应的特征向量分别
为1,
2
αα,则
1,2
α, 1A(αα)线性无关的充分必要条件

12
(A)10(B)0
2
(C)10(D)20
(12)设A为n(n2)阶可逆矩阵,交换A的第1行与第2行得矩阵B.A*,B*分别为
A,B的伴随矩阵,则
(A)交换A*的第1列与第2列得B*(B)交换A*的第1行与第2行得B*
(C)交换A*的第1列与第2列得B*(D)交换A*的第1行与第2行得B*
(13)设二维随机变量(X,Y)的概率分布为
X 01
Y
00.4
a
1
b
0.1
已知随机事件{X 0}与{X
Y 1}相互独立,则
(A)a 0.2,b 0.3(B)a
0.4,b
0.1
(C)a
0.3,b
0.2
(D)a
0.1,b
0.4
(14)设X ,
,,
(2)为来自总体N (0,1)的简单随机样本,X 为样本均值,S 2
1
X
X n
2
n
为样本方差,则
(A)nX ~
N (0,1)
(B)nS 2~
2
(n )
(n
1)X t n (C)
~(1)
S
(D)
(n 1)X
21
~F (1,n 1)
n
X
2i
i 2
三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤)(15)(本题满分11分)设D
{(x ,y )x 2y 22,x 0,y 0},[1x 2y 2]表示不超过1x 2y 2的最
大整数.计算二重积分
xy [1x 2y 2]dxdy .
D
(16)(本题满分12分)
1
求幂级数
(1)
1
(1)
n
x
2n
n (2n 1)
n
1
的收敛区间与和函数f (x ).
(17)(本题满分11分)如图,曲线C 的方程为y
f (x ),点(3,2)是它的一个拐点,直线
l与l分
12
别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数f(x)具有三
3阶连续导数,
计算定积分
(x2x)f(x)d
x.0
(18)(本题满分12分)
已知函数f (x )在[0,1]上连续,在(0,1)内可导,且f (0)0,f (1)1.证明:
(1)存在
(0,1),使得f ()
1
.
(2)存在两个不同的点,
(0,1),使得f ()f () 1.
(19)(本题满分12分)设函数
(y )具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分
(y )dx 2xydy 2x
y
的值恒为同一常数.
(1)证明:对右半平面x
0内的任意分段光滑简单闭曲线C ,有
(y )dx 2xydy 2x y
.
(2)求函数
(y )的表达式.
(20)(本题满分9分)已知二次型f (x x x
a x a x
x a
x x 的秩2.
1
,,)(1
)
(1
)
2
2(1
)
22223
1
2
3
1
2
(1)求a 的值;(2)求正交变换x
Q y ,把f (1,x ,x )化成标准形.
x
23
(3)求方程
f (x 1,x ,x )=0
2
3
(21)(本题满分9分)
123
已知3阶矩阵A 的第一行是(a ,b ,c ),a ,b ,c 不全为零,矩阵
246
B
(k 为常数),
36k
且AB O,求线性方程组A x0的通解.
(22)(本题满分9分)
设二维随机变量(X,Y)的概率密度为f(x,y)1
0x1,0y
2x
其它
求:(1)(X,Y)的边缘概率密度f(x),f(y)
X.
Y
(2)Z2X Y的概率密度f(z).
Z
(23)(本题满分9分)
设1,X,,X(n2)
X为来自总体N(0,1)的简单随机样本,X为样本均值,记2n
Y i
X X,i1,2,,n.
i
Y的方差DY i,i1,2,,n.(2)Y与Y的协方差Cov(Y,Y).
求:(1)
i1n1n
2005年考研数学一真题解析
一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线
x1
2
1
y的斜渐近线方程为y
x.
2x12
4
【分析】本题属基本题型,直接用斜渐近线方程公式进行计算即可.
【详解】因为
a=
f(x)x
lim lim
2
2x
x
x2
x x
1
2

b x
lim f(x)ax lim
x2
x
2(x1
)
1
4

1
1于是所求斜渐近线方程为y
x.
24
(2)微分方程xy2y x ln
x满足
111
y(1)的解
为.
y x ln x
x.
939
【分析】直接套用一阶线性微分方程y P(x)y Q(x)的通解公式:
y
P)dx[()]
(x Q x e P(x)dx dx C
e

