Raman拉曼光谱原理及应用-刘仕锋_图文.
第八讲分子振动光谱之拉曼Raman.PPT
(五)拉曼光谱图常规分析方法
➢ 凡不引起分子偶极矩改变的振动是非红外活
性的振动,不能形成振动吸收,使红外光谱 的应用受到一定程度的限制。
➢ 但是这些红外非活性的振动信息可以通过拉
曼光谱来获得。故拉曼光谱常作为红外光谱 分析的补充技术,俗称“姐妹光谱”。
拉曼散射是与入射光电场E所引起的分子极化的
诱导偶极矩有关。
拉曼散射的发生必须在有相应极化率α的变化
时才能实现,这是和红外光谱所不同的。 在红外光谱中检测不出的谱线,可以在拉曼光
谱中得到,使得两种光谱成相互补充的谱线。
在激光拉曼光谱中有一个重要参数即退偏振
比ρ(也可称为去偏振度)。 退偏振比ρ对确定分子的对称性很有用。 退偏振比ρ定义为:
的跃迁能级有关的频率是ν1,那么分子从低能级 跃到高能级从入射光中得到的能量为hν1,而散 射光子的能量要降低到hν0-hν1,频率降低为ν0ν1。
(2)分子处于振动的激发态上,并且在与光
子相碰时可以把hν1的能量传给光子,形成一条能 量为hν0+hν1和频率为ν0+ν1的谱线。
➢通常把低于入射光频的散射线ν0-ν1称为斯托克斯
此外,络合物中金属-配位体键的振动频率一 般都在100~700 cm-1以范围内,用红外光谱研究比 较困难。然而这些键的振动常具有拉曼活性,且在 上述范围内的拉曼谱带易于观测,因此适合于对络 合物的组成、结构和稳定性等方面进行研究。
图 各种碳材料的拉曼光谱
傅里叶变换拉曼光谱是陶瓷工业中快速而有效的 测量技术。陶瓷工业中常用原料如高岭土、多水高岭 土、地开石和珍珠陶土,它们都有各自的特征谱带, 而且拉曼光谱比红外光谱更具特征性。
拉曼光谱-课件分享
拉曼光谱分析
主要内容
红外光谱(IR) 拉曼光谱(Raman)
分子振动光谱
2
激光拉曼光谱基础
1928 C.V.Raman发现拉曼散射效应 1960 随着激光光源建立拉曼光谱分析 拉曼光谱和红外光谱一样,也属于分子振动光谱 生物分子,高聚物,半导体,陶瓷,药物等分析 ,
是否出现拉曼活性主要取决于分子在运动过程时某一 固定方向上的极化率的变化。 对于分子振动和转动来说,拉曼活性都是根据极化率 是否改变来判断的。 对于全对称振动模式的分子,在激发光子的作用下, 肯定会发生分子极化,产生拉曼活性,而且活性很强; 而对于离子键的化合物,由于没有分子变形发生,不 能产生拉曼活性。
Strength enhanced 102~3 more sensitive concentration < 0.1mM similar to UV
preresonance
Resonance enhanced
共振拉曼散射
11
拉曼原理-LRS与IR比较
拉曼光谱是分子对激发光的散射,而红外光谱则是分子对红外光的吸 收,但两者均是研究分子振动的重要手段,同属分子光谱。
优势:激发波长较长, 可以避免部分荧光产生
局限:黑色样品会产生热背景 薄膜样品的厚度应 >1m 光谱范围:5~4000cm-1
23
分析方法
普通拉曼光谱 一般采用斯托克斯分析
反斯托克斯拉曼光谱 采用反斯托克斯分析
24
Raman光谱可获得的信息
Raman 特征频率
Raman 谱峰的改变
Raman 偏振峰
47
100 Cr
100
depth profile lines
拉曼光谱原理及硬件
1 000
500
1 000
1 500 Raman Shift (cm-1 )
2 000
2 500
3 000
用不同的激发波长测试CaF2样品
© 2009 HORIBA, Ltd. All rights reserved.
2 确定信号来源-拉曼或荧光
5 000
CaF-488 CaF-514 CaF-532
果糖(左旋糖)vs. 无水葡萄糖 (右旋糖) vs. 含水葡萄糖
40000
30000
20000
Hydrated dextrose Anhydrous dextrose
10000
Fructose
0 500 1000 1500 2000 2500 3000 3500
© 2009 HORIBA, Ltd. All rights reserved.
Raman Shift (cm -1 )
© 2009 HORIBA, Ltd. All rights reserved.
专利调角度技术
© 2009 HORIBA, Ltd. All rights reserved.
拉曼光谱仪原理图(滤光片型)——显微镜
激 光 器 共聚焦针孔 干涉滤光片 光栅
功率衰减片 瑞利滤光片
3 分析样品不同深度的信息
利用不同波长穿透深度不同,可以分析样品不同层的信息
© 2009 HORIBA, Ltd. All rights reserved.
拉曼光谱仪原理图(滤光片型)— 滤光片
激 光 器 共聚焦针孔 光栅
干涉滤光片 狭缝 功率衰减片 瑞利滤光片
显微镜
探测器
样品
© 2009 HORIBA, Ltd. All rights reserved.
