《双因素方差分析》PPT课件

合集下载

双因素完全随机设计的方差分析PPT课件

双因素完全随机设计的方差分析PPT课件

误差(e) 6 1580.16 263.36
总变异
11 38550.67
F
31.81** 22.47**
F
5% 1% 4.79 9.78 5.14 10.92
表3-2-30 海拔高度、植被类型的差异显著性(SSR法)
因素
平均数
显著性
5%
1%
A3
165.33
a
A
A
A2
75.00
b
B
A4
70.00
b
B
SEA
MSe br
4.56 0.6164 12
SEAB
MSe r
4.56 1.2329 3
SEB
MSe ar
4.56 0.7118 9
单因素随机区组设计的方差分析
Made by Lidexiao 10-22-2008
回顾:随机区组设计
❖ 区组的概念不局限于田间试验,可以认为只要将性质近似的试验材料 (如同一窝动物,同年龄,同身长,同体重的个体等)或大致相同的环 境条件安排在同一组群中,该组群则可称为区组.
9671.66 3253.99
T x..
11.6
2 i.
xi2j
ij
8686.24 10180.81 25772.66
表3-2-27 双因素无重复试验方差分析模式
EMS
变异因素
df
SS MS
固定模型 随机模型 A随机B固定
A
a-1
SSA MSA
2
bK
2 A
2
b
2 A
2
a
2 A
B
b-1
SSB
MSB
xij i j ij

方差分析第四章双因素方差分析ppt课件

方差分析第四章双因素方差分析ppt课件

i1j1
i1
ab
Se
(yijyi•y•j y)2
i1 j1
整理版课件
自由度分析TN1a b1A a1 B b1
e T A B a 1 ( b a 1 ) ( b 1 ) a a b b 1
e a ( b 1 ) ( b 1 ) ( b 1 )a (1 )
e(b1)a (1)
i 1
b
a
a
a
b
b
y 1 jy i1y i2 y ib ( y 2 j y a)j
j 1
i 1
i 1
i 1
j 1
j 1
b 1 • a y • 1 a y • 2 y a • b ( b y 2 • b y 3 • y b a • )y
整理版课件
三、平方和的简化计算
ST
Se e
VE
SAB
AB
Se
e
■ 3. 判断
ab
ST
(yij y)2
i1 j1
ab
ab
ab
(y i• y ) 2 (y • j y ) 2 (y i jy i• y • j y ) 2
i 1j 1
i 1j 1
i 1j 1
ab
a
SA (yi•y)2b (yi•y)2
i1j1
i1
ab
a
SB (y•Jy)2a (y•jy)2
证明交叉项为零:
abr
(yij k yi• j)(yi• jyi••y•j•y)
i 1j 1k 1
ab
r
(yi•jyi••y•j•y) (yi j kyi•j)
i 1j 1
k 1
ab

最新双因素方差分析法非常好的具体实例.课件ppt

最新双因素方差分析法非常好的具体实例.课件ppt

输入数据时,C2表示行因素 水平,C3表示列因素水平。 第几次重复不必列明,软件
自会识别。
结果显示如P185
均<0.01
饲料中能量的高低、蛋白质含量的不同 及两者的交互作用对鱼的体重的影响极 有统计意义。
各因素,各水平,各交互作用下的均值。
作业 P195 3 4(借助软件完成)
预习第三节 正交试验设计 及其统计分析
则 F AS S S S E Ad d ffE AM M S S E A~Fa 1 ,a bn 1
F BS S S S E Bd d ffB EM M S S E B~Fb 1 ,a bn 1
F A B S S S A S E B d d f fE A B M M S S A E B ~ F a 1 b 1 ,a b n 1
H 0 3 : i j 0i 1 ,2 ,,a ;j 1 ,2 ,,b
➢ 总离差平方和的分解定理 仿单因素方差分析的方法,考察总离差平方和
a b n
2
SST
Xijk X
i1 j1k1
可分解为: S S T S S A S S B S S A B S S E
SSA称为因素A的离差平方和,反映因素 A 对试验 指标的影响。 SSB称为因素B的离差平方和,反映因素 B 对试验指标的影响。SSAB称为交互作用的离差平方和, 反映交互作用AB对试验指标的影响。SSE称为误差平 方和,反映试验误差对试验指标的影响。
由 FA,FB,FAB作右侧假设检验来考察各因素及因素
间的交互作用对试验指标的影响力.
双因素有重复(有交互作用)试验资料表
因素 B 因素 A
A1
...
B 1
X111 ... X11n