再由初始条件确定任意常数即可.
【详解】原方程等价为
2
y ln,
y x
x
22
1
dx dx
于是通解为
y e[ln x e dx C][x2ln
xdx
x x
x
2
C]
111
=ln x x C
x,
39x
2
111

y(得C=0,故所求解为y ln x x.
1)x
939
(3)设函数
x2y z1
22
u(x,y,z)1,单位向量n
{1,1,1}
612183
,则
u
n=
(1,2,3)3 3.
【分析】函数u(x,y,z)沿单位向量n{cos,cos,cos}的方向导数为:
u
n
u x
u u cos cos
cos y
z
因此,本题直接用上述公式即可.【详解】因为
u x x 3,u y
y 6,u z
z
9,于是所求方向导数为u n
1
111113=
.3
3
3
3
33
3
(1,2,3)
(4)设
是由锥面z x 2y 2与半球面z
R 2
x 2
y 2围成的空间区域,

的整个边界的外侧,则
2
xdydz ydzdx zdxdy
2(1)R 3.
2
【分析】本题是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球面
(或柱面)坐标进行计算即可.
【详解】
xdydz
ydzdx zdxdy
3dxdydz
2
R
2
=3
2
d
sin
d
d )R 3.
42(1
2
(5)设
1
,
2
,
3均为3维列向量,记矩阵
A
1

(,
2
4
,
3
9
)
(
,
)
B
1

,
2
3
23
1
2
3
1
2
3
如果A 1,那么B
2.
【分析】将B写成用A右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.
【详解】由题设,有
B(1,24, 39
23123123 )
111
=3
(1,,)12,
23
149
111
于是有B A12312 2.
149
(6)从数1,2,3,4中任取一个数,记为X,再从1,2,,X中任取一个数,记为Y,则P{Y2}=13
48
.
【分析】本题涉及到两次随机试验,想到用全概率公式,且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分.
【详解】P{Y2}=P{X1}P{Y2X1}+P{X2}P{Y2X2} +P{X3}P{Y2X3}+P{X4}P{Y2X4}
1113
11
=(0).
423448
二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)
(7)设函数f(x)lim n 1
n x3n,则f(x)在
(,)内
(A)处处可导.(B)恰有一个不可导点.
(C)恰有两个不可导点.(D)至少有三个不可导点.[C]【分析】先求出f(x)的表达式,再讨论其可导情形.
【详解】当x1时,()lim131
f x x;
n n
n
当x1时,()lim111
f x n;
n
1
当x1时,()lim(11).
f x x3n x
3
3n
n
x
即x3,x1,
x,x1,
f(x)可见f(x)仅在x=1时不可导,故应
选(C).
1,1x1,
x,x 1.
3
(8)设F(x)是连续函数f(x)的一个原函数,"M N"表示“M的充分必要条件是N”,则必有
(A)F(x)是偶函数f(x)是奇函数.
(B)F(x)是奇函数f(x)是偶函数.
(C)F(x)是周期函数f(x)是周期函数.
(D)F(x)是单调函数f(x)是单调函数.[A]
【分析】本题可直接推证,但最简便的方法还是通过反例用排除法找到答案.
【详解】方法一:任一原函数可表示为
F x)f(t)dt C
(,且F(x)f(x).
x
当F(x)为偶函数时,有F(x)F(x),于是F(x)(1)F(x),即f(x)f(x),也即f(x)f(x),可见f(x)为奇函数;反过来,若f(x)为奇函数,则
x 0f(为偶函数,从而
t)dt F(x)f(t)dt C为偶函数,可见(A)为正确选
项.
x
方法二:令f(x)=1,则取F(x)=x+1,排除(B)、(C);令f(x)=x,则取
F(x)=
1
2
x,排除(D);

