代数方程练习题解析

合集下载

人教版七年级上册数学 代数式专题练习(解析版)

人教版七年级上册数学 代数式专题练习(解析版)

一、初一数学代数式解答题压轴题精选(难)1.如图所示,在边长为a米的正方形草坪上修建两条宽为b米的道路.(1)为了求得剩余草坪的面积,小明同学想出了两种办法,结果分别如下:方法①:________ 方法②:________请你从小明的两种求面积的方法中,直接写出含有字母a,b代数式的等式是:________(2)根据(1)中的等式,解决如下问题:①已知:,求的值;②己知:,求的值.【答案】(1)(a-b)2;a2-2ab+b2;(a-b)2=a2-2ab+b2(2)解:①把代入∴,∴②原式可化为:∴∴∴【解析】【解答】解:(1)方法①:草坪的面积=(a-b)(a-b)= .方法②:草坪的面积= ;等式为:故答案为:,;【分析】(1)方法①是根据已知条件先表示出矩形的长和宽,再根据矩形的面积公式即可得出答案;方法②是正方形的面积减去两条道路的面积,即可得出剩余草坪的面积;根据(1)得出的结论可得出;(2)①分别把的值和的值代入(1)中等式,即可得到答案;②根据题意,把(x-2018)和(x-2020)变成(x-2019)的形式,然后计算完全平方公式,展开后即可得到答案.2.从2012年4月1日起厦门市实行新的自来水收费阶梯水价,收费标准如下表所示:月用水量不超过15吨的部分超过15吨不超过25吨的部分超过25吨的部分收费标准2.23.34.4(元/吨)②.以上表中的价格均不包括1元/吨的污水处理费(1)某用户12月份用水量为20吨,则该用户12月份应缴水费是多少?(2)若某用户的月用水量为m吨,请用含m的式子表示该用户月所缴水费.【答案】(1)解:该用户12月份应缴水费是15×2.2+5×3.3+20=69.5(元)(2)解:①m≤15吨时,所缴水费为2.2m元,②15<m≤25吨时,所缴水费为2.2×15+(m﹣15)×3.3=(3.3m﹣16.5)元,③m>25吨时,所缴水费为2.2×15+3.3×(25﹣15)+(m﹣25)×4.4=(4.4m﹣110)元.【解析】【分析】(1)该用户12月份应缴水费三两部分构成:不超过15吨的水费+超过15吨不超过25吨的9吨的水费+20吨的污水处理费,列代数式求解即可。

线性代数第3章_线性方程组习题解答

线性代数第3章_线性方程组习题解答

习题33-1.求下列齐次线性方程组的通解:(1)⎪⎩⎪⎨⎧=--=--=+-087305302z y x z y x z y x .解 对系数矩阵施行行初等变换,得⎪⎪⎪⎭⎫ ⎝⎛-----−→−⎪⎪⎪⎭⎫ ⎝⎛-----=1440720211873153211A)(000720211阶梯形矩阵B =⎪⎪⎪⎭⎫ ⎝⎛-−→−⎪⎪⎪⎭⎫ ⎝⎛-−→−0002720211)(000271021101行最简形矩阵C =⎪⎪⎪⎪⎭⎫ ⎝⎛−→−, 与原方程组同解的齐次线性方程组为⎪⎪⎩⎪⎪⎨⎧=+=+0270211z y z x , 即⎪⎪⎩⎪⎪⎨⎧-=-=z y z x 27211(其中z 是自由未知量), 令1=z ,得到方程组的一个基础解系T)1,27,211(--=ξ, 所以,方程组的通解为,)1,27,211(Tk k --=ξk 为任意常数. (2)⎪⎩⎪⎨⎧=+++=+++=++++086530543207224321432154321x x x x x x x x x x x x x .解 对系数矩阵施行行初等变换,得⎪⎪⎪⎭⎫ ⎝⎛--−→−⎪⎪⎪⎭⎫ ⎝⎛=21202014101072211086530543272211A)(7000014101072211阶梯形矩阵B =⎪⎪⎪⎭⎫ ⎝⎛-−→−⎪⎪⎪⎭⎫ ⎝⎛-−→−70000141010211201)(100000101001201行最简形矩阵C =⎪⎪⎪⎭⎫ ⎝⎛−→−,与原方程组同解的齐次线性方程组为⎪⎩⎪⎨⎧==+=++0002542431x x x x x x , 即⎪⎩⎪⎨⎧=-=--=02542431x x x x x x (其中43,x x 是自由未知量), 令34(,)T x x =(1,0)T ,(0,1)T,得到方程组的一个基础解系T)0,0,1,0,2(1-=ξ,T)0,1,0,1,1(2--=ξ,所以,方程组的通解为=+2211ξξk k T T k k )0,1,0,1,1()0,0,1,0,2(21--+-,21,k k 为任意常数.(3)⎪⎪⎩⎪⎪⎨⎧=-+-+=-++-=-+-=--+0742420436240203543215432143215421x x x x x x x x x x x x x x x x x x .解 对系数矩阵施行行初等变换,得11031112104263424247A --⎛⎫ ⎪--⎪= ⎪-- ⎪ ⎪--⎝⎭11031022210003100000--⎛⎫⎪- ⎪−−→⎪- ⎪⎪⎝⎭)(阶梯形矩阵B =)(0000031100065011067011行最简形矩阵C =⎪⎪⎪⎪⎪⎭⎫⎝⎛----−→−,与原方程组同解的齐次线性方程组为⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=--=-+03106506754532531x x x x x x x x , 即⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+-=54532531316567x x x x x x x x (其中53,x x 是自由未知量), 令=T x x ),(53(1,0)T ,(0,1)T,得到方程组的一个基础解系T )0,0,1,1,1(1-=ξ,T )1,31,0,65,67(2=ξ,所以,方程组的通解为=+2211ξξk k T T k k )1,31,0,65,67()0,0,1,1,1(21+-,21,k k 为任意常数.3-2.当λ取何值时,方程组⎪⎩⎪⎨⎧=-+=+-=++z z y x y z y x x z y x λλλ6774334 有非零解?解 原方程组等价于⎪⎩⎪⎨⎧=+-+=++-=++-0)6(707)4(303)4(z y x z y x z y x λλλ, 上述齐次线性方程组有非零解的充分必要条件是它的系数行列式0671743134=-----λλλ,即0)756(2=-+λλλ,从而当0=λ和2123±-=λ时方程组有非零解.3-3.求解下列非齐次线性方程组:(1)⎪⎩⎪⎨⎧=++--=-+-=++-5521212432143214321x x x x x x x x x x x x .解 对增广矩阵A 施行行初等变换⎪⎪⎪⎭⎫ ⎝⎛-----=551211112111121A ⎪⎪⎪⎭⎫ ⎝⎛-−→−000001100011121B =,因为()()r A r A =,所以方程组有解,继续施行行初等变换B ⎪⎪⎪⎭⎫⎝⎛-−→−000001100000121C =, 与原方程组同解的齐次线性方程组为⎩⎨⎧==+-124321x x x x , 即⎩⎨⎧=-=124321x x x x (其中32,x x 为自由未知量), 令TT x x )0,0(),(32=,得到非齐次方程组的一个解T )1,0,0,0(0=η,对应的齐次方程组(即导出方程组)为⎩⎨⎧=-=024321x x x x (其中32,x x 为自由未知量), 令T x x ),(32(1,0)T =,(0,1)T,得到对应齐次方程组的一个基础解系T )0,0,1,2(1=ξ,T )0,1,0,1(2-=ξ,方程组的通解为0112212(0,0,0,1)(2,1,0,0)(1,0,1,0)T T T k k k k ηηξξ=++=++-,其中21,k k 为任意常数.(2)⎪⎪⎩⎪⎪⎨⎧=+--=+--=+--=-+-810957245332231324321432143214321x x x x x x x x x x x x x x x x .解 对增广矩阵A 施行行初等变换⎪⎪⎪⎪⎪⎭⎫⎝⎛--------=810957245113322311312A ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----−→−000000000039131024511B =, 因为()()r A r A =,所以方程组有解,继续施行行初等变换B ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----−→−000000000039131015801C =, 与原方程组同解的齐次线性方程组为⎩⎨⎧-=-+-=-+3913158432431x x x x x x , 即⎩⎨⎧+--=+--=4324319133581x x x x x x (其中43,x x 为自由未知量), 令34(,)(0,0)T Tx x =,得到非齐次方程组的一个解T )0,0,3,1(0--=η,对应的齐次方程组(即导出方程组)为⎩⎨⎧+-=+-=43243191358x x x x x x (其中43,x x 为自由未知量),令34(,)T x x =(1,0)T ,(0,1)T,得到对应齐次方程组的一个基础解系T )0,1,13,8(1--=ξ,T )1,0,9,5(2-=ξ,方程组的通解为0112212(1,3,0,0)(8,13,1,0)(5,9,0,1)T T T k k k k ηηξξ=++=--+--+-,其中21,k k 为任意常数.(3)⎪⎪⎩⎪⎪⎨⎧=++=-+=-+-=-+10013212213321321321321x x x x x x x x x x x x .解 对增广矩阵A 施行行初等变换⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---−→−⎪⎪⎪⎪⎪⎭⎫⎝⎛----=101400201034101311100111132112121311A ⎪⎪⎪⎪⎪⎭⎫⎝⎛----→⎪⎪⎪⎪⎪⎭⎫⎝⎛----−→−96000540034101311101400540034101311,因为3)(4)(=≠=A r A r ,所以方程组无解.3-4.讨论下述线性方程组中,λ取何值时有解、无解、有惟一解?并在有解时求出其解.⎪⎩⎪⎨⎧=++++=+-+=+++3)3()1(3)1(2)3(321321321x x x x x x x x x λλλλλλλλ. 解 方程组的系数行列式为231211(1)3(1)3A λλλλλλλλ+=-=-++.(1)当0A ≠时,即01λλ≠≠且时,方程组有惟一解. (2)当0A =时,即01λλ=或=时, (i) 当0λ=时,原方程组为12323133200333x x x x x x x ++=⎧⎪-+=⎨⎪+=⎩, 显然无解.(ii) 当1λ=时,原方程组为⎪⎩⎪⎨⎧=++=+=++346112432131321x x x x x x x x , 对该方程组的增广矩阵A 施行行初等变换412110111011012361430000A ⎛⎫⎛⎫⎪ ⎪=→-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,因为()()23r A r A ==<,所以方程组有无穷多组解, 与原方程组同解的方程组为1323123x x x x +=⎧⎨-=-⎩, 即1323132x x x x =-⎧⎨=-+⎩(其中3x 为自由未知量), 令30x =,得到非齐次方程组的一个解0(1,3,0)T η=-,对应的齐次方程组(即导出方程组)为13232x x x x =-⎧⎨=⎩(其中3x 为自由未知量), 令31x =,得到对应齐次方程组的一个基础解系(1,2,1)T ξ=-,方程组的通解为0(1,3,0)(1,2,1)T T k k ηηξ=+=-+-,其中k 为任意常数.3-5.写出一个以1222341001x c c -⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭为通解的齐次线性方程组.解 由已知,1(2,3,1,0)Tξ=-和2(2,4,0,1)T ξ=-是齐次线性方程组AX O =的基础解系,即齐次线性方程组AX O =的基础解系所含解向量的个数为2,而未知数的个数为4,所以齐次线性方程组AX O =的系数矩阵A 的秩为422-=,故可设系数矩阵1112131421222324a a a a A a a a a ⎛⎫=⎪⎝⎭, 由AX O =可知()111121314,,,a a a a α=和()221222324,,,a a a a α=满足方程组()12342234,,,1001x x x x O -⎛⎫ ⎪-⎪= ⎪ ⎪⎝⎭, 即方程组123124230240x x x x x x -+=⎧⎨-++=⎩的线性无关的两个解即为12,αα,方程组的系数矩阵2310204324010111-⎛⎫⎛⎫→ ⎪ ⎪-⎝⎭⎝⎭,该方程组等价于134234243x x x x x x =--⎧⎨=--⎩(其中43,x x 为自由未知量), 令34(,)T x x =(1,0)T ,(0,1)T,得到该齐次方程组的一个基础解系1(2,1,1,0)T α=--,23(,1,0,1)2T ξ=--,故要求的齐次线性方程组为AX O =,其中211031012A --⎛⎫⎪= ⎪--⎝⎭,即12312420302x x x x x x --+=⎧⎪⎨--+=⎪⎩. 3-6.设线性方程组⎪⎩⎪⎨⎧=+++=++0022111212111n mn m m n n x a x a x a x a x a x a, 的解都是02211=+++n n x b x b x b 的解,试证Tn b b b ),,,(21 =β是向量组T n a a a ),,,(112111 =α,T n a a a ),,,(222212 =α, ,),,,(21mn m m m a a a =α的线性组合.证 把该线性方程组记为(*),由已知,方程组(*)的解都是02211=+++n n x b x b x b 的解,所以方程组(*)与方程组111122111221122000n n m m mn n n n a x a x a x a x a x a x b x b x b x ++=⎧⎪⎪⎨+++=⎪⎪+++=⎩, 同解,从而有相同的基础解系,于是二者有相同的秩,则它们系数矩阵的行向量组12,,,m ααα和12,,,,m αααβ的秩相同,故β可由12,,,m ααα线性表示.3-7.试证明:()()r AB r B =的充分必要条件是齐次线性方程组O ABX =的解都是O BX =的解.证 必要性.因为()()r AB r B =,只须证O ABX =与O BX =的基础解系相同.O ABX =与O BX =的基础解系都含有()n r B -个线性无关的解向量.又因为O BX =的解都是O ABX =得解.所以O BX =的基础解系也是O ABX =的基础解系.即O ABX =与O BX =有完全相同的解.所以O ABX =的解都是O BX =的解.充分性.因O ABX =的解都是O BX =的解,而O BX =的解都是ABX O =的解,故O ABX =与O BX =有完全相同的解,则基础解系也完全相同,故()()n r AB n r B -=-,所以()()r AB r B =.3-8.证明()1r A =的充分必要条件是存在非零列向量a 及非零行向量Tb ,使T A ab =.证 充分性.若存在列向量12m a a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭及行向量()12T n b b b b =,其中,i j a b 不全为零1,,i m =,1,,j n =,则有()1111212212221212n n T n m m m m n a a b a b a b aa b a b a b A ab b b b a a b a b a b ⎛⎫⎛⎫⎪⎪ ⎪ ⎪=== ⎪ ⎪ ⎪⎪⎝⎭⎝⎭, 显然矩阵A 的各行元素对应成比例,所以()1r A =.必要性.若()1r A =,则A 经过一系列的初等变换可化为标准形100000000D ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭, 而矩阵D 可以表示为()100100001,0,,0000D ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则存在可逆矩阵P ,Q 使得1P AQ D -=,从而()11101,0,,00A PDQ P Q --⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭,其中1,P Q -均可逆,记100a P ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭, ()11,0,,0T b Q -=,又因为P 可逆,则P 至少有一行元素不全为零,故列向量a 的分量不全为零,同理,因为1Q -可逆,所以行向量Tb 的分量不全为零.因此,存在非零列向量a 及非零行向量Tb ,使TA ab =.补充题B3-1.设A 是m n ⨯矩阵,AX O =是非其次线性方程组AX b =所对应齐次线性方程组,则下列结论正确的是( D ).(A ) 若AX O =仅有零解,则AX B =有惟一解; (B ) 若AX O =有非零解,则AX B =有无穷多个解; (C ) 若AX B =有无穷多个解,则AX O =仅有零解;(D ) 若AX B =有无穷多个解,则AX O =有非零解.B3-2.设A 为n 阶实矩阵,T A 是A 的转置矩阵,则对于线性方程组 (ⅰ)AX O =; (ⅱ)TA AX O =,必有( D ). (A )(Ⅱ)的解是(Ⅰ)的解,(Ⅰ)的解也是(Ⅱ)的解; (B )(Ⅱ)的解是(Ⅰ)的解,但(Ⅰ)的解不是(Ⅱ)的解; (C )(Ⅰ)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(Ⅰ)的解; (D)(Ⅰ)的解是(Ⅱ)的解,但(Ⅱ)的解不是(Ⅰ)的解.B3-3.设线性方程组AX B =有n 个未知量,m 个方程组,且()r A r =,则此方程组( A ).(A)r m =时,有解; (B)r n =时,有惟一解;(C)m n =时,有惟一解; (D)r n <时,有无穷多解.B3-4.讨论λ取何值时,下述方程组有解,并求解:⎪⎩⎪⎨⎧=++=++=++21λλλλλz y x z y x z y x . 解 (法一)方程组的系数行列式21111(1)(2)11A λλλλλ==-+,(1)当0A ≠时,即12λλ≠≠-且时,方程组有惟一解211(1),,222x y z λλλλλ++=-==+++.(2)当0A =时,即12λλ-=或=时 (i) 当λ=1时,原方程组为1x y z ++=,因为()()1r A r A ==,所以方程组有无穷多组解,其通解为0112212(1,0,0)(1,1,0)(1,0,1)T T T k k k k ηηξξ=++=+-+-,其中21,k k 为任意常数. (ii) 当λ=-2时,原方程组为212224x y z x y z x y z -++=⎧⎪-+=-⎨⎪+-=⎩, 对该方程组的增广矩阵A 施行行初等变换2111112412120112112400015A --⎛⎫⎛⎫ ⎪ ⎪=--→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,因为()2()3r A r A =≠=,所以方程组无解.解 (法二)对该方程组的增广矩阵A 施行行初等变换2211111111111111A λλλλλλλλλλ⎛⎫⎛⎫ ⎪⎪=→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭2223110110111λλλλλλλλλ⎛⎫⎪→--- ⎪ ⎪---⎝⎭22223110110021λλλλλλλλλλλ⎛⎫ ⎪→--- ⎪⎪--+--⎝⎭2221101100(1)(2)(1)(1)B λλλλλλλλλλ⎛⎫ ⎪→---= ⎪ ⎪-+-+⎝⎭,(1)当12λλ≠≠-且时, ()()3r A r A ==,方程组有惟一解211(1),,222x y z λλλλλ++=-==+++.(2) 当λ=1时, ()()1r A r A ==,方程组有无穷多组解,其通解为0112212(1,0,0)(1,1,0)(1,0,1)T T T k k k k ηηξξ=++=+-+-,其中21,k k 为任意常数.(3) 当λ=-2时,由B 知,()2()3r A r A =≠=,所以方程组无解.B3-5.若321,,ηηη是某齐次线性方程组的一个基础解系,证明:122331,,ηηηηηη+++也是该方程组的一个基础解系.证 设有三个数123,,k k k 使得112223331()()()0k k k ηηηηηη+++++=,则有131122233()()()0k k k k k k ηηη+++++=,因为321,,ηηη是某齐次线性方程组的一个基础解系,所以321,,ηηη线性无关,故131223000k k k k k k +=⎧⎪+=⎨⎪+=⎩, 该方程组的系数行列式10111020011=≠, 所以该方程组只有零解.即1230k k k ===.即122331,,ηηηηηη+++线性无关. 又由齐次线性方程组的性质知122331,,ηηηηηη+++都是方程组的解.所以122331,,ηηηηηη+++构成方程组的一个基础解系.B3-6.设四元非齐次线性方程组的系数矩阵的秩为3,已知321,,ξξξ是它的三个解向量,且⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=54321ξ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+432132ξξ,求该方程组的通解.解 因为4,3n r ==,故原方程组的导出组的基础解系含有1n r -=个解向量,所以只须找出其导出组的一个非零解向量即可. 由解的性质知,1213,ξξξξ--均为导出组的解,所以1213123()()2()ξξξξξξξ-+-=-+为导出组的解,即123342()56ηξξξ⎛⎫⎪ ⎪=-+= ⎪ ⎪⎝⎭,为导出组的解.故原方程组的通解为123344556k k ξξη⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,k 为任意常数.B3-7. 设*ξ是非齐次线性方程组B AX =的一个解,r n -ηηη,,,21 是它对应的齐次线性方程组的一个基础解系,证明:(1),*ξr n -ηηη,,,21 线性无关;(2)r n -+++ηξηξηξξ*2*1**,,,, 线性无关.证 (1)反证法.设,*ξr n -ηηη,,,21 线性相关,由r n -ηηη,,,21 是对应的齐次线性方程组的一个基础解系知r n -ηηη,,,21 线性无关,故*ξ可由r n -ηηη,,,21 线性表示,即*ξ是对应的齐次线性方程组的解,与题设矛盾.故,*ξr n -ηηη,,,21 线性无关.(2)反证法.设r n -+++ηξηξηξξ*2*1**,,,, 线性相关,则存在不全为零的数012,,,,n r k k k k -,使得****01122()()()0n r n r k k k k ξξηξηξη--+++++++=,即*0121122()0n r n r n r k k k k k k k ξηηη---++++++++=,由(1)知,,*ξr n -ηηη,,,21 线性无关,则0120n r k k k k -++++=,10k =,20k =,...,0n r k -=,从而00k =,这与012,,,,n r k k k k -不全为零矛盾,故r n -+++ηξηξηξξ*2*1**,,,, 线性无关.B3-8.设线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a22112222212*********, 的系数矩阵的秩等于矩阵⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛02121222221111211nn nn n n n n b b b b a a a b a a a b a a a 的秩,试证这个方程组有解.证 令111212122212n n n n nn a a a aa a A a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭, 11121121222212n n n n nn n a a a b a a a b A a a a b ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭, 11121121222212120n n n n nn n na a ab a a a b B a a a b b b b ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭, 因为A 比A 多一列,B 比A 多一行,故()()()r A r A r B ≤≤,而由题设()()r A r B =,所以()()r A r A =,所以原方程组有解.B-9.设A 是n 阶方阵,*A 是A 的伴随矩阵,证明:⎪⎩⎪⎨⎧-<-===*1,01,1,n r n r nr n r A A A A 当当当. 证 若A r n =,因为0A ≠,而**AA A A A E ==,1*0n A A-=≠,故A r n *=.若1A r n =-,因为0A =,所以*AA A E O ==,又因为A AA A r r r n **≥+-,而0AA r *=,所以1A r *≤;又因为1A r n =-,所以至少有一个代数余子式0ij A ≠,从而1A r *≥,故1A r *=.若1A r n <-,则A 的任一个代数余子式0ij A =,故*0A =,所以0A r *=.B3-10.设A 是m n ⨯阶方阵,证明:AX AY =,且A r n =,则X Y =. 证 因为AX AY =,所以()A X Y O -=,又因为A r n =,所以方程组()A X Y O -=只有零解,即X Y O -=,所以X Y =.。

