城市轨道交通牵引供电及电力技术
城市轨道交通牵引供电系统
城市轨道交通牵引供电系统简介城市轨道交通牵引供电系统是城市轨道交通运行的重要组成局部,负责向轨道交通车辆提供电力供给。
它不仅直接影响着轨道交通的运营效率和电力消耗情况,还与乘客的乘坐舒适度和平安性息息相关。
本文将介绍城市轨道交通牵引供电系统的根本原理、组成结构以及未来开展趋势。
根本原理城市轨道交通牵引供电系统的根本原理是将电源通过接触网供给给轨道交通车辆。
具体来说,电源会通过接触网上的触网集电装置传送给牵引系统。
牵引系统由主变压器、牵引变流器和牵引电动机组成,负责将电能转换为机械能,驱动轨道交通车辆运行。
组成结构城市轨道交通牵引供电系统由多个组成局部构成,包括接触网、辅助设备和车辆终端设备。
接触网接触网是城市轨道交通牵引供电系统的核心局部,通常安装在轨道上方。
它由导线、吊杆、挂装件等组成,用于提供电力给牵引系统。
接触网一般采用带电架空式供电,即以高架的方式悬挂在轨道上方,通过接触网上的触网集电装置与车辆终端设备连接。
辅助设备城市轨道交通牵引供电系统还包括一系列辅助设备,用于确保供电系统的正常运行。
辅助设备主要包括配电变压器、开关设备、保护和监控装置等。
配电变压器用于将高压电源转换为适合牵引系统使用的低压电源;开关设备用于控制电能的分配和传输;保护和监控装置那么用于监测供电系统的运行状态,及时处理故障和异常情况。
车辆终端设备车辆终端设备是城市轨道交通车辆上的设备,用于接收来自接触网的电能,并将其转换为机械能,驱动车辆行驶。
未来开展趋势随着城市轨道交通的不断开展,牵引供电系统也在不断创新和改良。
以下是一些未来开展趋势:高效能源利用未来的城市轨道交通牵引供电系统将更加注重能源的高效利用。
通过采用先进的能量回收技术,如再生制动系统、能量储存装置等,将能源回收再利用,减少能源的浪费。
无线供电技术无线供电技术有望成为未来城市轨道交通牵引供电系统的重要开展方向。
通过利用无线传输技术,可以不再依赖接触网,实现轨道交通车辆的无线供电,提高供电系统的稳定性和可靠性。
城市轨道交通供电系统新技术探讨
城市轨道交通供电系统新技术探讨城市轨道交通作为城市重要的公共交通工具,其供电系统的稳定性和效率对于整个交通系统的运行至关重要。
随着科技的不断发展,城市轨道交通供电系统的技术也在不断创新和探索,以适应城市交通的不断发展和变化,提高供电系统的效率和可靠性,同时降低能源消耗和环境影响。
本文将从新技术的角度探讨城市轨道交通供电系统的发展趋势和挑战,分析新技术对城市轨道交通供电系统的影响,并展望未来的发展方向。
一、城市轨道交通供电系统现状分析城市轨道交通供电系统是指通过电力来给地铁、轻轨等城市交通工具供给动力的系统,其主要包括接触网、供电装置、牵引变流器和牵引电机等部分。
目前,我国城市轨道交通供电系统基本上采用交流供电方式,接触网通常采用25kV交流电供电,牵引变流器将接触网的交流电转化为直流电,供给牵引电机。
这种供电系统具有功率大、传输能力强、效率高等优点,但也存在着能源消耗高、电气设备寿命较短、维护成本高等问题。
在城市轨道交通运营中,供电系统的稳定性和可靠性对于列车的正常运行具有重要影响。
传统的供电系统在面对城市交通线路复杂、运营密集的情况下,往往难以满足对供电质量和效率的高要求。
而随着城市轨道交通的快速发展,传统供电系统的局限性已经凸显出来,亟待新技术的引入和创新,以应对城市轨道交通供电系统的挑战。
1. 供电系统智能化技术随着信息技术的飞速发展,智能化技术已经成为城市轨道交通供电系统改造的重要方向。
智能化技术通过对供电系统的监测、控制和管理,实现对供电系统运行状态的实时监测和分析,并能够智能化地对故障进行诊断和处理。
比如利用传感器、物联网技术等实现对接触网、供电装置等设备的在线监测,及时发现故障隐患,避免故障对列车运行的影响。
智能化技术还可以实现对供电设备的远程控制和优化调节,改善供电系统的运行效率和稳定性。
为了降低城市轨道交通供电系统的能源消耗和环境影响,高效节能供电技术已成为供电系统改造的重要方向之一。
城市轨道交通供电系统及电力技术分析
城市轨道交通供电系统及电力技术分析【摘要】本文通过对城市轨道交通供电系统及电力技术的分析,探讨了其在城市轨道交通发展中的重要性和作用。
首先介绍了城市轨道交通的现状和研究背景,然后详细描述了城市轨道交通供电系统的组成与作用,以及现有的电力技术应用情况。
接着分析了供电系统存在的问题与挑战,并探讨了电力技术在城市轨道交通中的应用前景。
最后对城市轨道交通供电系统及电力技术的未来发展趋势和对城市轨道交通可持续发展的影响进行了总结和展望。
通过本文的研究,可以为城市轨道交通领域的发展提供技术支持和决策参考,推动城市轨道交通的可持续发展。
【关键词】城市轨道交通、供电系统、电力技术、发展现状、问题、挑战、应用、发展趋势、未来方向、可持续发展1. 引言1.1 城市轨道交通供电系统及电力技术分析的重要性城市轨道交通供电系统及电力技术分析的重要性在城市轨道交通系统中,供电系统是不可或缺的重要组成部分。
供电系统的稳定性和效率直接影响到城市轨道交通的正常运行和安全性。
通过对城市轨道交通供电系统及电力技术的分析,可以更好地了解这些系统的结构和运行机理,帮助运营管理者更好地指导和监控城市轨道交通系统的运行。
通过对电力技术的分析和研究,可以不断提高城市轨道交通系统的能效和可靠性,降低能源消耗和运营成本,促进城市轨道交通系统的可持续发展。
深入研究城市轨道交通供电系统及电力技术,对于提升城市轨道交通系统的运行效率、改善城市交通运输环境,具有非常重要的意义。