激光Raman光谱法_图文
2
红外活性
3
4
红外活性
红外光谱—源于偶极矩变化 拉曼光谱—源于极化率变化
对称中心分子CO2,CS2等,选律不相容。 无对称中心分子(例如SO2等),三种振动既是红外 活性振动,又是拉曼活性振动。
四. 退偏比
退偏比
在入射激光的垂直与平行方向置偏振器,
分别测得散射光强,则退偏比ρ
对称分子ρ = 0 非对称分子ρ 介于0到3/4之间 ρ 值越小,分子对称性越高
h0 +
非弹性碰撞: E1
υ=1
方向改变且有能 量交换。
E0
υ=0
h
Rayleigh散射 Raman散射
E0基态, E1振动激发态; E0 + h0 , E1 + h0 激发虚态。
(1928年印度物理学家Raman 发现,1930年获诺贝尔奖,
1960年快速发展)。
4.7.1 拉曼光谱原理 一、 Raman散射与Raman位移
(2) 非极性基团的振动和分子的全对称振动使分子极 化率变化,所以是拉曼活性的。
(3)拉曼光谱最适用于研究同种原子的非极性健如 S-S,N=N,C=C,C≡C等的振动。
(4)红外光谱适用于研究不同种原子的极性键如 C=O,C—H,N—H,O-H等的振动。
(5)二种光谱方法互相补充,对分子结构的鉴定红外 和拉曼是两种相互补充而不能代替的光谱方法。
非极性基团,对称分子。 拉曼活性振动-伴随有极化率变化的振动。
对称分子: 对称振动→拉曼活性。不对称振动→红外活性
二、 Raman光谱
CCl4的Ramam光谱图
1. Raman光谱特点
(1) 拉曼光谱记录的是stoke 线。
(2) 测量相对单色激发光频率的位移。
拉曼光谱原理及应用
拉曼光谱原理及应用一、拉曼光谱原理拉曼光谱其实是一种很神奇的东西呢。
简单来说呀,当光照射到分子上的时候,会发生散射现象。
大多数的散射光和入射光的频率是一样的,这叫瑞利散射。
但是有一小部分的散射光,它的频率会发生变化,这个就是拉曼散射啦。
这是因为分子在光的作用下发生了振动,导致能量有了变化,从而让散射光的频率变了呢。
分子的不同振动模式就对应着不同的拉曼频率位移,就像每个分子都有自己独特的“指纹”一样。
二、拉曼光谱的应用1. 在化学领域的应用在有机化学里呀,拉曼光谱可以用来确定分子的结构。
比如说有一个新合成的有机化合物,科学家们就可以用拉曼光谱来看看它的化学键啊,官能团之类的。
因为不同的官能团会有不同的拉曼峰位,就像不同的人有不同的身份证号一样准确。
在无机化学中,它能帮助研究无机化合物的晶体结构。
像研究一些金属氧化物,拉曼光谱就能告诉我们这些氧化物里原子的排列方式,是不是很厉害呢?2. 在材料科学中的应用对于新材料的研发,拉曼光谱可是个得力助手。
比如说研究石墨烯这种超级厉害的材料,拉曼光谱可以检测它的层数。
层数不同,拉曼光谱的特征峰就会不一样哦。
在检测材料的应力和应变方面也很有用。
当材料受到外力作用的时候,它的分子结构会发生变化,这种变化就可以通过拉曼光谱反映出来。
就好像材料在向我们诉说它的“委屈”一样。
3. 在生物医学领域的应用在疾病诊断方面有很大的潜力。
比如说检测癌细胞,癌细胞和正常细胞的分子结构是不一样的,拉曼光谱就能捕捉到这种差异,从而帮助医生更早地发现癌症。
在药物研发中也能发挥作用。
可以用来研究药物和生物分子之间的相互作用,就像是在给药物和生物分子之间的“约会”当侦探一样。
4. 在环境科学中的应用检测环境中的污染物。
比如水中的有机污染物,拉曼光谱可以快速地识别出污染物的种类,就像一个超级灵敏的环境卫士。
研究大气中的气溶胶成分。
拉曼光谱能够分析气溶胶里都有哪些物质,这对我们了解大气污染的来源和形成机制是很有帮助的。
Raman(拉曼)光谱原理和图解
excitation excit.-vib.
拉曼光谱的优点和特点 Ÿ对样品无接触,无损伤; Ÿ样品无需制备; Ÿ快速分析,鉴别各种材料的特性与结构; Ÿ能适合黑色和含水样品; Ÿ高、低温及高压条件下测量; Ÿ光谱成像快速、简便,分辨率高; Ÿ仪器稳固,体积适中, Ÿ维护成本低,使用简单。
激光功率16级衰减激光扩束扩束器控制键自动化程度高优势自动化程度高?激光光路计算机控制调节存储激光光路的位置激光光路可自动准直激光波长可自动切换等等部件瑞利滤光片自动切换光栅可自动切换狭缝大小可自动调节等等功能共焦与非共焦可自动切换取谱模式与观察样品模式可自动切换自动切换激光的16级衰减模式等等??ccd芯片尺寸的选择最新的显微共焦系统专利技术优势选择了最佳成像质量的ccd芯片尺寸为什么renishaw可以选择小尺寸芯片
高灵敏度
优势 1. 高灵敏度:
Ÿ 灵敏度远高于其它同类拉曼谱仪 检验标准:硅三阶峰(约在1440 cm-1)的信噪比≧10:1,检测 条件为:激光输出功率20mW,波长514.5nm,狭缝宽度50微米 ,曝光时间60秒,累加次数5次,binning为1或2,光栅为1800刻 线。显微镜头为 X50常规镜头。
200
0 15000 14800 14600 14400 14200 14000
Wavenum ber (cm -1)
光栅转动重复性实验
高重复性、高稳定性
.05 0 -.05 0 50 100 150 200 250 Minutes 300 350 400 450
光栅转动重复性实验
Arbitrary Y
拉曼测量的是什么?
