第五章相交线与平行线小结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章相交线与平行线小结
概念定义及性质公理:
1、在平面内,不重合的两条直线的位置关系只有两种:相交与平行。
2、互为邻补角:
(1)定义:如果两个角有一条公共边且有一个公共顶点,它们的另一边互为反向延长线,具有这种关系的两个角互为邻补角。
(2)性质:从位置看:互为邻角;
互为邻补角,和为180°
从数量看:互为补角;
3、互为对顶角:
(1)定义:如果两个角有有一个公共顶点且它们的两边互为反向延长线,具有这种关系的两个角互为对顶角。
(2)性质:对顶角相等
4、垂直:
(1)定义:垂直是相交的一种特殊情形。当两条直线相交所形成的四个角中有一个角是直角,那么这两条直线互相垂直。它们交点叫做垂足。其中的一条直线叫做另一条直线的垂线。
(2)性质:过一点有且只有一条直线和已知直线垂直。
(3)表示方法:用符号“⊥”表示垂直。
5、任何一个“定义”既可以做判定,又可以做性质。
6、垂线是一条直线,垂线段是垂线的一部分。
7、垂线段的性质:连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短)。
8、区分:点到直线的距离:直线外一点到这条直线的垂线段的长度。
两点间的距离:连接两点间的线段的长度。
“两点间的距离”和“点到直线的距离”是两个不同的概念,但是“点到直线的距离”是“两点间的距离”的一种特殊情况。
9、内错角的定义:两个角都在截线的两侧,都在被截直线之间。这样的两个角叫做内错角。
10、同位角的定义:两个角都在截线的同侧,都在被截直线的同一方。这样的两个角叫做同位角。
11、同旁内角的定义:两个角都在截线的同侧,都在被截直线之间。这样的两个角叫做同旁内角。
12、截线与被截直线的定义:截线就是截断两条同一方向直线的直线,被截直线就是被截线所截断的两条同一方向的直线。
13、相交线的定义:在平面内有一个公共交点的两条直线,叫做相交线。
14、平行线:
(1)定义:在平面内不相交的两条直线,叫做平行线。
(2)表示方法:用符号“∥”表示平行。
(3)公理:经过直线外一点,有且只有一条直线与已知直线平行(这个公理说明了平行线的存在性和唯一性)。
(4)推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
(5)判定1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线互相平行(简单说成:同位角相等,两直线平行)。
判定2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线互相平行(简单说成:内错角相等,两直线平行)。
判定3:两条直线被第三条直线所截,如果同旁内角相等,那么这两条
直线互相平行(简单说成:同旁内角相等,两直线平行)。
判定4:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线互相平行。
(6)性质1:如果两条平行直线被第三条直线所截,那么同位角相等(简单说成:两直线平行,同位角相等)。
性质2:如果两条平行直线被第三条直线所截,那么内错角相等(简单说成:两直线平行,内错角相等)。
性质3:如果两条平行直线被第三条直线所截,那么同旁内角相等(简单说成:两直线平行,同旁内角相等)。
15、命题
(1)定义:表示判断一件事情的语句,叫做命题。
(2)分类:命题分为真命题:正确的命题。
假命题:错误的命题。
(3)组成:命题是由条件(题设)和结论两部分组成。条件(题设)是已知事项,结论是由已知事项推出的事项。
(4)定理:通过推理证实过的真命题叫做定理。定理也可以作为继续推理的依据。
16、平移:
(1)定义:在平面内将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移变换,简称平移。
(2)性质1:平移不改变图形的形状和大小,只改变图形的位置。
性质2:经过平移对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。
(3)作图步骤:
1、按照题目要求,确定平移方向和距离;
2、找出所作图形的关键点,例如顶点;
3、沿确定的方向和距离平移所有关键点;
4、联结平移后的关键点并标出对应字母。