1.2 城市轨道交通发展现状随着城市化进程的加快和交通需求的增长,城市轨道交通系统在各大城市中扮演着越来越重要的角色。
目前,世界各地的城市都在积极建设和完善城市轨道交通网络,以提高城市交通效率,缓解交通拥堵,改善环境质量。
在中国,城市轨道交通的发展也取得了明显的成就。
据统计,截至2020年底,全国共有40个城市拥有城市轨道交通系统,运营里程超过8000公里,成为世界上轨道交通发展最快的国家之一。
城市轨道交通供电与牵引系统
城市轨道交通供电与牵引系统简介城市轨道交通供电与牵引系统是城市轨道交通运营的核心局部,为城市轨道交通车辆提供稳定可靠的电力供给,并通过牵引系统将电力转化为动力,驱动车辆运行。
本文将对城市轨道交通供电与牵引系统的关键组成局部进行详细介绍。
供电系统城市轨道交通的供电系统主要由供电设备、接触网和供电馈线组成。
供电设备供电设备是城市轨道交通供电系统的核心局部,它主要包括变电站、配电装置和电力传输线路等。
变电站负责将输入的电能进行变压、变流等处理,输出适合城市轨道交通使用的高电压电能。
配电装置用于将变电站输出的电能分配到不同的供电馈线上。
电力传输线路那么将电能从变电站输送到供电馈线。
接触网接触网是城市轨道交通供电系统的另一个重要组成局部,它负责将电能从供电设备传输到行车区域。
接触网通常采用悬挂在轨道上方的导线或导轨,通过接触网与车辆上的供电装置接触,将电能传输给车辆。
供电馈线供电馈线是连接接触网和供电设备的局部,它通过分布在轨道两侧或中央的电缆将电能传输给接触网。
供电馈线主要负责将变电站输出的高电压电能传输到接触网,以供行车区域的车辆使用。
城市轨道交通的牵引系统是将电能转化为动力,驱动车辆运行的关键局部,它主要包括牵引变流器、牵引电机和传动装置等。
牵引变流器牵引变流器是将供电系统提供的直流电转化为交流电,并根据车辆的运行需求控制输出功率和频率的设备。
牵引变流器通常由多个晶闸管或功率模块组成,通过调整晶闸管的导通和封锁,实现对电流和电压的控制,从而实现对车辆的驱动力和制动力的控制。
牵引电机牵引电机是城市轨道交通车辆中的动力装置,它根据牵引变流器输出的交流电能,将电能转化为机械能,驱动车辆运行。
常用的牵引电机包括直流电机和交流电机,其中交流电机又包括异步电机和同时电机等。
传动装置是将牵引电机输出的动力传递给车轮的局部,它主要通过减速器和传动轴等组件实现。
传动装置的设计对车辆的运行稳定性、效率和能耗等方面有着重要影响。
城市轨道交通运营管理《牵引供电》
牵引供电第196条为保持牵引供电设备良好的技术状态,保证牵引供电系统平安运行,应设供电段等供电维修机构。
供电维修机构管辖范围应根据线路及供电设备条件确定。
牵引供电设备包括变电设备〔变电所、开闭所、分区所、自耦变压器所〕、接触网和远动系统。
第197条牵引供电设备应保证不间断行车的可靠供电。
牵引供电能力应与线路的运输能力相适应,满足规定的列车重量、列车密度和运行速度的要求。
接触网标称电压值为25KV,最高工作电压为KV,短时〔5 MIN〕最高工作电压为29 KV,最低工作电压为19 KV。
牵引变电所须具备双电源、双回路受电。
牵引变压器采用固定备用方式并具备自动投切功能。
当一个牵引变电所停电时,相邻的牵引变电所能越区供电。
运行期间平均功率因数不低于。
第198条牵引供电调度系统应具备对牵引供电设备状况进行远程实时监控的条件,并纳入调度系统集中统一管理。
第199条接触网的分段、分相设置应考虑检修停电方便和缩小故障停电范围,并充分考虑电力牵引的列车、动车组正常运行和调车作业的需要。
分相的位置应防止设在进出站和变坡点区段。
双线电气化区段应具备反方向行车条件。
负荷开关和电动隔离开关应纳入远动控制。
枢纽及较大区段站应设开闭所。
确需由车站接触网引接小容量非牵引负荷时,须经铁路局批准。
第2021 牵引供电设备检修、试验和抢修应配备牵引供电平安检测监测系统,变电检测、试验设备,接触网检修、检测设备,接触网抢修车列,绝缘子冲洗设备等设备、设施。
第2021 接触网一般采用链型悬挂方式,其最小张力见第10表。
接触线一般采用铜合金材质。
第2021 接触线距钢轨顶面的高度不超过6500 MM;在区间和中间站,不小于5 700 MM〔旧线改造不小于5 330 MM〕;在编组站、区段站和个别较大的中间站站场,不小于6 2021MM;站场和区间宜取一致;双层集装箱运输的线路,不小于6 330 MM。
在电气化铁路竣工时,由施工单位在接触网支柱内缘或隧道边墙标出线路的轨面标准线,开通前供电、工务单位要共同复查确认,有砟轨道每年复测一次,复测结果与原轨面标准线误差不得大于±30 MM。
城市轨道交通牵引供电及电力技术分析
城市轨道交通牵引供电及电力技术分析摘要:城市轨道交通是一种新型的交通方式,得到了更多的应用。
在城市轨道交通牵引供电系统中,包含着直流供电以及交流供电两种。
通过使用基于接触网的供电网络技术、基于第三轨的供电技术等电力技术,使城市交通牵引供电系统的运行更加安全,耗能更低,电能传输的效率更高。
关键词:城市轨道交通;牵引供电;电力技术1城市轨道交通牵引供电系统分析1.1城市轨道交通牵引交流供电系统与城市轨道交通牵引直流供电系统不同,城市轨道交通牵引交流供电系统在搭建中使用的是单向连接的方式。
将两台变压器同时安装在变电站内,并使用双绕组的单项变压。
这样的搭建方式能够使得整个结构呈现出开口的三角形。
低压端口位于接地一侧,高压端口在电网接入端,其他的端口则要与牵引母线进行连接。
在进行城市轨道交通牵引交流供电系统的建设中,降压系统要设置在供电系统的终端以及线路的区间,这样的设置能够为城市轨道交通牵引交流供电系统的正常运行提供保障,尤其是对于线路中的照明系统的工作进行了更好的保护。