Mid IR 红外
Real States 真实能级 Virtual State 虚能级
拉曼光谱原理和应用
Slide 16
精选可编辑ppt
拉曼光谱仪介绍 专家级
JY-T64000:模块式三级拉曼光谱仪系统 生长厂家:法国Horiba Jobin Yvon公司
Slide 17
精选可编辑ppt
研究级
LabRAM HR (高分辨单级拉曼光谱仪)
统称分子内部运动能。分子光谱产生于分子内部运动状态的改变。
分子有不同的电子能级( S 0 ,S 1 …),每个电子能级又有不同的振动能级( V 0 V 1 …)
Slide 2
精选可编辑ppt
拉曼光谱和拉曼效应
而每个振动能级又有不同的转动能级( J 0 , J 1 …). • 一定波长的电磁波作用于被研究物质的分子,引起分子相应能级的跃迁,产生分
如果光子与振动激发态的分子相互作用,被激发到更高的不稳定的能态,当分子 离开不稳定的能态回到振动基态时,散射光的能量等于激发光的能量加上两振动能 级的能量差。即:
E h散 = h激 ( V0 V 1)
此时,
散
,这是拉曼散射的反斯托克斯线。
激
Slide 5精选Biblioteka 编辑ppt拉曼测量的是什么?
Real States 真实能级
光散射 - 瑞利散射
• 设散射物分子原来处于基电子态,当受到入射光照射时,激发光与此分子的作用 引起的极化可以看作为虚的吸收,表述为电子跃迁到虚态(Virtual state),虚能 级上的电子立即跃迁到下能级而发光,即为散射光。设仍回到初始的电子态,则 有如图所示的三种情况。因而散射光中既有与入射光频率相同的谱线,也有与入 射光频率不同的谱线,前者称为瑞利线,后者称为拉曼线。在拉曼线中,又把频 率小于入射光频率的谱线称为斯托克斯线,而把频率大于入射光频率的谱线称为 反斯托克斯线。
拉曼光谱原理及应用_图文
二. 拉曼(Raman)光谱基本原理
拉曼光谱是研究分 子和光相互作用的 散射光的频率
散射光
入射光
透射光
散射是光子与分子发生碰撞的结果
Rayleigh散射: 弹性碰撞;无
能量交换,仅改 变方向; Raman散射:
非弹性碰撞; 方向改变且有能 量交换;
激发虚态
h(0 - )
E1 + h0
E0 + h0 h0
波数表示
。其中 和 分别为
Stokes位移和入射光波数。纵坐标为拉曼光强。
由于拉曼位移与激发光无关,一般仅用Stokes位
移部分。对发荧光的分子,有时用反Stokes位移
。
Intensity (A.U.)
20000 15000 10000
5000
ቤተ መጻሕፍቲ ባይዱ
甲醇vs. 乙醇
CH3OH vs. CH3CH2OH
高分子材料鉴定
Nylon6 尼龙 Kevlar 合成纤维 Pstyrene 聚苯乙烯
PET Paper 纸纤维 Ppropylene丙烯
PE/EVA 聚乙烯
生物分子鉴定
拉曼光谱法对于蛋白质中 的酪胺酸可以测出它是埋 藏在內或暴露于外。如果 酪胺酸是被埋藏在內部, 則它可做为强的氢键供给 者(即提供氢原子給临近 的氢鍵接受者)。此时拉 曼光谱上850cm-1/830cm-1 的比值为0.5,即830cm-1的 光谱峰较高。 反之,若酪胺酸暴露在蛋 白质外部,則比值将升高 ,亦即850cm-1的光谱峰较 高。
从图中可以看出,不同的碳材料其拉曼光谱不同 ,因此可以彼此区分。
海洛因
罂粟碱
如果毒品种混有其他白色粉末,怎么办?
五. 拉曼光谱与红外光谱分析方法比较
拉曼光谱原理分析ppt课件
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
• 拉曼光谱的特点: 波长位移在中红外区。有红 外及拉曼活性的分子,其红外光谱和拉曼光谱近似。 可使用各种溶剂,尤其是能测定水溶液,样品处理 简单。 低波数段测定容易(如金属与氧、氮结合 键的振动nM-O, nM-N等)。而红外光谱的远 红外区不适用于水溶液,选择窗口材料、检测 器困难。 由Stokes、反Stokes线的强度比可以 测定样品体系的温度。 显微拉曼的空间分辨率 很高,为1mm。 时间分辨测定可以跟踪10-12s 量级的动态反应过程。 利用共振拉曼、表面增 强拉曼可以提高测定灵敏度。 其不足之处在于, 激光光源可能破坏样品;荧光性样品测定一般不适 用,需改用近红外激光激发等等。
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
• 5.6.2 拉曼及瑞利散射机理 • 瑞利和拉曼散射的产生
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
基本原理
1. Raman散射
E1 + h0
Raman散射的两种跃迁 E2 + h0
能量差:
E=h(0 - )
h(0 - )
产 生 stokes 线 ; 强 ; 基 态分子多;
•
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
拉曼光谱的原理和应用
拉曼光谱的原理和应用1. 拉曼光谱的原理拉曼光谱是一种用来分析物质结构和成分的无损分析技术,基于物质与激发光发生散射,从而产生频率偏移的原理。
其原理主要包括以下几个方面:1.1 原子和分子的散射光谱拉曼光谱的原理基于分子和原子能级之间的相互作用。
在激光照射下,物质中的分子或原子将散射光以不同频率的方式返回。
这种散射光的频率与分子或原子的能级差有关。
1.2 可视化分子/晶格的振动模式拉曼光谱可以提供关于分子或晶格振动模式的信息。
当分子或晶格发生振动时,它们会在散射光中引起频率的变化。