2
应选(A).
x y
(9)设函数
u(x,y)(x y)(x y)(t)dt,其中函数具有二阶导数,
x y
具有一阶导数,则必有
(A)u
2
x
2
2
u
y
2
.
(B

u
2
x2
u
2
y
2
.
(C)u
2
x
y 2
u
y
2
.
(D)
2
u
x
y
2
u
x
2
.
[B
]
【分析】先分别求出
2
u
x
2
、u
2
y
2

2u
x
y
,再比较答案即可.
u
【详解】因为(x y)(x y)(x y)(x y)

x
u
(x y)(x y)(x y)(x y)

y
2
u
于是
(x y )(x y )(x y )(x
y )
x
2

u
2
(x y )
(x
y )(x y )(x
x y y ),
2u (x
y )
(x y )(x y )(x
y
2
y ),
可见有
2
u x
2
2
u y
2
,应选(B).
(10)设有三元方程xy z ln y e xz 1,根据隐函数存在定理,存在点(0,1,1)的一个
邻域,在此邻域内该方程
(A)只能确定一个具有连续偏导数的隐函数z=z(x,y).
(B)可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y).
(C)可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y).
(D)可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z).
[D]
【分析】本题考查隐函数存在定理,只需令F(x,y,z)=xy z ln y e xz1,分别求出三个偏导数F z,F,F,再考虑在点(0,1,1)处哪个偏导数不为0,则可确定相应的隐函数.
x y
【详解】令F(x,y,z)=xy z ln y e xz1,则
F x e xz z,
y
z
y
,F z ln y
e x,
xz
F x
y
且F(0,1,1)2,F(0,1,1)1,(0,1,1)0
F.由此可确定相应的隐函数
x=x(y,z)x y z
和y=y(x,z).故应选(D).
(11)设
1
,是矩阵A的两个不同的特征值,对应的特征向量分别为1,
,则
,22
1
A(1线性无关的充分必要条件是
)
2
(A)10.(B)20.(C)10.(D)20.[B]
【分析】讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可.
【详解】方法一:令1k A()0
k,则
1212
k1k k0,(k1k)k0.
1211222211222
由于
1,线性无关,于是有2
k k
121 k
220. 0,
当20
时,显然有k10,k0,此时,A(1)线性无关;反过来,若
,212
1
A(1)线性无关,则必然有0
2(,否则,与A(1
)=
212
1
线性相关),故应
1
选(B).
1
[,A()][,][,],
1
方法二:由于
10
121112212
2
1
可见故应选(B).
,A(1)线性无关的充要条件是10.
12
2
2
(12)设A为n(n2)阶可逆矩阵,交换A的第1行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则
(A)交换A*的第1列与第2列得B*.(B)交换A*的第1行与第2
行得B*.
(C)交换A*的第1列与第2列得B*.(D)交换A*的第1行与第2行得
B.
*
[C]
【分析】本题考查初等变换的概念与初等矩阵的性质,只需利用初等变换与初等矩阵
的关系以及伴随矩阵的性质进行分析即可.
【详解】由题设,存在初等矩阵E(交换n阶单位矩阵的第1行与第2行所得),
使
12
得E A B B*(E A)A E A E E A E,即
1
*****
12,于是12
12
121212
A*E B,可见应选(C).
*
12
(13)设二维随机变量(X,Y)的概率分布为
X Y01
00.4a
1b0.1
已知随机事件{X0}与{X Y1}相互独立,则
(A)a=0.2,b=0.3(B)a=0.4,b=0.1
(C)a=0.3,b=0.2(D)a=0.1,b=0.4[B]
【分析】首先所有概率求和为1,可得a+b=0.5,其次,利用事件的独立性又可得一等式,由此可确定a,b的取值.
【详解】由题设,知a+b=0.5
又事件{X
0}与{X Y 1}相互独立,于是有
P {X
0,X
Y 1}
P {X 0}P {X
Y 1},