城市轨道交通牵引交流供电系统系统上的设备都要具有较强的耐磨性,使得供电系统能够更好的抵御运行中较大的瞬间接触压力。
1.2直流制牵引供电就我国目前阶段的供电方式来说,大部分的城市为了保障为人们的日常工作和生活提供稳定的电流和电压,都会在城市的变电站、牵引网、接触网的安置和运行过程中,采取1500V 直流电的供电方式。
而双轨道交通牵引作为一种对用电需求更高的城市轨道交通方式,需要在实际的运行过程中采取两边都供电的模式,这一模式的采用是为了防止当一边的供电系统出现故障时,另一边的供电系统能够接替进行工作,从而保障城市轨道交通的正常运行,不会造成城市交通故障,对使用者也是一种保障。
此外,还会辅助以直流牵引供电网的保护,借助杂散电流的保护方法,将使用的电能、电压、电能等均匀地分配到每一个运输网络,从而保证每一个用电器都能够保持正常的工作,而且对于长距离的运输线路来说,也具有一定的保障作用,不会由于线路过长而出现故障。
城市轨道交通直流牵引供电及系统控制策略分析
城市轨道交通直流牵引供电及系统控制策略分析摘要:在城市轨道交通供电系统中,按照故障率和故障直接影响程度来综合分析,直流牵引供电系统故障是对运营服务影响最严重的,高居榜首。
因此,如何更好的对直流供电系统进行维护保养,提前准确的发现设备隐患,快速高效的处理直流故障,是摆在运营供电人员面前的难题和严峻考验。
本文就城市轨道交通直流牵引供电及系统控制策略的有关内容进行了简要的分析,以供参考。
关键词:城市轨道交通;直流牵引供电;系统控制1城市轨道交通直流牵引供电系统组成城市轨道交通牵引供电系统为整个城市轨道交通的运行提供电能,是城市轨道交通的重要组成部分。
城市轨道交通牵引供电系统又分为:直流系统和交流系统。
直流牵引供电系统主要包括牵引变电所、牵引网以及列车等,整个直流牵引供电的能量流动过程,直流牵引变电所首先将电压等级为35kV的交流电通过变压器进行降压,然后通过整流转换成为750V的直流电,然后电能通过接触轨给列车进行供电,最终通过走行轨进行回流,从而构成完整的电路。
其中牵引变电所中的PWM整流机组和二极管整流机组并联运行进行列车制动和启动时的能量传输,将电能传送回接触网或者传输到列车。
由于研究精力有限,因此对于直流牵引供电系统中的牵引供电装置的损耗和辅助供电系统没有进行详细的研究,仅在计算列车功率时给定功率和转换效率进行近似计算。
牵引变电所是直流牵引供电系统的核心装置,本文采用能馈式牵引变电所代替传统的二极管整流牵引变电所,主要包括二极管整流机组和PWM整流机组。
其中PWM整流机组可以将列车制动时的能量回馈到接触网,提高城市轨道交通的节能减排水平。
其主要功能是负责将交流侧网络的高压经过降压整流到直流侧网络为750V的电压,是交流侧网络和直流侧网路的接口。
能馈式牵引变电所的工作方式根据列车的不同的运行工况从而选择不同的工作方式,分别为:(1)当列车处于牵引工况时,牵引所工作方式为整流当列车处于牵引工况时,牵引变电所处于整流工况,二极管整流机组和PWM整流机组进行整流工作,向列车输送电能。
城市轨道交通系统构成——供电与牵引_图文_图文
【理论知识】 6.2 城市轨道交通电力牵引系统
1.城市轨道交通电力牵引概念 以电力系统城市电网的电力为动力源 ,在车辆上将电能转换为机械能,从而牵引列车组在轨道上运行的一 种城市交通牵引动力形式。
图6-10 城市轨道交通电力牵引结构图
【理论知识】 6.2 城市轨道交通电力牵引系统
【理论知识】 6.2 城市轨道交通牵引系统
(3)电力机车 电力牵引在现实生活中最好的体现就是电力机车。 4.牵引变电所容量的计算和确定 (1)确定牵引变压器的容量 1)确定计算容量。 2)确定校核容量。 3)确定安装容量。 (2)牵引变压器的安装容量 牵引变压器的安装容量是在计算容量和校 核容量的基础上,再考虑备用方式,最后按变压器的产品规格所确定 的变压器台数与容量。 1)移动备用。 2)固定备用。
【理论知识】 6.2 城市轨道交通牵引系统
5.电力牵引的远动监控装置 (1)地下迷流 在直流牵引供电中,牵引电流并非全部由钢轨直接流回 牵引变电所,而是有一部分由钢轨杂散泄漏流入大地,再由大地流回 钢轨和牵引变电所,这种地下杂散电流被称为地下迷流。 (2)谐波 由于牵引变电所大功率整流设备和其他变流装置等的非线性 负荷特性,使牵引供电系统成了城市电网的一个重要谐波源。 (3)电动车组 由牵引供电系统供给电能,驱动车辆上的电动机,产生 牵引力牵引在轨道上行驶的列车组。 (4)车辆电气 车辆电气包括车辆上各种电气设备及其连接导线。
【理论知识】 6.1 城市轨道交通供电系统
(1)牵引变电所 牵引变电所的作用是降压,并将三相电源转换成两个 单相电源,然后通过馈电线分别供电给牵引变电所两侧的接触网。 1)桥接线方式。
图6-1 牵引变电所的引入线方式
【理论知识】 6.1 城市轨道交通供电系统
城市轨道交通供电系统—供电负荷的分类及要求
3.城轨供电方案
城市轨道交通系统是对于城市电网来说,属于一级负荷,即应由两路独 立的电源供电,当其中任何一路电源发生故障时,另一路应能保证一级负荷 的全部用电的需要。
在城市轨道交通供电系统中,牵引用电为一级负荷,而动力照明等用电负 荷根据实际情况分为一级、二级、三级负荷。
一、概述
1.供电系统
城市轨道交通的供电系统是为运营服务提供所需电能的重要系统,除了 为列车提供电力牵引的电能外,还为其他辅助设施包括照明、通风、空调、 给排水系统、通信、信号、防灾报警、自动扶梯、屏蔽门等重要设备提供电 能。
1.供电系统