基础强化沪教版(上海)八年级数学第二学期第二十一章代数方程章节练习试题(含解析)

基础强化沪教版(上海)八年级数学第二学期第二十一章代数方程章节练习试题(含解析)

八年级数学第二学期第二十一章代数方程章节练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若关于x 的分式方程232422kx x x x =--+-无解,则k 的值为( ) A .1或﹣4或6 B .1或4或﹣6 C .﹣4或6 D .4或﹣62、张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意,得到的方程是( )A .1515112x x -=+ B .1515112x x -=+ C .1515112x x -=- D .1515112x x -=- 3、若关于x 的不等式组11123x a x x ≤⎧⎪-+⎨+>⎪⎩至少有4个整数解,且关于y 的分式方程4122a y y -+--=1的解是非负数,则符合条件的所有整数a 的和是( )A .17B .20C .22D .25 4、若关于x 的方程63x x --﹣23m x -=0有增根,则m 的值是( )A .23- B .32 C .3 D .﹣35、一双鞋子如卖150元,可赚50%,如卖120元可赚( )A .20%B .22%C .25%D .30%6、关于x 的不等式组2124()3(2)x x a x a x ->-⎧⎨+≥+⎩至少有2个整数解,且关于y 的分式方程22242a a y y y +-+=--的解为非负整数,则符合条件的所有整数a 的和为( )A .34B .24C .18D .147、某文具店购进A ,B 两种款式的书包,其中A 种书包的单价比B 种书包的单价低10%.已知店主购进A 种书包用了810元,购进B 种书包用了600元,且所购进的A 种书包的数量比B 种书包多20个.设文具店购进B 种款式的书包x 个,则所列方程正确的是( )A .81060010%20x x=⨯+ B .()810600110%20x x =-+ C .60081010%20x x =⨯+ D .()()81060020110%x x x =⨯+- 8、若整数a 使关于x 的不等式组2062x a x x->⎧⎨->⎩有解,且最多有2个整数解,且使关于y 的分式方程2ay y +-412y=-的解为整数,则符合条件的所有整数a 的和为( ) A .4- B .4 C .2- D .29、在2020年3月底新过师炎疫情在我国得到快速控制,教育部要求低风险区错时、错峰开学,某校在只有初三年级开学时,一段时间用掉120瓶消毒液,在初二、初一年级也错时、错峰开学后,平均每天比原来多用4瓶消毒液,这样120瓶消毒液比原来少用5天,若设原来平均每天用掉x 瓶消毒液,则可列方程是( )A .12012054x x -=+ B .12012054x x -=- C .12012054x x +=+ D .12012054x x +=- 10、中国高铁目前是世界高铁的领跑者,无论里程和速度都是世界最高的.郑州、北京两地相距约700km ,乘高铁列车从郑州到北京比乘特快列车少用3.6h ,已知高铁列车的平均行驶速度是特快列车的2.8倍,设特快列车的平均行驶速度为km/h x ,则下面所列方程中正确( )A .700700 3.62.8x x-= B .700700 3.62.8x x -= C .700 2.8700 3.6x x ⨯-= D .7007003.62.8x x =- 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某小区为了排污,需铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,需缩短施工时间,实际施工时每天的工作效率比原计划提高20%,结果提前2天完成任务.设原计划每天铺设x 米,则所列方程是____________________.2、若数a 使关于x 的不等式组11(1)3223(1)x x x a x ⎧⎪⎨⎪-≤-≤-⎩-有且仅有三个整数解,且使关于y 的分式方程31222y a y y-+-- =1 有整数解,则满足条件的所有a 的值之和是____________ 3、一次函数5y x m =+与5y kx =+的图象的交点坐标为(2,9),则m =_______,k =_______.4、分式方程2132x x=+的解是x =______. 5、观察下列方程:①x +2x =3;②x +6x =5;③x +12x=7,可以发现它们的解分别是①x =1或2;②x =2或3;③x =3或4.利用上述材料所反映出来的规律,可知关于x 的方程x +23n n x +-=2n +4(n 为正整数)的解x = ________________.三、解答题(5小题,每小题10分,共计50分)1、(1)解方程:23111x x x -=++ (2)化简:223(2)()(2)()a b a b a b ab ab +-+-÷-2、小明在解分式方程13233x x x --=--时,过程如下:第一步:方程整理13233x x x -=-- 第二步:去分母……(1)请你说明第一步和第二步变化过程的依据分别是 、 .(2)请把以上解分式方程的过程补充完整.3、解方程:()23133x x x -=--. 4、某学校为了丰富学生的大课间活动,体育组决定购进一批排球和篮球,经调查发现排球的单价比篮球的单价多7元,用700元购买的排球的数量与用560元购买的篮球的数量相同.(1)求篮球和排球的单价各是多少元;(2)该校体育组购进篮球和排球共30个,且购买篮球和排球的总费用不超过1000元,求该校体育组最多购买多少个排球?5、已知一次函数y 1=mx ﹣2m +4(m ≠0).(1)判断点(2,4)是否在该一次函数的图象上,并说明理由;(2)若一次函数y 2=﹣x +6,当m >0,试比较函数值y 1与y 2的大小;(3)函数y 1随x 的增大而减小,且与y 轴交于点A ,若点A 到坐标原点的距离小于6,点B ,C 的坐标分别为(0,﹣2),(2,1).求△ABC 面积的取值范围.-参考答案-一、单选题1、A【分析】按照解分式方程的步骤,把分式方程化为整式方程,根据整式方程的特点及分式方程的增根情况,即可求得k 的值.【详解】分式方程两边都乘以最简公分母(x+2)(x-2),得:kx=3(x-2)-2(x+2)整理得:(k-1)x=-10当k=1时,上述方程无解,从而原分式方程无解;当k≠1时,分式方程的增根为2或-2当x=2时,则有2(k-1)=-10,解得:k=-4;当x=-2时,则有-2(k-1)=-10,解得:k=6综上所述,当k的值为1或﹣4或6时,分式方程无解;故选:A.【点睛】本题考查了分式方程无解问题,本题很容易漏掉k=1的情况,这是由于化为一元一次方程后,一次项的系数不是常数.2、B【分析】根据关键描述语是:“比李老师早到半小时”;等量关系为:李老师所用时间﹣张老师所用时间=12.即可列出方程.【详解】解:李老师所用时间为:15x ,张老师所用的时间为:151x+.所列方程为:1515112x x-=+.故选:B.【点睛】此题主要考查列分式方程,由题意可知未知量是速度,有路程,一定是根据时间来列等量关系的.找到关键描述语,找到等量关系是解决问题的关键.3、B【分析】分别求出符合不等式组和分式方程解的条件的整数a ,再计算出所有整数a 的和.【详解】11123x a x x ≤⎧⎪⎨-++>⎪⎩①② 由②得:3(1)62(1)x x -+>+解得:1x >- ∵不等式组11123x a x x ≤⎧⎪-+⎨+>⎪⎩至少有4个整数解,如图所示:∴3a ≥,解该分式方程得:7y a =-,∵70a -≥且72a -≠,解得:7a ≤且5a ≠,∴a 取37a ≤≤且5a ≠的整数,即a 取3,4,6,7,∴346720+++=.故选:B .【点睛】本题考查解不等式组与分式方程,掌握它们的解法是解题的关键.4、B【分析】先将方程化为整式方程,由分式方程有增根可求解x值,再将x值代入计算即可求解m值.【详解】解:由63xx--﹣23mx-=0得6-x-2m=0,∵关于x的方程63xx--﹣23mx-=0有增根,∴x=3,当x=3时,6-3-2m=0,解得m=32,故选:B.【点睛】本题主要考查分式方程的增根,掌握增根的定义是解题的关键.5、A【分析】根据“=利润利润率进价”求出进价,再代入120求出利润率即可.【详解】设进价为x元.依题意,得150 50%xx-=解得100x=∴卖120元可赚12010020% 100-=故选A.【点睛】本题考查了分式方程的应用,根据利润率公式列式是解决本题的关键.6、C【分析】求出不等式组的解集,确定a 的取值范围,由分式方程的解得出不等式,求出a 的取值范围,确定a 的整数值求和即可.【详解】解不等式组2124()3(2)x x a x a x ->-⎧⎨+≥+⎩得:12x a x >⎧⎪⎨≤⎪⎩, ∴12a x <≤, ∵不等式组至少有2个整数解,∴符合条件的整数至少是2和3, ∴32a ≤ ∴6a ≤ 分式方程22242a a y y y +-+=--去分母得:22()2(24)a a y y +--=-, ∴1(10)2y a =-,∵分式方程的解为非负整数, ∴1(10)02y a =-≥且为整数,1(10)22y a =-≠,解得:10,6a a ≤≠,a 是偶数综上所述610a <≤,a 是偶数∵a 为整数,∴a 的值为8,10∴8+10=18,故选:C .【点睛】本题考查了不等式组的取值范围,分式方程的解,分式方程的增根容易忽略,仔细求解,考虑周全是解决本题的关键.7、B【分析】设文具店购进B 种款式的笔袋x 个,则购进A 种款式的笔袋(x +20)个,根据单价=总价÷数量结合A 种笔袋的单价比B 种袋的单价低10%,即可得出关于x 的分式方程.【详解】解:设文具店购进B 种款式的笔袋x 个,则购进A 种款式的笔袋(x +20)个, 依题意,得:()810600110%20x x =-+, 故选:B .【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.8、D【分析】根据题意先解不等式,确定a 的范围,进而根据分式方程的解为整数,确定a 的值,再求其和即可.【详解】解:2062x a x x ->⎧⎨->⎩①②解不等式①得:2ax >解不等式②得:2x < 不等式组有解,则22a x <<且最多有2个整数解,则122a -≤< 解得24a -≤<2,1,0,1,2,3a ∴=--分式方程去分母得:42ay y -=- 解得21y a =- 分式方程2ay y +-412y =-的解为整数, 21a ∴-是整数,且2,10y a ≠-≠ 2,1,2a ∴≠-1,0,3a ∴=-1032∴-++=即符合条件的所有整数a 的和为2,故选D【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.9、A【分析】根据天数比原来少用5天建立等量关系.【详解】设原来平均每天用x 瓶消毒液,则原来能用120x天 现在每天用x+4瓶消毒液,则现在能用1204x +天, 再根据少用5天得到等量关系:12012054x x -=+ 故选A .【点睛】 本题考查分式方程的实际应用,找到等量关系是本题的解题关键.10、A【分析】设特快列车的平均行驶速度为km/h x ,则高铁列车的平均行驶速度是2.8km/h x ,根据“郑州、北京两地相距约700km ,乘高铁列车从郑州到北京比乘特快列车少用3.6h ”,即可求解.【详解】解:设特快列车的平均行驶速度为km/h x ,则高铁列车的平均行驶速度是2.8km/h x ,根据题意得: 700700 3.62.8x x-=. 故选:A【点睛】本题主要考查了分式方程的应用,明确题意,准确得到等量关系是解题的关键.二、填空题1、7207202(120%)x x-=+ 【详解】略2、-18【分析】根据不等式的解集,可得a 的范围,根据方程的的整数解,可得a 的值,根据有理数的加法,可得答案.【详解】 解:()()11132231x x x a x ⎧-≤-⎪⎨⎪-≤-⎩①②,解①得x ≥-3,解②得x ≤35a +, 不等式组的解集是-3≤x ≤35a +. ∵仅有三个整数解-3,-2,-1,∴-1≤35a +<0 ∴-8≤a <-3,31222y a y y-+-- =1 3y -a +12=y -2.∴y =142a -, ∵y ≠2,∴a ≠18>-3,又y =142a -有整数解, ∴a =-8,-6,-4,所有满足条件的整数a 的值之和是-8-6-4=-18,故答案为-18.【点睛】本题考查了分式方程的解,有理数的解法,解不等式组,解分式方程,利用不等式的解集及方程的解得出a 的值是解题关键.3、-1 2【分析】先把(2,9)代入5y x m =+,求出m 的值,然后把(2,9)代入5y kx =+,求出k 的值即可.【详解】把(2,9)代入5y x m =+,得9= 5×2+m ,∴m =-1,把(2,9)代入5y kx =+,得9= 2k +5,∴k = 2,故答案为:-1,2.【点睛】本题主要考查一次函数的交点坐标问题,属于基础题,将两个一次函数的交点坐标分别代入是解题关键.4、1【分析】根据解分式方程的步骤“先去分母化为整式方程,再解整式方程,最后进行检验”进行解答即可得.【详解】解:2132x x=+ 方程两边同乘2(3)x x +,得43x x =+,移项,得33x =,系数化为1,得1x =,检验:当1x =时,2(3)0x x +≠,∴原分式方程的解为1x =,故答案为:1.【点睛】本题考查了解分式方程,解题的关键是掌握解分式方程的方法并检验.5、n +3或n +4【分析】分别对三个方程式变形,并求三个方程式的解,根据方程的解发现规律即可求解.【详解】分别对三个方程式变形,并求三个方程式的解:①x +2x = x +12x⨯=1+2,在等式两边同时乘以x , 移项得x 2- 3x +2=0,即(x - 2)(x - 3)=0,故解得x = 1或x =2;②x +6x = x +23x⨯=2+3,同理解得x = 2或x =3; ③x +12x= x +34x ⨯=3+4,同理解得x =3或x =4; 以此类推,第n 个方程为:x +2n n x+= x +(1)21(1)n n n n n x +=+=++, 且解为:x =n 或x =n +1;将方程x +23n n x +-=2n +4两边同时减3,得(x -3)+23n n x +-=2n +1, 根据规律得:x -3 =n 或x -3=n +1,即x =n +3或x =n +4.故答案为:n +3或n +4.【点睛】此题考查数字的规律,分别对三个方程式变形,并求三个方程式的解发现规律是解答此题的关键.三、解答题1、(1)4x =;(2)2a【分析】(1)通过去分母,化为整式方程,进而即可求解;(2)先去括号,再合并同类项,即可求解.【详解】解:(1)23111x x x -=++, 去分母得:213x x -+=(), 解得:4x =,检验:当4x =时,150x +=≠.∴原方程的解为4x =;(2)原式=2222(2)a ab b ab b +-+-+=22222a ab b ab b +--+=2a .【点睛】本题主要考查解分式方程以及整式得混合运算,掌握分式方程的解题步骤以及合并同类项法则,是解题的关键.2、(1)分式的基本性质,等式的性质;(2)75x =. 【分析】(1)根据分式的基本性质是分式的分子与分母都乘以或除以同一个不为0的数或整式,分式的值不变,将异分母方程化为同分母的分式方程,根据等式的性质,方程两边都乘或乘以同一个不为0的数或整式,两边都乘以(x -3),可去分母把分式方程化为整式方程;(2)将方程整理,去分母,去括号,移项合并,系数化1,验根即可.(1)第一步:根据分式的基本性质将等式右边分子分母都乘以-1方程整理13233x x x -=--, 第二步:去分母根据等式的性质,等式两边都乘以(x -3),故答案为:分式的基本性质,等式的性质;(2) 解:13233x x x--=--, 第一步:方程整理13233x x x -=--, 第二步:去分母得:()1233x x --=,去括号得1263x x -+=,移项合并得57x =,系数化1得75x =.检验:当75x =时,7833055x -=-=-≠, ∴75x =是分式方程的根. 【点睛】本题考查分式的基本性质和等式性质,解分式方程,掌握解分式方程的方法与步骤,注意转化思想的利用是解题关键.3、4x =【分析】方程两边同时乘以()23x -去掉分母,把分式方程化为整式方程,求出方程的解并检验后即得结果.【详解】 解:()()()()22223331333x x x x x x ---=⋅---, ()()2333x x x --=-,223369x x x x --=-+,312x =,4x =.检验:当4x =时,()230x -≠∴4x =是原方程的解.∴ 原方程的解是4x =.【点睛】本题考查了分式方程的解法,属于基础题目,熟练掌握求解的方法是解题的关键.4、(1)排球的单价为35元/个,篮球的单价为28元/个.(2)体育组最多购买22个排球.(1)设排球的单价为x元/个,则篮球的单价为(x-7)元/个,根据数量=总价÷单价结合用700元购买排球的个数与用560元购买篮球的个数相等,即可得出关于x的分式方程,解之并检验后,即可得出结论;(2)设购买排球y个,则购买篮球(30﹣y)个,根据总价=单价×数量且购买的总费用不高于1000元,即可得出关于y的不等式,即可求得答案.【详解】解:(1)设排球的单价为x元/个,则篮球的单价为(x-7)元/个,根据题意得:700x=5607x-,解得:x=35,经检验,x=35是原分式方程的解,∴x-7=28(元/个).答:排球的单价为35元/个,篮球的单价为28元/个.(2)设购买排球y个,则购买篮球(30﹣y)个,依题意得:35y+28(30﹣y)≤1000解得1607y≤,所以体育组最多购买22个排球.答:体育组最多购买22个排球.【点睛】此题主要考查了分式方程的应用和一元一次不等式的应用,关键是正确理解题意,找出题目中的数量关系,列出方程或不等式.5、(1)在,理由见解析;(2)当x>2时,y1>y2;当x=2时,y1=y2;当x<2时,y1<y2;(3)6<S△ABC<8(1)把点(2,4)代入解析式即可判断;(2)求得两直线的交点为(2,4),根据一次函数的性质即可比较函数值y1与y2的大小;(3)根据题意求得A的纵坐标的取值,然后根据三角形面积公式即可求得.【详解】解:(1)把x=2代入y1=mx﹣2m+4得,y1=2m﹣2m+4=4,∴点(2,4)在该一次函数的图象上;(2)∵一次函数y2=﹣x+6的图象经过点(2,4),点(2,4)在一次函数y1=mx﹣2m+4的图象上,∴一次函数y2=﹣x+6的图象与函数y1=mx﹣2m+4的图象的交点为(2,4),∵y2随x的增大而减小,y1随x的增大而增大,∴当x>2时,y1>y2;当x=2时,y1=y2;当x<2时,y1<y2;(3)由题意可知,﹣6<﹣2m+4<6且m<0,∴﹣1<m<0,∵点B,C的坐标分别为(0,﹣2),(2,1).∴6<AB<8,∴6<S△ABC<8.【点睛】本题考查了一次函数综合题,熟练掌握一次函数的性质是解本题的关键.。