通过测量这些频率的变化,可以推断出分子或晶格的结构和性质。
1.3 拉曼散射的选择规则拉曼散射具有一些特殊的选择规则。
根据这些规则,只有那些在对称群的表示中具有非零矩阵元的振动模式才能产生明显的拉曼散射。
1.4 拉曼光谱的特点拉曼光谱具有以下几个特点:•非破坏性:拉曼光谱是一种非破坏性的分析技术,可以对样品进行实时、在线的观测和分析,不会对样品造成永久性损坏。
•高分辨率:拉曼光谱具有很高的分辨率,可以区分出非常接近的波数峰,从而提供详细的结构信息。
•快速性:拉曼光谱分析速度快,只需几秒钟就可以得到样品的光谱信息。
2. 拉曼光谱的应用拉曼光谱是一种非常重要的光谱分析技术,被广泛应用于物质科学、生物医学、环境监测等领域。
以下列举了一些拉曼光谱的常见应用:2.1 化学物质分析拉曼光谱可以用于化学物质的定性和定量分析。
通过比对样品的光谱图与已知物质的光谱数据库,可以确定样品的成分和结构。
这对于药物研究、环境污染物分析等具有重要意义。
2.2 药物研究拉曼光谱在药物研究中被广泛应用。
通过测量药物的拉曼光谱,可以了解药物的成分、结构和稳定性,进一步优化药物的合成和制备过程。
2.3 生物医学应用拉曼光谱在生物医学领域具有重要的应用价值。
通过测量生物组织或体液的拉曼光谱,可以诊断疾病、检测肿瘤、鉴定细菌等。
由于拉曼光谱是非破坏性的,因此可以实时监测药物的疗效。
拉曼光谱课件
• 红外光谱图中主要研究振动中有偶极矩 变化的化合物,因此,除了单原子分子 和同核分子外,几乎所有的化合物在红 外光区均有吸收。
拉曼光谱与红外光谱分析方法比较
拉曼光谱 光 谱 范 围 40-4000C m -1
激光拉曼光谱基本原理
principle of Raman spectroscopy
激发虚态
h(0 - )
Rayleigh散射:
E1 + h0
弹性碰撞;无 能量交换,仅改变 方向; Raman散射:
非弹性碰撞; 方向改变且有能量
E0 + h0 h0
h0 h0
h0 +
E1
V=1
E0
V=0
Rayleigh散射
4
动模式较低。
三、 仪器结构与原理
高压电源
凹面镜 样品
单色仪
光电倍增管
驱动电路
光子计数器
激
光
器
计算机
显示器
仪器组成
– 激光拉曼光谱仪的基本组成有激光光源,样品 室,单色器,检测记录系统和计算机五大部分。
– 拉曼光谱仪中最常用的是He~Ne气体激光器。 – 其输出激光波长为6328埃,功率在100mW以下。
– 在激光拉曼光谱中,完全自由取向的分子所散射的光 也可能是偏振的,因此一般在拉曼光谱中用退偏振比 (或称去偏振度)ρ表征分子对称性振动模式的高低。
I I //
I•∥和I⊥ —3 —的分谱别带代称表为与偏激光振电谱矢带量,平表行示和垂分直子的有谱较线高的的强度 对称振4 动模式 。
拉曼光谱原理与应用
拉曼光谱原理与应用光谱分析是一种通过测量物质与光的相互作用来研究物质性质的方法。
在光谱分析中,拉曼光谱因其独特的原理和广泛的应用而备受关注。
本文将全面介绍拉曼光谱的原理、仪器设备以及在不同领域中的应用。
一、拉曼光谱的原理拉曼光谱是指当光线与物质作用时,光的频率发生改变并散射的现象。
这种频率改变称为拉曼散射,其产生的原因是分子或晶体结构的振动或旋转。
具体来说,光与物质发生相互作用时,部分光子与物质的分子或晶格发生能量交换,使得被散射的光子频率发生改变。
而这种频率变化所携带的信息,可以用来研究物质的组成、结构以及状态。
二、拉曼光谱的仪器设备为了获得高质量的拉曼光谱数据,需要使用一些专门的仪器设备。
典型的拉曼光谱仪通常包括以下几个部分:1. 激光器:激光器是产生高强度和单色性光线的关键组成部分。
常用的激光器有氩离子激光器、固体激光器和半导体激光器等。
激光的选择应根据样品的特性和研究的目的来确定。
2. 光学系统:光学系统通常由透镜、准直器、滤光片等组成。
其主要功能是对光进行聚焦、准直和滤波,以保证光在样品表面的合适条件下进行相互作用。
3. 光谱仪:光谱仪是将散射光分离成不同频率的设备。
常用的光谱仪包括单色仪、衍射光栅、光电倍增管等。
光谱仪的性能决定了拉曼光谱信号的质量和分辨率。
三、拉曼光谱的应用拉曼光谱广泛应用于各个领域,如物理化学、材料科学、生物医学等,具有非常重要的意义。
1. 物理化学应用:拉曼光谱可以用于分析物质的结构和组成。
通过测量样品的拉曼光谱,可以获得有关物质分子振动状态的信息,帮助研究人员了解分子之间的相互作用和化学键的性质。
此外,拉曼光谱还可以用于表面增强拉曼光谱(SERS)的分析,提高灵敏度和检测限。
2. 材料科学应用:拉曼光谱在材料科学领域中具有广泛应用。
通过对材料的拉曼光谱分析,可以获得有关材料晶格振动和晶格结构的信息,揭示材料的物理特性和相变行为。
同时,拉曼光谱还可以用于研究材料的缺陷和应力状态,为材料设计和改进提供重要参考。
Raman拉曼光谱 ppt课件
Stokes线
Rayleigh线
斯托克斯线 = 0-△
●分子由激发态跃迁到基态
反斯托克斯线 =0+△
△-拉曼位移
0- ppt课件 0
h0
振动
激发态
h△ 基态
Anti-stokes线
0+ 10
从光的波动性分析拉曼散射的产生:
分子在光电场E中, 产生诱导偶极矩即感应偶极矩
部分4反射镜
激光器的选频作用
激励3 能源
激光的特性: 单色性好,相位一致,方向性好,亮度高
ppt课件
7
第三节 激光拉曼光谱原理
一、光的散射
光散射是自然界常见的现象.当一束光照射介质时,除被吸收之外, 大部分被反射或透过,另一部分光被介质向四面八方散射.在散射光 中,大部分是瑞利散射,小部分是拉曼散射.
