光电子学整理1-4

合集下载

光电子技术复习1

光电子技术复习1
14
激活粒子的能级结构
1、三能级系统
红 宝 石 激 光 器
氩 离 子 激 光 器
15
2、四能级系统




























16
红宝石激光器产生激光的过程
⑴Cr3+的受激吸收过程. ⑵无辐射跃迁 ⑶粒子数反转状态的形成 ⑷个别的自发辐射 ⑸受激发射 ⑹激光的形成
当δ<<1时,
I1I0(12)

I0 I1
2I0
27
• 假设反射镜的反射率为R,经过一次反射后
• 实际上
1R
r d
• 对于直径为2a的圆形平行平面腔

d 对于共焦腔
0.20(7L)1.4
a2
菲涅耳数
a2 B.
d A.10 L
• 对于基模,A=10.9,B=4.94
28
(2) 谐振腔寿命tc
• 假设反射镜的反射率为R,镜间距离为L,每秒的能 量损失为
dW (1R )W c(1R )W
dt L/c
L
• 对t积分,令 tt0时WW0
•得
c(1R).t
WW0e L
• 当能量减小到 W0 / e 时所经历的时间
tc

L c(1 R)
29
(3)谐振腔的Q值
2
光子的基本性质
(1)光子具有能量 E,而这种能量与一定的光
频率 相对应。
Eh

光电子技术复习要点

光电子技术复习要点

光电子技术复习要点第一篇:光电子技术复习要点第1章1.电磁波的性质:横波、偏振、色散2.光辐射:以电磁波形式或粒子形式传播的能量,它们可以用光学元件反射、成像或色散,这种能量及其传播过程称为光辐射,波长在10nm-1mm,分为可见光(390nm-770nm),紫外辐射(1nm-390nm),红外辐射(0.77-1000um)3.表1-44.光视效能:同一波长下测得的光通量与辐射通量比值。

光视效率是光视效能归一化的结果。

5.光与物质相互作用的三个过程:自发辐射、受激辐射、受激吸收。

图1-7自发辐射:处在高能级的原子,没有任何外界激励,自发地跃迁到低能级,并发射光子。

受激辐射:处在高能级的原子,受到外来光子的激励,跃迁到低能级并发射光子。

受激吸收:处在低能级的原子,受到光子的照射时,吸收光子而跃迁到高能级。

6.粒子数的反转,增益系数,增益曲线,损耗系数,激光器的三部分7.典型激光器组成:工作物质、泵浦源、谐振腔。

作用:工作物质:在这种介质中可以实现粒子数反转。

泵浦源(激励源):将粒子从低能级抽运到高能级态的装置。

谐振腔:(1)使激光具有极好的方向性(沿轴线)(2)增强光放大作用(延长了工作物质(3)使激光具有极好的单色性(选频)8.习题1-2Le亮度定义:强度定义:IedIe∆Arcosθr= dΦedΩ可得辐射通量:dΦe=Le∆AscosθsdΩ在给定方向上立体角为:dΩ第1.2题图∆Accosθc 2l0dΦeLe∆Ascosθscosc则在小面源在∆A上辐射照度为:Ee==2dAl0=c第2章1.大气衰减包括四个部分,瑞利散射和米氏散射2.大气湍流效应3.电光效应,相位延迟两种方式,相位差,半波电压,两种方式比较纵向调制器优点: 具有结构简单、工作稳定、不存在自然双折射的影响等。

缺点: 电场方向与通光方向相互平行, 必须使用透明电极, 且半波电压达8600伏,特别在调制频率较高时,功率损耗比较大。

光电子技术复习知识点

光电子技术复习知识点

光电子技术复习知识点备注:1、考试时间:初步定于2013年1月5日,最终以网上公布为准。

2、以下内容打“*”的可以只做一般了解。

3、以下知识点请结合教材、课件和作业重点复习,请勿投机!第1章光辐射、发光源与光传播基本定律1.1. 电磁波谱与光辐射;电磁波的基本特性1.2. 辐射度学与光度学基本知识;辐射能、辐射通量、辐射出射度、辐射强度、辐射亮度、辐射照度的概念、单位、意义单色辐射出射度余弦辐射体余弦辐射体的亮度和辐射出射度光量、光通量、光出射度、发光强度、光亮度、光照度的概念、单位、意义光度量和辐射度量之间的关系单色光视效能最大单色光视效能单色光视效率函数1.3. 热辐射基本定律黑体基尔霍夫辐射定律普朗克公式反映的物理规律1.4 激光原理激光器的基本结构产生激光的必要条件谐振腔的作用激光的横模和纵模1.5 典型激光器典型激光器及其特点、应用红宝石激光器的系统结构、能级结构、原理半导体激光器、半导体发光二极管的特点1.6 光频电磁波的基本理论和定律相速度、群速度及其关系第2章光辐射的传播2.1 光波在大气中的传播朗伯定律,大气衰减的原因,瑞利散射定律,气溶胶的散射特点什么是大气湍流效应?2.2光波在电光晶体中的传播泡克耳效应和克尔效应折射率椭球,电光张量KDP晶体在z方向施加电场时,其折射率椭球的变化分析纵向电光效应的结构、相位变化特点、光的偏振特性变化特点纵向电光效应的结构、相位变化特点、光的偏振特性变化特点2.3 光波在声光晶体中的传播声波在介质中传播的特点,声光相互作用类型拉曼-纳斯衍射条件、特点,布拉格衍射条件、布拉格方程、布拉格角、布拉格衍射的特点2.4 光波在磁光晶体中的传播磁光效应、光隔离器原理2.5 光波在光纤波导中的传播光纤波导的结构、弱导条件数值孔径及其意义光纤的色散、带宽、脉冲展宽及其相互关系2.7 光波在水中的传播前向散射、后向散射的特点、应用如何克服后向散射第3章光波的调制与扫描3.1. 光束调制原理调制的概念,载波,调制信号,按调制性质的分类振幅调制、频率调制、相位调制红和强度调制的概念和特点脉冲调制的概念和分类脉冲编码调制的过程3.2 电光调制纵向电光调制器的结构、原理、电光调制特性曲线、使调制器工作在线性区的措施、失真、倍频的原因横向电光调制器的结构、原理、优缺点电光相位调制的结构、原理3.3 声光调制声光调制器结构、工作原理基于拉曼-纳斯衍射和布拉格衍射的声光调制的特点3.5 直接调制直接调制概念半导体激光器、半导体发光二极管直接调制的电路原理图半导体激光器、半导体发光二极管直接调制的特点脉冲编码数字调制的概念和优点3.6 光束扫描技术电光扫描原理分析、双KDP楔形棱镜扫描器原理及电光偏转角的计算电光数字扫描的结构和原理*3.7 空间光调制器空间光调制器的概念、类型、应用泡克尔读出光调制器的结构、原理液晶空间光调制器的结构、原理第4章光辐射的探测技术4.1 光电探测器的物理效应光子效应、光热效应的概念和特点常见光子效应、光热效应光电发射效应概念、发生条件光电导效应的产生机理光电导体的电流增益、渡越时间光伏效应的产生机理什么是温差电效应什么是热释电效应,热释电效应的特点基本的光电转换定律4.2 光电探测器的性能参数积分灵敏度、光谱灵敏度、频率灵敏度的概念量子效率和灵敏度的关系通量阈、噪声等小功率、探测度、归一化探测度的定义、单位、意义4.3 光电探测器的噪声光电探测器的常见噪声和特点4.4 光电导探测器——光敏电阻光敏电阻的结构、特点、应用光敏电阻的基本工作电路、伏安特性,根据伏安特性对负载电阻、电源、输出信号、功耗等进行分析。