线性代数练习册附问题详解

线性代数练习册附问题详解

第1章 矩阵 习 题1. 写出下列从变量x , y 到变量x 1, y 1的线性变换的系数矩阵: (1)⎩⎨⎧==011y x x ; (2) ⎩⎨⎧+=-=ϕϕϕϕcos sin sin cos 11y x y y x x2.(通路矩阵)a 省两个城市a 1,a 2和b 省三个城市b 1,b 2,b 3的交通联结情况如图所示,每条线上的数字表示联结这两城市的不同通路总数.试用矩阵形式表示图中城市间的通路情况.3. 设⎪⎪⎪⎭⎫ ⎝⎛--=111111111Α,⎪⎪⎪⎭⎫ ⎝⎛--=150421321B ,求3AB -2A 和A TB .4. 计算(1) 2210013112⎪⎪⎪⎭⎫ ⎝⎛(2) ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛1)1,,(212221211211y x c b b b a a b a a y x5. 已知两个线性变换 32133212311542322y y y x y y y x y y x ++=++-=+=⎪⎩⎪⎨⎧,⎪⎩⎪⎨⎧+-=+=+-=323312211323zz y z z y z z y ,写出它们的矩阵表示式,并求从321,,z z z 到321,,x x x 的线性变换.6. 设f (x )=a 0x m + a 1x m -1+…+ a m ,A 是n 阶方阵,定义f (A )=a 0A m + a 1A m -1+…+ a m E . 当f (x )=x 2-5x +3,⎪⎪⎭⎫⎝⎛--=3312A 时,求f (A ).7. 举出反例说明下列命题是错误的. (1) 若A 2= O ,则A = O .(2) 若A 2= A ,则A = O 或A = E . .7. 设方阵A 满足A 2-3A -2E =O ,证明A 及A -2E 都可逆,并用A 分别表示出它们的逆矩阵.8.用初等行变换把下列矩阵化成行最简形矩阵:(1)⎪⎪⎪⎭⎫ ⎝⎛------=132126421321A(2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=03341431210110122413B .9. 对下列初等变换,写出相应的初等方阵以及B 和A 之间的关系式.⎪⎪⎪⎭⎫ ⎝⎛--=121121322101A ~122r r -⎪⎪⎪⎭⎫⎝⎛---121123302101~13c c +⎪⎪⎪⎭⎫⎝⎛--131123302001=B .10. 设ΛAP P =-1,其中⎪⎪⎭⎫ ⎝⎛--=1141P ,⎪⎪⎭⎫ ⎝⎛-=2001Λ,求A 9.11. 设⎪⎪⎪⎭⎫⎝⎛-=200030004A ,矩阵B 满足AB =A+2B ,求B .12. 设102212533A--⎛⎫⎪=-⎪⎪-⎝⎭, 利用初等行变换求A-1.复习题一1. 设A , B , C 均为n 阶矩阵,且ABC =E ,则必有( ). (A) ACB =E ; (B) CBA =E ; (C) BAC =E ; (D) BCA =E .2. 设⎪⎪⎪⎭⎫⎝⎛=333231232221131211a a a a a a a a a A ,⎪⎪⎪⎭⎫⎝⎛+++=133312321131131211232221a a a a a a a a a a a a B , ⎪⎪⎪⎭⎫ ⎝⎛=1000010101P ,⎪⎪⎪⎭⎫⎝⎛=1010100012P ,则必有 ( ) .(A) AP 1P 2=B ; (B )AP 2P 1=B ; (C) P 1P 2A =B ; (D) P 2P 1A =B .3. 设A 为4阶可逆矩阵,将A 的第1列与第4列交换得B ,再把B 的第2列与第3列交换得C ,设⎪⎪⎪⎪⎪⎭⎫⎝⎛=00010100001010001P ,⎪⎪⎪⎪⎪⎭⎫⎝⎛=10000010010000012P ,则C -1=( ). (A) A -1P 1P 2; (B) P 1A -1P 2; (C) P 2P 1A -1; (D) P 2A -1P 1.4. 设n 阶矩阵A 满足A 2-3A +2E =O ,则下列结论中一定正确的是( ). (A) A -E 不可逆 ; (B) A -2E 不可逆 ; (C) A -3E 可逆; (D) A -E 和A -2E 都可逆. 5. 设A =(1,2,3),B =(1,1/2,1/3),令C =A TB ,求C n.6. 证明:如果A k =O ,则(E -A )-1=E +A +A 2+…+A k -1,k 为正整数.7.设A ,B 为三阶矩阵,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=710004100031A ,且A -1BA =6A +BA ,求B .8. 设n 阶矩阵A 及s 阶矩阵B 都可逆,求1-⎪⎪⎭⎫⎝⎛O O B A .9. 设⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-0000000000000000121n n aa a a X (021≠n a a a ),求X -1.第2章 行列式习 题1.利用三阶行列式解下列三元线性方程组⎪⎩⎪⎨⎧=-+-=-+-=+-013222321321321x x x x x x x x x2.当x 取何值时,0010413≠xx x .3.求下列排列的逆序数:(1) 315624; (2)13…(2n-1)24…(2n).4. 证明: 3232a cb a b a ac b a b a a c b a=++++++.5. 已知四阶行列式|A |中第2列元素依次为1,2,-1,3,它们的余子式的值依次为3,-4,-2,0 ,求|A |.6. 计算下列行列式: (1) 1111111111111111------ (2) y xy x x yx y y x yx +++(3) 0111101111011110(4) 1222123312111x x x x x x(5)n n a a a D +++=11111111121,其中021≠n a a a .7.设n阶矩阵A的伴随矩阵为A*,证明: |A*|=|A|n-1,(n ≥2).8. 设A,B都是三阶矩阵,A*为A的伴随矩阵,且|A|=2,|B|=1,计算 |-2A*B-1|.9.设⎪⎪⎪⎭⎫ ⎝⎛--=111012112A ,利用公式求A -1.复习题二1.设A , B 都是n 阶可逆矩阵,其伴随矩阵分别为A *、B *,证明:(AB )*= B *A *.2.设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=2200020000340043A ,求A -1.3.已知A 1, A 2, B 1, B 2都是3⨯1矩阵,设A =( A 1, A 2, B 1,),B =( A 1, A 2, B 2),|A |=2,|B |=3,求|A+2B |.4.设A , B 都是n 阶方阵,试证:AB E E AB E-=.第3章向量空间习题1. 设α1=(1,-1,1)T, α2=(0,1,2)T, α3=(2,1,3)T,计算3α1-2α2+α3.2. 设α1=(2,5,1,3)T, α2=(10,1,5,10)T, α3=(4,1,-1,1)T,且3(α1- x)+2(α2+x)=5(αx) ,求向量x.3+3. 判别下列向量组的线性相关性:(1) α1=(-1,3,1)T, α2=(2,-6,-2)T, α3=(5,4,1)T;(2) β1=(2,3,0)T, β2=(-1,4,0)T, β3=(0,0,2)T .4. 设β1=α1, β2=α1+α2, β3=α1+α2+a3,且向量组α1, α2, α3线性无关,证明向量组β1, β2, β3线性无关.5. 设有两个向量组α1, α2, α3和β1=α1-α2+α3, β2=α1+α2-α3,β3= -α1+α2+α3,证明这两个向量组等价.6. 求向量组α1=(1,2,-1)T, α2=(0,1,3)T, α3=(-2,-4,2)T,α4=(0,3,9)T的一个极大无关组,并将其余向量用此极大无关组线性表示.7. 设α1, α2,…, αn是一组n维向量,已知n维单位坐标向量ε1,ε2,…,εn能由它们线性表示,证明:α1, α2,…,αn线性无关.8. 设有向量组α1, α2, α3,α4, α5,其中α1, α2, α3线性无关,α4=aα1+bα2,α5=c α2+dα3(a, b, c, d均为不为零的实数),求向量组α1, α3,α4, α5的秩.9. 设矩阵A= (1,2,…,n), B=(n,n-1,…,1),求秩R(A T B).10. 设矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=97963422644121121112A ,求A 的秩,并写出A 的一个最高阶非零子式.11. 已知矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+---=120145124023021t t A ,若A 的秩R (A )=2,求参数t 的值.12. 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------=5913351146204532A ,求A 的列向量组的秩,并写出它的一个极大无关组.13. 设A 为n 阶矩阵,E 为n 阶单位矩阵,证明:如果A 2=A ,则R (A )+R (A -E )=n .14. 已知向量空间3R 的两组基为⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=010,01121αα,⎪⎪⎪⎭⎫ ⎝⎛=1130α和⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=111,01121ββ-,⎪⎪⎪⎭⎫ ⎝⎛-=1103β, 求由基α1, α2, α3到基β1, β2, β3的过渡矩阵.复习题三1.设矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=k k k k 111111111111A ,已知A 的秩为3,求k 的值.2.设向量组A : α1, …,αs 与B : β1,…,βr ,若A 组线性无关且B 组能由A 组线性表示为(β1,…,βr )=(α1, …,αs )K ,其中K 为r s ⨯矩阵, 试证:B 组线性无关的充分必要条件是矩阵K 的秩R (K )=r .3.设有三个n维向量组A:α1, α2, α3;B:α1, α2, α3,α4;C:α1, α2, α3,α5.若A组和C组都线性无关,而B组线性相关,证明向量组α1, α2, α3,α4-α5线性无关.4.设向量组A: α1=(1,1,0)T,α2=(1,0,1)T,α3=(0,1,1)T和B: β1=(-1,1,0)T,β2=(1,1,1)T,β3=(0,1,-1)T(1) 证明:A组和B组都是三维向量空间3R的基;(2) 求由A组基到B组基的过渡矩阵;(3) 已知向量α在B组基下的坐标为(1,2,-1)T,求α在A组基下的坐标.第4章 线性方程组习 题1. 写出方程组⎪⎩⎪⎨⎧=+++=+++=+322 3512254321432121x x x x x x x x x x 的矩阵表示形式及向量表示形式.2.用克朗姆法则解下列线性方程组⎪⎩⎪⎨⎧=+=+--=-0322az cx bc bz cy ab ay bx ,其中0≠abc3.问μλ,取何值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++02 00 321321321x x x x x x x x x μμλ有非零解?4. 设有线性方程组⎪⎩⎪⎨⎧-=+-=++=++42 - 43212321321x x x k x kx x x k x x ,讨论当k 为何值时, (1)有唯一解?(2)有无穷多解?(3)无解?5. 求齐次线性方程组⎪⎩⎪⎨⎧=-++=-++=++-026 83054202108432143214321x x x x x x x x x x x x 的一个基础解系.6.设四元非齐次线性方程组的系数矩阵的秩为3,已知η1, η2, η3是它的三个解向量,且η1=(2,3,4,5)T , η2+η3=(1,2,3,4)T,求此方程组的的通解.7 .求下列非齐次线性方程组的通解:⎪⎩⎪⎨⎧=+++=+++=+322 3512254321432121x x x x x x x x x x8. 设有向量组A :12122,131-==-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭αα,3110-=⎛⎫ ⎪ ⎪ ⎪⎝⎭α及向量131β=-⎛⎫ ⎪ ⎪ ⎪⎝⎭, 问向量β能否由向量组A 线性表示?9. 设η*是非齐次线性方程组AX=b的一个解,ξ1, ξ2,…, ξn-r是它的导出组的一个基础解系,证明:(1)η*, ξ1, ξ2,…, ξn-r线性无关;(2)η*, η*+ξ1, η*+ξ2,…, η*+ξn-r线性无关.复习题四1.设⎪⎪⎪⎭⎫ ⎝⎛=101102121a a a A ,且方程组AX =θ的解空间的维数为2,则a = . 2.设齐次线性方程组a 1x 1+a 2x 2+…+a n x n =0,且a 1,a 2,…,a n 不全为零,则它的基础解系所含向量个数为 .3.设有向量组π:α1=(a ,2,10)T , α2=(-2,1,5)T , α3=(-1,1,4)T 及向量β=(1,b ,-1)T ,问a ,b 为何值时,(1)向量β不能由向量组π线性表示;(2)向量β能由向量组π线性表示,且表示式唯一;(3)向量β能由向量组π线性表示,且表示式不唯一,并求一般表示式.4.设四元齐次线性方程组(Ⅰ)⎩⎨⎧=-=+004221x x x x (Ⅱ)⎩⎨⎧=+-=+-00432321x x x x x x求: (1) 方程组(Ⅰ)与(Ⅱ)的基础解系;(2) 方程组(Ⅰ)与(Ⅱ)的公共解.5.设矩阵A =(α1, α2, α3, α4),其中α2, α3,α4线性无关,α1=2α2-α3,向量β=α1+α2+α3+α4,求非齐次线性方程组Ax= β的通解.6. 设⎪⎪⎪⎭⎫ ⎝⎛=321a a a α,⎪⎪⎪⎭⎫ ⎝⎛=321b b b β,⎪⎪⎪⎭⎫ ⎝⎛=321c c c γ,证明三直线⎪⎩⎪⎨⎧=++=++=++0:0:0:333322221111c y b x a l c y b x a l c y b x a l 3,2,1,022=≠+i b a i i相交于一点的充分必要条件是向量组βα,线性无关,且向量组γβα,,线性相关.第5章矩阵的特征值和特征向量习题1.已知向量α1=(1,-1,1)T,试求两个向量α2, α3,使α1, α2, α3为R 3的一组正交基.2.设A, B都是n阶正交矩阵,证明AB也是正交矩阵.3. 设A是n阶正交矩阵,且|A|=-1,证明:-1是A的一个特征值.4.求矩阵⎪⎪⎪⎭⎫ ⎝⎛----201335212的特征值和特征向量.5. 已知三阶矩阵A 的特征值为1,2,3,计算行列式|A 3-5A 2+7E |.6.设矩阵⎪⎪⎪⎭⎫ ⎝⎛------=12422421x A 与⎪⎪⎪⎭⎫ ⎝⎛-=40000005y Λ相似,求y x ,;并求一个正交矩阵P ,使P -1AP =Λ.7.将下列对称矩阵相似对角化: (1)⎪⎪⎪⎭⎫ ⎝⎛----020212022(2)⎪⎪⎪⎭⎫ ⎝⎛310130004.8. 设λ是可逆矩阵A 的特征值,证明:(1) A是A *的特征值.(2)当1,-2,3是3阶矩阵A 的特征值时,求A *的特征值.9.设三阶实对称矩阵A的特征值为λ1=6, λ2=λ3=3,属于特征值λ1=6的特征向量为p1=(1,1,1)T,求矩阵A.复习题五1.设n 阶矩阵A 的元素全为1,则A 的n 个特征值是 .2.已知3阶矩阵A , A -E , E +2A 都不可逆,则行列式|A +E |= .3.设⎪⎪⎪⎭⎫ ⎝⎛=11111b b a a A ,⎪⎪⎪⎭⎫ ⎝⎛=200010000B ,已知A 与B 相似,则a , b 满足 .4.设A 为2阶矩阵, α1, α2为线性无关的2维列向量,A α1=0, A α2=2α1+,α2,则A 的非零特征值为 .5.已知矩阵⎪⎪⎪⎭⎫⎝⎛=50413102x A 可相似对角化,求x .6.设矩阵A 满足A 2-3A +2E =O ,证明A 的特征值只能是1或2.7.已知p 1=(1,1,-1)T 是对应矩阵⎪⎪⎪⎭⎫ ⎝⎛---=2135212b a A 的特征值λ的一个特征向量. (1) 求参数a , b 及特征值λ; (2) 问A 能否相似对角化?说明理由.8. 设⎪⎪⎭⎫ ⎝⎛--=3223A ,求φ(A )=A 10-5A 9.第6章 二次型习 题1.写出下列二次型的矩阵表示形式:42324131212423222146242x x x x x x x x x x x x x x f -+-+-+++=2.写出对称矩阵⎪⎪⎪⎭⎫ ⎝⎛----=32201112121A 所对应的二次型.3. 已知二次型322123222132164),,(x x x x ax x x x x x f ++++=的秩为2,求a 的值.4.求一个正交变换将322322213214332),,(x x x x x x x x f +++=化成标准形.5.用配方法将二次型31212322214253x x x x x x x f -+++=化成标准形,并写出所用的可逆线性变换.6. 设二次型)0(233232232221>+++=a x ax x x x f ,若通过正交变换Py x =化成标准形23222152y y y f ++=,求a 的值.7. 判别下列二次型的正定性:(1)312123222122462x x x x x x x f ++---=(2)4342312124232221126421993x x x x x x x x x x x x f --+-+++=8. 设3231212322214225x x x x x ax x x x f +-+++=为正定二次型,求a 的取值范围.复习题六1. 设A 为n m ⨯矩阵,B =λE +A TA ,试证:λ>0时,矩阵B 为正定矩阵.2.设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=2100120000010010A ,写出以A , A -1为矩阵的二次型,并将所得两个二次型化成标准形.3. 已知二次曲面方程5223121232221=-+++x x x bx ax x x ,通过正交变换X=PY 化为椭圆柱面方程522221=+y y ,求b a ,的值.4. 设矩阵⎪⎪⎪⎭⎫ ⎝⎛=101020101A ,2)(A E B +=k ,其中k 为实数,求对角矩阵Λ,使B与Λ相似,并讨论k 为何值时,B 为正定矩阵.测试题一一、计算题:1.计算行列式111131112+=n D n . 2.设⎪⎪⎪⎭⎫ ⎝⎛-=201A ,⎪⎪⎪⎭⎫ ⎝⎛---=210530001B ,计算T B A 3.3.设A 、B 都是四阶正交矩阵,且0<B ,*A 为A 的伴随矩阵,计算行列式 *2BAA -.4.设三阶矩阵A 与B 相似,且⎪⎪⎪⎭⎫ ⎝⎛=321A ,计算行列式 E B 22-. 5.设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=2411120201b a A ,且A 的秩为2,求常数b a ,的值. 二、解答题:6.设4,3,2,1),,,1(32==i t t t T i i i i α,其中4321,,,t t t t 是各不相同的数,问4维非零向量β能否由4321,,,αααα线性表示?说明理由.7.求齐次线性方程组 ⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x 的一个基础解系.8.问k 取何值时,线性方程组⎪⎩⎪⎨⎧=++=++=++23213213211k x x kx k x kx x kx x x(1)有唯一解;(2)有无穷多解;(3)无解.9.已知四阶方阵A =(4321,,,αααα),其中321,,ααα线性无关,3243ααα-=,求方程组4321αααα+++=Ax 的通解.10.三阶实对称矩阵A 的特征值是1,2,3.矩阵A 的属于特征值1,2的特征向量分别是T )1,1,1(1--=α,T )1,2,1(2--=α,求A 的属于特征值3的所有特征向量,并求A 的一个相似变换矩阵P 和对角矩阵Λ,使得Λ=-AP P 1.三、证明题:11.设2112ααβ+=,32223ααβ+=,13334ααβ+=,且321,,ααα线性无关,证明:321,,βββ也线性无关.12.设A 为实对称矩阵,且满足O E A A =--22,证明E A 2+为正定矩阵.。