a=(0.4
a )(a
b ),
由此可解得
a=0.4,b=0.1,故应选(B).
(14)设X 1,X ,,X (n
2)
为来自总体N(0,1)的简单随机样本,X 为样本均值,
S 22
n
为样本方差,则
(A)
nX ~N (0,1)
(B)
nS 2~
2
(n ).(
t n n 1)X (C)
~(
1)
S
(n
1)X
2
(D)
1
~F (1,n
1).
n
X
2i
i 2
[D ]
【分析】利用正态总体抽样分布的性质和2
分布、t 分布及F 分布的定义进行讨论即
可.
X
【详解】由正态总体抽样分布的性质知,
nX ~
N (0,1)1
n
,可排除(A);
X
nX

~t (n
1)
S
S
n
(n 1)S
2
2

不能
2
,可排除(C);而
(
1)
~(
1)
n
S
n
1
2
断定(B)是正确选项.
n
n
因为
1
~
(1),
~(1),且
X
X
i
n X
1
~
(1)与
~
(
1)相
互独
2
2
2
2
2
2
2
2
i n
X i
2
i
2
X
故应选(D).
2
1
2
(n1)X
1
1F n
立,于是~(1,
1).
n n
X X
22
i i
i2i2
n1
三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)
(15)(本题满分11分)
设D{(x,y)x2y22,x0,y0},[1x2y2]表示不超过1x2y2的最
大整数.计算二重积分
xy[1x2y2]dxdy.
D
【分析】首先应设法去掉取整函数符号,为此将积分区域分为两部分即可.【详解】

D
{(,)022
1,0,0},1x y
x y x y
D
{(,)12
2
2,
0,0}.2x y
x y
x
y

xy [1
22
]=
x y dxdy
xydxdy 2
xydxdy
D
D
D
1
2
d
1
2
sin
r dr
2
2
cos
3
r dr
sin
cos d
3
2
1
1
37=
.
8
4
8
(16)(本题满分12分)
1
求幂级数
(1)n 1(1
)x
2n
n (2n 1)
n 1
的收敛区间与和函数f(x).
【分析】先求收敛半径,进而可确定收敛区间.而和函数可利用逐项求导得到.(n 1)(2n 1)1n (2n 1)
【详解】因为lim
1,所以当x 21时,原级数绝
n
1)(2)n (2n
1)
1
(n
n 1
对收敛,当x 2
1时,原级数发散,因此原级数的收敛半径为1,收敛区间为(-1,1)

n 1
(1)

S (x )x ,x
(1,
1)
2n
2n (2n
1)
n
1

n1
(1)

2n1
S(x)x,x(1,1)
2n1
n1
1
.
n12n2
S(x)(1)x,x(1,1)
1x
2
n1
由于S(0)0,S(0)0,
1
x x
所以
S(x)S(t)dt dt arctan x,
1t
2
00
1
S x S t dt tdt x x x x x
()()arctan arctan ln(1).
2
2
00