ppt课件
11
三、拉曼光谱图与拉曼位移
拉曼光谱图以散射强度为纵
标,拉曼位移为横标,瑞利线 位置为零点。一幅完整的拉曼 光谱包括瑞利线,斯托克斯线 ,反斯托克斯线。
• 瑞利线强度最大,△ = 0
• 斯托克斯线和反斯托克斯线 对应,完全对称地分布于瑞利 线两侧。
• 反斯托克斯线比斯托克斯线 弱得多,一般记录的拉曼光谱只 取斯托克斯线,且略去负号.
●由于光谱产生的原理不同, 故拉曼光谱在分析方法和适用范围等
方面与红外光谱相比, 有其独到之处.
ppt课件
2
● 拉曼光谱的发展
1928年,印度物理学家Raman首次发现Raman散射效应,1930年获诺 贝尔奖. 但由于拉曼散射光仅为入射光强的10-10, 当时所用光源 强度不高,产生的拉曼效应太弱,故很快被红外光谱所取代.
拉曼(Raman)光谱2000
O=C=O
对称伸缩
偶极距不变无红外活性
O=C=O
反对称伸缩
偶极距变有红外活性
极化率变有拉曼活性 极化率不变无拉曼活性
三、Raman光谱仪结构
1. 色散型激光Raman光谱仪
结 构 框 图
● 机
记录仪
结 构 示 意 图
●
● 主要组件
1. 激光器:
Raman光谱仪通常采用连续波气体激光器,它们的单色性和
狭缝,即可得到指定微区的Raman光谱.
结构特点:
光学显微镜:局部放大
自动移动平台:便于微区分析 高低温控制系统:可在77~573K范围内实现在线测量 激光器: He-Ne激光器( 632.8nm ) Ke+激光器( 532nm)
五、Raman光谱的特点及应用 主要特点:
快速分析、鉴别各种无机、有机、生物材料的结构
0
Q Q 0
(3) (4)
其中
Q A exp[i(2vt q r )]
将(2)、(3)、(4)式代入(1)式可得:
P E0i exp[i(2 i t ki r )] Q
对任何分子可粗略地用下面的原则来判断其拉曼或红外活性:
相互排斥规则:凡具有对称中心的分子,若其分子振动对
拉曼是活性的,则其红外就是非活性的。反之,若对红外
是活性的,则对拉曼就是非活性的。
相互允许规则:凡是没有对称中心的分子,则可能有一些 振动对Raman和红外都是活性的。
相互禁阻规则:对于少数分子振动,其红外和拉曼光谱都 是非活性的。
瑞利散射 反stokes散射
拉曼光谱原理和应用
2020/3/5
2020/3/5
2020/3/5
2020/3/5
拉曼测量的是什么?
Real States 真实能级
Virtual State 虚能级
Mid IR Stokes Raman 红外 斯托克斯拉曼
Rayleigh Anti-Stokes Raman 瑞利散射 反斯托克斯拉曼
2020/3/5
拉曼光谱的信息
拉曼频率 的确认
物质的组成
parallel perpendicular
拉曼偏振
拉曼峰宽
晶体对称性和取向 晶体质量好坏
2020/3/5
拉曼峰强度
物质总量
拉曼光谱的优点和特点
对样品无接触,无损伤; 样品无需制备; 快速分析,鉴别各种材料的特性与结构; 能适合黑色和含水样品; 高、低温及高压条件下测量; 光谱成像快速、简便,分辨率高; 仪器稳固,体积适中, 维护成本低,使用简单。
2020/3/5
拉曼光谱的主要困难
• 拉曼散射信号弱(比荧光光谱平均小2-3数量级)。
• 激光激发强。
• 拉曼信号频率离激光频率很近。
• 激光瑞利散射比拉曼信号强1010-1014,对拉曼信号干扰很 大。
• 拉曼光谱仪器的设计,必须能排除瑞利散射光,并具有高 灵敏度(体现在弱信号检测的高信噪比 ),才能有效地收 集拉曼谱。
2020/3/5
拉曼光谱仪器
• 拉曼光谱仪器的构成:
1、激发光源 2、光学系统 3、分光仪 4、探测器 5、计算机处理系统
2020/3/5
拉曼光谱仪结构方框图
控制及数据处理 记录系统
光子计数器 直流放大器
记录系统
样品
样后集光 装置
拉曼光谱技术的原理与应用
拉曼光谱技术的原理与应用近年来,随着科技的发展,各种仪器与技术被广泛应用于各行各业。
在工业、化学、生物、医学等领域中,拉曼光谱技术成为一种重要的分析手段。
本文将介绍拉曼光谱技术的原理以及在不同领域的应用。
拉曼光谱技术是通过测量样品表面散射光的频率和强度来获取样品的化学信息。
这种光谱技术基于拉曼散射效应,即当物质受到激发光源照射时,样品分子发生振动或转动,导致光的能量发生微弱的散射。
拉曼光谱通过测量这种散射光的频移和强度变化,来分析样品中分子的组成、结构和状态。
拉曼光谱技术的原理基于散射光的拉曼散射效应,包括斯托克斯拉曼散射和反斯托克斯拉曼散射。
斯托克斯拉曼散射是指散射光的频率低于入射光,而反斯托克斯拉曼散射则是指散射光的频率高于入射光。
这种散射光的频率差距与样品中的分子振动频率相关,通过测量频移可以得到样品的化学信息。
在化学领域,拉曼光谱技术被广泛用于分析物质的结构和组成。
比如,通过拉曼光谱可以快速确定化合物的成分,并判断其纯度和品质。
此外,拉曼光谱还能用于检测样品中的杂质或污染物,并实现定量分析。
拉曼光谱技术的非接触性和非破坏性特点,使其在化学合成、药物研发和质量控制等方面有着广泛的应用潜力。
在生物科学中,拉曼光谱技术可用于研究生物大分子的结构和功能。
通过拉曼光谱可以非侵入地探测细胞和组织中的分子信息,从而实现对细胞活性、代谢状态和疾病变化等的研究。
例如,通过拉曼光谱可以鉴定肿瘤细胞与正常细胞的差异,实现早期癌症的诊断与治疗监测。
此外,在食品科学和农业领域,拉曼光谱技术也可以用于食品成分的检测与分析,以及农作物的检测和品质评估。
在材料科学与工程中,拉曼光谱技术在材料表征和分析方面具有重要应用价值。
通过拉曼光谱可以了解材料的晶体结构、化学成分和相变等信息。
在材料制备过程中,拉曼光谱可用于监测材料的合成反应、晶体生长和物质转化等。
此外,拉曼光谱还可以用于材料质量控制和疲劳损伤分析等方面。
总之,拉曼光谱技术以其快速、非侵入性和非破坏性的特点,在各个领域具有广泛的应用潜力。
拉曼光谱原理和应用ppt课件
拉曼光谱和拉曼效应
• 拉曼散射
发分光子照对拉射光曼分子散子的射时一是,种分一 弹子部性对分散光散射子射。的光只一的有种频分非率子弹(和性光散 子散射间)效的和应碰入。撞射当为光用弹的一性频定碰率频撞相率,等(没。有这激 能种)量散的交射激换是
时,才会出现这种散射。该散射称为瑞利散射。还有一部分散射光的频率和激发光 的频率不等,这种散射成为拉曼散射。Raman散射的几率极小,最强的Raman散 射也仅占整个散射光的千分之几,而最弱的甚至小于万分之一。
• 散射光中,弹性 (瑞利) 散射占主导
• 前… 后… 入射光
散射光
分子
分子
• 散射光与入射光有相同的频率