城市轨道交通的供电电源一般取自城市电网,通过城市电网一次电力系 统和轨道交通供电系统实现输送或变换,最后以适当的电流形成(直流或交 流电)和电压等级供给用电设备。
在城市轨道交通供电系统中,牵引用电为一级负荷,而动力照明等用电负 荷根据实际情况分为一级、二级、三级负荷。
3.城轨供电方案
城市轨道交通作为城市电网的一个用户,一般都直接从城市电网取得电 能,无需单独建设电厂,城市电网对城市轨道交通进行供电,供电方式有集 中供电、分散供电和混合供电。
发电厂
主变电所
牵引变电所
降压所
DC1500V接触网 AC380V车站设备
3.城轨供电方案
(1)集中供电 根据用电容量和线路长短,在沿线建设专用的主变电所,经降压后供给牵
引变电所与降压变电所,有利于城市轨道交通供电形成独立体系。
集中供电方式下的供电系统的组成
各类低压
AC
110k V电 缆
主变电
所
接受城市 电网
110kV电 压等级的 电源,经 主变压器 降压为 33kV中压 后馈出
城市轨道交通牵引供电及电力技术分析
城市轨道交通牵引供电及电力技术分析摘要:随着我国城市化进程的不断发展,城市轨道交通已然成为城市交通的主力军,不仅为人民的出行提供了很多的便利,其自身的出行效率也十分的高。
同时也正是因为城市轨道交通的自身优点,促使其成为城市发展过程中的交通宠儿。
但是,城市轨道交通在运行过程中也需要牵引供电及电力技术的支持。
因此,本文主要将通过对城市轨道交通牵引供电及电力技术进行相关的研究分析,以便为技术的革新提供良好的基础。
关键词:交通;城市轨道交通;牵引供电及系统;电力技术引言:目前,城市轨道交通还是一种比较新型的交通工具,但是由于其自身所具备的一些适合当下环境的优点,已经成为我国多个城市交通网络的重要组成部分,为城市的交通减轻了大部分的压力。
其与汽车、公交等交通方式的不同之处在于城市轨道交通具备显著的低污染、低噪声以及载客量大等优势。
在当前这个社会环境下,尤其是一些交通比较拥堵的城市,比如:北、上、广、深等特大城市,城市轨道交通也因为自身低污染以及低噪声的优势而受到了社会的认可和使用。
从某个角度来讲,城市轨道交通已经成为城市交通网中不可或缺的一部分,在交通运输、缓解交通压力等方面都起到了重要作用,因此,加快对我国城市轨道交通牵引供电系统及相关技术进行探究也显得更加重要和迫不及待。
1.城市轨道交通现状的概述城市轨道交通并不仅仅是指一种交通工具,它是对轻轨、地铁以及公交车等交通工具的总称。
世界上最早的轨道交通是出现在1850年代花费九年时间所建设的大都会铁路,并于1863年在英国正式投入运营。
那时轨道交通的牵引力来源为蒸汽机,并在时代的发展下不断的发生转变,直到现如今,轨道交通的牵引力来源已经用电能代替。
在当前经济不断发展的环境下,由于人口的增长,城镇化的发展,越来越多的人从农村涌入城市,使得城市化进程在不断加快,路面红绿灯的增加,汽车数量的增加等原因导致了严重的交通拥堵问题,基于此很多的发达国家越发地重视轨道交通,以便于缓解城市交通的压力。
城市轨道交通供电系统及电力技术分析
城市轨道交通供电系统及电力技术分析随着城市发展和人口增长,城市交通问题日益突出。
轨道交通作为城市公共交通的重要组成部分,对于缓解城市交通拥堵、改善环境质量、提高出行效率具有重要意义。
而轨道交通供电系统和电力技术是确保轨道交通安全、高效运行的关键。
本文将从城市轨道交通供电系统和电力技术的角度进行分析,探讨其在城市轨道交通发展中的重要作用和发展趋势。
一、城市轨道交通供电系统概述城市轨道交通供电系统是指为城市地铁、轻轨、有轨电车等轨道交通提供电力的系统,主要包括牵引供电系统和辅助供电系统两部分。
1. 牵引供电系统牵引供电系统是为轨道交通列车提供牵引电力的系统,一般采用直流750V或交流1500V/3000V供电。
其主要包括接触网、供电设备、牵引变流器等组成部分。
接触网是牵引供电系统的核心,通过接触网与列车上的受电弓实现电能传输,为列车提供所需的牵引电力。
供电设备一般包括变电所、配电设备等,用于将电能从电网输送至接触网。
牵引变流器则是将接触网提供的直流或交流电能转换为适合列车牵引用的电能。
二、城市轨道交通电力技术分析城市轨道交通电力技术是保障轨道交通设备安全、高效运行的关键。
随着城市轨道交通的快速发展,相关电力技术也在不断创新和完善,主要体现在以下几个方面。
牵引电力技术是影响轨道交通列车动力性能和运行效率的关键技术。
传统的牵引电力技术主要包括直流牵引和交流牵引两种。
在直流牵引技术中,采用直流电机驱动列车运行,具有良好的启动和加速性能,适用于地铁等短途快速运行的轨道交通系统;在交流牵引技术中,采用交流感应电动机或交流同步电动机驱动列车运行,具有较大的功率范围和较高的效率,适用于城市轨道交通系统中的长途高速运行。
随着磁悬浮技术的不断进步,利用磁悬浮技术实现牵引动力已成为轨道交通发展的新趋势,具有运行速度快、噪音低、能耗低等优势。
供电系统技术是保障轨道交通列车牵引供电的关键技术。
随着轨道交通系统的不断完善和扩建,其供电方式也在不断创新和优化。
城市轨道交通牵引供电及电力技术研究
城市轨道交通牵引供电及电力技术研究摘要:目前,城市轨道交通在全球范围内处于快速发展阶段,成为城市交通的重要组成部分。
虽然城市轨道交通的发展状况在全球各地不尽相同,但总体上可以看出,城市轨道交通作为一种高效、环保和便利的交通方式,受到越来越多城市的关注和推崇。
未来,随着技术的进一步创新和城市的可持续发展需求,城市轨道交通将继续发展壮大。
本文论述了城市轨道交通的牵引供电系统及电力技术,以便各个城市根据自己的情况选择最适合的牵引供电模式。