二元一次方程组经典练习题+答案解析100道

二元一次方程组经典练习题+答案解析100道

二元一次方程组练习题100道(卷一)(范围:代数:二元一次方程组)、判断1、326的解x y102391是方程组x y 52、方程组y 1 X的解是方程3x-2y=13的一个解( )3x 2y 53、由两个二元一次方程组成方程组一定是二元一次方程组( )x 3 y 5 74、方程组 2 3,可以转化为3x2y12(x 4 2y 3 25x6y273 5 25、若(a2-1) x2+(a-1) x+(2a-3) y=0 是二元一次方程,则 a 的值为土1 (6、若x+y=0,且| x|=2,贝U y 的值为2 ............. ()7、方程组mx my m 3x有唯一的解,那么4x 10y 8m的值为m^ -5 ............1 1&方程组3x 3y 2有无数多个解........................ ( )x y 69、x+y=5且x, y的绝对值都小于5的整数解共有5组10、方程组3x y 1的解是方程x+5y=3的解,反过来方程x+5y=3的解也是方程组x 5y 3解 ........ ( ) 3xxy 1的5y 311、若| a+5|=5 , a+b=1 则a的值为 - ( )b 312、在方程4x-3 y=7里,如果用x的代数式表示y,则x 乙旦 ( )4二、选择:13、任何一个二元一次方程都有( )(A )一个解;(B)两个解;(C)三个解;(D)无数多个解;14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有((A) 5 个(B) 6 个(C) 7个(D) 8个15、如果x y a的解都是正数,那么a的取值范围是( )3x2y 4(A) a<2;4(B) a -;(C)42 a(D) a433316、关于x 、y 的方程组 x 2y 3m 的解是方程3x+2y=34的一组解,那么 m 的值是x y 9m(C ) x y 1 (D ) x y 13x 3y 43x 3y 318、与已知二元一次方程 5x- y=2组成的方程组有无数多个解的方程是()(B ) a=3,b=-7 (D) a=-3, b=1421、若5x-6y=0,且xy z 0,则5x 4y 的值等于(5x 3y 三、填空: 25、 在方程 3x+4y=16 中,当 x=3 时,y= ________ ,当 y=-2 时,x= ______若x 、y 都是正整数,那么这个方程的解为 _______________ ; 26、 方程 2x+3y=10 中,当 3x-6=0 时,y= __________ ;27、 如果0.4X-0.5 y=1.2,那么用含有 y 的代数式表示的代数式是 __________________ 28、 若x1是方程组ax2y b的解,则a ---------------------------- ;y 14x y 2a 1 b ________(A ) 2; (B ) -1 ; 17、在下列方程中,只有- 个解的是( ,、 x y 1(B )(A )y3x 3y 0(C ) 1;( D ) -2 ; )x y 0(A) 15x-3y=6 ( B ) 4x- y=7 (C ) 10x+2y=4 (D) 20x-4 y=3x y 45 (A) 1 1(B )x y — -9 y z 7x y(C )x 1 (D ) x y xy3x 2y 6x y 1x y 5 ax 3y b有无数多个解,则 1a 、b 的值等于((A) a=-3, b=-14(C ) a=-1, b=92 3 (A ) 2( B )-3 222、 若x 、y 均为非负数,则方程(A )无解(C )有无数多个解 (C ) 1(D) -16x=-7 y 的解的情况是((B )有唯一一个解23、 若 |3x+y+5|+|2 x-2y-2|=0,贝U 2x 2-3 xy 的值是( (A ) 14 -4 (C ) -12(D) 1224、已知 都是方程y=kx+b 的解,则 k 与b 的值为((A ) k 12,b =-4 (B ) k12,b =4 (C ) k12,b=4(D) k12,b=-419、下列方程组中,是二元一次方程组的是()20、已知方程组方程|a|+| b|=2的自然数解是 ____________ ;1如果x=1,y=2满足方程ax y 1,那么a=;4已知方程组 2x ay 3有无数多解,则a= ________ ,m= _____ ;4x 6y 2 m若方程 x-2 y+3z=0,且当 x=1 时,y=2,则 z= __ ; 若 4x+3y+5=0,则 3(8y-x)-5( x+6y-2)的值等于 _______ ; 若x+y=a ,x- y=1同时成立,且x 、y 都是正整数,则 a 的值为 ________ ;从方程组 4x 3y 3z 0(xyz 0)中可以知道, x: z= _____________ ; y: z= ______x 3y z 0已知a-3 b=2a+b-15=1,则代数式 解方程组a 2-4 ab+b 2+3 的值为 ;11a(a 为已知数); 6am n 3 4 m n 2 33;13385x 、4x2y4y x y 3x 4y25.40x(y 、1) y(1 x) 2 y x 2x y1x(x 1)23x 3y3x 2y2x 2y 1 22542、323(2x 3y)2(3x 2y)25 x 2 1y123632x y z 13x y 16y zx 1 ; 44、y z 12 ;z xy 3z x 10此方程组的解;3x y 4z 13 x : y 4 : 75x y 3z 5 ;46、 x : z 3: 5x y z 3x 2y 3z 30(□ x+5y=13 ①29、 30、 31、 32、 33、34、 35、 36、 四、37、39、41、43、45、五、 47、甲、乙两人在解方程组4 x- □ y=-2 ②时,甲看错了①式中的x 的系数,解得107击;乙58 47看错了方程②中的 y 的系数, x解得y8176,若两人的计算都准确无误, 17请写出这个方程组, 并求出解答题:48、使x+4y=| a| 成立的x、y 的值,满足(2x+y-1)2+|3 y- x|=0,又| a|+ a=0,求a 的值;49、代数式ax2+bx+c中,当x=1时的值是0,在x=2时的值是3,在x=3时的值是28,试求出这个代数式;50、要使下列三个方程组成的方程组有解,求常数a的值。