电子光学知识点整理

电子光学知识点整理
第一章 电子波长: 光的折射定律:,
变分法关键定理:欧拉方程 费马原理指出:光沿所需时间为极值(极大值、恒值、极小值)的路径传 播。
费马原理的数学表达式: 费马原理的具体表达式——斯涅尔定律: 光学定律的数学表达式 (光的直线传播,反射、折射的内在联系.遵循的一个更普遍的规律) 1\光的直线传播定律——由斯涅尔定律可知:当n为常数时,正弦函数 为常数,即,角度为常数;——光传播路径ds上任何一点的方向相同, 因此为一条直线。 2、折射定律——斯涅尔定律 3、反射定律:令n2=-n1,有ψ2=-ψ1,由于入射角和反射角关于反射法 线对称,因此ψ’=-ψ1 4、互易原理:当光线在两种媒质分界面上反射时,其光线传送互易。 非相对论条件下的电子运动方程: 直角坐标系下的电子运动方程组: 由电子在均匀电磁场中的能量变化方程:积分可得: 电子运动速度可以通过空间电位来表示,下式φ为规范化电位: 电子在均匀静电场内的轨迹方程: 均匀磁场中,电子速度垂直于B, 均匀磁场中,电子速度与B有夹角:,, 电子在复合电磁场中的运动 运动方程(摆线方程)为: 电子运动方程(轮摆线轨迹):
轴对称磁场的力函数, 磁标位的谢尔茨公式为: 轴对称磁场的数学表达式,磁标位的幂级数表达式、
磁感应强度B的幂级数表达式:、
1. 磁标位和Br及Bz的积分表达式:, A的积分表达式:
第四章 电子运动方程 电子轨迹方程 非相对论条件下的电子运动方程: 电子运动方程在直角坐标系下的展开: 电子在均匀电磁场中的能量变化方程: 能量守恒关系式: 关于z的x方向轨迹方程: y方向上分量方程: 圆柱坐标系下,各矢量关系:,,,, 能量守恒关系式: r方向上 角向上 虚/布许(Busch)定理:在旋转对称电、磁场中,电子运动的角动量守 恒。, 光在媒质中的运动遵循费马原理: 费马原理的具体表达式——斯涅尔定律: 比较:拉格朗日方程 拉格朗日方程 牛顿方程 广义动量 广义力 机械能(能量) 当力学系统能量守恒:T+U=E=const,有:L=2T-E,使式为零的表述—— 莫培督(Maupertuis)原理 莫培督原理导出的微分方程为电子轨迹方程。,,其中, 光在媒质中的运动和电子在保守场中的运功具有极大的相似性:, 在广义坐标系(q1,q2,q3)中,广义力Qi可以表示为: Qi代表力在广义坐标系中的分量 电位和磁矢位表示电场和磁场,并考虑电子运动产生的自磁场得:

光电子学教程

光电子学教程

第四章 光辐射 在介质波导中的传播§4-1光在介质分界面上的反射与折射§4-2介质平板光波导的射线分析方法§4-5光纤中的射线分析 §4-7光纤的损耗与色散1主要内容• • • • • 平板波导的结构特点 平板波导的模式 导模的特点与模方程 导模的截至 渐变折射率平板波导2平板光波导结构:为三层平薄介质: • 中间一层是波导薄膜, 厚度d约为1~10μm, 折射率为n1,光在其中传播; • 底层为衬底,折射率为n2; • 上层为包层,折射率为n3; 包层通常为空气n3=1。

三层折射率的比较为n1>n2>n3;3•因为n1>n2>n3,当光在 薄膜与衬底及包层的界 面都发生全反射时,光 线在薄膜内以锯齿形光 路传播;n1和n2之差一般为10−3 ~10−1•因此,光波在平板波导 内沿z方向传播时,只在 x方向上受到限制,而y 方向不受限制。

4x一、平板波导的模式 平板波导的模式 下界面全反射临界角n3dn2n1 n( x)n2 θ12 = arcsin i( ) n1 上界面全反射临界角 n3 ( ) θ13 = arcsin n1 Q n1 > n2 > n3 ∴θ12 > θ135考虑当入射角从 导中传播情况: •0~π2范围内光线在平板波(1) )当 θ i > θ12 > θ13 时,薄膜里的光波在上 在 下界面都会发生全反射。

光波将被限制在薄膜内, ,与 导 ; 沿z轴方向传播,与此对应的电磁波称为导模xdn3包层 薄膜θiθi0n1n2z衬底(a)导模6•(2)当0 < θi < θ13 ,由衬底或包层射入到薄 膜内的光波在上下界面发生部分反射,因而将有 一部分光波进入到包层或衬底中。