关键词:电力系统;接触网;城市轨道交通;1城市轨道交通的发展状况越来越多的城市增设和扩建地铁、轻轨和城市快速铁路等轨道交通系统。
这些轨道交通网络不断扩大,连通城市不同区域,提供高效、快速、可靠的交通服务。
城市轨道交通技术在列车设计、信号控制、车辆供电、轨道和隧道建设等方面不断创新和改进。
高速列车、自动驾驶技术、节能环保技术等的应用推动着城市轨道交通的发展。
城市轨道交通系统通过优化调度、提高列车运行速度和增加运输能力等措施,努力提高运营效率。
引入智能化、自动化技术和数据分析等手段,优化运输规划和乘客管理,进一步提升运营质量。
城市轨道交通是一种环保和可持续的交通模式,可以减少交通拥堵和尾气排放,改善城市空气质量。
越来越多的城市将轨道交通作为解决交通问题和减少碳排放的重要手段。
城市轨道交通逐渐成为城市文化的一部分,许多城市的地铁站以其特色的设计、艺术装饰和文化活动而闻名。
地铁成为城市的标志性建筑,为城市增添了美学价值和形象。
各国城市轨道交通运营管理机构之间进行广泛的合作和经验交流,共享最佳实践和成功案例。
这促进了城市轨道交通的全球发展,提供了更多的模式和解决方案。
2城市轨道交通牵引供电系统2.1 直流制式的牵引供电系统直流制式的牵引供电系统使用直流电源向列车传输电能。
直流系统通常采用第三轨供电方式,其中一个轨道作为导电轨供应直流电源,列车通过接触导电轨来获取电能。
直流电机具有较高的起动牵引力,适用于城市轨道交通系统的起步和爬坡操作。
城市轨道交通牵引供电及电力技术
城市轨道交通牵引供电及电力技术摘要:中国大中城市的交通压力越来越大,高速铁路、地铁和轻轨的大量兴建,在给中国居民出行提供便利的同时,也给城轨的供电提出了新的要求,尤其是在客流量和车流量方面。
随着我国各大城市的发展,为城市轨道交通供电已成为当务之急。
在客流高峰时期,保证城市轨道交通的稳定、高效和持续的电力供应是至关重要的。
关于城市轨道交通的供电,要做更多的细致和深入的研究,增强其缓解城市交通压力的功能。
关键词:城市轨道交通;牵引供电;电力技术1城市轨道交通现状所谓的城市轨道交通,并不是指地铁,而是指轻轨和大巴。
世界上第一条轨道交通是在英国建成的,它是19世纪50年代修建的首都铁路,历时9年,终于在1863年通车。
这条铁路以蒸汽发动机为动力,以牵引列车为动力,后来随着时间的推移,这种发动机也被改造成了电力。
当今,随着世界经济的持续发展,随着人口的增加,更多的人从乡村涌向了城市,造成了严重的交通堵塞,因此,许多发达国家都将目光投向了轨道交通,以此来缓解城市的交通压力。
就目前的现状而言,中,美,韩三国的地铁线路最多,其中上海和北京是地铁线路发展最快的两个国家,此外,其它一些城市也都在加大地铁线路的建设力度,对缓解城市的交通压力起到了很大的作用。
2城市轨道交通牵引供电系统分析2.1直流制在社会生产和生活中,必须保证供电的稳定性,若供电不稳定,则会造成不利的后果,因此,在城镇供电上,一般采用1500 V的直流供电方式。
在城市轨道交通中,因为是用两条铁轨来驱动,所以对电力的要求很高,所以必须为铁轨的两端供电。
这样可以有效地防止由于某一端在供电上出现问题而影响整体运行,而另一端则可以继续工作,保证轨道交通具有良好的稳定性,极大地降低了轨道交通发生事故的概率。
同时,也可以有效地发挥供电网的保护作用,在交通网络中可以均衡地分布电能,促进用电器的稳定运行。
在长距离的线路运输中,可以起到一定的保障作用,不要由于线路过长而导致的各类故障,从而影响到轨道交通的运营。
城市轨道交通车辆电力牵引及供电系统
(2)矢量控制 矢量控制又称磁场定向控制(FOC),在20世纪70 年代由 西门子工程师F.Blaschke 首先提出。矢量控制实现的基 本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原 理对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步 电动机转矩的目的。具体是将异步电动机的定子电流矢量分解为磁场 的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加 以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量, 故称这种控制方式为矢量控制方式。矢量控制策略存在一些固有缺点, 如转子磁链难以准确观测,对电机参数比较敏感,实际工程应用时矢 量控制必须具备异步电动机参数自动辨识功。
9
(4)其他控制技术 “受流器+异步电机”的模式已成为现代轨道交通牵引的主 流模式。但是,此牵引系统产生的谐波及无功分量会增加电网的电 流容量,同时造成资源的浪费。为了满足绿色节能的可持续发展理 念,须采用高性能的网侧控制技术及高效的主电路形。
10
1)四象限脉冲整流技术 四象限脉冲控制策略是基于瞬态电流的控制算法,通过精确 的网压锁相检测,实现电网电压与电网电流同相位、低谐波电流、 高稳定的直流电压的目标,采用功率因数闭环根据控制技术,可 在-0%的额定负载时,使网侧功率因数仍保持在98%以上,同 时有效地控制电网电流中的谐波分量。 牵引变流器的输入端与电网密切相连的整流器,它一方面将 电能从电网输送到变流器和负载,另一方面将负载和变流器运转 产生的谐波、无功分量反馈给电网。为了提高电能品质,只有在 牵引传动系统采用四象限脉冲整流技术,以达到对电网侧的高功 率因数控制的目的。该技术已成功批量应用于和谐号大功率电力 机车
8
ቤተ መጻሕፍቲ ባይዱ