线性代数课后习题答案分析

线性代数课后习题答案分析

线性代数课后题详解第一章 行列式1.利用对角线法则计算下列三阶行列式:相信自己加油(1)381141102---; (2)b a c a c b cb a(3)222111c b a c b a ; (4)yxy x x y x y y x y x +++.解 注意看过程解答(1)=---38114112811)1()1(03)4(2⨯⨯+-⨯-⨯+⨯-⨯)1()4(18)1(2310-⨯-⨯-⨯-⨯-⨯⨯- =416824-++- =4-(2)=ba ca cb cb a ccc aaa bbb cba bac acb ---++ 3333c b a abc ---=(3)=222111c b a c b a 222222cb ba ac ab ca bc ---++ ))()((a c c b b a ---=(4)yxyx x y x y y x y x+++yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-=2.按自然数从小到大为标准次序,求下列各排列的逆序数:耐心成就大业(1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n2 4 … )2(n ;(6)1 3 … )12(-n )2(n )22(-n … 2.解(1)逆序数为0(2)逆序数为4:4 1,4 3,4 2,3 2(3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3(5)逆序数为2)1(-n n :3 2 1个 5 2,54 2个 7 2,7 4,7 6 3个 ……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n)1(-n 个(6)逆序数为)1(-n n3 2 1个 5 2,54 2个 ……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n)1(-n 个4 2 1个 6 2,6 4 2个 ……………… …)2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个3.写出四阶行列式中含有因子2311a a 的项.解 由定义知,四阶行列式的一般项为43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p已固定,4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为10100=+++或22000=+++∴44322311a a a a -和42342311a a a a 为所求.4.计算下列各行列式:多练习方能成大财(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢71100251020214214; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-260523********12; (3)⎥⎥⎥⎦⎥⎢⎢⎢⎣⎢---ef cf bfde cd bd ae ac ab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c ba100110011001 解(1)7110025102021421434327c c c c --0100142310202110214---=34)1(143102211014+-⨯---=143102211014--321132c c c c ++141717201099-=0(2)265232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)efcfbfde cd bd ae ac ab---=ecbe c b e c badf ---=111111111---adfbce=abcdef 4(4)dc b a 100110011001---21ar r +d cb a ab 100110011010---+=12)1)(1(+--dca ab 101101--+23dc c +010111-+-+cd c ad a ab=23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明:(1)1112222b b a a b ab a +=3)(b a -;(2)bzay by ax bxaz by ax bxaz bz ay bxaz bz ay by ax +++++++++=yxz x z yz y xb a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅; (5)1221100000100001a x a a a a x x x n n n+----- n n n n a x a x a x ++++=--111 .证明(1)122222221312a b a b a a b a ab a c c c c ------=左边ab a b ab a ab 22)1(22213-----=+ 21))((ab a a b a b +--=右边=-=3)(b a (2)bzay by ax z by ax bx az y bxaz bz ay x a ++++++分开按第一列左边bz ay by ax x by ax bx az z bx az bz ay y b +++++++++++++002y by ax zx bxaz y z bz ay x a 分别再分bzay yx byax x zbxaz z y b +++zyx y x zx z y b y x zx z y z y x a 33+分别再分右边=-+=233)1(yxz x z yzy x b yxzx z yz y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c964496449644964422222++++++++d d dd c c c cb b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a949494949464222224232423dd c cb b a ac c c c c c c c ----第二项第一项06416416416412222=+d dd c c cb b b a a a(4) 444444422222220001a d a c a b a a d a c a b a ad a c a b a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b a d a c a b --------- =)()()(111))()((222a d d a c c a b b ad ac ab a d ac a b++++++---=⨯---))()((a d a c a b)()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b)()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a xD n ++=+-==假设对于)1(-n 阶行列式命题成立,即,122111-----++++=n n n n n a x a x a x D :1列展开按第则n D1110010001)1(11----+=+-x x a xD D n n n n 右边=+=-n n a xD 1所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得nnnn a a a a D 11111=, 11112n nnn a a a a D = ,11113a a a a D n nnn=,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnn n nn nnnn a a a a a a a a a a D 2211111111111)1(--==∴=--=--nnn n nn n n a a a a a a a a 331122111121)1()1( nn n nn n a a a a111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-=同理可证nnnn n n a a a a D 11112)1(2)1(--=D D n n T n n 2)1(2)1()1()1(---=-=D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)aaD n11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xaaa x a a a xD n=;(3)1111)()1()()1(1111n a a a n a a a n a a a D n n n nn nn ------=---+;提示:利用范德蒙德行列式的结果.(4)nnnnn d c d c b a b a D00011112=;(5)ji a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解(1)aa a a a D n 010000000000001000=按最后一行展开)1()1(100000000010000)1(-⨯-+-n n n aa a)1)(1(2)1(--⋅-+n n n a aa(再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得a x x a a x xa a x x a a a a x D n ------=0000000 再将各列都加到第一列上,得ax a x a x a a a an x D n ----+=000000000)1( )(])1([1a x a n x n --+=-(3)从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n行经)1(-n次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得nn nn n n n n n n a a a n a a a n a a a D )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-•-•-=---=1121)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4)nnnnn d c d c b a b a D 011112=n n n n n nd d c d c b a b a a 00000011111111----展开按第一行0)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D即 ∏=-=ni i i i i nD c b d a D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)ji a ij -=432140123310122210113210)det( --------==n n n n n n n n a D ij n,3221r r r r --0432111111111111111111111--------------n n n n ,,141312c c c c c c +++1524232102221002210002100001---------------n n n n n=212)1()1(----n n n(6)nn a a a D +++=11111111121,,433221c c c c c c ---nn n n a a a a a a a a a a +-------10000100010000100010001000011433221展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------00000000000000000000000022433221n n n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------0000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑+==n i in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x解 (1)11213513241211111----=D812073503211111------=145008130032101111---=1421420005410032101111-=---=112105132412211151------=D 11210513290501115----= 1121023313090509151------=23313095112109151------=1202300461000112109151-----=14200038100112109151----=142-=11235122412111512-----=D 81150731203271151-------=31390011230023101151-=2842840001910023101151-=----=426110135232422115113-=----=D14202132132212151114=-----=D 1,3,2,144332211-========∴DD x D D x D D x D D x(2)510006510006510065100065=D 展开按最后一行61000510065100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',)5100165100065100650000611=D 展开按第一列6510065100650006+'D 46+'=D 460319+''''-'''=D 1507=5101065100065000601000152=D 展开按第二列5100651006500061-6510065*********-365510651065⨯-=1145108065-=--=5110065000060100051001653=D 展开按第三列51006500061000516500061*********+6100510656510650061+=703114619=⨯+=5100060100005100651010654=D 展开按第四列61000510065100655000610005100651-- 51065106565--=395-=110005100065100651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 μλμμμλ-==12111113D ,齐次线性方程组有非零解,则03=D即 0=-μλμ得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解? 解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-= 3)1(2)1(23-+-+-=λλλ齐次线性方程组有非零解,则0=D得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.第二章 矩阵及其运算1.已知线性变换:⎪⎩⎪⎨⎧++=++=++=,323,53,22321332123211y y y x y y y x y y y x 求从变量321,,x x x 到变量321,,y y y 的线性变换.解由已知:⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x故 ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛----=321423736947y y y ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947xx x y x x x y x x x y2.已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=,54,232,232133212311y y y x y y y x y y x ⎪⎩⎪⎨⎧+-=+=+-=,3,2,3323312211z z y z z y z z y 求从321,,z z z 到321,,x x x 的线性变换.解 由已知⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫⎝⎛-=321310102013514232102z z z ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛----=321161109412316z z z所以有 ⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236zz z x z z z x z z z x3.设⎪⎪⎪⎭⎫ ⎝⎛--=111111111A , ,150421321⎪⎪⎪⎭⎫ ⎝⎛--=B 求.23B A A AB T及-解A AB 23-⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫⎝⎛--=1504213211111111113⎪⎪⎪⎭⎫ ⎝⎛---1111111112⎪⎪⎪⎭⎫⎝⎛-=0926508503⎪⎪⎪⎭⎫⎝⎛---1111111112⎪⎪⎪⎭⎫ ⎝⎛----=22942017222132⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=150421321111111111B A T⎪⎪⎪⎭⎫ ⎝⎛-=0926508504.计算下列乘积:(1)⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-127075321134; (2)()⎪⎪⎪⎭⎫ ⎝⎛1233,2,1; (3)()2,1312-⎪⎪⎪⎭⎫ ⎝⎛; (4)⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛-20413121013143110412; (5)⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321332313232212131211321),,(x x x a a a a a a a a a x x x ; (6)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121. 解(1)⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎪⎭⎫ ⎝⎛=49635 (2)()⎪⎪⎪⎭⎫ ⎝⎛123321)10()132231(=⨯+⨯+⨯=(3)()21312-⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎪⎭⎫ ⎝⎛---=632142 (4)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎪⎭⎫⎝⎛---=6520876 (5)()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321332313232212*********x x x a a a a a a a a a x x x ()333223113323222112313212111x a x a x a x a x a x a x a x a x a ++++++=⎪⎪⎪⎭⎫⎝⎛⨯321x x x 322331132112233322222111222x x a x x a x x a x a x a x a +++++= (6)⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛3000320012101313000120010100121⎪⎪⎪⎪⎪⎭⎫⎝⎛---=90003400421025215.设⎪⎪⎭⎫ ⎝⎛=3121A , ⎪⎪⎭⎫⎝⎛=2101B ,问:(1)BA AB =吗?(2)2222)(B AB A B A ++=+吗?(3)22))((B A B A B A -=-+吗?解(1)⎪⎪⎭⎫ ⎝⎛=3121A , ⎪⎪⎭⎫ ⎝⎛=2101B则⎪⎪⎭⎫ ⎝⎛=6443AB ⎪⎪⎭⎫⎝⎛=8321BA BA AB ≠∴(2) ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎪⎭⎫⎝⎛=2914148 但=++222B AB A ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛43011288611483⎪⎪⎭⎫⎝⎛=27151610 故2222)(B AB A B A ++≠+(3) =-+))((B A B A =⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛10205222⎪⎪⎭⎫⎝⎛9060而 =-22B A =⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛430111483⎪⎪⎭⎫⎝⎛7182故22))((B A B A B A -≠-+6.举反列说明下列命题是错误的:(1)若02=A ,则0=A ; (2)若A A =2,则0=A 或E A =;(3)若AY AX =,且0≠A ,则Y X =.解 (1) 取⎪⎪⎭⎫ ⎝⎛=0010A 02=A ,但0≠A(2) 取⎪⎪⎭⎫ ⎝⎛=0011A A A =2,但0≠A 且E A ≠(3) 取⎪⎪⎭⎫ ⎝⎛=0001A ⎪⎪⎭⎫ ⎝⎛-=1111X ⎪⎪⎭⎫⎝⎛=1011YAY AX =且0≠A 但Y X ≠7.设⎪⎪⎭⎫ ⎝⎛=101λA ,求kA A A ,,,32 . 解 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=12011011012λλλA⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==1301101120123λλλA A A 利用数学归纳法证明: ⎪⎪⎭⎫ ⎝⎛=101λk A k当1=k 时,显然成立,假设k 时成立,则1+k 时⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==1)1(01101101λλλk k A A A kk 由数学归纳法原理知:⎪⎪⎭⎫⎝⎛=101λk A k8.设⎪⎪⎪⎭⎫⎝⎛=λλλ001001A ,求k A . 解 首先观察⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=λλλλλλ001001010012A ⎪⎪⎪⎭⎫⎝⎛=222002012λλλλλ⎪⎪⎪⎭⎫⎝⎛=⋅=3232323003033λλλλλλA A A由此推测⎪⎪⎪⎪⎪⎭⎫⎝⎛-=---kk kk k k kk k k k A λλλλλλ0002)1(121)2(≥k用数学归纳法证明: 当2=k时,显然成立.假设k 时成立,则1+k 时,⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ由数学归纳法原理知: ⎪⎪⎪⎪⎪⎭⎫⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(1219.设B A ,为n 阶矩阵,且A 为对称矩阵,证明AB B T 也是对称矩阵.证明 已知:A A T=则 AB B B A B A B B AB B T T T T TT T T ===)()(从而 AB B T也是对称矩阵.10.设B A ,都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是BA AB =.证明 由已知:A A T = B B T=充分性:BA AB =⇒A B AB TT =⇒)(AB AB T = 即AB 是对称矩阵.必要性:AB AB T =)(⇒AB A B TT =⇒AB BA =.11.求下列矩阵的逆矩阵:(1)⎪⎪⎭⎫ ⎝⎛5221; (2)⎪⎪⎭⎫⎝⎛-θθθθcos sin sin cos ; (3)⎪⎪⎪⎭⎫⎝⎛---145243121;(4)⎪⎪⎪⎪⎪⎭⎫⎝⎛4121031200210001; (5)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛2500380000120025; (6)⎪⎪⎪⎪⎭⎫⎝⎛n a a a 0021)0(21≠a a a n解(1)⎪⎪⎭⎫ ⎝⎛=5221A 1=A1),1(2),1(2,522122111=-⨯=-⨯==A A A A⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛=*122522122111A A A A A *-=A A A 11故 ⎪⎪⎭⎫⎝⎛--=-12251A(2)01≠=A 故1-A 存在θθθθcos sin sin cos 22122111=-===A A A A从而 ⎪⎪⎭⎫ ⎝⎛-=-θθθθcos sin sin cos 1A (3) 2=A , 故1-A 存在024312111==-=A A A 而 1613322212-==-=A A A21432332313-==-=A A A故 *-=A A A 11⎪⎪⎪⎭⎫⎝⎛-----=1716213213012(4)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=4121031200210001A24=A 0434232413121======A A A A A A68122444332211====A A A A12411032001)1(312-=-=A 12421012021)1(413-=-=A3121312021)1(514=-=A 4421012001)1(523-=-=A5121312001)1(624-=-=A 2121021001)1(734-=-=A*-=A AA11故⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=-4112124581031612100212100011A(5)01≠=A 故1-A 存在而002141312111==-==A A A A005242322212===-=A A A A 320043332313-====A A A A 850044342414=-===A A A A从而⎪⎪⎪⎪⎪⎭⎫⎝⎛----=-85003200005200211A (6)⎪⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-n a a a A 1001121112.解下列矩阵方程:(1)⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛12643152X ; (2) ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--234311*********X ;(3)⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-101311022141X ; (4)⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .解 (1)⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-126431521X ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=12642153⎪⎪⎭⎫⎝⎛-=80232 (2)1111012112234311-⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛-=X ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫⎝⎛---=32538122 (3)11110210132141--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=210110131142121⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111(4)11010100001021102341100001010--⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛=X ⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎪⎭⎫⎝⎛---=20143101213.利用逆矩阵解下列线性方程组:(1) ⎪⎩⎪⎨⎧=++=++=++;353,2522,132321321321x x x x x x x x x (2) ⎪⎩⎪⎨⎧=-+=--=--.0523,132,2321321321x x x x x x x x x解 (1)方程组可表示为 ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321153522321321x x x故 ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x从而有 ⎪⎩⎪⎨⎧===001321x x x(2) 方程组可表示为 ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x故 ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x 故有 ⎪⎩⎪⎨⎧===305321x x x 14.设O A k =(k 为正整数),证明121)(--++++=-k A A A E A E .证明 一方面, )()(1A E A E E --=-另一方面,由O A k=有)()()(1122k k k A A A A A A A E E -+--+-+-=-- ))((12A E A A A E k -++++=-故 )()(1A E A E ---))((12A E A A A E k -++++=-两端同时右乘1)(--A E就有121)(--++++=-k A A A E A E15.设方阵A 满足O E A A =--22,证明A 及E A 2+都可逆,并求1-A 及 1)2(-+E A .证明 由O E A A =--22得E A A 22=-两端同时取行列式: 22=-A A即 2=-E A A ,故 0≠A所以A 可逆,而22A E A =+0222≠==+A A E A 故E A 2+也可逆.由O E A A =--22E E A A 2)(=-⇒E A E A A A 112)(--=-⇒)(211E A A -=⇒-又由O E A A =--22E E A A E A 4)2(3)2(-=+-+⇒ E E A E A 4)3)(2(-=-+⇒11)2(4)3)(2()2(--+-=-++∴E A E A E A E A)3(41)2(1A E E A -=+∴-16.设⎪⎪⎪⎭⎫ ⎝⎛-=321011330A ,B A AB 2+=,求B . 解 由B A AB 2+=可得A B E A =-)2(故A E A B 1)2(--=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---=-3210113301210113321⎪⎪⎪⎭⎫⎝⎛-=01132133017.设Λ=-AP P 1,其中⎪⎪⎭⎫ ⎝⎛--=1141P ,⎪⎪⎭⎫ ⎝⎛-=Λ2001,求11A .解 Λ=-AP P 1故1-Λ=P P A 所以11111-Λ=P P A3=P ⎪⎪⎭⎫ ⎝⎛-=*1141P ⎪⎪⎭⎫ ⎝⎛--=-1141311P而 ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=Λ11111120012001故⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎪⎭⎫ ⎝⎛--=6846832732273118.设m 次多项式m m x a x a x a a x f ++++= 2210)(,记m m A a A a A a E a A f ++++= 2210)()(A f 称为方阵A 的m 次多项式.(1)设⎪⎪⎭⎫ ⎝⎛=Λ2100λλ,证明: ⎪⎪⎭⎫ ⎝⎛=Λk k k2100λλ,⎪⎪⎭⎫⎝⎛=Λ)(00)()(21λλf f f ; (2)设1-Λ=P P A ,证明: 1-Λ=P P A k k ,1)()(-Λ=P Pf A f .证明(1) i)利用数学归纳法.当2=k时⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=Λ212120000λλλλ⎪⎪⎭⎫ ⎝⎛=222100λλ命题成立,假设k 时成立,则1+k 时⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=ΛΛ=Λ+212110000λλλλk kk k ⎪⎪⎭⎫⎝⎛=++121100k k λλ 故命题成立. ii)左边m m a a a E a f Λ++Λ+Λ+=Λ= 2210)(⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛=m m m a a a 21211000001001λλλλ⎪⎪⎭⎫⎝⎛++++++++=m m mm a a a a a a a a 2222210121211000λλλλλλ⎪⎪⎭⎫ ⎝⎛=)(00)(21λλf f =右边 (2) i) 利用数学归纳法.当2=k 时12112---Λ=ΛΛ=P P P P P P A 成立假设k 时成立,则1+k 时11111-+--+Λ=ΛΛ=⋅=P P P P P P A A A k k k k 成立,故命题成立,即 1-Λ=P P A k kii) 证明 右边1)(-Λ=P Pf12210)(-Λ++Λ+Λ+=P a a a E a P m m11221110----Λ++Λ+Λ+=P P a P P a P P a PEP a m m m m A a A a A a E a ++++= 2210)(A f ==左边19.设n 阶矩阵A 的伴随矩阵为*A ,证明:(1) 若0=A ,则0=*A ;(2) 1-*=n AA .证明(1) 用反证法证明.假设0≠*A 则有E A A =-**1)(由此得O A E A A AA A ===-*-**11)()(O A =∴*这与0≠*A 矛盾,故当0=A 时有0=*A(2) 由于*-=A A A11, 则E A AA =*取行列式得到: nAA A =* 若0≠A 则1-*=n A A若0=A 由(1)知0=*A 此时命题也成立故有1-*=n AA20.取⎪⎪⎭⎫ ⎝⎛==-==1001D C B A ,验证DCB A DC B A ≠检验: =D C BA =--101001011010010111001010020002--410012002== 而01111==D C B A故 DCB A DC B A ≠21.设⎪⎪⎪⎪⎭⎫⎝⎛-=22023443O O A ,求8A 及4A解 ⎪⎪⎪⎪⎭⎫⎝⎛-=22023443O O A ,令⎪⎪⎭⎫ ⎝⎛-=34431A ⎪⎪⎭⎫ ⎝⎛=22022A 则⎪⎪⎭⎫ ⎝⎛=21A O O A A故8218⎪⎪⎭⎫ ⎝⎛=A OO A A ⎪⎪⎭⎫⎝⎛=8281A O O A 1682818281810===A A A A A⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=464444241422025005O O A OO A A22.设n 阶矩阵A 及s 阶矩阵B 都可逆,求1-⎪⎪⎭⎫⎝⎛O B A O .解 将1-⎪⎪⎭⎫⎝⎛O B A O 分块为⎪⎪⎭⎫ ⎝⎛4321C C C C其中 1C 为n s ⨯矩阵, 2C 为s s ⨯矩阵3C 为n n ⨯矩阵, 4C 为s n ⨯矩阵则⎪⎪⎭⎫ ⎝⎛⨯⨯O B A O s s n n ⎪⎪⎭⎫ ⎝⎛4321C C C C ==E ⎪⎪⎭⎫⎝⎛s n E O O E 由此得到⎪⎪⎩⎪⎪⎨⎧=⇒==⇒==⇒==⇒=----122111144133)()(B C E BC B O C O BC A O C O AC A C E AC s n 存在存在故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛---O A B O O B A O 111.第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1)⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2) ⎪⎪⎪⎭⎫⎝⎛----174034301320; (3)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解(1) ⎪⎪⎪⎭⎫ ⎝⎛--3403130212011312)3()2(~r r r r -+-+⎪⎪⎪⎭⎫⎝⎛---020*******1)2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--30003100120133~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫⎝⎛-100001001201 3121)2(~r r r r +-+⎪⎪⎪⎭⎫⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----174034301320 1312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫⎝⎛---310031001320 21233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫⎝⎛000031005010 (3)⎪⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311141312323~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----221002210022*******12423213~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫⎝⎛---00000000002210032011(4)⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132242321232~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110 141312782~r r r r r r --+⎪⎪⎪⎪⎪⎭⎫⎝⎛--4100041000202011111034221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎪⎭⎫⎝⎛----00000410001111020201 32~r r +⎪⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.在秩是r 的矩阵中,有没有等于0的1-r 阶子式?有没有等于0的r 阶子式?解 在秩是r 的矩阵中,可能存在等于0的1-r 阶子式,也可能存在等于0的r 阶子式.例如,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00000000010000100001α 3)(=αR 同时存在等于0的3阶子式和2阶子式.3.从矩阵A 中划去一行得到矩阵B ,问B A ,的秩的关系怎样?解 )(A R ≥)(B R设r B R =)(,且B 的某个r 阶子式0≠D r .矩阵B 是由矩阵A 划去一行得 到的,所以在A 中能找到与D r 相同的r 阶子式D r ,由于0≠=D D r r , 故而)()(B R A R ≥.4.求作一个秩是4的方阵,它的两个行向量是)0,0,1,0,1(,)0,0,0,1,1(- 解 设54321,,,,ααααα为五维向量,且)0,0,1,0,1(1=α,)0,0,0,1,1(2-=α,则所求方阵可为,54321⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=αααααA 秩为4,不妨设⎪⎩⎪⎨⎧===)0,0,0,0,0(),0,0,0,0()0,,0,0,0(55443αααx x 取154==x x故满足条件的一个方阵为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-00000100000100000011001015.求下列矩阵的秩,并求一个最高阶非零子式:(1)⎪⎪⎪⎭⎫ ⎝⎛---443112112013; (2) ⎪⎪⎪⎭⎫⎝⎛-------815073131213123; (3)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---02301085235703273812.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛---443112112013r r 21~↔⎪⎪⎪⎭⎫ ⎝⎛---443120131211 ⎪⎪⎪⎭⎫⎝⎛------564056401211~12133r r r r 2000056401211~23秩为⎪⎪⎪⎭⎫ ⎝⎛----r r 二阶子式41113-=-.(2) ⎪⎪⎪⎭⎫ ⎝⎛-------815073*********⎪⎪⎪⎭⎫ ⎝⎛---------15273321059117014431~27122113r r r r r r 200000591170144313~23秩为⎪⎪⎪⎭⎫⎝⎛-----r r .二阶子式71223-=-.(3)⎪⎪⎪⎪⎪⎭⎫⎝⎛---02301085235703273812434241322~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------0230102420536307121131223~r r r r ++⎪⎪⎪⎪⎪⎭⎫⎝⎛-0230114000016000071210344314211614~r r r r r r r r -÷÷↔↔⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00000100007121002301秩为3 三阶子式07023855023085570≠=-=-.6.求解下列齐次线性方程组:(1) ⎪⎩⎪⎨⎧=+++=-++=-++;0222,02,02432143214321x x x x x x x x x x x x (2) ⎪⎩⎪⎨⎧=-++=--+=-++;05105,0363,02432143214321x x x x x x x x x x x x(3) ⎪⎪⎩⎪⎪⎨⎧=-+-=+-+=-++=+-+;0742,0634,0723,05324321432143214321x x x x x x x x x x x x x x x x (4)⎪⎪⎩⎪⎪⎨⎧=++-=+-+=-+-=+-+.0327,01613114,02332,075434321432143214321x x x x x x x x x x x x x x x x解 (1) 对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛--212211121211⎪⎪⎪⎪⎭⎫⎝⎛---3410013100101~即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-==4443424134334x x x x x x x x故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x(2) 对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛----5110531631121⎪⎪⎪⎭⎫ ⎝⎛-000001001021~ 即得⎪⎪⎩⎪⎪⎨⎧===+-=4432242102x x x x x x x x故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛10010012214321k k x x x x(3) 对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----7421631472135132⎪⎪⎪⎪⎪⎭⎫⎝⎛1000010000100001~即得⎪⎪⎩⎪⎪⎨⎧====00004321x x x x故方程组的解为⎪⎪⎩⎪⎪⎨⎧====00004321x x x x(4) 对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----3127161311423327543⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--0000001720171910171317301~即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-=4433432431172017191713173x x x x x x x x x x 故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛1017201713011719173214321k k x x x x7.求解下列非齐次线性方程组:(1) ⎪⎩⎪⎨⎧=+=+-=-+;8311,10213,22421321321x x x x x x x x (2) ⎪⎪⎩⎪⎪⎨⎧-=+-=-+-=+-=++;694,13283,542,432z y x z y x z y x z y x(3) ⎪⎩⎪⎨⎧=--+=+-+=+-+;12,2224,12w z y x w z y x w z y x (4) ⎪⎩⎪⎨⎧-=+-+=-+-=+-+;2534,4323,12w z y x w z y x w z y x解 (1) 对系数的增广矩阵施行行变换,有⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛--60003411100833180311102132124~2)(=A R 而3)(=B R ,故方程组无解.(2) 对系数的增广矩阵施行行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----69141328354214132⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--0000000021101201~即得⎪⎩⎪⎨⎧=+=--=zz z y z x 212亦即⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛021112k z y x(3) 对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫ ⎝⎛----111122122411112⎪⎪⎪⎭⎫ ⎝⎛-000000100011112~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧===++-=0212121w z z y y z y x 即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00021010210012121k k w z y x(4) 对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛-----000007579751025341253414312311112~ ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----000007579751076717101~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==--=++=w w z z w z y w z x 757975767171即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛00757610797101757121k k w z y x8.λ取何值时,非齐次线性方程组 ⎪⎩⎪⎨⎧=++=++=++2321321321,,1λλλλλx x x x x x x x x (1)有唯一解;(2)无解;(3)有无穷多个解?解 (1)0111111≠λλλ,即2,1-≠λ时方程组有唯一解.(2))()(B R A R <⎪⎪⎪⎭⎫ ⎝⎛=21111111λλλλλB ⎪⎪⎭⎫ ⎝⎛+-+----22)1)(1()2)(1(00)1(11011~λλλλλλλλλλ由0)1)(1(,0)2)(1(2≠+-=+-λλλλ 得2-=λ时,方程组无解.(3)3)()(<=B R A R ,由0)1)(1()2)(1(2=+-=+-λλλλ,得1=λ时,方程组有无穷多个解.9.非齐次线性方程组⎪⎩⎪⎨⎧=-+=+--=++-23213213212,2,22λλx x x x x x x x x 当λ取何值时有解?并求出它的解.解 ⎪⎪⎪⎪⎭⎫ ⎝⎛+-----⎪⎪⎪⎭⎫ ⎝⎛----=)2)(1(000)1(321101212111212112~2λλλλλλB 方程组有解,须0)2)(1(=+-λλ得2,1-==λλ当1=λ时,方程组解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛001111321k x x x当2-=λ时,方程组解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛022111321k x x x10.设⎪⎩⎪⎨⎧--=-+--=--+=-+-,1)5(42,24)5(2,122)2(321321321λλλλx x x x x x x x x问λ为何值时,此方程组有唯一解、无解或有无穷多解?并在有无穷多解。