这时,光波能 量未被限制在薄膜内,而是辐射到衬底和包层两 个半无限空间中,与此对应的电磁波为包层膜;n3包层θin1θi薄膜dz衬底n2(b)包层模7•(3)当 θ13 < θi < θ12 ,由衬底入射到薄膜内 由衬底 射到薄膜内 的光波,在上界面经全反射后又折射回到衬底 中 这样 光波也未被限制在薄膜中 而是辐 中,这样,光波也未被限制在薄膜中, 射到衬底半无限空间中,与此对应的电磁波称 为衬底模。

光电子学整理1-4

光电子学整理1-4

17 光纤的色散包括哪几部分?单模光纤和多模 光纤分别以哪几种色散为主?
18 费马原理
20 用射线分析方法讨论阶跃光纤中导波成立条 件所代表的意义。
21、阶跃型光纤主要弱点是什么?产生的原因是什 么?用什么办法克服?
克服办法: 渐变型光纤
22、为什么要采用复杂的电磁波模式理论研究 光纤?
四能级比三能级系统效率高。
§2-1粒子数反转分布 一、激发态能级寿命 二、粒子数密度的差值
§2-2光在介质中小信号增益Hale Waihona Puke 1. 三能级系统 2. 四能级系统
§2-3介子中增益饱和与烧孔效应
三、三能级系统与四能级系统
克服三能级缺点, 易粒子反转。 问题:为什么四 能级比三能级易 粒子数反转?
E0基态,E1, E2, E3激发态,激励,基态粒子跃到E3, E3停短t, 无辐射跃E2,E2粒子积累。 E1,热平衡粒子少;
第一种答案
5.受激辐射与自发辐射的区别
第二种答案
6.激光单色性好原因?
• 受激发射光子与入射光子相同
7.什么是粒子数反转?
8.介质实现能级间粒子数反转条件
§2-1粒子数反转分布 一、激发态能级寿命 二、粒子数密度的差值
§2-2光在介质中小信号增益 1. 三能级系统 2. 四能级系统
§2-3介子中增益饱和与烧孔效应
好好学习,天天上上

03电子科学与技术Company Logo
13.谈谈新型激光器——量子级联激光器(QCLs)的工作 原理 量子级联激光器的工作原理与通常的半导体激光器截然不同,它 打破了传统p-n结型半导体激光器的电子-空穴复合受激辐射机制, 其发光波长由半导体能隙来决定。QCL受激辐射过程只有电子参 与,其激射方案是利用在半导体异质结薄层内由量子限制效应引 起的分离电子态之间产生粒子数反转,从而实现单电子注入的多 光子输出,并且可以轻松得通过改变量子阱层的厚度来改变发光 波长。量子级联激光器比其它激光器的优势在于它的级联过程, 电子从高能级跳跃到低能级过程中,不但没有损失,还可以注入 到下一个过程再次发光。这个级联过程使这些电子 “循环”起来,从而造就了一种令人惊叹的激光器。

光电子技术复习要点

光电子技术复习要点

第一章 绪论1. 光电子技术(optoelectronic technology )准确地应该称为信息光电子技术,是电子技术与光子技术相结合而形成的一门新兴的综合性的交叉学科,主要研究光与物质中的电子相互作用及其能量相互转换的相关技术,涉及光显示、光存储、激光等领域,是未来信息产业的核心技术。

2. 本课程主要讲了四大部分分别是:激光光源、光波的传输、光波的调制与控制、光波的探测。

第二章 激光原理与半导体光源1. 世界上第一台激光器是1960年梅曼制作的红宝石激光器。

2. 原子从高能级向低能级跃迁时,相当于光的发射过程;而从低能级向高能级跃迁时,相当于光的吸收过程;两个相反的过程都满足玻尔条件:n m n m E E h E E hνν-=-=或。

3. 处于热平衡状态的原子体系,设其热平衡绝对温度为T ,则原子体系的各能级上粒子数目的分布将服从波尔兹曼分布律:exp(/)n n N E kT ∝-,其中N n 为在能级E n 上的粒子数,k 为波尔兹曼常数, k=1.3807×10-23 J·K -1。

即,随着能级增高,能级上的粒子数N n 按指数规律减少。

4. 爱因斯坦在玻尔工作的基础上于1916年发表《关于辐射的量子理论》。

该文提出的受激光辐射理论是激光理论的核心基础。

在这篇论文中,爱因斯坦将光与物质的作用分为三种过程:受激吸收、自发辐射、受激辐射。

5. 在二能级系统中,粒子在高能级E 2 能级上停留的平均时间称为粒子在该能级上的平均寿命,简称寿命6. 下面三个图分别描述了二能级系统中光与物质的作用的三种过程:它们可以由下面三个方程描述:对于受激辐射过程(E2→E1 ):21212()dN B u v N dt= 对于受激吸收过程(E1→E2):12121()dN B u v N dt= 对于自发辐射过程(E2→E1 ):21212dN A N dt = 其中u(v)为辐射场中单色辐射能量密度:()()30348(),exp 1h u v T c c hv kT πνγν==-7. 二能级系统中,当(N 2/N 1)>1时,高能级E 2上的粒子数N 2大于低能级E 1上的粒子数N 1,出现所谓的“粒子数反转分布”情况,它是形成激光的必要条件之一。

电子光学知识点整理

电子光学知识点整理

第一章/n c v εμ==电子波长:h mv V λ==光的折射定律:2112sin sin n n φφ=,1122cn v cn v ==变分法关键定理:欧拉方程F F()0y x y d d ∂∂-='∂∂费马原理指出:光沿所需时间为极值(极大值、恒值、极小值)的路径传播。

t时间1vkii is ==∑费马原理的数学表达式:δδδδ==⇒==⎰⎰22111[]0[]0p p pp t nds L nds c费马原理的具体表达式——斯涅尔定律:1122()sin sin sin sin k kn x n n n φφφφ=L 常数或者:===光学定律的数学表达式(光的直线传播,反射、折射的内在联系.遵循的一个更普遍的规律)1\光的直线传播定律——由斯涅尔定律可知:当n 为常数时,正弦函数为常数,即,角度为常数;——光传播路径ds 上任何一点的方向相同,因此为一条直线。