(3)直接转矩控制 直接转矩控制技术是继矢量控制技术之后发展起来的一种高性 能异步电动机变频调速技术。这种“直接自控型”的思想以转矩为 中心来进行综合控制,不仅控制转矩,也用于磁链量的控制和磁链 自控制。直接转矩控制与矢量控制的区别是,它不是通过控制电流、 磁链等量间接控制转矩,而是把转矩直接作为被控量控制,其实质 是用空间矢量的分析方法,以定子磁场定向方式,对定子磁链和电 磁转矩进行直接控制的。这种方法不需要复杂的坐标变换,而是直 接在点击定子坐标上计算磁链的模和转矩的大小,并通过磁链和转 矩的直接跟踪实现PWM 脉宽调制和系统的高动态性能。直接转矩 控制可充分利用逆变器的开关频率,从而特别适用于大功率牵引传 动领域。目前,该技术已大量应用于干线电力机车(“和谐”型7 200 kW 交流电力机车)、城市轨道交通领域(上海地铁一号线、 深圳五号线、北京房山线、沈阳二号线等)。
城市轨道交通牵引供电及电力技术分析
城市轨道交通牵引供电及电力技术分析摘要:随着社会的进步和发展,城市化的进程也变的越来越快,在城市发展的过程当中,城市轨道交通是一个很重要的部分。
在进行交通运输的过程当中,一个非常重要的部分就是城市轨道交通,所以要将城市轨道交通直流牵引供电系统进行加强。
关键词:城市交通;交通运输;供电系统前言城市化的进程正在不断的加快,也在一定程度上推动了城市轨道交通的发展和进步。
在发展城市轨道交通的过程当中,一个非常重要的部分就是牵引供电系统。
城市轨道交通和汽车等其它的交通方式之间存在一定的差异,污染相对来说比较低,而且噪音也比较低,所以要不断的发展城市轨道交通。
1城市轨道交通的发展状况高压供电系统在城市轨道交通发展的过程当中是必不可少的,只有高压供电系统可以正常运行,才可以保证电气设备的正常稳定运行。
但是城市轨道交通高压设备具有比较复杂的运行环境,所以需要将高压设备的稳定正常运行进行保证。
所以在对高压供电设备进行管理的过程当中,需要不断的加强,对科学合理的方式进行应用,将比较完善的管理制度进行制定,不断的将相关工作人员的维护管理意识进行加强,这样可以将一个比较高素质的团队进行建立。
所以在加强管理的过程当中,首先要加强对问题的预防,将比较科学的管理计划进行制定,这样才可以有效的将管理和维修城市轨道交通的制度进行落实,这样可以及时的对问题以及故障进行修复,将维修效率进行不断的提高,将高压供电设备的稳定运行进行保证。
可以根据不同的功能将城市轨道交通高压供电分成不同的两个部分,这两个部分分别是车站区间控制中心用电负荷以及电力机车牵引负荷。
而且城市轨道交通的自动化程度也在不断的提高,所以需要更高的城市轨道交通运行安全要求,所以需要将供电的稳定性进行保证。
只有将城市轨道交通运行系统的自动化程度不断的进行提高,才可以将现代社会的需求进行满足,不断的提高城市轨道交通系统的运行效率。
1.1牵引直流供电系统在中国当前的城市轨道交通系统当中,一般就是对两种牵引供电系统进行应用,分别是城市轨道交通牵引直流供电系统以及交流供电系统。
城市轨道交通交流牵引供电系统及其关键技术
城市轨道交通交流牵引供电系统及其关键技术摘要:随着经济和科技发展,交通运输领域也表现出快速发展趋势,很多一二线城市纷纷建设轻轨、地铁等,其中,城轨供电问题成为一个难题。
城轨系统电源来自于城轨交流牵引供电系统。
为了缓解城轨供电压力,本文对供电系统进行分析,希望可以供应更多电力。
关键词:城市轨道交通;交流牵引供电;关键技术1传统城市轨道交通直流牵引供电系统城市轨道交通牵引供电系统一般由城市电网电源和城市轨道交通内部供电系统两部分组成,一般采用设置专门的主变电所为牵引变电所及降压变电所集中提供电源。
主变电所高压侧进线电压一般取自110kV三相城市电源,经主变降压后变成35kV或者10kV。
牵引变电所、降压变电所均为一级负荷需保证有两路独立的电源。
城市轨道交通中机车所需的功率一般不大,线路长度一般为几十公里,供电距离相对干线铁路较小,牵引网所需的电压等级不是很高,故而城市轨道交通普遍都使用了直流的供电制式。
而且直流制相较于交流制没有电抗压降,所以在同样的电压等级下条件,直流制的电压损失更低。
因为城市轨道交通设置在城市之内,其敷设的各电力线路布置在市区各建筑群之间,为了保证安全,系统的电压等级不宜过高。
而且直流供电没有了接触网电分相的问题,使得列车的运行效率提高。
主牵引变电所的降压变压器将取自城市电网的三相高压交流电压降至35kV,再通过中压网络将该电压送至牵引变电所。
牵引变电所的作用就体现在整流变压器将交流电再次降压,或者利用整流器将交流电转化为适合电力机车的低压直流电。
然后通过馈线将牵引变电所馈出的直流电送到牵引网上,列车通过其受流器与接触网的滑动接触从而获得电能。
然而作为电流返回至牵引变电所的流通路径的钢轨,它和大地之间并非完全绝缘,所以当电流途径钢轨回流至牵引变电所的时候。
将会有部分电流泄漏至大地中,从大地回流至牵引变电所。
这种泄漏到道床及其周围土壤介质中的电流分布广泛,称为"迷流"或"杂散电流"。
城市轨道交通供电系统及电力技术分析
城市轨道交通供电系统及电力技术分析摘要:城市轨道交通运行是维护现代化社会秩序的关键环节,为进一步提高城市轨道交通运行效率应当维护好城市轨道交通供电系统并采取相关的电力技术提高其整体运行质量。
相关单位及人员应把握城市轨道交通供电系统当中存在的问题并及时做好电力技术优化,改善技术应用问题并落实各环节监管责任,围绕城市轨道交通运行状况排查运行风险,进而保障城市轨道交通运行安全,基于此本文结合城市轨道交通供电系统对其供电方式以及电力技术做简要分析。
关键词:城市轨道交通;供电系统;电力技术引言:城市轨道交通运行过程中需要从城市电网中获取大量电能,从城市轨道交通供电系统结构来看,主要涉及牵引供电系统、电源系统、动照系统等,牵引供电系统为车辆运行提供电能,维护城市轨道交通供电运行安全。