第二节 双因素方差分析 PPT课件

第二节 双因素方差分析 PPT课件

分析步骤
(构造检验的统计量)
计算均方(MS)
行因素的均方,记为MSR,计算公式为
MSR SSR k 1
列因素的均方,记为MSC ,计算公式为
MSC SSC r 1
误差项的均方,记为MSE ,计算公式为
MSE SSE (k 1)(r 1)
分析步骤
(构造检验的统计量)
replication )
双因素方差分析的基本假定
1. 每个总体都服从正态分布 对于因素的每一个水平,其观察值是来自正态分布
总体的简单随机样本
2. 各个总体的方差必须相同 对于各组观察数据,是从具有相同方差的总体中抽
取的
3. 观察值是独立的
无交互作用的双因素方差分析 (无重复双因0
343
340
品牌2
345
368
363
330
品牌3
358
323
353
343
品牌4
288
280
298
260
地区5 323 333 308 298
数据结构
分析步骤
(提出假设)
• 提出假设
– 对行因素提出的假设为
• H0:m1 = m2 = … = mi = …= mk (mi为第i个水平的
平方和 自由度 误差来源
均方
(SS) (df) (MS)
F值
P值
F 临界值
行因素 SSR
MSR k-1 MSR
MSE
列因素 SSC
MSC r-1 MSC
MSE
误差
SSE (k-1)(r-1) MSE
总和 SST kr-1
双因素方差分析
(例题分析)

spss操作-双因素方差分析(无重复)精品PPT课件

spss操作-双因素方差分析(无重复)精品PPT课件

2)将“含量比”设置为变量,将“PH值”、 “浓度”设置为因素
3)单击Model → 单击Custom选择只含主效应的双因 素方差分析模型 ,单击Con将两个因素设置为需要进行多重比 较的因素,选择 Tukey 法进行多重比较;
5)单击Continue,返回上一级菜单,单击Option,选择 需显示描述性统计量的因素 ,单击Continue返回上一级菜单 单击OK。
结论:…..
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
谢谢大家
荣幸这一路,与你同行
蒸馏水PH值
硫酸铜浓度
B1
B2
B3
A1
3.5
2.3
2.0
A2
2.6
2.0
1.9
A3
2.0
1.5
1.2
A4
1.4
0.8
0.3
使用SPSS软件进行分析
1. 单击 “开始” → “程序” → SPSS for windows → SPSS10.0 for windows → type in data → OK → 单击 “Variable View”( 在第 一列输入因变量( 含量比 ) 、因素A( PH值 )因素 B( 浓度 ) ;单击“ Data View ”。
(I) PH值 (J) PH值
1
2
Mean Difference
(I-J)
.433
Std. Error .169
95% Confidence Interval

双因素试验方差分析课件

双因素试验方差分析课件
结合其他统计方法
未来将结合其他统计方法,如回归 分析、聚类分析等,以更全面地揭 示多因素对试验结果的影响。
THANKS
感谢您的观看
重复原则
在相同条件下重复进行试 验,提高试验的可靠性和 准确性。
对照原则
设置对照组,以消除非试 验因素的影响,突出试验 因素的作用。
试验的分类
STEP 02
STEP 03
多因素试验
同时考虑多个因素对试验 结果的影响。
STEP 01
双侧双因素试验
同时考虑两个因素对试验 结果的影响。
单侧双因素试验
只考虑两个因素中的一个 因素对试验结果的影响。
结果解释
根据方差分析的结果,解释各因素 对观测值的影响程度和显著性,得 出结论。
双因素试验方差分析的注意事项
数据的正态性和同方差性
样本量和试验精度
在进行方差分析之前,需要检验数据 是否符合正态分布和同方差性,以确 保分析结果的准确性。
适当增加样本量可以提高试验精度和 降低误差,对方差分析的结果产生积 极影响。
方差分析的步 骤
01
02
03
04
计算平均值和方差
计算各组的平均值和方差。
检验假设条件Βιβλιοθήκη 检查是否满足方差分析的假设 条件。
进行方差分析
使用适当的统计软件或公式进 行方差分析,并解释结果。
结论与建议
根据分析结果得出结论,并提 出相应的建议。
双因素试验方差分析
双因素试验方差分析的步骤
确定试验因素
明确试验的两个因素,并确定每个 因素的取值水平。
试验设计
根据试验目的和因素水平进行试验 设计,确保每个因素的每个水平都 被充分考虑。
数据收集