.
emission
excitation
光散射 - 拉曼
• 散射光中的1010光子之一是非弹性散射(拉曼) • 前… 后…
入射光
分子
• 光损失能量,使分子振动
.
分子振动
散射光
ssion
excitation excit.-vib.
.
拉曼光谱的主要困难
• 拉曼散射信号弱(比荧光光谱平均小2-3数量级)。
• 激光激发强。
• 拉曼信号频率离激光频率很近。
• 激光瑞利散射比拉曼信号强1010-1014,对拉曼信号干扰很 大。
• 最常用的红外及拉曼光谱区域波长是2.5~25μm。(中红外区)
• 分子能级与分子光谱
分子运动包括整体的平动、转动、振动及电子的运动。分子总能量可近似看成是这些运动的 能量之和,即
式中 E t E e E v E r
E 总 = E t + E e E v E r
分别代表分子的平动能、电子运动能、振动能和转动能。除E t 外,其余三项都是量子化的,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拉曼光谱学——原理及应用HORIBA Jobin Yvon北京办事处报告内容¾1-什么是拉曼光谱? –简单介绍¾2-拉曼光谱仪工作原理介绍¾3-拉曼光谱在材料研究中的应用介绍¾4-HORIBA Jobin Yvon拉曼光谱仪简介1928年,印度科学家C.V Raman in首先在CCL 4光谱中发现了当光与分子相互作用后,一部分光的波长会发生改变(颜色发生变化,通过对于这些颜色发生变化的散射光的研究,可以得到分子结构的信息,因此这种效应命名为Raman效应。
时间和发现人?Provided by Prof. D. Mukherjee, Director of Indian Association for the Cultivation of Scienceλlaserλscatter >λlaser瑞利散射λscatter = λlaser 拉曼散射光散射的过程:激光入射到样品,产生散射光。
散射光弹性散射(频率不发生改变-瑞利散射非弹性散射(频率发生改变-拉曼散射2 0004 0006 0008 00010 000I n t e n s i t y (c n t 400 600Raman Shift (cm -1520不同材料的拉曼光谱有各自的不同于其它材料的特征的光谱-特征谱z 为表征和鉴别材料提供了指纹谱z 深入开展光谱学和材料物性研究打下基础133215802000015000100005000100012001400160018002000Wavenumber (cm-1•组分信息•结构信息羰基伸缩线宽=>结晶度碳环伸缩模式乙二醇模式:结构的指示剂B gB gPET的拉曼光谱--官能团拉曼是指纹光谱2000015000100005000500100015002000250030003500νi = νo -ν(cm -1500 1000 1500 2000 2500 3000 3500 20000150001000050000I n t e n s i t y (A .U .OH stretchingCH3 StretchingModesSkeletalBendingCCO modesOH BendingCH3 and CH2 Bending Modes甲醇vs. 乙醇CH 3OH vs.CH 3CH 2OH¾化学组成,污染物探测...¾振动频率可以给出结构的细微变化,对于分子所处的局域环境,比如晶相,局域应力和结晶度等都很敏感¾结构信息(晶体、无定形、同分异构体…定性的信息:拉曼光谱是物质结构的指纹光谱定量的信息:可以通过光谱校正,得到准确的应力大小和浓度分布Band postionband PositionshiftI n t e n s i t yBand WidthRaman shift拉曼光谱的特征拉曼频移峰位与激发波长没有关系3500030000250002000015000100005000I n t e n s i t y (a .u .50010001500200025003000 Wavenumber (cm-1 633 nm250002000015000100005000I n t e n s i t y (a .u . 50010001500200025003000 Wavenumber (cm-1 785 nm 70000600005000040000300002000010000I n t e n s i t y (a .u .50010001500200025003000Wavenumber (cm-1532 nm多激发波长:选择适合的激发波长•一般情况,拉曼光谱是不随激发波长的变化而变化的然而…•I Raman α1/λ4•UV or NIR激发可以避开荧光的干扰•不同λexcitation 可以分析样品不同层的信息2-拉曼光谱仪的工作原理拉曼光谱测量原理:激光样品滤光装置光栅探测器•瑞利滤光片(去除瑞利散射光-颜色不发生改变的光•耦合光路-光照射到样品,收集散射光(大光路和显微光路•光源-(太阳光-Hg灯-激光•光谱仪和探测器一般为单光栅光谱仪和CCD 探测器几个拉曼实验中的重要因素•1-灵敏度•2-光谱分辨率•3-空间分辨率影响:准确性、取谱速度、空间分辨效果不得不说的话——任何一次拉曼光谱实验中都会遇到的问题1 0002 0003 0004 0005 0006 0007 0008 0009 00010 00011 00012 000I n t e n s i t y (c n t200250300350400450500550Raman Shift (cm -1sic11-532 1800sic11-532 60005001 0001 5002 0002 5003 0003 5004 000I n t e n s i t y (c n t555560565570575580585Raman Shift (cm -1sic11-532 1800sic11-532 600分辨率为2 cm -1普通分辨率分辨率为0.65 cm -1高分辨率SiC 的拉曼光谱图光谱分辨率吉林大学样品1 0002 0003 0004 0005 0006 0007 000I n t e n s i t y (c n t2004006008001 0001 2001 4001 6001 800Raman Shift (cm -1CaCO3-1800CaCO3-600红色:分辨率(2cm-1模式兰色:高分辨率(0.65 cm-1模式190200210220230240Raman Shift (cm -1CaCO3-1800CaCO3-600光谱分辨率010 -8567 9966 -219怎样找到一台高分辨的拉曼谱仪?