(最新整理)初一有理数所有知识点总结和常考题提高难题压轴题练习(含答案解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一有理数所有知识点总结和常考题提高难题压轴题练习(含答案解析)编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初一有理数所有知识点总结和常考题提高难题压轴题练习(含答案解析))的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初一有理数所有知识点总结和常考题提高难题压轴题练习(含答案解析)的全部内容。
初一有理数所有知识点总结和常考题
知识点
1、正数和负数
(1)、大于0的数叫做正数。
(2)、在正数前面加上负号“—”的数叫做负数。
(3)、数0既不是正数,也不是负数,0是正数与负数的分界。
(4)、在同一个问题中,分别用正数与负数表示的量具有相反的意义。
2、有理数
(1)凡能写成分数形式的数,都是有理数,整数和分数统称有理数。
注意:0即不是正数,也不是负数;—a 不一定是负数,如:—(-2)=4,这个时候的a=-2。
不是有理数;
(2)有理数的分类:①②⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧
⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩
⎪⎨⎧负分数
正分数
分数负整数
零
正整数
整数有理数(3)自然数0和正整数; a >0 a 是正数;
⇔⇔ a <0 a 是负数;a ≥0a 是正数或 0是非负数;
⇔⇔⇔ a ≤0a 是负数或0a 是非正数.
⇔⇔3、数轴【重点】
(1)、用一条直线上的点表示数,
这条直线叫做数轴。它满足以下要求:
① 在直线上任取一个点表示数0,这个点叫做原点;
② 通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;
③选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示 1,2,3…;从原点向左,用类似的方法依次表示—1,-2,—3…
(2)、数轴的三要素:原点、正方向、单位长度。
(3)、画数轴的步骤:一画(画一条直线并选取原点);二取(取正反向);三选(选取单位长度);四标(标数字).数轴的规范画法:是条直线,数字在下,字母在上。
注意:所有的有理数都可以用数字上的点表示,但是数轴上的所有点并不都表示有理数.(4)、一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度.
4、相反数
(1)、只有符号不同的两个数叫做互为相反数。
①注意:a的相反数是—a;a—b的相反数是b—a;a+b的相反数是-(a+b)=-a—b;
②非零数的相反数的商为—1;
③相反数的绝对值相等。
(2)、一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,他们分别在原点的两侧,表示a和-a,我们说这两点关于原点对称.
(3)、a和—a互为相反数。0的相反数是0,正数的相反数是负数,负数的相反数是正数。相反数是它本身的数只有0。
(4)、在任意一个数前面添上“—”号,新的数就表示原数的相反数。
(5)、若两个数a、b互为相反数,就可以得到a+b=0;反过来若a+b=0,则a、b互为相反数.(6)、多重符号的相乘由“—”的个数来定:若“-"的个数为偶数,相乘结果为正数;若“—“的个数为奇数,化简结果为负数。比如:-2×4×(—3)×(—1)×(—5),首先由4个负号,所以最终结果是正数,再算数字相乘得到120
5、绝对值
(1)、绝对值的定义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离。数a 的绝对值记作|a|。
(2)、正数的绝对值等于它本身;0的绝对值是0(或者说0的绝对值是它本身,或者说0的绝对值是它的相反数);负数的绝对值等于它的相反数;(注意:绝对值的意义是数轴上表示某数的点离开原点的距离;)。0是绝对值最小的数。
(3)、绝对值可表示为:或;⎪⎩
⎪⎨⎧<-=>=)0()0(0)0(a a a a a a ⎩⎨⎧≤-≥=)0()0(a a a a a (4)、;;
01>⇔=a a a 01<⇔-=a a a (5)、任何数的绝对值总是非负数(非负数是正数或0),即|a|≥0。
(6)、互为相反数的两个数的绝对值相等。绝对值相等的两个数可能是互为相反数或者相等。
(7)、有理数比大小:
① 正数比0大,0大于负数,正数大于负数;
② 两个负数比较,绝对值大的反而小;
③ 数轴上的两个数,右边的数总比左边的数大;
(8)、比较两个负数的大小的步骤如下:
① 先求出两个数负数的绝对值;
② 比较两个绝对值的大小;
③ 根据“两个负数,绝对值大的反而小”做出正确的判断.
1、有理数的加法
(1)、有理数加法法则:
① 同号两数相加,取相同的符号,并把绝对值相加;
② 异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;
③一个数与0相加,仍得这个数.
(2)、加法计算步骤:先定符号,再算绝对值.
(3)、有理数加法的运算律:
①加法的交换律:a+b=b+a;
②加法的结合律:(a+b)+c=a+(b+c)。
(4)、为了计算简便,往往会采取以下方法:
①互为相反的两个数,可以先相加;
②符号相同的数,可以先相加;
③分母相同的数,可以先相加;
④几个数相加能得到整数,可以先相加。
2、有理数的减法
(1)、有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).(有理数减法运算时注意两“变”:①减法变加法;②把减数变为它的相反数.)
注:有理数的减法实质就是把减法变加法。
3、有理数的乘法
(1)、有理数乘法法则:
①两数相乘,同号得正,异号得负,并把绝对值相乘;
②任何数同零相乘都得零;
(2)、一个数同1相乘,结果是原数;一个数同-1相乘,结果是原数的相反数.
(3)、乘积为1的两个数互为倒数;
注意:0没有倒数;若ab=1〈====>a、b互为倒数。
(4)、几个不是偶的数相乘,积的符号由负因式的个数决定.负因数的个数是偶数时,积是正数;负因数的个数是奇数是,积是负数。