双因素方差分析方法35页PPT

双因素方差分析方法35页PPT
55、 为 中 华 之 崛起而 读书。 ——周 恩来
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
双因素方差分析方法
11、获得的成功越大,就越令人高兴 。野心 是使人 勤奋的 原因, 节制使 人枯萎 。 12、不问收获,只问耕耘。如同种树 ,先有 根茎, 再有枝 叶,尔 后花实 ,好好 劳动, 不要想 太多, 那样只 会使人 胆孝懒 惰,因 为不实 践,甚 至不接 触社会 ,难道 你是野 人。(名 言网) 13、不怕,不悔(虽然只有四个字,但 常看 我用清 洁与节 制来珍 惜我的 身体, 我用智 慧和知 识充实 我的头 脑。 15、这世上的一切都借希望而完成。 农夫不 会播下 一粒玉 米,如 果他不 曾希望 它长成 种籽; 单身汉 不会娶 妻,如 果他不 曾希望 有小孩 ;商人 或手艺 人不会 工作, 如果他 不曾希 望因此 而有收 益。-- 马钉路 德。

双因素方差分析课件

双因素方差分析课件

双原因无反复(无交互作用)试验资料表
原因 B 原因 A
B1
A1
X11
...
...
Aa
X a1
a
T. j X ij T.1 i 1
X. j T. j a X .1
b
B2 ... Bb Ti. X ij X i. Ti. b j 1
X12 ... X1b
T1.
X 1.
... ... ... ...
➢ 有交互作用旳双原因试验旳方差分析
有检验交互作用旳效应,则两原因A,B旳不同水 平旳搭配必须作反复试验。
处理措施:把交互作用当成一种新原因来处理,
即把每种搭配AiBj看作一种总体Xij。
基本假设(1)X ij 相互独立;
(2)Xij ~ N ij , 2 ,(方差齐性)。
线性统计模型
原因B
总平均 旳效应
53 58 48
a
T. j Xij 197 232 183 i 1
b
Ti. X ij j 1 165 143 145 159
T 612
X i. Ti. b
55.0 47.7 48.3 53.0
X. j T. j a 49.3 58.0 45.8
X 51
解 基本计算如原表
a b
双原因方差分析措施
双原因试验旳方差分析
在实际应用中,一种试验成果(试验指标)往往 受多种原因旳影响。不但这些原因会影响试验成果, 而且这些原因旳不同水平旳搭配也会影响试验成果。
例如:某些合金,当单独加入元素A或元素B时, 性能变化不大,但当同步加入元素A和B时,合金性 能旳变化就尤其明显。
统计学上把多原因不同水平搭配对试验指标旳 影响称为交互作用。交互作用在多原因旳方差分析 中,把它当成一种新原因来处理。