光谱仪的焦长:250mm、300mm、460mm、800mm……2m 密决?空间分辨率(共焦技术共焦针孔微区空间分辨率?非聚焦共焦技术可以实现:•得到更好的横向分辨率(<1µm•极大的提高了纵向分辨率(‾2 µm•有效地减少荧光干扰应用中可以解决:¾微米和亚微米颗粒¾可以研究材料中的包裹体¾XY 和Z 成像: 相分布和结构分布,多层膜样品分析x10351015I n t e n s i t y (c n t-40-30-20-100Z (祄x10-335I n t e n s i t y (c n t10001200140016001800Raman Shift (cm -1700800900I n t e n s i t y (c n t 1000 1200140016001800Raman Shift (cm -1好的共焦状态清晰的界面结果! ——寻找好的共焦技术?高分子多层膜高分子多层膜共焦状态不好界面?05 00010 00015 00020 000I n t e n s i t y (c n t-40-30-20-10Z (祄3-拉曼光谱在材料研究中的应用介绍拉曼光谱应用领域:1:半导体材料; 2:聚合体;3:碳材料; 4:地质学/矿物学/宝石鉴定;5:生命科学; 6:医药;7:化学;8:环境;9:物理10:考古;11:薄膜;12: 法庭科学:违禁药品检查;区分各种颜料,色素,油漆,纤维等;爆炸物的研究;墨迹研究;子弹残留物和地质碎片研究1-聚合物,高分子拉曼光谱应用-鉴定不同材料在纤维材料中通常使用的材料的拉曼光谱100008000600040002000500100015002000250030003500Nylon6尼龙Kevlar合成纤维Pstyrene聚苯乙烯PETPaper纸纤维Ppropylene丙烯PE/EVA聚乙烯Only one point of the sample is illuminated by the laser and the corresponding spectrum is recorded -takes full advantage of confocal filtering DetectorSpectral imagePoint by point illumination : Sample rastering in x and y拉曼光谱成像方法Sample on XY motorised stageGratingImagingAccessories高分子聚合物Video Image of Polymer matrix-Blue box indicates mapped areaRaman Mapping usesthe confocal Ramanmicroscope to analyzediscrete points acrossa sample surface.200015001000500500100015002000Wavenumber (cm-18000600040002000500100015002000Wavenumber (cm-1Single spectrum Component 1Single spectrum Component 2The Raman map consists of the superimposed spectra of the both components.The cursors than can be used to generateRaman mapped imagesBecause of confocality the Raman map can show very exactly the localization of comp. 1 and 2(spatial resolution at λex = 633 nm 0.8 µm lateral and 1.2 µm axial高分子聚合物2030405060L e n g t h Y (祄4050607080Length X (祄Confocal Raman mapped image generated from two different spectral bands observed in the polymer matrix.The software is used to overlay the two component maps, green and blue.White light Image高分子聚合物2-纳米材料0.00.51.01.52.02.53.0I n t e n s i t y (c n t /s e c 5001 0001 5002 000Raman Shift (cm -1碳纳米管研究Radial Breathing ModeTube Diametern Tangential Modes (G-ModesElectronic propertieso D-bandInfo on defectsp不同管径的碳纳米管与不同激发波长共振,因此可以通过不同激发波长研究不同手性和管径的碳纳米管Density of electron statesE n e r g yv 2v 1c 1c 2543210-1-2-3-4-50 2 4 6 8 10ConductionValence玻尔半径e-+d t RadiusTuneable BandgapCNT的拉曼光谱和荧光光谱共点测量250200150100500I n t e n s i t y (c o u n t s /s11001200130014001500Wavelength (nm14012010080604020I n t e n s i t y (c o u n t s /s50010001500Wavenumber (cm-1数据来自Prof. Honda, Tokyo University of SciencePL 光谱和拉曼光谱对于CNT的管径和手性都非常敏感RamanPL由于SWCNTs的发光范围集中在1.0 to 1.6 um, 所以有很大的应用前景. (Arrows mean CNT bandLabRAM 系列可以共点测量Raman 光谱和PL光谱794nm~914nm CCD detector1100nm~1550nm InGaAs detector激发光: 785nmSi 片表面单根碳纳米管分布•SWNTspectra5 祄25303540L e n g t h Y (祄1520253035Length X (祄8060402005 祄25303540L e n g t h Y (祄1520253035Length X (祄151055 祄25303540L e n g t h Y (祄1520253035Length X (祄50403020100157.8264.8167.560 50403020100I n t e n s i t y (a .u . 