2、折射定律——斯涅尔定律3、反射定律:令n2=-n1,有ψ2=-ψ1,由于入射角和反射角关于反射法线对称,因此ψ’=-ψ14、互易原理:当光线在两种媒质分界面上反射时,其光线传送互易。

非相对论条件下的电子运动方程:o d m e()dt =-+⨯v E v B直角坐标系下的电子运动方程组:222222()()()x z y y x z z y x d x e dy dz E B B dt m dt dt d y e dz dxE B B dt m dt dt d z e dx dyE B B dt m dt dt =-+-=-+-=-+-由电子在均匀电磁场中的能量变化方程:2()02d mv e dt ϕ-=积分可得:22mv e C ϕ-=电子运动速度可以通过空间电位来表示,下式φ为规范化电位:2 5.93210(/)e v m s m ϕϕ==⨯电子在均匀静电场内的轨迹方程:222o eE y z mv =-均匀磁场中,电子速度垂直于Bη==o o Lmv v R eB B ,ηππ===122o v B f T R均匀磁场中,电子速度与B 有夹角α:sin L v R B αη=,12B f T ηπ==,2cos h v B παη=电子在复合电磁场中的运动222222()()()x z y y x z z y x d x e dy dzE B B dt m dt dt d y e dz dxE B B dt m dt dt d z e dx dyE B B dt m dt dt =-+-=-+-=-+-运动方程(摆线方程)为:220(1cos())sin()x E y Bt B E E z t Bt B B ηηηη⎧⎪=⎪⎪⎪⎪=-⎨⎪⎪⎪⎪=-⎪⎩电子运动方程(轮摆线轨迹):22222()()()E E E y z t B B B ηη-+-=麦克斯韦方程组:BE t∂∇⨯=-∂,D ρ∇⋅=,D E ε=,D H J t ∂∇⨯=+∂,0B ∇⋅=,B H μ=在假设条件下:0E ∇⨯=,0E ∇⋅=,0B ∇⨯=,0B ∇⋅= 矢量公式通用形式2311322131231231[()()()]D h h D h h D h h D h h h q q q ∂∂∂∇⋅=++∂∂∂\22313211231112223331()()()h h h h h h h h h q h q q h q q h q ϕϕϕϕ⎡⎤∂∂∂∂∂∂∇=++⎢⎥∂∂∂∂∂∂⎣⎦直角坐标系下拉氏方程:圆柱坐标系下拉氏方程:0ϕθ∂=∂当时,22222211()00r r r r r r z z r ϕϕϕϕϕ∂∂∂∂∂∂+=⇒++=∂∂∂∂∂∂谢尔茨公式:圆柱坐标系下拉氏方程:贝塞尔微分方程:22221(1)0d d dz z dz z ϖϖνϖ++-=轴对称电场的积分表达式:201(,)(sin )2r z V z ir a daπϕπ=+⎰谢尔茨公式:曲线在点M 的曲率limQ Md k MQds δα→==点M 的曲率半径1ds R k d α==当已知曲线方程为:y=f(x)时,曲线的曲率半径。

光电子学复习要点

光电子学复习要点

光电子学复习要点光电子学是研究光与电子相互作用的学科,其应用广泛,包括激光技术、光通信、光存储、光探测等。

以下是光电子学(南京邮电大学)的复习要点。

1.光的本质和特性:光被视为一种电磁波,具有粒子和波动性质。

光的波长、频率、能量和速度是光学研究中的基本概念。

2.光的波动性:光的干涉、衍射、偏振等特性是光的波动性的表现。

波动理论可以解释和预测光的行为。

3.光的粒子性:光的粒子性通过光量子假说解释,即光以光子的形式传播。

光谱分析和光电效应是光的粒子性的现象。

4.光的发射和吸收:光可以通过激发物质的原子或分子产生发射,被物质吸收后可以引起电子激发或转移。

5.激光的基本原理:激光是一种具有高亮度和高聚束性的光源。

激光的实现需要能级反转和光反馈的条件。

6.半导体光电子器件:半导体材料在光电子学中有着重要的应用,如光电二极管、光电晶体管、光电子倍增管等。

其工作原理是利用半导体材料的特性,将光子转换为电信号。

7.光通信系统:光通信是一种基于光信号传输的通信方式。

光纤作为信号传输媒介,光放大器和光调制器等器件实现信号的放大和调制。

8.光信息处理:光信息处理技术包括光学图像处理、光学信号处理和光学数据存储等。

利用光的并行性和高速性可以实现快速的信息处理。

9.光学成像:光学成像技术包括透镜成像、干涉成像和衍射成像等。

不同的成像方式有不同的应用场景,如显微镜、摄影和印刷等。

10.光学信息存储:光存储技术是利用光的能量和非线性特性实现信息存储。

包括光盘、激光打印和全息存储等。

以上是光电子学的复习要点,理解这些基本概念和原理,掌握相关的技术和应用,对于深入研究和应用光电子学具有重要意义。

光电子学与光子学讲义-知识要点资料

光电子学与光子学讲义-知识要点资料

光电子学与光子学讲义-知识要点《光电子学》知识要点第0章光的本性,波粒二像性, 光子的特性第一章1.了解平面波的表示形式及性质,了解球面波、发散波的特点2.理解群速度的定义及物理意义和光波波前的传播方向的矢量表示、能量的传播方向的矢量表示3.理解描述反射和折射的菲涅尔公式的物理意义,掌握垂直入射情况下的反射率和透射率的计算公式和布儒斯特角4.理解全反射情况下导引波和倏逝波的形成和特点,了解古斯-汉森位移。

5.掌握垂直入射时反射系数的公式,理解反射率和透射率定义,不会计算6.掌握布儒斯特角的定义和特点。

7.掌握光波相干条件。

理解薄膜干涉的物理机制和增透膜、增反膜的形成条件。

8.FP腔的特点和模式谱宽同反射镜反射率之间的关系。

9.了解衍射现象产生条件,理解波动光学处理光的衍射的基本方法。

了解单缝、矩形空、圆孔的衍射图案特征和弗朗和费多缝光栅、衍射光栅、闪耀光栅的特点。

10.理解光学系统的分辨本领的决定因素。

什么是瑞利判据?理想光学系统所能分辨的角距离公式。

第二章1.了解光波导的结构特征和分类,理解平面波导导模形成条件,会利用一种方法推导平面介质波导的导波条件(特征方程),截止状态的特点2.理解光纤色散的概念,掌握材料色散、波导色散、颜色色散、剖面色散、偏振模色散的特点及形成原因3.了解阶跃折射率光纤的分析方法及相关参数的物理意义,会利用V参数计算光纤的结构参数4.掌握光纤中的损耗的成因及分类,掌握损耗的描述和计算。