双因素方差分析课件

双因素方差分析课件
特点
能够同时考虑两个因素对连续变量的 影响,并比较不同因素之间的交互作 用。
适用范围
适用于研究两个分类变量对一个或多 个连续变量的影响,并分析不同因素 之间的交互作用。
适用于数据满足正态分布、方差齐性 和独立性等假设的情况。
目的与意义
目的
通过双因素方差分析,可以比较不同组之间的差异,了解两个因素对连续变量的影响程度和交互作用,为进一步 的数据分析和决策提供依据。
意义
双因素方差分析在社会科学、医学、经济学等领域有广泛应用,能够帮助研究者深入了解不同因素之间的交互作 用,为科学研究和实际应用提供有力支持。
02 双因素方差分析的数学原 理
方差分析的基本思想
01
方差分析是通过比较不同组别 的平均值差异来检验多个总体 均值是否相等的一种统计方法 。
02
它将数据总变异分为组内变异 和组间变异,通过比较组间变 异与组内变异的比例来判断各 总体均值是否存在显著差异。
在弹出的对话框中,选择“因子变 量”和“组变量”,并设置相应的 级别和组别。
03
点击“确定”,SPSS将自动进行 双因素方差分析,并输出结果。
04
其他统计软件介绍
01பைடு நூலகம்
02
03
Stata
Stata是一款功能强大的统 计软件,可以进行各种统 计分析,包括双因素方差 分析。
SAS
SAS是一款商业统计软件, 广泛应用于各种统计分析, 包括双因素方差分析。
在双因素方差分析中,数学模型通常采用如下形式:Yijk=μ+αi+βj+εijk, 其中Yijk表示第i组第j类的观测值,μ表示总体均值,αi表示第i个因素的效
应,βj表示第j个因素的效应,εijk表示随机误差。

《双因素方差分析》课件

《双因素方差分析》课件
因素B对因变量的影响
同样地,因素B对因变量的影响也是显著的,表 明在不同水平下,因变量的均值存在显著差异。
3
交互作用
分析结果表明,因素A和因素B之间存在显著的 交互作用,这种交互作用对因变量产生了显著影 响。
对未来研究的建议
扩大样本量
为了更准确地评估双因素方差分析的结果,建议在未来研究中扩大样本量,以提高分析 的稳定性和可靠性。
数据筛选
检查数据是否满足方差分析的前提假设,如正 态分布、方差齐性等。
数据编码
对分类变量进行适当的编码,以便在分析中使用。
模型拟合
确定模型
根据研究目的和数据特征,选择合适的双因素方差分析模型。
拟合模型
使用统计软件(如SPSS、SAS等)进行模型拟合,得到估计参数和模型拟合指标。
假设检验
检验主效应
考虑其他影响因素
除了因素A和因素B外,可能还有其他未考虑的因素对因变量产生影响。因此,未来的 研究可以考虑纳入更多的变量,以更全面地了解因变量的影响因素。
深入研究交互作用
双因素方差分析结果表明因素A和因素B之间存在交互作用。为了更深入地了解这种交 互作用的机制和效果,建议进行更详细的研究和探讨。
实际应用价值
主效应和交互效应检验
使用双因素方差分析来检验两个实验因素的 主效应和它们之间的交互效应。
结果解释
根据分析结果,解释实验因素对因变量的影 响以及交互作用的存在与否。
05 结论与建议
研究结论
1 2
因素A对因变量的影响
通过双因素方差分析,发现因素A对因变量的影 响显著,说明在因素A的不同水平下,因变量的 均值存在显著差异。
双因素方差分析的数学模型
双因素方差分析涉及两个实验因素,通常表示为A和B。

双因素方差分析法非常好的具体实例课件

双因素方差分析法非常好的具体实例课件

数据预处理与筛选
02
01
03
对原始数据进行清理和筛选,处理缺失值和异常值, 确保数据质量。
对分类变量进行适当的编码和转换,使其符合分析要求。
对连续变量进行适当的变换,如对数转换或标准化处 理,以满足正态分布和方差齐性的假设。
结果解读与报告撰写
仔细解读双因素方差分析的结 果,包括F值、P值、效应大小 和方向等。
混合类型数据
对于同时包含分类和数值型变 量的数据,如何进行有效的双 因素方差分析是一个值得研究 的问题。
THANK YOU
感谢聆听
结合实际问题和专业知识,对 结果进行解释和讨论,并给出 合理的结论和建议。
按照学术规范撰写报告,注意 逻辑性和条理性,并适当使用 图表和表格来呈现结果。
04
双因素方差分析法的未来发展与展望
技术创新与改进
算法优化
随着计算能力的提升,双因素方差分析算法将进一 步优化,提高分析的准确性和效率。
自动化程度提高
特点
能够同时考虑两个因素对连续变量的影响,并比较各组之间的差异。
适用范 围
当有两个分类变量,且需要探讨它们 对一个连续变量的影响时。
适用于探索两个因素对连续变量的交 互作用和主效应。
优势与局限性
优势
能够全面分析两个因素对连续变量的 影响,并提供交互作用和主效应的估 计。
局限性
当样本量较小或数据不满足方差分析 的前提假设时,分析结果可能不准确。
未来分析过程可能更加自动化,减少人工干预,降 低错误率。
可视化呈现
数据分析结果将以更直观的方式呈现,方便用户理 解和解释。
应用领域的拓展
80%
跨学科应用
双因素方差分析法将应用于更多 学科领域,促进不同学科之间的 交叉融合。