160180200220240260 Wavenumber (cm-1 262.9-270.6 cm-1 165.6-169.5 cm-1 157.8-161.7 cm-1 RB mode1596.51587.6 1563.55004003002001000I n t e n s i t y (a .u . 15001520154015601580160016201640Wavenumber (cm-11589.51578.05004003002001000I n t e n s i t y (a .u . 15001520154015601580160016201640Wavenumber (cm-12 1594.1 1581.0 5004003002001000I n t e n s i t y (a .u . 15001520154015601580160016201640Wavenumber (cm-1G bandSWCNTs of different d t are isolated on a Si wafer Single SWCNTislands单根GaN 纳米线的偏振拉曼光谱成像[509-552]cm -1A 1(TO[558-575]cm -1E 2(high[509-552]cm -1A 1(TO[558-575]cm -1E 2(highY(ZZY Y(ZZY Y(XXY Y(XXY Jobin-Yvon LabRAM HR800 + inverted microscope, x100, 0.9 NAFrançois Lagugné-Labarthet et al. UniVersitéBordeaux, France3-医药学-药物成分分布这个光谱成像显示了药片中3种成分的分布:淀粉; 纤维素; MgStearate(药物成分.-350-300-250-200-150-100-500Y (祄-300-200-1000X (祄20 祄左图:包裹体白光像点1(绿点:气相对应光谱中的蓝色线点2(红点:液相对应光谱中的红色线4-矿物包裹体中的气泡研究沟槽宽度350 nm,间距250nm.白光像Video image : one spectrum has been recorded each 10 nm.Sample courtesy of ATMEL Rousset/ Universite Paul CEZANNE182022242628L e n g t h Y (祄262830323436Length X (祄有图形的Si片表面应力研究22.722.822.923.0L e n g t h Y (祄30.531.031.532.0Length X (祄3000 2500200015003000250020001500280026002400220020001800I n t e n s i t y (c o u n t s /s 30.531.031.532.0Length X (祄250nm350 nm5-应力研究应力研究(形变-0.8-0.6-0.4-0.200.20.40.60.81-350-250-150-5050150250350Stress (MPaF r e q u e n c y S h i f t (c m -1COMPRESSION TENSION•压应力:键长减小,峰位向高波数方向移动•张应力:键长变长,峰位向低波数方向移动测厚度&无损方法???特殊应用中独辟傒径!!!510152025305165175185195205210.0050.0100.0150.0200.0255005205402000400060008000R a m a n S h i f t (c m -1 Laser Power (mWSpectrum Width (cm -12.6mW 6.5mW 13mW 26mWI n t e n s i t y (a .u .Raman Shift (cm -120040060080010001.52.02.53.03.54.0T h i c k n e s s (μmBeam Spot Position (μmRaman Spectroscopy SEM清华大学微电子系的MEMS器件选择不同激发波长-应力研究Laser WavelengthSi Ge nm nm nm 633300051476219.245731318.7325~10~15244~1Penetration Depth In strain measurement for sSi and SiGe, the laser used will mostly depend on the penetration depth . UV is usually a method of choice due to its little penetration in Silicon and Germanium6-拉曼光谱在欧莱雅产品研发中的应用stratum corneum(5 -15 μmepidermis (40 -1000 μmdermis (1 -4 mmsubcutaneous fat CH2/proteinOH/water20µmSurface: 0µm表面增强拉曼(SERS简介•什么是表面增强? SERS 效应是在激发区域内,由于样品表面或近表面的电磁场的增强导致的拉曼散射信号极大的增强.•怎么得到表面增强?-远小于激发波长的金属颗粒(Au, Ag会使电磁场增强-增强的电磁场可以使在金属颗粒表面的分子拉曼信号极大的增强-激光激发了金属表面的等离子体I‾PRamanP (电子偶极子= α(分子极化率.Ε(内电场活细胞内药物与细胞的相互作用2 祄6004002001000 1200 1400 1600 Wavenumber/ cm-1 Ramanintensity/a.u.freeintracell.*Intensity of the band (*:1296-1306 cm -11000HORIBA Jobin Yvon 拉曼光谱仪介绍专家级 T64000 高性能三级拉曼光谱仪研究级 LabRAM HR (高分辨单级拉曼光谱仪研究级 LabRAM ARAMIS(全自动研究级 LabRAM XploRA(智能型。