5.了解G.651、G.652、G.653、G.654、G.655、色散补偿光纤的特点,熟悉G.652的主要参数。

第三章1.了解pn结的空间电荷区的形成、掌握pn结动态热平衡的物理意义。

2.了解pn结外加正向偏压和外加反向偏压时的特性(空间电荷区、势垒以及载流子的变化规律)。

3.掌握LED的工作原理(即pn结注入发光的基本原理)并理解同质结LED 和异质结LED的区别4.掌握LED的内量子效率与外量子效率的物理意义,和有源区半导体材料带隙宽度与发射波长的关系,以及温度等因素对发射波长的影响5.理解LED特性参数(光谱宽度,发散角,输出光功率,调制速度,阈值)的物理意义,了解LED结构的特点。

光电子各章复习要点

光电子各章复习要点

各章复习要点第1章 激光原理概论1.光的波粒二相性,光子学说光是由一群以光速 c 运动的光量子(简称光子)所组成 2三种跃迁过程(自发辐射、受激辐射 和受激吸收)• 3.自发辐射和受激辐射的本质区别?• 4.在热平衡状态下,物质的粒子数密度按能级分布规律(正常分布)• 5.激光产生的必要条件:实现粒子数反转分布 • 6.激光产生的阈值条件:增益大于等于损耗 •7.激光的特点?•(1)极好的方向性(θ≈10-3rad)•(2)优越的单色性(Δν=3.8*108Hz,是单色 性最好的普通光源的线宽的105倍.•(3)极好的相干性(频率相同,传播方向同,相位差恒定)•(4)极高的亮度•光亮度:单位面积的光源,在其法向单位立体角内传送的光功率.•8激光器构成及每部分的功能νh E =λνc h c h c E m ///22===1激光工作物质提供形成激光的能级结构体系,是激光产生的内因2.)泵浦源提供形成激光的能量激励,是激光形成的外因3.)光学谐振腔①提供光学正反馈作用②控制腔内振荡光束的特性•9激光产生的基本原理(以红宝石激光器为例)•⑴Cr3+的受激吸收过程.•⑵无辐射跃迁•⑶粒子数反转状态的形成•⑷个别的自发辐射 •⑸受激发射 •⑹激光的形成 •10.模式的概念及分类11.纵模的谐振条件的推导及纵模间隔的计算。

第2章 激光谐振腔技术、选模及稳频技术 • 1.掌握三个评价谐振腔的重要指标•最简单的光学谐振腔是在激活介质两端适当的位置放置两个具有高反射率的反射镜来构成的,与微波相比,采用开腔。

1)平均单程功率损耗率πλπφ222⋅=⋅=∆q nL qnL q 2=λnLcqv q 2=反射损耗:衍射损耗:(圆形平行平面腔)2)谐振腔寿命3)谐振腔Q 值• 2.了解横模选择的两种方法(1)只改变谐振腔的结构和参数,使高阶模具有大的衍射损耗(2)腔内插入附加的选模器件 3两种常用的抑制高阶横模的方法 1.调节反射镜 ✓ 优点:方法简单易行 ✓ 缺点:输出功率显著降低 2.腔内加光阑高阶横模的光束截面比基横模大,减小增益介质的有效孔径,可大大增加高阶横模的衍射损耗• 4.理解三种单纵模输出的方法 •1)短腔法10ln21I I =δ4.12)(207.0aLd λδ=)1(R c Lt c -=dr L L R c L cQ δδλπλδπλπ+==-=1.22)1(.221210010ln 21ln 21ln21r r r r I I I I -===δ•2)法布里-珀罗标准距法•3)复合腔选纵模第5章 光电子显示技术• 1.黑白CRT 的构成及每部分的功能? • 电子枪、偏转系统和荧光屏三部分构成• 2.黑白CRT 的基本工作原理?ndc m 2=∆ν•电子枪发射出电子束,电子枪受阴极或栅极所加的视频信号电压的调制,电子束经过加束极的加速,聚焦极的聚焦,偏转磁场的偏转扫描到屏幕前面的荧光涂层上,产生复合发光,最终形成满足人眼视觉特性要求的光学图像。