6-2交互作用双因子方差分析课件PPT

6-2交互作用双因子方差分析课件PPT
现 对 因 素A 、B 的 每 一 种 不 同 的 水 平 组 合 :
Ai , B j i 1,2, , r; j 1,2, , s
都 安 排 t t 2 次 试 验 ( 称 为 等 重 复 试 验 ), 假
定各次试验是相互独立的,得到如下试验结 果:
2021/3/10
4
1.双因素方差分析的数据结构如表所示:
估计值。
2021/3/10
17
若 H 01 成 立 , 即 1 2 r 0 , 那 么 , 虽 然 不 能 苛 求 做 为 诸 i 的 估 计 值 之 平 方 和 的 若 干 倍 的S A 2
rst
r
( x i•• x 2 st x i•• x 2 ) 恰 好 等 于 零 ,
2
双因 素方 差分 析的 类型
2021/3/10
无交互作用的 双因素方差分析
有交互作用的 双因素方差分析
假定因素A和因素 B的效应之间是相 互独立的,不存 在相互关系
假定因素A和因素B 的结合会产生出一 种新的效应
3
二、数据结构
设 因 素A 有 r 个 不 同 的 水 平 A1 , , Ar , 因 素B 有 s 个 不 同 的 水 平 B1 , , B s ,
r s t

S E 2
x ijk x ij • 2 称 为 误 差 平 方 和 。
i1 j1 k 1
rst
S x x 2
2
A
i•• i1 j1 k 1
称为因素A 的主效应偏差平方和。
r s t
S x x 2
2
B
• j• i1 j1 k 1
称为 因素B 的 主效应 偏差平方 和。
1, rs t
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分析步骤
(构造检验的统计量)
计算均方(MS)
行因素的均方,记为MSR,计算公式为
MSR SSR k 1
列因素的均方,记为MSC ,计算公式为
MSC SSC r 1
误差项的均方,记为MSE ,计算公式为
MSE SSE (k 1)(r 1)
分析步骤
(构造检验的统计量)
根据给定的显著性水平在F分布表中查找相应
的临界值 F1-
若FR>F1- ,拒绝原假设H0 ,表明均值之间的差
异是显著的,即所检验的行因素对观察值有显 著影响
若FC > F1- ,拒绝原假设H0 ,表明均值之间有
显著差异,即所检验的列因素对观察值有显著 影响
双因素方差分析表
(基本结构)
i1 j1
分析步骤
(构造检验的统计量)
总误差平方和(SST )、行因素平方和 (SSR)、
列因素平方和(SSC) 、误差项平方和(SSE) 之 间的关系
k r
xij x 2
i1 j1
k r
kr
kr
2