(完整word版)代数方程练习题解析

(完整word版)代数方程练习题解析

参考答案与试题解析A组一.(共30小题)1.在方程、、、中,无理方程共有()、2.三角形的三条边长分别为2、k、4,若k满足方程k2﹣6k+12﹣=0,则k的值()﹣3.已知,则x等于(),先化简再求值即可得出答案.解:已知∴原式可化简为:+34.若,则x+y的值为()=a不能为负,5.方程的所有解的和为()解:方程时,时,6.已知四个方程①;②;③;④,其中有实数解的方C D原方程可化为8.已知下列关于x的方程:①;②+1=0;③+2x=7;④﹣7=0;⑤+=2;⑥﹣=.C±或是二元二次方程是分式方程是无理方程D.先移项得到=C DC D、∵、∵,∴、∵14.方程的解的情况是()此题需将方程变形为,再分三种情况讨论,即可得出方程解的解:将方程变形为,即,即成为B组15.如果满足=a的实数x恰有6个值,那么a的取值范围是()C D=|﹣)|时,=a=,;)|时,=a=,≥﹣)|时,=a=,;时,16.方程+=12的实数解个数为()时,=8+17.已知a为非负实数,若关于x的方程至少有一个整数根,则a可能取值的个数为()=ya=,18.方程的根为()C D==020.在方程、、、中,无理方程的个数有()、C D=,去掉分母后、因为22.下列方程中,无实根的方程是()C D24.(2006•闸北区一模)下列方程中有实数解的方程是()+1=0 =x﹣2 C++1=0 D=、由于≥+1C DCC D 、∵,而C DC D。

(完整word版)代数方程练习题解析

(完整word版)代数方程练习题解析

参考答案与试题解析A组一.(共30小题)1.在方程、、、中,无理方程共有()、2.三角形的三条边长分别为2、k、4,若k满足方程k2﹣6k+12﹣=0,则k的值()﹣3.已知,则x等于(),先化简再求值即可得出答案.解:已知∴原式可化简为:+34.若,则x+y的值为()=a不能为负,5.方程的所有解的和为()解:方程时,时,6.已知四个方程①;②;③;④,其中有实数解的方C D原方程可化为8.已知下列关于x的方程:①;②+1=0;③+2x=7;④﹣7=0;⑤+=2;⑥﹣=.C±或是二元二次方程是分式方程是无理方程D.先移项得到=C DC D、∵、∵,∴、∵14.方程的解的情况是()此题需将方程变形为,再分三种情况讨论,即可得出方程解的解:将方程变形为,即,即成为B组15.如果满足=a的实数x恰有6个值,那么a的取值范围是()C D=|﹣)|时,=a=,;)|时,=a=,≥﹣)|时,=a=,;时,16.方程+=12的实数解个数为()时,=8+17.已知a为非负实数,若关于x的方程至少有一个整数根,则a可能取值的个数为()=ya=,18.方程的根为()C D==020.在方程、、、中,无理方程的个数有()、C D=,去掉分母后、因为22.下列方程中,无实根的方程是()C D24.(2006•闸北区一模)下列方程中有实数解的方程是()+1=0 =x﹣2 C++1=0 D=、由于≥+1C DCC D 、∵,而C DC D。

代数练习题答案

代数练习题答案

代数练习题答案1. 题目:解一元二次方程 \( ax^2 + bx + c = 0 \),其中 \( a =2 \), \( b = 5 \), \( c = -3 \)。

答案:首先计算判别式 \( \Delta = b^2 - 4ac \),代入数值得到 \( \Delta = 5^2 - 4 \times 2 \times (-3) = 25 + 24 = 49 \)。

因为 \( \Delta > 0 \),所以方程有两个不相等的实根。

根据求根公式,解得 \( x = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-5\pm \sqrt{49}}{4} \),所以 \( x_1 = 1 \),\( x_2 = -3 \)。

2. 题目:化简表达式 \( \frac{3x^2 - 6x + 2}{x - 1} \)。

答案:通过长除法或者因式分解,我们可以将分子 \( 3x^2 - 6x+ 2 \) 分解为 \( 3(x - 1)^2 \)。

因此,原表达式可以化简为\( 3(x - 1) \)。

3. 题目:解不等式 \( |x - 4| < 3 \)。

答案:根据绝对值不等式的性质,我们可以将其分解为两个不等式:\( -3 < x - 4 < 3 \)。

将4加到不等式的两边,得到 \( 1 < x < 7 \)。

4. 题目:找出函数 \( f(x) = 3x^2 + 2x - 5 \) 的顶点坐标。

答案:顶点的 \( x \) 坐标可以通过公式 \( x = -\frac{b}{2a} \) 计算,其中 \( a = 3 \),\( b = 2 \)。

代入得到 \( x = -\frac{2}{2 \times 3} = -\frac{1}{3} \)。

将 \( x \) 值代入原函数求得 \( y \) 值,\( y = 3(-\frac{1}{3})^2 + 2(-\frac{1}{3})- 5 = -\frac{10}{3} \)。

七年级数学代数方程练习题及讲解

七年级数学代数方程练习题及讲解

七年级数学代数方程练习题及讲解代数方程是数学中的重要概念,也是许多学生在学习数学过程中的难点之一。

为了帮助七年级学生更好地理解和掌握代数方程,我准备了一些练习题及讲解,希望能对学生们的数学学习有所帮助。

一、一元一次方程练习题1. 解方程:2x + 3 = 92. 解方程:4x - 5 = 73. 解方程:3(2x - 1) = 184. 解方程:5(x + 2) = 155. 解方程:2(x - 3) + 4 = 10解答过程:1. 题目:2x + 3 = 9首先,我们需要将方程化简,去除括号。

2x + 3 = 9 => 2x = 9 - 3接下来,简化等式右侧。

2x = 6最后,将x的系数2约去。

x = 3所以,方程的解为x = 3。

2. 题目:4x - 5 = 7同样地,我们需要将方程化简,去除括号。

4x - 5 = 7 => 4x = 7 + 5然后简化等式右侧。

4x = 12最后,将x的系数4约去。

x = 3得出方程的解为x = 3。

3. 题目:3(2x - 1) = 18对方程进行化简,去除括号。

3(2x - 1) = 18 => 6x - 3 = 18简化等式右侧。

6x - 3 = 18 => 6x = 18 + 3得出6x = 21,然后将x的系数6约去。

x = 3.5所以,方程的解为x = 3.5。

4. 题目:5(x + 2) = 15化简方程,去除括号。

5(x + 2) = 15 => 5x + 10 = 15简化等式右侧。

5x + 10 = 15 => 5x = 15 - 10得出5x = 5,然后将x的系数5约去。

x = 1方程的解是x = 1。

5. 题目:2(x - 3) + 4 = 10同样地,对方程进行化简,去除括号。

2(x - 3) + 4 = 10 => 2x - 6 + 4 = 10简化等式左侧。

2x - 6 + 4 = 10 => 2x - 2 = 10简化等式右侧。

初中数学代数式与方程练习题及参考答案

初中数学代数式与方程练习题及参考答案

初中数学代数式与方程练习题及参考答案以下是初中数学代数式与方程练习题及参考答案的内容:代数式部分:1. 求以下代数式的值:a) 2x + 3y,当x = 5,y = 4时解:2x + 3y = 2(5) + 3(4) = 10 + 12 = 22b) x²– 4x,当x = 3时解:x²– 4x = 3²– 4(3) = 9 – 12 = -32. 合并化简以下代数式:a) x² + 3x – 5 + 2x²– 4x + 7解:x² + 3x – 5 + 2x²– 4x + 7 = 3x²– x + 2b) 2a²b – ab² + 3a²b – 2ab²– a²b + 5ab²解:2a²b – ab² + 3a²b – 2ab²– a²b + 5ab² = 4a²b + 2ab²3. 展开以下代数式:a) (x + 3)(x – 4)解:(x + 3)(x – 4) = x²– x – 12b) (2a – 5)(a + 2)解:(2a – 5)(a + 2) = 2a²– a – 104. 化简以下代数式:a) 6x²y ÷ 3xy解:6x²y ÷ 3xy = 2xb) (4a²b³)²解:(4a²b³)² = 16a^4b^6方程部分:1. 解以下方程:a) 3x – 4 = 7解:3x – 4 = 7,加4得3x = 11,除以3得x = 11÷3b) 2(x – 5) = 12解:2(x – 5) = 12,去括号得2x – 10 = 12,加10得2x = 22,除以2得x = 112. 解以下方程组:a) y = 2x + 13x – 2y = 8解:将第一个方程中的y代入第二个方程,得到3x –2(2x + 1) = 8,化简得x = 5,将x代入第一个方程中得到y = 11b) 2x + y = 54x – y = 1解:将第一个方程中的y代入第二个方程,得到4x – (5 – 2x) = 1,化简得x = 2,将x代入第一个方程中得到y = 1答案部分:代数式:1. a) 22 b) -32. a) 3x²– x + 2 b) 4a²b + 2ab²3. a) x²– x – 12 b) 2a²– a – 104. a) 2x b) 16a^4b^6方程式:1. a) x = 11÷3 b) x = 112. a) x = 5,y = 11 b) x = 2,y = 1总结:初中数学代数式与方程是数学学科的重要组成部分。

中考数学代数方程练习题库及答案解读

中考数学代数方程练习题库及答案解读

中考数学代数方程练习题库及答案解读一、一元一次方程练习题1. 解方程:3x + 5 = 20解析:将方程转化为一元一次方程的标准形式:ax + b = c根据题目要求,方程为3x + 5 = 20移项得:3x = 20 - 5计算得:3x = 15化简得:x = 52. 解方程:2(3x - 1) = 5x + 3解析:将方程转化为一元一次方程的标准形式:ax + b = c根据题目要求,方程为2(3x - 1) = 5x + 3展开得:6x - 2 = 5x + 3移项得:6x - 5x = 3 + 2计算得:x = 5二、二元一次方程练习题1. 解方程组:2x - 3y = 75x + y = 10解析:通过消元法解方程组:首先将第二个方程乘以2,得到:10x + 2y = 20然后将第一、二个方程相加,得到:12x - y = 27进一步简化,得到:y = 12x - 27将y = 12x - 27代入第一个方程中,得到:2x - 3(12x - 27) = 7化简得:2x - 36x + 81 = 7移项得:-34x = -74计算得:x ≈ 2.18将x ≈ 2.18代入y = 12x - 27,得到:y ≈ -4.64因此,方程组的解为:x ≈ 2.18,y ≈ -4.642. 解方程组:3x + 2y = 102x - y = 5解析:通过代入法解方程组:将第二个方程变形得到:y = 2x - 5将y = 2x - 5代入第一个方程中,得到:3x + 2(2x - 5) = 10化简得:7x - 10 = 10移项得:7x = 20计算得:x ≈ 2.86将x ≈ 2.86代入y = 2x - 5,得到:y ≈ 0.71因此,方程组的解为:x ≈ 2.86,y ≈ 0.71三、二元二次方程练习题1. 解方程组:x^2 + y^2 = 25x + y = 7解析:通过代入法解方程组:将第二个方程变形得到:y = 7 - x将y = 7 - x代入第一个方程中,得到:x^2 + (7 - x)^2 = 25化简得:2x^2 - 14x + 24 = 0求解二次方程2x^2 - 14x + 24 = 0,可得到两个解:x1 ≈ 2.82,x2 ≈ 4.18将解代入x + y = 7,得到两对解:解1:x1 ≈ 2.82,y1 ≈ 4.18解2:x2 ≈ 4.18,y2 ≈ 2.82因此,方程组的解为:解1:x1 ≈ 2.82,y1 ≈ 4.18;解2:x2 ≈ 4.18,y2 ≈ 2.822. 解方程组:x^2 + 4y^2 = 162x - y = 5解析:通过消元法解方程组:将第二个方程变形得到:y = 2x - 5将y = 2x - 5代入第一个方程中,得到:x^2 + 4(2x - 5)^2 = 16化简得:17x^2 - 80x + 84 = 0求解二次方程17x^2 - 80x + 84 = 0,可得到两个解:x1 ≈ 4.42,x2 ≈ 0.95将解代入2x - y = 5,得到两对解:解1:x1 ≈ 4.42,y1 ≈ 3.83解2:x2 ≈ 0.95,y2 ≈ -3.10因此,方程组的解为:解1:x1 ≈ 4.42,y1 ≈ 3.83;解2:x2 ≈ 0.95,y2 ≈ -3.10综上所述,本文提供了中考数学代数方程练习题库及答案解析,包括一元一次方程、二元一次方程和二元二次方程的例题解析。

初一数学代数方程练习题及答案20题

初一数学代数方程练习题及答案20题

初一数学代数方程练习题及答案20题1. 解方程:3x + 5 = 17解答:将等式两侧减去5,得到3x = 12。

再将等式两侧除以3,得到 x = 4。

2. 解方程:2y - 3 = 7y + 4解答:将等式两侧减去2y,得到 -3 = 5y + 4。

再将等式两侧减去4,得到 -7 = 5y。

最后将等式两侧除以5,得到 y = -7/5。

3. 解方程组:2x + 3y = 83x - 2y = 7解答:将第一条方程乘以2,得到 4x + 6y = 16。

将第二条方程乘以3,得到 9x - 6y = 21。

将这两个等式相加,得到 13x = 37。

最后将等式两侧除以13,得到 x = 37/13。

将 x 的值代入第一条方程,得到 2(37/13) + 3y = 8。

化简后得到 y = 10/13。

4. 解方程组:x + y = 12x - y = 4解答:将第二条方程两边都加上x+y,得到 2x = 16。

最后将等式两侧除以2,得到 x = 8。

将 x 的值代入第一条方程,得到 8 + y = 12。

化简后得到 y = 4。

5. 解方程:4(3x - 1) = -5x + 10解答:将等式两侧展开,得到 12x - 4 = -5x + 10。

将5x移到左边,得到 17x - 4 = 10。

再将4移到右边,得到 17x = 14。

最后将等式两侧除以17,得到 x = 14/17。

6. 解方程:2(x + 3) = 3(x - 2) + 4解答:将等式两侧展开,得到 2x + 6 = 3x - 6 + 4。

将x移到右边,得到 -x = -16。

最后将等式两侧乘以-1,得到 x = 16。

7. 解方程组:5x - 4y = 73x + 2y = 16解答:将第一条方程乘以2,得到 10x - 8y = 14。

将第二条方程乘以4,得到 12x + 8y = 64。

将这两个等式相加,得到 22x = 78。

线性代数解方程练习题答案

线性代数解方程练习题答案

线性代数解方程练习题答案1. 题目描述:给定以下线性方程组:3x + 2y - z = 72x - 2y + 4z = -2-x + 0.5y - z = 0请求解该线性方程组,并给出解的具体数值。

2. 解答过程:首先,将线性方程组表示成增广矩阵的形式:A = | 3 2 -1 |B = | 7 || 2 -2 4 | | -2 || -1 0.5 -1 | | 0 |接下来,我们通过行变换的方式将增广矩阵化为阶梯形矩阵。

具体操作如下:首先,使用第二行减去第一行的2倍,得到新的第二行:A = | 3 2 -1 |B = | 7 || 0 -6 6 | | -16 || -1 0.5 -1 | | 0 |然后,使用第三行加上第一行的1倍,得到新的第三行:A = | 3 2 -1 |B = | 7 || 0 -6 6 | | -16 || 0 2.5 -2 | | 7 |接着,我们将第二行除以-6,得到新的第二行:A = | 3 2 -1 |B = | 7 || 0 1 -1 | | 16/6 || 0 2.5 -2 | | 7 |再将第三行减去第二行的2.5倍,得到新的第三行:A = | 3 2 -1 |B = | 7 || 0 1 -1 | | 16/6 || 0 0 0 | | 7 |此时,我们可以看出第三行全为0,所以该线性方程组存在无穷多解。

我们可以令自由变量为z(z为任意实数),则可以得到如下解的形式:x = 7 - zy = 16/6 + zz = z所以,该线性方程组的解集为{(7 - z, 16/6 + z, z) | z ∈ R}。

3. 结论:根据以上计算过程,该线性方程组的解集为{(7 - z, 16/6 + z, z) | z ∈R}。

这是一个无穷多解的线性方程组,其中x, y, z分别表示方程组的变量。

初中数学竞赛代数专题之一元二次方程培优讲义例题练习及解答

初中数学竞赛代数专题之一元二次方程培优讲义例题练习及解答

初中数学竞赛之一元二次方程培优讲义形如0=a 的方程叫做一元二次方程。

当240b ac -≥时,一元二次方程的两根为1242b x a-±=、一、专题知识1.直接开平方法、配方法、公式法、因式分解发是一元二次方程的四种基本解法。

2.公式法是解一元二次方程最一般地方法:(1)240b ac ->时,方程20(0)ax bx c a ++=≠有两个不相等的实数根122b x a-±=、(2)240b ac -=时,方程20(0)ax bx c a ++=≠有两个相等的实数根122b x x a==-(3)240b ac -<时,方程20(0)ax bx c a ++=≠无实数根二、经典例题例题1已知m n 、是有理数,方程20x mx n ++=2-,求m n +的值。