光电子技术期末知识点总结

光电子技术期末知识点总结

光电子技术期末知识点总结一、光电子技术概述光电子技术是指利用光电效应,将光与电子相互转换的一种技术。

光电子技术主要应用于:信息传输、信息显示、信息储存、光学仪器、光电子器件等领域。

二、光电效应光电效应是指当光照射到物质表面时,物质会产生电子的现象。

光电效应实验证明了光的粒子性,同时也说明了光的能量是离散分布的。

光电效应的主要特点有:阈值频率、最大电子动能、光电流等。

三、半导体光电子器件1. 光电二极管(Photodiode)光电二极管是一种能将光能直接转换为电能的器件,主要用于光电探测和光电转换。

光电二极管的特点有:高响应速度、高量子效率、低噪声等。

2. 光电倍增管(Photomultiplier Tube)光电倍增管是一种利用光电效应将光信号放大的器件,主要用于弱光信号的检测和测量。

光电倍增管的工作原理是:光电效应 - 光电子倍增 - 电子放大。

3. CCD(Charged Coupled Device)CCD是一种能将光信号转换为电信号并储存起来的器件,主要用于图像传感和图像采集。

CCD的特点有:高灵敏度、低噪声、高分辨率等。

4. 光电晶体管(Phototransistor)光电晶体管是一种带有光电二极管和晶体管结构的器件,能够将光能转换为电能并放大。

光电晶体管的特点有:高增益、高速度、低功耗等。

五、光通信技术光通信技术是利用光信号传递信息的一种通信技术。

光通信技术主要包括:光纤通信、光无线通信和光备份通信。

1. 光纤通信光纤通信是利用光纤传输光信号的一种通信方式。

光纤通信的优点有:大容量、传输距离远、抗干扰能力强等。

2. 光无线通信光无线通信是一种通过空气中传输光信号的通信技术,无需光纤。

光无线通信的优点有:无线传输、容量大、传输速度快等。

3. 光备份通信光备份通信是一种利用光信号进行备份传输的通信方式,常用于保护重要数据的传输。

六、光电信息显示光电信息显示技术主要包括:光电显示器、光电显示模块等。

光电子技术基础——总结

光电子技术基础——总结


强度调制
系数
Am ma Ac
mf

m
mp k p Am
m k Am


其调幅波的表达式为:
E(t ) Ac 1 ma cosmt cos(ct c )
利用三角公式: 得:
(3.1-3)
cos cos 1 cos( ) cos( ) 2
3 2 1 0 -1 -2 -3


布喇格衍射
产生布喇格衍射条件:声波频 率较高,声光作用长度L较大, 光束与声波波面间以一定的角 度斜入射,介质具有“体光栅” 的性质。
布喇格衍射的特点:衍射光各高级次衍射光将互相抵 消,只出现0级或+1级(或1级)衍射光 。


声光调制器的工作原理 声光调制是利用声光效应将信 息加载于光频载波上的一种物理过 程。 调制信号是以电信号(调辐)形 式作用于电-声换能器上,电-声换 能器将相应的电信号转化为变化的 超声场,当光波通过声光介质时, 由于声光作用,使光载波受到调制 而成为“携带”信息的强度调制波。
——一束线偏振光在外加磁场作用下的介质中传播时,其 偏振方向发生旋转,其旋转角度 的大小与沿光束方向的磁场 强H和光在介质中传播的长度 L 之积成正比,即
=VHL。
式中,V 称为韦尔德 (verdet)常数,它表示在单 位磁场强度下线偏振光通 过单位长度的磁光介质后 偏振方向旋转的角度。
2.5 光波在光纤波导中的传播


光电子技术基础
总 结


光电子技术基础
1.1 电磁波谱与光辐射
电磁波的性质:
(1)电场E和磁场H与传播方向两两垂直,右螺旋关系. (2)偏振——电场E和磁场H。 (3)空间各点的电场E和磁场H同相位地周期性变化。

光电子技术(基础光学知识)

光电子技术(基础光学知识)

Nano Porous Materials Group
图2.2光的反射、全反射、折射现象
Nano Porous Materials Group
• 2.3.2 偏振 • 在空间传播的电磁波,其电场矢量在某一特殊 的平面内振动,就称这种电磁波为平面偏振波或 线偏振波。许多实际的光束都是由许多个别的光 波合成的,合成光波方向不断变化,大多数情况 下这些个别光波的电场矢量取向都是任意的,因 而光束是非偏振的。实际中的自然光,其光源包 含各个方向上平均振幅相等的电场矢量。在自然 光中的部分偏振光可以看成是偏振光和非偏振光 的混合,用偏振度来描述。
Nano Porous Materials Group
但是,从19世纪末到21世纪初,人们又陆续发现了一系 列波动理论难以合理解释的现象,如黑体辐射、原子的线 状光谱和光电效应等。 以后,人们在努力解释有关光和物质相互作用的现象时, 越来越多地认识到必须承认光具有粒子特性。 1900年普朗克(M. Planck) 提出辐射的量子理论,1905年 爱因斯坦(Einstein)发展了普朗克的量子化假设,形成了 一种全新意义的光子学说。
X射线管 加热器
0.1nm~0.03um 1.0pm~0.1nm
1010~3×1012 3×(1012~1014)
医用、探伤、物相分析 探伤、物相结构分析
Nano Porous Materials Group
波长超过lmm的电磁波我们统称为无线电波,其频率不超过 300 MHz。除了自然界本身具有的以外,我们通常研究和使用 的无线电波主要是由包括各类晶体管等元器件制作的特定的电 子线路产生,因此频率的纯度可以是很高。通过对电子线路进 行调制,可用来承载和传递各种信息。百多年来无线电波已被 广泛地应用于无线电广播、电视、移动电话、卫星转播、雷达 和电磁炉等众多领域,已经成为日常生活中不可或缺的东西。 无线电波我们无法用肉眼直接看见,而我们所讨论的可见光 却是我们睁开眼睛就能见到的。可见光其实也是电磁波,但只 占整个电磁波谱中很小的一部分,只有波长范围在400 ~ 760 nm之间的电磁波能使人眼产生光的感觉。有意思的是不同波 长的电磁波对人眼中所呈现的效果是各不相同,随着波长的缩 短,呈现的感官效果,也可称为“颜色”依次为红、橙、黄、 绿、青、蓝、紫。我们日常感受到的白光则是各种颜色的可见 光的混合,也即是400 ~ 760 nm之间的电磁波的混合。

光电子技术复习总结

光电子技术复习总结

光电⼦技术复习总结光电⼦技术复习题总结(第⼀章:光的基础知识及发光源1.光的基本属性?光具有波动和粒⼦的双重性质,即具有波粒⼆象性。

2.激光的特性?(1)⽅向性好(2)单⾊性好(3)亮度⾼(4)相⼲性好3.玻尔假说:定态假设和跃迁假设?(1)定态假设;原⼦存在某些定态,在这些定态中不发出也不吸收电磁辐射能。

原⼦定态的能量只能采取某些分⽴的值E1、E2 、……、En ,⽽不能采取其它值。

(2)跃迁假设;只有当原⼦从较⾼能量En的定态跃迁到较低能量Em的定态时,才能发射⼀个能量为h4.光与物质的共振相互作⽤的三种过程?受激吸收、⾃发辐射、受激辐射5.亚稳态?⾃发辐射的过程较慢时,粒⼦在E2能级上的寿命就长,原⼦处在这种状态就⽐较稳定。