2
x
(1)x,x(1, 1),
n12n
1x
2
n1
从而f(x)2S(x)
x
2 1x
2
x
2
2x arctan x ln(1x),x(1,1).
2
1x
2
(17)(本题满分11分)
如图,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线l与l分别是曲线C在点
12
(0,0)与(3,2)处的切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分
3
(x2x)f(x)d
x.0
【分析】题设图形相当于已知f(x)在x=0的函数值与导数值,在x=3处的函数值及一阶、
二阶导数值.
【详解】由题设图形知,f(0)=0,f(0)2;f(3)=2,f(3)2,f(3)0.
由分部积分,知
3333
(x2x)f(x)dx(x2x)df(x)(x2x)f(x)f(x)(2x
1)dx0000
=x df x x f x f x dx
333
(21)()(21)()2
()000
=162[f(3)f(0)]20.
(18)(本题满分12分)
已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:
(I)存在(0,1),使得f()1;
(II)存在两个不同的点,(0,1),使得f()f() 1.
【分析】第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可
考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.
【详解】(I)令F(x)f(x)1x,则F(x)在[0,1]上连续,且F(0)=-1<0,F(1)=1>0,于是由介值定理知,存在(0,1),使得F()0,即f()1.
(II)在[0,]和[,1]上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点
(0,), (,1),使得
f f(
()0)
f()

f
()
f(1)
f
1
(
)
(()1
(
于是f)()
1.
f f)1f
11
(19)(本题满分12分)
设函数(y)具有连续导数,在围绕原点的任意分段光滑简单闭曲线L上,曲线积分(y)dx
2xydy
24
L2x y
的值恒为同一常数.
(y)dx2xydy
4(I)证明:对右半平面x>0内的任意分段光滑简单闭曲线C,有2 0
C2x y

(II)求函数(y)的表达式.
【分析】证明(I)的关键是如何将封闭曲线C与围绕原点的任意分段光滑简单闭曲线相联系,这可利用曲线积分的可加性将C进行分解讨论;而(II)中求(y)的表达式,显然
应用积分与路径无关即可.
Y
【详解】(I)
l
1
l2C
o X
l3
如图,将C分解为:1l
C l,另作一条曲线l围绕原点且与C相接,则
23
()2xydy
y)dx2xydy(y dx
424
C2x y
2l2x y
l3
1
(y)dx
2xydy
2
4
l l2x y
23
0.
(II)设
(y)2xy
P,Q
2x y2x y
242
4
,P,Q在单连通区域x0内具有一阶连续偏

(y)dx
2xydy
数,由(Ⅰ)知,曲线积分
2x y
24
L 在该区域内与路径无关,故当x0时,总

Q P
x
y
.
242
5
Q2y(2x y)4x x y
2y
2422
42
x(2x y)(2x y)
,①
P(y)(2x y)4(y)y2x(y)(y)y4 (y)y
24324
3
y(2x y)(2x y)
242242
.②比较①、②两式的右端,得
(y)2y,
(y)y4(y)y2y.
435③④
由③得(y)y2c,将(y)代入④得2y54cy32y5,
所以c0,从而(y)y2.
(20)(本题满分9分)
已知二次型f
的秩为2.
(x1,x,x)(1a)x(1a)x2x2(1a)x x
222
2312312(I)求a的值;
(II)求正交变换x Qy,把(x1,x,x)
f化成标准形;
23
(III)求方程f(1,x,x)=0的解.
x
23
【分析】(I)根据二次型的秩为2,可知对应矩阵的行列式为0,从而可求a的值;(II)是常规问题,先求出特征值、特征向量,再正交化、单位化即可找到所需正交变换;(III)利用第二步的结果,通过标准形求解即可.
【详解】(I)二次型对应矩阵为
a a0
11
A1a1a0,
002
1a1a0
由二次型的秩为2,知1a a0
A10,得a=0.
002
(II)这里
110
A110,可求出其特征值为2, 0
.
1
23 002
10
解(2E A)x0,得特征向量为:1