xi. x 2
x. j x 2
据的影响,这时的双因素方差分析称为无 交互作用的双因素方差分析或无重复双因 素 方 差 分 析 (Two-factor without
replication)
3. 如果除了行因素和列因素对试验数据的单
独影响外,两个因素的搭配还会对结果产 生一种新的影响,这时的双因素方差分析
称为有交互作用的双因素方差分析或可重 复 双 因 素 方 差 分 析 (Two-factor with
replication )
双因素方差分析的基本假定
1. 每个总体都服从正态分布 对于因素的每一个水平,其观察值是来自正态分布
总体的简单随机样本
2. 各个总体的方差必须相同 对于各组观察数据,是从具有相同方差的总体中抽
取的
3. 观察值是独立的
无交互作用的双因素方差分析 (无重复双因素分析)
平方和 自由度 误差来源
均方
(SS) (df) (MS)
F值
P值
F 临界值
行因素 SSR
MSR k-1 MSR
MSE
列因素 SSC
MSC r-1 MSC
MSE
误差
SSE (k-1)(r-1) MSE
总和 SST kr-1
双因素方差分析
(例题分析)
• 提出假设 – 对品牌因素提出的假设为
• H0:m1=m2=m3=m4 (品牌对销售量无显著影响) • H1:mi (i =1,2, … , 4) 不全相等 (有显著影响)
第二节 双因素方差分析
1 双因素方差分析及其类型 2 无交互作用的双因素方差分析 3 有交互作用的双因素方差分析
双因素方差分析
(two-way analysis of variance)
1. 分 析 两 个 因 素 ( 行 因 素 Row 和 列 因 素 Column)对试验结果的影响
2. 如果两个因素对试验结果的影响是相互独 立的,分别判断行因素和列因素对试验数
均值)
• H1:mi (i =1,2, … , k) 不全相等
– 对列因素提出的假设为
• H0: m1 = m2 = … = mj = …= mr (mj为第j个水平的
均值)
• H1: mj (j =1,2,…,r) 不全相等
分析步骤
(构造检验的统计量)
计算平方和(SS)
– 总误差平方和
k r
– 对地区因素提出的假设为
• H0:m1=m2=m3=m4=m5 (地区对销售量无显著影响) • H1:mj (j =1,2,…,5) 不全相等 (有显著影响)
【例】有4个品牌的彩电在5个地区销售,为分析彩电的品牌( 品牌因素)和销售地区(地区因素)对销售量的影响,对每显著 个品牌在各地区的销售量取得以下数据。试分析品牌和销售 地区对彩电的销售量是否有显著影响?(=0.05)
SST
xij x 2
i1 j1
kr
– 行因素误差平方和 SSR xi. x 2 i1 j1
– 列因素误差平方和 – 随机误差项平方和
k r
SSC
x. j x 2
i1 j1
k r
SSE
xij xi. x. j x 2
不同品牌的彩电在5个地区的销售量数据
品牌因素 地区1
地区因素 地区2 地区3 地区4
品牌1
365
350
343
340
品牌2
345
368
363
330
品牌3
358
323
353
343
品牌4
288
280
298
260
地区5 323 333 308 298
差异源
SS
df MS
xij xi. x. j x
i1 j1
i1 j1
i1 j1
SST = SSR +SSC+SSE
分析步骤
(构造检验的统计量)
计算均方(MS)
误差平方和除以相应的自由度
三个平方和的自由度分别是
• 总误差平方和SST的自由度为 kr-1 • 行因素平方和SSR的自由度为 k-1 • 列因素平方和SSC的自由度为 r-1 • 误差项平方和SSE的自由度为 (k-1)×(r-1)
【例】有4个品牌的彩电在5个地区销售,为分析彩电的品牌( 品牌因素)和销售地区(地区因素)对销售量的影响,对每显著 个品牌在各地区的销售量取得以下数据。试分析品牌和销售 地区对彩电的销售量是否有显著影响?(=0.05)
不同品牌的彩电在5个地区的销售量数据
品牌因素 地区1
地区因素 地区2 地区3 地区4
计算检验统计量(F)
检验行因素的统计量
FR

MSR MSE
~
F k
1, (k
1)(r
1)
检验列因素的统计量
FC

MSC MSE
~
F r
1, (k
1)(r
1)
分析步骤
(统计决策)
将统计量的值F与给定的显著性水平 的临界
值 F 进行比较,作出对原假设 H0 的决策
品牌1
365
350
343
340
品牌2345Fra bibliotek368363
330
品牌3
358
323
353
343
品牌4
288
280
298
260
地区5 323 333 308 298
数据结构
分析步骤
(提出假设)
• 提出假设
– 对行因素提出的假设为
• H0:m1 = m2 = … = mi = …= mk (mi为第i个水平的
相关文档
最新文档