在技术不断创新过程中,电力技术也在优化升级,而路线规模的调整扩大也给城市轨道交通供电系统设计建设提出更高要求,这就需要相关单位及技术人员做好电力技术应用研究并在技术加持下提高城市轨道交通整体稳定性和安全性。
一、城市轨道交通供电系统运行分析(一)牵引供电系统城市轨道交通牵引供电系统涉及直流和交流两种供电方式,在城市轨道交通运行不断发展过程中,为进一步提高城市轨道供电系统运行整体安全性,也有部分地区尝试直流制与交流制混合应用模式。
在实践当中,前者可理解为牵引供电系统常用供电制式,牵引变电所从中压网络中获取电流,对大量电流经降压整流机组处理以直流电形式存在[1]。
而在直流电会输送到牵引网这一过程中,基于城市轨道交通牵引电机需求,牵引供电系统主要为列车提供电能,将整流装置安装在牵引变电所中进而减轻车身重量。
客观上来看直流牵引网会依照供电连贯方式,当列车运行发生故障问题时单边供电以及大双边供电间切换管理可以进一步提高城市轨道交通运行稳定性。
但直流制供电方式当中也存在一些诸如供电距离有限、线路损耗大等问题。
从牵引网构成来看,在供电系统当中主要涉及牵引网、而将其细化可分为接触网、回流线等,前者可视为列车受电直接装置,依照安装位置差异化包括接触轨和架空接触网。
城市轨道交通供电系统及电力技术分析
城市轨道交通供电系统及电力技术分析摘要:随着时代的不断发展,我国社会经济水平在原有的基础上得到了极大的提高,与此同时,科学技术水平也在不断提高,在此基础之上使得我国城市轨道交通配套系统也变得越发完善。
城市轨道交通配套系统由多个部分共同组成,其中最为主要的包括供电系统,供电系统的运行情况直接决定了列车是否能够稳定运行,因此需要对现有的城市轨道交通供电系统进行进一步的优化及完善。
本文在具体的研究过程中从多方面入手,对城市轨道交通供电系统的运行方式进行了分析,并且详细阐释了现有的供电技术以及如何更加高效的对供电系统和电力技术进行管理。
关键词:城市轨道交通;供电系统;电力技术;措施分析一、城市轨道交通供电系统运行方式分析(一)集中式供电城市轨道交通供电系统的运行方式有多种,其中最为主要的包括集中式供电、分散式供电以及混合式宫殿。
集中式供电方式主要是根据电容量以及线路的具体长度来对城市轨道交通路线涉及的外部供电内容提供具有针对性的降压变电所。
在进行集中式供电方式设置的过程中需要分别设置两路独立的进线电源,通过这样的方式才能保证整个供电过程的安全性。
除了要根据主变电的实际需求进行独立进线电源的设置以外,还要根据城市轨道交通内部供电系统的电压等级来进行降压处理。
只有保证具有针对性才能达到更好的处理效果。
采用集中式供电的方式能够大大提高城市交通的运营质量,同时还能保证车辆设施在运行过程中的安全性,相较于其他集中供电方式来说,集中式供电的方式具有较为明显的优势。
(二)分散式供电除了集中式供电方式以外,分散式供电也是十分常见的一种供电系统运行方式。
该种方式简单来说是按照分散式的原则来进行多回路电源的引入,然后根据实际情况采用直接或者是间接的方式将供电所作为牵引变电所,通过这样的方式来进行高效的供电。
在对分散式供电方式进行研究的过程中能够发现,分散式供电不需要设置主变电所,因此在进行设置的过程中,能够大大节约建设成本。
城市轨道交通车辆牵引与供电系统概述
封闭式三相笼型异步电动机结构
定子
铁心:由内周有槽 的硅钢片叠成。
A ----X 三相绕组 B ----Y
C---- Z
机座:铸钢或铸铁
鼠笼转子
转子
铁心:由外周有槽的 硅钢片叠成。 (1) 鼠笼式转子 铁芯槽内放铜条,端 部用短路环形成一体; 或铸铝形成转子绕组。 (2) 绕线式转子 同定子绕组一样,也 分为三相,并且接成 星形。
气隙:定子和转子之间
必须有一个气隙
交流电动机的特点
交流电动机没有转向器,构造简单,运行可靠,效 率较高,维护很少,价格低廉;转子坚固,定子绕 组沿圆周均匀分布,电动机体积小,能够获得较大 的单位质量功率;其机械特性较硬,具有较好的防 空转性能,使黏着利用提高;且微电子技术的发展 使异步电动机的调压变频调速得以顺利实现。
效率高 由于无中间传动环节,消除了机械摩擦时的能量 损耗。
列车控制系统工作原理
城市轨道交通车辆的控制电路,是低电压小功率电 路,分为有接点的直流电路和无接点的电子电路。 有接点的直流电路由主控制器、继电器、电气控制 的低压部分、联锁接点组成;无接点的电子电路由 微机及各种电子单元组成,如列车牵引系统控制单 元、制动控制单元、空调控制单元等。
包括下部支杆5、下部导杆6、上部支杆7和上 部导杆8;
采用高强度冷拔无缝管制作。
• 高度止挡2:
安装在下部导杆侧下方的基础框架上; 用以限制受电弓的最大升弓高度。
• 弓头:
是弓与网相接触的部分; 由集流头9、接触带10、转轴、端角11和弹簧 盒组成。
• 升降弓装置12:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1直流制
在我国大部分城市的变电站、牵引网、接触网的建设当中,大部分设计是采用直流1500V的供电方式,而轨道交通牵引供电网则采用了双边供电,这是因为当某一供电线路出现故障时,可以立即更换线路,保障交通牵引供电的要求。另外,在搭建直流牵引供电网,还能采用杂散的电流保护办法,这样能够将电能均匀的分流到每一个供电网络,并传送到较远的距离。但是由于自身的变电模式,导致供电距离的缩短,这样会对工程建设投入增加成本。并且直流牵引供电系统的传输速率不高,很难满足供电需要,因此这种供电系统没有什么建设优势。
2.5牵引网供电方式