寿命特别长的激发态称为亚稳态。

其寿命可达10-3~1s,⽽⼀般激发态寿命仅有10-8s。

6.受激辐射的光⼦性质?受激辐射的光⼦的频率、振动⽅向、相位都与外来光⼦⼀致。

7.受激吸收和受激辐射这两个过程的关系?宏观表现?两能级间受激吸收和受激辐射这两个相反的过程总是同时存在,相互竞争,其宏观效果是⼆者之差。

当吸收过程⽐受激辐射过程强时,宏观看来光强逐渐减弱;反之,当吸收过程⽐受激辐射过程弱时,宏观看来光强逐渐加强。

8.受激辐射与⾃发辐射的区别?最重要的区别在于光辐射的相⼲性,由⾃发辐射所发射的光⼦的频率、相位、振动⽅向都有⼀定的任意性,⽽受激辐射所发出的光⼦在频率、相位、振动⽅向上与激发的光⼦⾼度⼀致,即有⾼度的简并性。

9.光谱线加宽现象?由于各种因素影响,⾃发辐射所释放的光谱并⾮单⾊,⽽是占据⼀定的频率宽度,分布在中⼼频率v0附近⼀个有限的频率范围内,⾃发辐射的这种现象称为光谱线加宽。

10.谱线加宽的原因?由于能级有⼀定的宽度,所以当原⼦在能级之间⾃发发射时,它的频率也有⼀个变化范围△vn.11.谱线加宽的物理机制分为哪两⼤类?它们的区别?分为均匀加宽和⾮均匀加宽两⼤类。

江西考研光学工程复习必备光电子学重点整理

江西考研光学工程复习必备光电子学重点整理

江西考研光学工程复习必备光电子学重点整理光电子学是光学与电子学相结合的一门学科,对于光学工程考研的学生来说,掌握光电子学的重点知识是非常重要的。

本文将为大家整理江西考研光学工程复习必备的光电子学重点,帮助大家更好地备考。

一、基本概念1. 光电效应:光电效应是指当光线照射到物质表面时,由于光子的能量被吸收,导致电子从物质中被激发或释放出来的现象。

2. 光电子学:光电子学是研究光电效应及其应用的学科,它主要研究光与电子的相互作用关系以及利用光电效应进行测量、通信和能量转换等应用。

3. 光电导效应:光电导效应是指光照射到半导体材料中时,由于光电效应的作用,导致材料电导率发生变化的现象。

4. 光电二极管:光电二极管是一种利用光电效应制成的电子器件,它能够将光信号转化为电信号,常用于光通信和光测量领域。

5. 光电倍增管:光电倍增管是一种能够将光信号转化为电信号,并通过电子增益使其信号强度大幅增加的器件。

二、重点知识点1. 光电效应的基本原理:包括引入工作函数的概念、光电子的能量守恒关系、光电子的动量守恒关系等。

2. 光电效应的分类及特点:根据光电效应的不同特点,可以将其分为外光电效应、内光电效应和热电效应等。

3. 光电子学中的光子:光子是光的量子,具有能量和动量,其能量与频率成正比,动量与波长成反比。

4. 光电二极管的结构和工作原理:包括光电二极管的PN结构、正向与反向偏置、光电二极管的光电流和暗电流等。

5. 光电倍增管的结构和工作原理:包括光电倍增管的光电子发射、倍增功能、输出电子收集和信号放大等。

三、典型应用领域1. 光通信:光电子学在光通信领域得到广泛应用,例如光纤通信、光传感器和激光器等。

2. 光储存:光电子学在光储存领域的应用主要包括光盘、光存储器和光存储片等。

3. 光测量与检测:光电子学在光测量与检测领域的应用包括光谱仪、光电探测器和光电测量系统等。

4. 光能转换:光电子学在光能转换领域的应用主要包括太阳能电池、光电管和光能转换器等。

光电子学复习提纲

光电子学复习提纲

光电子学复习提纲光电子学是研究光与电子之间相互作用的学科,它涉及到光的产生、传播、探测以及与物质的相互作用等方面。

本文将为您提供一份光电子学复习提纲,帮助您全面复习光电子学的相关知识。

一、光的基本概念和特性1.光的波动性和粒子性:光的波粒二象性以及爱因斯坦对光的解释。

2.光的电磁波性质:光的振荡特性、光的波长、频率、波速等基本概念。

3.光的干涉和衍射现象:干涉和衍射的基本原理以及干涉条纹和衍射图样的特点。

二、光的产生与传播1.光的产生方式:自发辐射、受激辐射和受激吸收等。

2.激光原理和特性:受激辐射的产生、激光的特点和分类、激光的放大和调谐等。

3.光纤通信:光纤的结构和工作原理、光纤传输的优势和应用领域、光纤通信系统的组成和性能。

三、光的探测和测量1.光电二极管:光电二极管的结构和工作原理、灵敏度和响应速度等。

2.光电倍增管:光电倍增管的基本原理、增益特性和应用。

3.光谱仪:光谱仪的工作原理、光栅和衍射光栅的特性、光谱分析的应用等。

四、光与物质的相互作用1.光电效应:光电效应的基本原理、光电效应的实验和测量以及应用。

2.光电导效应:光电导效应的概念和原理、光电导材料的特点和应用。

3.光致发光和光致发色:光致发光的基本原理、光致发光技术的应用。

4.光致变色:光致变色的基本原理、光致变色材料的种类和应用。

五、光电子学的应用1.光电子器件:光电二极管、激光器、光纤传感器等光电子器件的原理和应用。

2.光电子技术在生物和医学领域的应用:光纤光谱仪的生物分析应用、激光在医学中的应用等。

光电子学是一门重要的学科,它在现代科学和技术中有着广泛的应用。

通过对光的产生传播、探测测量以及光与物质的相互作用等方面的研究,我们可以更好地理解光学现象,并将光电子学应用于光通信、光信息处理、生物医学等领域,为人类社会的进步做出贡献。