解:由题意得22)2)0m n ++=即(92)(0m n m -++-而m n 、是有理数,必有92040m n m -+=⎧⎨-=⎩,解得41m n =⎧⎨=-⎩,所以m n +的值为3.例题2求证:一元二次方程20(0)ax bx c a ++=≠至多有两个不相等的实数根。

证明:用反证发假设方程20(0)ax bx c a ++=≠有三个不同的实数根1x 、2x 和3x ,则有2110(0)ax bx c a ++=≠①2220(0)ax bx c a ++=≠②2330(0)ax bx c a ++=≠③①—②得22121212()()0,a x x b x x x x -+-=≠有12()0a x xb ++=④同理②—③有23()0a x xb ++=⑤④—⑤得1313()0()a x x x x -=≠必有0a =,与已知条件矛盾,所以一元二次方程20(0)ax bx c a ++=≠至多有两个不相等的实数根。

例题3已知首项系数不相等的两个一元二次方程222(1)(2)(2)0a x a a a --+++=及222(1)(+2)(+2)0(,)b x b x b b a b Z -++=∈有一个公共根,求a bb aa b a b --++的值。

一元二次方程与化简求值专题练习(解析版)

一元二次方程与化简求值专题练习(解析版)

一元二次方程与化简求值专题练习一、选择题1、m是方程x2-2x-3=0的一个根,则代数式m-12m2+4=().A. 1.5B. 2C. 2.5D. 3答案:C解答:把m代入方程x2-2x-3=0,得到m2-2m-3=0,∴m2-2m=3,∴代数式m-12m2+4=-12(m2-2m)+4=2.5;选C.2、已知a是方程x2+x-1=0的根,a3-a2-3a+1的值是().A. 0B. 1C. -1D. -2答案:C解答:由题意a2+a-1=0,∴a2=-a+1,∴原式=a(-a+1)-a2-3a+1=-2(a2+a)+1=-1.3、已知a2-5=2a,代数式(a-2)2+2(a+1)的值为().A. -11B. -1C. 1D. 11答案:D解答:原式=a2-4a+4+2a+2=a2-2a+6.∵a2-5=2a,∴a2-2a=5,∴原式=11.4、已知23x x-x2=2+x,则代数式2x2+2x的值是()A. 2B. -6C. 2或-6D. -2或6答案:A解答:设x2+x=a,(a≥-14),则原方程可化为3a-a-2=0,去分母得,-a2-2a+3=0,解得a=1或a=-3(舍去)∴2x2+2x=2a=2.5、若关于x 的一元二次方程为ax 2+bx +5=0(a ≠0)的解是x =1,则2013-a -b 的值是( ).A. 2018B. 2008C. 2014D. 2012答案:A解答:∵x =1是一元二次方程ax 2+bx +5=0的一个根, ∴a ·12+b ·1+5=0, ∴a +b =-5,∴2013-a -b =2013-(a +b )=2013-(-5)=2018. 选A .6、已知a 2-5a +2=0,则分式424a a +的值为( ).A. 21B.121 C. 7D.521答案:A解答:∵a 2-5a +2=0, ∴a -5+2a=0, 故a +2a =5, ∴(a +2a)2=25,∴a 2++4=25, ∴442244a a a a ++=a 2+24a=21. 二、填空题7、已知a 、b 是一元二次方程x 2-x -1=0的两个根,则代数式3a 2+2b 2-3a -2b 的值等于______. 答案:5 解答:根据题意 得a 2-a =1,b 2-b =1, ∴3a 2+2b 2-3a -2b =3a 2-3a +2b 2-2b =3(a 2-a )+2(b 2-b ) =3+2=5.8、设m 是方程x 2-3x +1=0的一个实数根,则4221m m m ++=______. 答案:8解答:由题得m 2-3m +1=0,∴m +1m=3, ∴原式=m 2+21m +1=(m +1m)2-2+1=8.9、已知a 是方程x 2-1315x +1=0的某个根,则a 2-1314a +213151a +=______. 答案:1314解答:a 是方程x 2-1315x +1=0的根, 有a 2-1314a =a -1,有a 2+1=1315a , 又a ≠0,∴a -1315+1a =0, ∴原式=a -1+1a=1314.故答案为:1314. 10、计算:(1)已知a 是方程x 2+x -1=0的根,则a 3-a 2-3a +1的值为______. (2)已知a 是方程x 2-2x +1=0的根,则a 3+31a 的值为______. 答案:(1)-1 (2)2解答:(1)由题意:a 2+a -1=0,∴a 2=-a +1, ∴原式=a (-a +1)-a 2-3a +1=-2(a 2+a )+1=-1. (2)由题意:a 2-2a +1=0,∴a +1a=2 ∴a 2+21a=(a +1a )2-2=2∴a 3+31a =(a +1a )(a 2-1+21a)=2.11、若(x 2+y 2)2-5(x 2+y 2)-6=0,则x 2+y 2=______. 答案:6解答:(x2+y2)2-5(x2+y2)-6=0(x2+y2+1)(x2+y2-6)=0,x2+y2=-1(舍去)x2+y2=6.12、已知a是方程x2-3x-2=0的根,则a3-2a2-5a+4=______.答案:6解答:∵a是x2-3x-2=0的根,∴a2-3a-2=0,a3-2a2-5a+4=a(a2-2a-5)+4=a(a2-3a+a-5)+4=a(-3+a)+4=a2-3a+4=2+4=6.13、已知a是x2-x-1=0的一个根,则a3-2a2+2019的值是______.答案:2018解答:∵a为x2-x-1=0的一根,∴a2-a-1=0,∴a2=1+a,∴a3-2a2+2019=a2·a-2a2+2019=(1+a)a-2(a+1)+2019=a+a2+2a-2+2019=a2-a+2019=1+2017=2018.故答案为:2018.14、已知x为实数,且23x x-(x2+x)=2,则x2+x的值为______.答案:1解答:设x2+x=y(y≥-14),则原方程变为3y-y=2,方程两边都乘y得:3-y2=2y,整理得:y2+2y-3=0,(y-1)(y+3)=0,∴y=1或y=-3(舍去).三、解答题15、已知:x2-5x=6,请你求出代数式10x-2x2+5的值.答案:-7.解答:10x-2x2+5=2(5x-x2)+5.∵x2-5x=6,∴原式=2×(-6)+5=-7.16、已知x2-4x-1=0,求代数式(2x-3)2-(x+1)(x-1)的值.答案:13.解答:(2x-3)2-(x+1)(x-1)=4x2-12x+9-(x2-1)=4x2-12x+9-x2+1=3x2-12x+10.∵x2-4x-1=0,即x2-4x=1.∴原式=3(x2-4x)+10=3+10=13.17、已知m是方程x2-x-2=0的一个实数根,求代数式(m2-m)(m-2m+1)的值.答案:4.解答:∵m是方程x2-x-2=0的一个实数根,∴m2-m-2=0,∴m2-m=2,m2-2=m,∴原式=(m2-m)(22mm+1)=2×(mm+1)=2×2=4.18、已知x 2+x -5=0,求代数式(x -1)2-x (x -3)+(x +2)(x -2)的值. 答案:2.解答:原式=x 2-2x +1-x 2+3x +x 2-4 =x 2+x -3. ∵x 2+x -5=0, ∴x 2+x =5. ∴原式=5-3=2.19、已知a 是一元二次方程x 2-2x -1=0的根,求a 3-5a +7的值. 答案:9.解答:∵a 是一元二次方程x 2-2x -1=0的根, ∴a 2-2a -1=0, ∴a 2=2a +1,∴a 3-5a +7=a (2a +1)-5a +7=2a 2-4a +7=2(a 2-2a )+7=9. 20、解答题. (1)已知a 是方程x 2-3x +1=0的根,求2543282521a a a a a -+-+的值.(2)已知m 是一元二次方程x 2-2005x +1=0的根,求代数式m 2-2004m +220051m +的值. 答案:(1)-1. (2)2004.解答:(1)由a 2+1=3a 知,原式=()()232222321511a a a a a a +-+-+=2a 3-5a 2-233a a=2a 3-5a 2-a =2a (3a -1)-5a 2-a =a 2-3a =-1.(2)∵m 是一元二次方程x 2-2005x +1=0的根, ∴m 2-2005m +1=0, ∴m 2+1=2005m ,∴m 2-2004m +220051m + =m 2-2005m +m +20052005m=-1+m +1m=-1+21m m+=2004.21、(1)已知a 是一元二次方程x 2-2x -1=0的根,求下列各式的值:①a -1a . ②a 2+21a.③a 2-3a +232a -+5. (2)已知a 是方程x 2-3x +1=0的根,求2543282521a a a a a-+-+的值.答案:(1)①2.②6.③5. (2)-1.解答:(1)①由a 2-2a -1=0知,a ≠0, 故a -2-1a=0, 即a -1a=2. ②a 2+21a=(a -1a )2+2=6.③由于a 2=2a +1,代入所求得,原式=2a +1-3a +2132a +-+5=5. (2)由a 2+1=3a 知,原式=()()232222321511a a a a a a+-+-+=2a3-5a2-233aa=2a3-5a2-a=2a(3a-1)-5a2-a=a2-3a=-1.。

线性代数练习题及答案解析(一)

线性代数练习题及答案解析(一)

线性代数练习题及答案解析(一)一、行列式1、排列25341的逆序数为 7 ;2、排列643125的逆序数是 9 ;3、方程211123049x x =的根为 2,3 ;(范德蒙行列式) 4、行列式D=162021304---中,元素-3的代数余子式是( A )(A )10 (B )2 (C )-10 (D )-2 考点:代数余子式定义5、(1)三阶行列式det()ij D a =中含有因子1322a a 的项为 132231-a a a ,含有因子1223a a 的项为 122331a a a . 考点:行列式展开式的定义规则(2)四阶行列式det()ij D a =中含有因子1123a a 的项为 12233144a a a a 或12233441-a a a a .6、设n 阶行列式60D =,且D 中的每列的元素之和为6,则D 中的第三行的代数余子式之和为 10 .考点:行列式的性质6,行列式按行(列)展开7、(1)设n 阶行列式det()ij D a =,j i A 是D 中元素j i a 的代数余子式,则下列各式中正确的是( C ). 考点:行列式按自己的行(列)展开等于行列式,如行(列)与代数余子式的行(列)不一致则等于零。

A 、10nijij i aA ==∑;B 、10nijij j aA ==∑; C 、1nijij j aA D ==∑; D 、121ni i i aA D==∑(2)若4阶行列式D 中第2行的元素212223242,1,3,0,a a a a ====余子式212M =,2223241,3,0M M M ===则D= -12 .注意:代数余子式与余子式的区别。

行列式的展开只与代数余子式有关。

(3)若3阶行列式D 中第1行的元素1112133,2,5,a a a ===代数余子式114A =,12131,2,A A =-=则D= 20 .8、行列式112233440000000a b a b b a b a =( B )。

《线性代数》第一章 自测练习题解

《线性代数》第一章 自测练习题解

第一章 自测练习题及解答一. 单项选择题1. 方程0881441221111132=--x x x 的根为( B ). (A )1,2,3; (B )1,2,-2;(C )0,1,2; (D )1,-1,2.2. 已知3阶行列式ij a ,ij ij a b =,,3,2,1,=j i 则行列式=ij b ( B ).(A )ij a ; (B )0; (C)ij a 的绝对值; (D )ij a - .3. 已知齐次线性方程组⎪⎩⎪⎨⎧=+-=-+=++0030z y z y x z y x λλλ仅有零解,则( A ).(A )0≠λ且1≠λ; (B )0=λ或1=λ;(C )0=λ; (D )1=λ.4.已知方程组⎪⎩⎪⎨⎧=+-=-+=++c z y x b z y x az y x 有唯一解,且1=x ,那么=--111111c b a ( D ).(A )0; (B )1; (C )-4; (D )4. 5.n 阶行列式ij a D =,则展开式中项11342312n n n a a a a a - 的符号为( D ).(A )- (B )+ (C )n )1(- (D )1)1(--n二. 填空题1. 排列134782695的逆序数为 10 .2. 已知2413201x x 的代数余子式012=A ,则代数余子式=21A 4 .3. 已知排列9561274j i 为偶排列,则=),(j i (8,3) .4. =5678901201140010300020001000 120 .5. 设xx x x x D 111123111212-=,则D 的展开式中3x 的系数为 -1 . 三. 判断题(正确打V ,错误打×) 1. n 阶行列式ij a 的展开式中含有11a 的项数为n .( × )2. 若n 阶行列式ij a 每行元素之和均为零,则ij a 等于零.( V )3. 若V 为范德蒙行列式,ij A 是代数余子式,则V A nj i ij =∑=1,.( V )4. 若n 阶行列式ij a 满足ij ij A a =,n j i ,2,1.=,则0>ij a .( × )5. 若n 阶行列式ij a 的展开式中每一项都不为零,则0≠ij a .( × )四. 已知4521011130112101--=D ,计算44434241A A A A +++.=-1 五. 计算行列式600300301395200199204100103=2000六. 计算行列式1111111*********--+---+---x x x x =4x 七. 计算行列式cc b ba a------1111111=1八. 计算行列式3833262290432231----=50- 九. 计算行列式ba a a a a ab a a a a a b a n n n +++ 321321321=11-=⋅⎥⎦⎤⎢⎣⎡+∑n ni ib a b十. 计算行列式n2222232222222221=-2(n-2)!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