目前,我国的牵引网供电技术主要经历了三个时代,从最初的直接供电方式,发展成吸流变压器-回流线供电方式,最后到现在的带回流线的直供方式和自耦变压器供电方式。整个发展过程就是对变压器的供电能力的不断提升,还有不断降低对通信线路的影响。早期我国的铁路电气化采用的是直接供电,采取接触网和轨-地直接构成回路,这样方式的结构简单,建设投入较少,后期的维护比较便宜,适合当时我国的铁路发展。但是随着目前经济的增长不断加快,这种直接供电方式的缺点暴露了出来,在经济发达地区对通信线路的干扰非常大。当时为了减少对通信线路的干扰,研发出一种吸流变压器-回流线供电方式,简称BT供电方式。
城市轨道交通牵引供电及电技术
摘要:随着科技的进步,车流量的迅速增加,这对城市轨道交通牵引供电系统的抗压能力要求也在加大。本文首先介绍了城市轨道交通牵引供电系统的理论基础,其中较为常见的供电方式是直流式和交流式;接着本文主要针对交流牵引供电系统进行展开讨论,介绍了系统的构成和其中的关键技术。
关键词:城市轨道;交通牵引;供电;电力技术
2交流牵引供电系统及关键技术
近些年随着人们生活水平的提升,对出行的要求也正在加大,各大城市纷纷建构了自己的地铁轻轨系统,随之而来的是对电网电力系统更高的要求。最初的电网线路搭建主要采用的是直流制,现今时代也只有欧洲一些国家的部分线路仍沿用直流制。自上世纪60年代,世界范围内修建的新线路全部都采用了交流制式。而交流制式的牵引供电系统也为大家展现了诸多优点,如:供电效果好、成本较低、电流量大、不存在杂散电流等。但是仍有一些缺点,如:当换相接入小型电网时会产生分相;牵引电流的谐波会产生一定的电磁干扰。
YNd11接线牵引变压器自身的容量较大,并且结构非常简单,制造工艺也比较成熟,最主要的是其仍保持三相,不仅能够满足牵引供电需要,还能为变电所提供稳定的三相电源。但是YNd11接线变压器自身对负序电流没有很好的控制效果,容易影响电网中电能质量。因此,我国的专家们研制成功新型的Scott接线牵引变压器,并且广泛运用。新型的Scott接线牵引变压器除了具有YNd11接线牵引变压器的大容量优点外,还具有优良的负序抑制效果。研究结果证明,Scott接线变压器负序电流表达式、电流不平衡度以及电压不平衡度,能够很好的抑制负序电流。但是Scott接线变压器也有其自身的缺点,就是其结构非常复杂,制造的难度比较大,建设成本高。而随着社会生产力的不断进步,轨道交通行业不断发展,新型的具有一定的负序抑制效果的大容量V型接线牵引变压器被设计者广泛运用。这种新型的变压器具有容量大、结构简单、制造成本低,建筑面积小的优点,因此在我国的现代电气化轨道交通建设中被广泛应用。
2.3主变电所供电方案
主变电所的供电方式主要依赖地铁、轻轨等设备的数量和它们所处的位置,所以供电方式可采用单线、双线和多线的方案,以适应不同的设备需求。
2.4牵引变压器
在整个电力系统中,牵引负荷是随机波动的,属于一种单项负荷。这是一种不对称的负荷,容易产生负序电流,影响整个线路的供电质量。随着铁路线路的运量增加,列车速度的加快,牵引变压器的容量也要随之不断增加。因此,对牵引变压器的技术不断发展研究,其实就是在不断的加强对负序抑制效果的提高以及对变压器的容量进行不断的扩大。建国初期,由于铁路的运量相对较少,运行速度相对较慢,因此对牵引变压器的容量要求也相对较小。当时单项牵引变压器靠着利用率较高,后期维护方便等众多优点,被广泛的使用在早期的铁路线上,能够满足当时的需要。但随着我国的经济飞速发展,变压器容量较小的单项牵引变压器已经不能满足现有的铁路运量的要求。为了能够满足轨道交通对大容量变压器的要求,采用YNd11接线方式的牵引变压器得到了设计者的青睐。
1.2交流制
交流牵引供电系统采用单向的链接方式,是在变电站内同时安装两台变压器,采用双绕组的单项变压,使得整个结构形成一个开口三角形,在电网的接入端是属于高压端。这里面有两个端口与一个公共端口,低压端口则是接地的一侧,其他的端口分别与牵引母线连接。对于整个交流供电系统的降压系统来说,除了在供电系统的终端,整条线路的区间都设置了加压系统,这样能够使线路上的照明系统正常工作。由于交流牵引供电系统长时间的处于动态取流的状态,造成瞬间的接触压力较大,因此,设备需要具有非常耐磨的要求。
2.1电缆牵引网
目前常用的牵引接触网主要采用1500伏特直流电压进行供电,在一些特殊情况时,会使用750伏特。城内轻轨、地铁的牵引网应有上下行两条线路,并且应采用并联的方式,与此同时还应搭建备用的电缆线路,这条线路可以和正常电缆一起工作,它们互为备用。这样可以增强线路的可靠性,还可以提升供电电能的总量,削减功率损失。
2.2牵引网分段供电与保护
由于电缆牵引网具有长距离传输、可输送电能大等优点而被广泛使用,但是若采用上下行并行线路,成本较高,且设备搭建较为复杂,所以一般采用分段供电的形式。电缆和接触网的分段设计既可以是同步进行的,又可以是分段完成的。为了便于施工,一般在变压器处采用统一分段,在其他区间线路中多采用分开分段。这样既可以提升系统的可靠性,又可以进行分段保护,使故障风险降到最低。
BT供电方式是在建设牵引供电网时装设1:1的吸流变压器,通过回流线将电流回收到变电站,减少了对周围通信线路的干扰。但是这样会增加牵引供电网的阻抗,致使牵引网的供电距离变短,造价上升,并且容易出现火花间隙,这些问题都影响着BT供电方式的发展应用。牵引供电网的建设者们通过总结以上两种方式的缺点,根据我国现阶段的轨道交通特点,研究并广泛使用了带回流线的直供方式和自耦变压器供电方式。这两种供电方式的广泛应用,解决了牵引网阻抗问题,提升了供电网络的供电能力,最重要的是减少了对周围通信线路的影响。