以上就是光电子学复习提纲的内容,希望能对您的复习有所帮助。

祝您复习顺利!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
激光是20世纪的四项重大的发明之一,激 光的出现带动了多学科的发展,如量子光 学、量子电子学、激光光谱学、非线性光 学、集成光学、海洋光学等等。(细节描 述可参照前沿课PPT激光器历史)
2.受激辐射
3.激光理论的基础
4.请解释粒子数反转和负温度的概念以及在激 光起重器的作用
5.受激辐射与自发辐射的区别
12.根据半导体激光器的材料与结构特点,说明半 导体激光器产生的原理。(P191-193)
答:在半导体晶体中,能带分为价带和导带它们
之间是禁带。通常情况下,电子大部分处于价带, 而导带中只有少量电子。若有一束平行光入射, 在导带里的能级和价带中的能级之间就会造成受 激吸收与受激辐射。受激吸收和受激辐射都会导 致价带中的电子跃迁到导带上,从而实现了粒子 数的反转分布。此时在PN结两边加正向电流, 使增益大于损耗值,就能形成激光震动,产生激 光。
通过受激辐射起主要作用从而产生激光,必需要有提供放大作用的增益 介质和造成粒子数反转条件的激励源,另外通常要有一个光学谐振腔, 像电子线路种的正反馈那样,使光在放大器中反复放大而形成振荡;
现代所用的半导体激光器,通常采用激光二极管,它的原理与普通的二 极管极为相似,如都有一对 PN 结,当电压和电流加到激光二极管上时, P 型半导体材料中的空穴和 N 型材料中的自由电子产生相对运动,PN 结处载流子的密度增加非常大,自由电子和空穴重新复合,因而产生受 激辐射,释放出具有激光特性的光子,由激光器谐振腔内的反射镜反射, 透过激光孔和孔内聚焦镜,射出激光束。
15.光抽运
激活介质
供给工作物 质能量
部分反射 R 为 80%~90%
激光束
使入射光得 到放大,是
核心
光学谐振腔
只让与反射镜轴向平行光 束能在激活介质中来回反 射,连锁式放大。最后形
成稳定激光输出。
15.激光产生的物理过程。
第三章 思考与练习(答案)
14.实现光放大的必要条件是什么,负温度状态的概念是什么?
答1(1)产生光放大必要条件:粒子数反转分布状态即,受激辐射>受激吸收;
G > 0,介质对光有放大作用;
(2)负温度: 不是描述宏观物体状态的概念,
负温度,能量比正温度 高状态。
它是描述微观粒子能量反转状态的数学表述。
负温度含义:不是表示
(7)分析激光产生的条件。
第三章复习思考题(11)
11.已知氢原子第一激发态能量为 E2= -3.40eV,基态能量 E1= 13.60eV,请说明为什么可见室温下处于热平衡状态氢原子几乎处于
基态?
• 在物质处于热平衡状态时,各能级上的原子数(或称集居 数)服从玻尔兹曼统计分布:得出结果约为零,不能发生 粒子数反转,故在室温下处于热平衡状态氢原子几乎处于 基态
光电子学
1、什么是光电子学?
2、光电效应
3、谈谈你所了解的光电子学与光电子技术涉 及的范围
4、为什么说光波是电磁波?
4、为什么说光波是电磁波?
5、你对世界上最伟大的十个公式中麦克斯韦 方程组排在第一的理解
6、谈谈你对麦克斯韦方程组的物理意义认识
1.谈谈你对激光器的发明带来了世界巨大进步 的认识
第一种答案
5.受激辐射与自发辐射的区别
第二种答案
6.激光单色性好原因?
• 受激发射光子与入射光子相同
7.什么是粒子数反转?
8.介质实现能级间粒子数反转条件
§2-1粒子数反转分布
§2-2光在介质中小信号增益
一、激发态能级寿命 二、粒子数密度的差值
三、三能级系统与四能级系统 1. 三能级系统 2. 四能级系统
光照
§2-3介子中增益饱和与烧孔效应
寿命ns
ms
三能级激光器效率不高,因抽运前粒子基态,激励源强抽运快, N2>N1,粒子数反转;
四能级E2,E1间粒子数反转。 低 能能 级级E2,E1E激1间发产态生,激粒光子,极少,E2粒子积累,易N2>N1,粒子反转, E3粒子向E2跃迁,E1粒子向E0过渡,易连续反转,
16.简述经典理论和量子理论对光的相干性是如何描述的, 两者的结论是否一致?
与粒子数反转相对应等效温度为负温度。
比绝对零度低温度,
表示大于正无穷温度
答 2:粒子数反转是得到光放大必要条件(见书 P39)。
出现粒子数反转时,如在形式上使用热平衡分布公式,
得到负温度状态概念。与粒子数反转相对应等效温度:Teq
hv k ln N 2 g1
0
N1g2
第三章 思考与练习(答案)
四能级比三能级系统效率高。
§2-1粒子数反转分布
§2-2光在介质中小信号增益
一、激发态能级寿命 二、粒子数密度的差值
三、三能级系统与四能级系统 1. 三能级系统 2. 四能级系统
§2-3介子中增益饱和与烧孔效应
克服三能级缺点, 易粒子反转。 问题:为什么四 能级比三能级易 粒子数反转?
E0基态,E1, E2, E3激发态,激励,基态粒子跃到E3, E3停短t, 无辐射跃E2,E2粒子积累。
E1,热平衡粒子少;
E2稍积累,E2和E1间粒子数反转。 E3粒子向E2转移快,E1粒子向E0过渡快,E1,易反转;
比三能级系统,激励能量要求不高。克服三能级缺点易粒子数反转
(激活介质)。
第三章复习思考题(10)
10.产生激光的必要、充分条件分别是什么?
(7)分析激光产生的条件。
好好学习,天天上上

03电子科学与技术Company Logo
13.谈谈新型激光器——量子级联激光器(QCLs)的工作 原理
量子级联激光器的工作原理与通常的半导体激光器截然不同,它 打破了传统p-n结型半导体激光器的电子-空穴复合受激辐射机制, 其发光波长由半导体能隙来决定。QCL受激辐射过程只有电子参 与,其激射方案是利用在半导体异质结薄层内由量子限制效应引 起的分离电子态之间产生粒子数反转,从而实现单电子注入的多 光子输出,并且可以轻松得通过改变量子阱层的厚度来改变发光 波长。量子级联激光器比其它激光器的优势在于它的级联过程, 电子从高能级跳跃到低能级过程中,不但没有损失,还可以注入 到下一个过程再次发光。这个级联过程使这些电子 “循环”起来,从而造就了一种令人惊叹的激光器。
相关文档
最新文档