参考答案与试题解析A组一.(共30小题)1.在方程、、、中,无理方程共有()A.1个B.2个C.3个D.4个考点:无理方程.分析:无理方程是被开方数中含有未知数的方程,根据定义即可判断.解答:解:、、都是无理方程;x2+2x﹣=0是一元二次方程,是整数方程.故选C.点评:本题考查的是根式方程的定义,根式里含有未知数的方程叫根式方程.2.三角形的三条边长分别为2、k、4,若k满足方程k2﹣6k+12﹣=0,则k的值()A.2B.3C.3或4 D.2或3考点:无理方程;三角形三边关系.专题:计算题.分析:本题需先对方程k2﹣6k+12﹣=0进行整理,再根据三角形的三条边长的之间的关系,判断出k的取值,即可得出正确答案.解答:解:k2﹣6k+12﹣=0k2﹣6k+12﹣=0∵2、k、4分别是三角形的三条边长∴2+4>k∴k<6∴k2﹣6k+12﹣=0k2﹣6k+12+(k﹣6)=0整理得:(k﹣2)(k﹣3)=0∴k=2(不合题意舍去)或k=3故选B.点评:本题主要考查了解无理方程和三角形三边之间的关系,在解题时要根据已知条件和三角形三边之间的关系是解本题的关键.3.已知,则x等于()A.4B.±2 C.2D.±4考点:无理方程.专题:计算题.分析:已知,先化简再求值即可得出答案.解答:解:已知,∴x>0,∴原式可化简为:++3=10,∴=2,两边平方得:2x=4,∴x=2,故选C.点评:本题考查了解无理方程,属于基础题,关键是先化简后再根据平方法求无理方程.4.若,则x+y的值为()A.9B.1C.9或1 D.无法确定考点:无理方程.专题:计算题.分析:设=a,将原式化为一元二次方程求解即可解答.解答:解:设=a,原方程可变为a2+2a=3,变形为a2+2a﹣3=0,解得a=﹣3或a=1,又∵不能为负,∴x+y=1.故选A.点评:本题主要考查无理方程的解法,在解无理方程是最常用的方法是两边平方法及换元法,本题用了换元法.5.方程的所有解的和为()A.4B.3C.2D.0考点:无理方程;二次根式的性质与化简.专题:计算题.分析:先把根式化简,再讨论x的取值范围,根据两边平方即可求出方程的解,从而得出答案.解答:解:方程,∴=3,当x≥1时,=3,两边平方得:x2﹣4x+4=9,解得:x=﹣1或x=5,∵x≥1,∴x=5,当x<1时,=3,两边平方得:x2=9,∴x=±3,∵x<1,∴x=﹣3,故所有解的和为:5+(﹣3)=2,故选C.点评:本题考查了无理方程及二次根式的化简,属于基础题,关键是先化简二次根式再求值.6.已知四个方程①;②;③;④,其中有实数解的方程的个数是()个.A.1B.2C.3D.4考点:无理方程.专题:计算题.分析:①根据被开方数为非负数即可判断;②根据分子不为0即可判断;③根据两个非负数相加为0,则两个数同时为0即可得出答案;④移项后两边平方即可求出x的值.解答:解:方程①中得,无实数解,方程②中分子不为0,也没有实根,方程③中若两个根式的和为0,则应同时满足4x﹣1=0和5﹣3x=0,相互矛盾,所以也没有实根,只有方程④,=x﹣2,两边同时平方,x+4=x2﹣4x+4,解得:x1=0(舍去),x2=5.故选A.点评:本题考查了无理方程,属于基础题,关键是掌握用平方法解无理方程.7.下列方程中有实数解的是()A.x2+3=0 B.C.D.考点:无理方程;分式方程的解.分析:A是一元二次方程可以根据其判别式判断其根的情况;B、C是分式方程,能使得分子为零,分母不为零的就是方程的根;D是无理方程,容易看出没有实数根.解答:解:A中△=02﹣4×1×3=﹣12<0,方程无实数根;B中x=0是方程的根;C中分子不为零的分式方程不可能为0,无实数根;D原方程可化为=﹣3<0,此根式无意义.故选B.点评:此题考查的是一元二次方程根的情况与判别式△的关系.在解分式方程时要验根,不要盲目解答;解二次根式时要注意被开方数必须大于0.8.已知下列关于x的方程:①;②+1=0;③+2x=7;④﹣7=0;⑤+=2;⑥﹣=.其中,是无理方程的有()A.2个B.3个C.4个D.5个考点:无理方程.专题:计算题.分析:根据无理方程的定义,找出无理方程,即可解答.解答:解:①根号内不含未知数,所以,不是无理方程;故本项不符合题意;②根号内含未知数,所以,是无理方程;故本项符合题意;③根号内不含未知数,所以,不是无理方程;故本项不符合题意;④根号内含未知数,所以,是无理方程;故本项符合题意;⑤根号内含未知数,所以,是无理方程;故本项符合题意;⑥根号内不含未知数,所以,不是无理方程;故本项不符合题意;所以,②④⑤是无理方程;点评:本题主要考查了无理方程的定义:方程中含有根式,且开方数是含有未知数的代数式,这样的方程叫做无理方程.9.下列方程中,没有实数解的是()A.B.C.x4﹣x2﹣2=0 D.x2+y2=1考点:无理方程;高次方程;解分式方程.专题:计算题.分析:逐个对每一项进行分析解答,通过分析解答每一项的方程,来了解它们有无实数解.解答:解:A、解得x=±2,又x+2≠0,即x≠﹣2,所以,方程有实数根x=2;故本项正确;B、化简后为x2﹣x+2=0,△<0,所以无实数解,故本选项错误;C、解得x=±或x=﹣1,故本选项正确;D、当x=0时,y=±1,有实数解,故本选项正确.故选B.点评:本题主要考查解无理方程、高次方程和分式方程,关键在于熟练掌握解无理方程、高次方程和分式方程的方法.10.下列说法正确的是()A.是二元二次方程B.x2﹣x=0是二项方程C.是分式方程D.是无理方程考点:无理方程;高次方程.分析:利用无理方程及高次方程的定义进行判断即可得到答案;解答:解:A、含有两个未知数,且未知数的次数是2,故是二元二次方程,故正确;B、x2﹣x=0是二次方程,故错误;C、分母里不含未知数,不是分式方程,故错误;D、被开方数不含分母,不是无理方程,故错误,故选A.点评:本题考查了无理方程及高次方程的定义,解题的关键是熟悉这些方程的定义.11.下列关于x的方程中,有实数根的是()A.x2+2x+3=0 B.x3+2=0 C.D..考点:无理方程.分析:先计算出△,再根据△的意义可对A进行判断;利用立方根的定义可对B进行判断;对于C,先去分母得x=1,而x=1时,分母x﹣1=0,即x=1是原方程的增根,则原方程没有实数根;对于D,先移项得到=﹣3,然后根据二次根式的非负性易判断方程无实数解.解答:解:A、△=4﹣4×3=﹣8<0,则方程没有实数根,所以A选项不正确;B、x3=﹣2,则x=﹣,所以B选项正确;C、去分母得x=1,而x=1时,分母x﹣1=0,则x=1是原方程的增根,原方程没有实数根,所以C选项不正确;D、=﹣3,方程左边为非负数,右边为负数,则方程无实数解,所以D选项不正确.点评:本题考查了无理方程:根号下含有未知数的方程叫无理方程;解无理方程常用平方法或换元法把它转化为整式方程,解整式方程,然后检验确定无理方程的解.也考查了一元二次方程根的判别式以及解分式方程.12.下列方程中为无理方程的是()A.B.C.D.考点:无理方程.分析:根据无理方程的定义进行的解答分析,根号内含有未知数的方程叫做无理方程.解答:解:A项的根号内不含有未知数,所以不是无理方程,故本选项错误,B项的根号内含有未知数,是无理方程,故本选型正确,C项的根号内不含有未知数,所以不是无理方程,故本选项错误,D项的根号内不含有未知数,所以不是无理方程,故本选项错误,故选择B点评:本题主要考查无理方程的定义,关键在于分析各方程的根号内是否含有未知数.13.下列关于x的方程中,一定有实数根的是()A.B.C.D.考点:无理方程.专题:计算题.分析:A、根据算术平方根的定义即可确定是否有实数根;B、根据二次根式有意义确定x的取值范围,然后两边平方解方程,最后根判定是否有意义;C、D、根据二次根式的性质即可确定方程是否有实数根;解答:解:A、的解为x=﹣1,所以方程有实数根,故本选项正确;B、∵=2﹣x,∴x﹣3>0,即x>3,但是此时2﹣x<0,方程不成立,故本选项错误;C、∵≥0,∴不成立,故本选项错误;D、∵是非负数,∴它们的和是非负数,故本选项错误.故选A.点评:此题主要考查了解无理方程的方法及二次根式的性质,其中解无理方程最常用的方法是两边平方法及换元法,本题用了平方法.14.方程的解的情况是()A.无解B.恰有一解C.恰有两个解D.有无穷多个解考点:无理方程.分析:此题需将方程变形为,再分三种情况讨论,即可得出方程解的情况;解答:解:将方程变形为…①,若,则①成为,即,得x=10;若,则①成为,即,得x=5;若,即5<x<10时,则①成为,即1=1,这是一个恒等式,满足5<x<10的任何x都是方程的解,结合以上讨论,可知,方程的解是满足5≤x≤10的一切实数,即有无穷多个解.故选:D.点评:此题考查了无理方程;解题的关键是将方程进行变形,解题时要注意分三种情况进行讨论.B组15.如果满足=a的实数x恰有6个值,那么a的取值范围是()A.a≥﹣5 B.C.D.0≤a≤5考点:无理方程;绝对值;二次根式的应用;不等式的解集.分析:根据x的取值范围去来化简二次根式,然后根据绝对值的性质、二次函数的最值来求a的取值范围.解答:解:=|(x﹣1)(x﹣2)|;①当x﹣1>0,且x﹣2>0,即x>2时,=|x2﹣3x+2﹣5|=|(x﹣)2﹣|,当x=时,=a=,∴0≤a<;②当x﹣1>0,且x﹣2<0,即1<x<2时,=|﹣x2+3x﹣2﹣5|=|(x﹣)2+|;当x=时,=a=,∴a=≥;③当x﹣1<0,且x﹣2<0,即x<1时,=|x2﹣3x+2﹣5|=|(x﹣)2﹣|,当x=时,=a=,∴0≤a<;④当x﹣1=0或x﹣2=0,即x=1或x=2时,=|﹣5|=5;综上所述,a的取值范围是:0≤a≤5;故选D.点评:本题综合考查了二次根式的应用、无理方程的解法、绝对值以及不等式的解集.解答该题时,采用了分类讨论的解题方法.16.方程+=12的实数解个数为()A.0B.1C.2D.3考点:无理方程.分析:首先由题意可知,x+19是完全平方数,x+95是立方数,然后利用分类讨论思想求解即可.解答:解:由题意得:x+19≥0,∴x≥﹣19,∴x+95≥76,∵+=12,∴x+19是完全平方数,且x+19<144,∴当x+19=0时,不是有理数,舍去,当x+19=1时,不是有理数,舍去,当x+19=4时,不是有理数,舍去,当x+19=9时,不是有理数,舍去,当x+19=16时,不是有理数,舍去,当x+19=25时,不是有理数,舍去,当x+19=36时,不是有理数,舍去,当x+19=49时,=5,符合题意,此时x=30;当x+19=64时,=8,>5,此时8+5>12,∴当x+19>64时,不符合题意.故方程+=12的实数解个数为1个.故选B.点评:此题考查了无理方程的实数根问题.注意抓住完全平方数是解此题的关键.17.已知a为非负实数,若关于x的方程至少有一个整数根,则a可能取值的个数为()A.1个B.2个C.3个D.4个考点:无理方程.专题:方程思想.分析:首先根据方程2x﹣a ﹣a+4=0 求得a=.再假设=y(y为非负整数),则求得x代入转化为y的方程.利用整数的特点进一步确定y的值,进而求得a的值.解答:解:2x﹣a ﹣a+4=0,显然满足条件的x,必使得为整数,否则a=不可能为整数,设=y(y为非负整数),则原式变为2(1﹣y2)﹣ay﹣a+4=0,⇒a=,∵y为非负整数(又4能整除1+y),∴要使a为整数,则y=0,1,3,∵a为非负实数,∴a=6,2.当a=0时,2x+4=0,则x=﹣2,为整数,符合题意,故选C.点评:本题考查一元二次方程整数根与有理根.解决本题巧妙运用整数的特点及在分数计算中整数的倍数关系求解.18.方程的根为()A.x=0 B.x=﹣2 C.x=﹣2或x=0 D.x=2或x=0考点:无理方程.专题:计算题.分析:把方程两边平方去根号后求解.解无理方程,一定要验根,防止有增根.解答:解:两边平方,得2x2+1=x2+2x+1,移项,得x2﹣2x=0,即x(x﹣2)=0,∴x=0或x﹣2=0,∴x=0或x=2;检验:把x=0代入原方程,得左边=1,右边=1,所以,左边=右边,∴x=0是原方程的根;把x=2代入原方程,得左边=3,右边=3,所以,左边=右边,∴x=2是原方程的根;所以原方程的根是:x1=0,x2=2.故选D.点评:本题考查了无理方程的解.在解无理方程是最常用的方法是两边平方法及换元法,本题采用了平方法.19.下列方程中有实数解的是()A.x2﹣x+1=0 B.C.D.2x+y=5考点:无理方程;二元一次方程的解;根的判别式;分式方程的解.分析:求出判别式即可判断A;根据算术平方根是一个非负数即可判断B;求出方程x﹣1=0的解,代入x2﹣x进行检验,即可判断C;根据二元一次方程有无数个解,即可判断D.解答:解:A、x2﹣x+1=0,△=(﹣1)2﹣4×1×1=﹣3<0,即此方程无实数解,故本选项错误;B、=﹣1,∵算术平方根是一个非负数,∴此方程无实数解,故本选项错误;C、=0,方程两边都乘以x2﹣x得:x﹣1=0,x=1,∵x=1代入x2﹣x=0,∴x=1是原方程的增根,即原方程无解,故本选项错误;D、2x+y=5是二元一次方程,有无数个解,即有实数解,故本选项正确;故选D.点评:本题考查了解无理方程,解分式方程,二元一次方程的解,根的判别式等知识点的应用.20.在方程、、、中,无理方程的个数有()A.1个B.2个C.3个D.4个考点:无理方程.专题:应用题.分析:根号内含有未知数的方程,叫做无理方程,据此作答即可.解答:解:、、是无理方程,无意义,不是无理方程.故选C.点评:本题考查了无理方程,解题的关键是掌握无理方程的概念.21.下列方程中,有实数根的是()A.B.C.D.x4+16=0考点:无理方程;高次方程;解分式方程.分析:先把A选项两边进行平方,再根据判别式判断其根的情况;B可以直接看出方程的根是x=1,但此时分母为0,所以此方程没有实数根;C、D是无理方程,容易看出没有实数根.解答:解:A、=﹣x,方程两边平方得,x+2=x2,即x2﹣x﹣2=0,因为△=1+8=9>0,有实数根,故本选项正确;B、=,去掉分母后x=1有实数根,但是使分式方程无意义,故本选项错误;C、因为=﹣1<0,所以方程无实数根,故本选项错误;D、因为x4+16=0,所以x4=﹣16,所以方程无实数根,故本选项错误;故选A.点评:本题考查了无理方程,解题的关键要注意是否有实数根,有实数根时是否有意义,用到的知识点是根的判别式,解分式方程等.22.下列方程中,无实根的方程是()A.B.x2+x=0 C.x2+x﹣1=0 D.x2﹣x=0考点:无理方程.专题:计算题.分析:把A选项先两边平方,化为整式方程,然后利用根的判别式进行判断,B、C、D选项直接利用根的判别式解答.解答:解:A、方程两边平方得,x2=x﹣1,x2﹣x+1=0,a=1,b=﹣1,c=1,△=b2﹣4ac=(﹣1)2﹣4×1×1=1﹣4=﹣3<0,所以原方程无实根,故本选项正确;B、x2+x=0,a=1,b=1,c=0,△=b2﹣4ac=12﹣4×1×0=1>0,所以原方程有实根,故本选项错误;C、x2+x﹣1=0,a=1,b=1,c=﹣1,△=b2﹣4ac=12﹣4×1×(﹣1)=1+4=5>0,所以原方程有实根,故本选项错误;D、x2﹣x=0,a=1,b=﹣1,c=0,△=b2﹣4ac=(﹣1)2﹣4×1×0=1>0,所以原方程有实根,故本选项错误.故选A.点评:本题主要考查了无理方程,一元二次方程的根的情况的判断,利用根的判别式进行判断即可,准确找出方程中的a、b、c的值是解题的关键.23.下列方程中,有实数根的方程是()A.x4+2=0 B.C.D.考点:无理方程.专题:计算题.分析:对于A,变形得x4=﹣2<0,由此得到原方程无实数解;对于B,方程左边为非负数,而方程右边为负数,由此得到原方程无实数根;对于C,先把方程两边乘以x2﹣1得,x=1,而x=1是原方程的增根,由此得到原方程无实数根;对于D,先把方程两边平方得,x+2=x2,即x2﹣x﹣2=0,解得x1=2,x2=﹣1,经检验x1=2是原方程的增根,由此得到原方程有实数根x=﹣1.解答:解:A、x4=﹣2<0,则原方程无实数解,所以A选项不正确;B、方程左边为非负数,方程右边为负数,则原方程无实数根,所以B选项不正确;C、方程两边乘以x2﹣1得,x=1,经检验x=1是原方程的增根,即原方程无实数根,所以C选项不正确;D、方程两边平方得,x+2=x2,即x2﹣x﹣2=0,解得x1=2,x2=﹣1,经检验x1=2是原方程的增根,则原方程的实数根为x=﹣1,所以D选项正确.故选D.点评:本题考查了无理方程:根号内含有未知数的方程叫无理方程;解无理方程的基本思想是把无理方程转化为有理方程来解,常常采用平方法去根号.24.(2006•闸北区一模)下列方程中有实数解的方程是()A.+1=0 B.=x﹣2 C.++1=0 D.=考点:无理方程.专题:计算题.分析:A、由于≥0,由此即可判定方程是否有实数解;B、由于1﹣x≥0,得到x≤1,然后结合等式右边即可判定方程是否有实数解;C、由方程左边是正数即可判定方程是否有实数解;D、去分母然后解方程即可判定方程是否有实数解.解答:解:A、∵≥0,∴+1>0,故没有实数解,故选项错误;B、根据方程形式得1﹣x≥0,∴x≤1,∴x﹣2<0,方程左右两边不可能相等,故方程没有实数解,故选项错误;C、依题意知道方程左边是正数,所以方程没有实数解,故选项错误;D、依题意得x﹣2=0,故x=2,故方程有实数解.故选项正确.故选D.点评:此题主要考查了无理方程的解的讨论,解题的关键利用二次根式的性质和非负数的性质解决问题.25.(2005•静安区二模)下列方程中为无理方程的是()A.B.C.D.考点:无理方程.分析:根据无理方程的定义进行解答即可,根号内含有未知数的方程叫做无理方程.解答:解:A、根号内不含有未知数,不是无理方程,故本选项错误,B、根号内含有未知数,是无理方程,故本选项正确,C、根号内不含有未知数,不是无理方程,故本选项错误,D、根号内不含有未知数,不是无理方程,故本选项错误.故选B.点评:本题主要考查了无理方程的定义,关键在于分析好哪一项符合无理方程的定义.26.(2004•静安区二模)下列一元或二元的方程中没有实数解的是()A.3x+2y=﹣1 B.C.3x2+2y2=﹣1 D.3x2+2x=﹣1考点:无理方程.专题:计算题.分析:由二元一次方程有无数组解可对A进行判断;对于B,方程左边为非负数,而方程右边为负数,由此得到原方程无实数根;对于C,由于3x2≥0,2y2≥0,得到方程左边大于或等于0,而方程右边为负数,由此得到原方程无实数根;对于D,先化为一般式得到3x2+2x+1=0,再计算△,得到△=4﹣4×3×1<0,由此得到方程无实数根.解答:解:A、二元一次方程有无数组解,所以A选项不正确;B、方程左边为非负数,方程右边为负数,则原方程无实数根,所以B选项正确;C、因为3x2≥0,2y2≥0,得到方程左边大于或等于0,不可能等于﹣1,原方程无实数根,所以C选项正确;D、方程变形3x2+2x+1=0,因为△=4﹣4×3×1<0,则此方程无实数根,所以D选项正确.故选B、C、D.点评:本题考查了无理方程:根号内含有未知数的方程叫无理方程;解无理方程的基本思想是把无理方程转化为有理方程来解,常常采用平方法去根号.也考查了一元二次方程的判别式.27.(2009•静安区三模)方程的根是()A.﹣1和2 B.﹣1 C.2D.﹣2考点:无理方程.分析:首先方程的两边分别平方,然后即可求出x的值,最后要进行检验,把不符合题意的根舍去.解答:解:两边平方得:x+2=x2,解得:x1=2,x2=﹣1,检验:当x1=2时,原方程的左边=右边,故x1=2为原方程的根,当x2=﹣1时,原方程无意义,∴原方程的解为2.故选择C.点评:本题主要考查解无理方程,关键在于首先对方程的两边分别平方以达到去根号的目的,注意最后要进行检验.28.(2011•青浦区二模)下列方程中,有实数根的方程是()A.x2+9=0 B.C.D.考点:无理方程;一元二次方程的解;分式方程的解.专题:方程思想.分析:A、利用非负数的性质即可是否有实数根;B、首先解方程然后检验即可是否有实数根;C、首先解方程然后检验即可是否有实数根;D、利用非负数的性质即可是否有实数根;解答:解:A、∵x2+9>0,而x2+9=0,∴方程没有实数根,故本选项错误;B、去分母得方程的解为x=3,但此时方程的分母为0,∴方程没有实数根,故本选项错误;C、去分母得方程的解为x=3,但此时方程的分母不为0,∴方程有实数根,故本选项正确;D、∵≥0,而,∴方程没有实数根,故本选项错误.故选C.点评:此题主要考查了分式方程、无理方程的解的问题,解题的关键是这两种方程解完后一定需要检验求出的解是否符合原方程.29.(2008•静安区一模)下列方程中,有实数解的方程是()A.B.C.D.考点:无理方程.分析:首先根据解方程的方法逐个进行分析、求解即可.解答:解:A项解得x=3,有实数解,故本选项正确,B项化简得x2+1=0,△<0,本方程无实数解,故本选项错误,C项解得x=0,使原方程无意义,故无实数解,故本选项错误,D项经过分析,x≤1,但当x≤1时,x﹣2<,根据算术平方根的性质,故等式不成立,故本方程无实数解,故本选项错误.故选择A.点评:本题主要考查解方程,关键在于了解分式方程和无理方程的意义.30.(2007•宝山区一模)下列方程中,有实数解的方程是()A.B.C.D.考点:无理方程.分析:首先对每一项的方程进行分析求解,寻找有实数解的方程即可.解答:解:A项移项得:,等式不成立,所以原方程没有实数解,故本选型项错误,B项化简得x2﹣3x+1=0,△=5>0,所以原方程有实数解,故本选项正确,C项求得x=2,使原方程无意义,故原方程无实数解,故本选项错误,D项化简得x2﹣x+1=0,△=﹣3<0,故原方程无实数解,故本选错误.故选择B点评:本题主要考查解分式方程和无理方程,关键在于熟练掌握分式方程和无理方程的相关性质.。

相关文档
最新文档