,0
1
2
01
1
解(0E A )x 0,得特征向量为:
.
130
由于
已经正交,直接将
1,,
1,单位化,得:22
310
1
11,
0,
232
1
1211
0令Q 1,即为所求的正交变换矩阵,由x=Qy,可化原二次型为标准形:
23f (1x x =222.
x ,1
y ,)y
2232(III)由(x 1,x ,x )
1210,0,(k 为任意常数).f =2y 2y 2
0,得y y y k
232230c 从而所求解为:x=Qy=
,其中c 为任意常数.0
k 1
c
233
k0(21)(本题满分9分)
已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B
1
2
3
2
4
6
3
6(k为常数),
k
且AB=O,求线性方程组Ax=0的通解.
【分析】AB=O,相当于告之B的每一列均为Ax=0的解,关键问题是Ax=0的基础解系
所含解向量的个数为多少,而这又转化为确定系数矩阵A的秩.
【详解】由AB=O知,B的每一列均为Ax=0的解,且r(A)r(B) 3.
(1)若k9,则r(B)=2,于是r(A)1,显然r(A)1,故r(A)=1.可见此时Ax=0的基础解系所含解向量的个数为3-r(A)=2,矩阵B的第一、第三列线性无关,可作为其基础解系,
13
故Ax=0的通解为:126,1,2
x k
k为任意常数.
k2
k
3k
(2)若k=9,则r(B)=1,从而1r(A) 2.
1)若r(A)=2,则Ax=0的通解为:x 1
为任意常数.k 1,2
k
132)若r(A)=1,则Ax=0的同解方程组为:ax
0,不妨设a 0,1bx cx
23则其通解为x c b a
a 1
k k k 为任意常数.k 1
0,,
2120
1
(22)(本题满分9分)
设二维随机变量(X,Y)的概率密度为f (x ,y )1,00,
x 1,0
y 其他.2x ,
求:(I)(X,Y)的边缘概率密度f (x ),f (y )
X ;Y
(II)Z 2X Y 的概率密度f (z ).Z
【分析】求边缘概率密度直接用公式即可;而求二维随机变量函数的概率密度,一般用分布函数法,即先用定义求出分布函数,再求导得到相应的概率密度.
【详解】(I)关于X 的边缘概率密度
X =dy x
2x
1,0
f(x)1,
,
f(x,)=
y dy
其他
.
0,
=
2x,x 1
, 0,其他.
关于Y的边缘概率密度
Y= f(y)f(x,y)dx
=
dx y
1
,0
2,
y
2其他.
0,
=
y y
2,
1,
2
其他. 0,
(II)令F Z(z)P{Z z}P{2X Y z},
1)当z0时,F(z)P{2X Y z}0
Z;
2)当0z 2时,F (z )
P {2X Y z }
Z 1=z z 2;4
3)当z 2时,F (z )P {2X
Y z } 1.Z 即分布函数为:F Z 0,1
(z )z z 2,04
1,
z
z z
0,2.2,故所求的概率密度为:f Z (z )1
1
2
0,0z ,z 其他.2,
(23)(本题满分9分)
设1,X ,
,X (n 2)X 为来自总体N(0,1)的简单随机样本,X 为样本均值,记
2n Y i X X ,i 1,2,,n .
i 求:(I)Y 的方差DY i
n
i
,1,2,,;i (II)Y 与Y 的协方差Cov (
1,Y n ).
Y 1n 【分析】先将Y 表示为相互独立的随机变量求和,再用方差的性质进行计算即可;求i
Y 与Y 的协方差(1,Y n )Cov Y ,本质上还是数学期望的计算,同样应注意利用数学期望的运1n
算性质.
【详解】由题设,知X 1,X ,,X (n 2)
相互独立,且
2n
EX i,EX0.
0,DX1(i1,2,,n)
i
11
n
(I)
DY i D X X)X]
(D[(1)X
i i j
n n
j i
121n
j
=
(1)DX i
DX
n n2
j i
(n
1)1n1
2
=(n1).
n n n
22
(II)(Y1,Y n)E[(Y EY)(Y n EY n)]
Cov
11
=(1Y n)E[(X X)(X X)]
E Y
1n
=(n2)
E1X X X X X X
X
1n
=n2
E(X1X)2E(X X)EX
1
2n
=0E X1X X]DX(EX)2 [
2j
1
n
j2
211
=.
n n n。

相关文档
最新文档