八年级数学上 等腰三角形和等边三角形的轴对称性
人教版八年级数学上册 第十三章 轴对称 等腰三角形 等边三角形第2课时 含30°角的直角三角形的性质
6.(丹东中考)如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰 好平分∠BAC.若DE=1,则BC的长是__3__.
7.将一副三角尺按如图所示叠放在一起,若AB=10 cm,则阴影部分的面积是 ____1_2_._5_c_m_2_.
8.如图,在 Rt△ABC 中,∠C=90°,过点 C 作 CD⊥AB 于点 D,添加一 个你认为适当的条件,并利用此条件说明 BD=14 AB.
解:当∠A=30°时,BD=14 AB,理由如下:∵∠A=30°,∠ACB=90°,∴ ∠B=60°,在 Rt△ABC 中,BC=12 AB.又 CD⊥AB,∴∠CDB=90°,∴∠BCD= 30°,则 BD=12 BC,∴BD=12 ×12 AB=41 AB
9.如图,△ABC为等边三角形,AE=CD,AD,BE相交于点P,BQ⊥AD于点 Q,PQ=3,PE=1,求AD的长.
10.如图,在△ABC中,AB=AC,△BEN的边BN在BC上,点E在△ABC的内 部,∠E=∠EBC=60°,AD平分∠BAC交EN于点D,若BE=6 cm,DE=2 cm, 求BC的长.(提示:延长AD交BC于点M)
解:延长 AD 交 BC 于点 M,∵AB=AC,AD 是∠BAC 的平分线,∴AM⊥BC,BM =MC=12 BC,∵∠E=∠EBN=60°,∴△BEN 为等边三角形,∴EN=BN=BE=6 cm, ∴DN=6-2=4(cm),在 Rt△DMN 中,∠BND=60°,∴∠MDN=30°,∴MN=12 DN =12 ×4=2(cm),∴BC=2BM=2(BN-MN)=2×(6-2)=8(cm)
解:∵△ABC 为等边三角形,∴∠BAC=∠C=60°,AB=AC.又∵AE=CD,∴ △ABE≌△CAD(SAS),∴∠ABE=∠CAD,BE=AD.∴∠BPQ=∠BAP+∠ABE= ∠BAP+∠CAD=∠BAC=60°.又∵BQ⊥PQ,∴∠AQB=90°,∴∠PBQ=30°, ∴PQ=12 PB,∴PB=2PQ=6,∴BE=PB+PE=6+1=7,∴AD=BE=7
人教版八年级上册数学《等边三角形》轴对称教学说课复习课件
课件
知识回顾
什么是等边三角形?它与一般三角形有什么区别?
课件
课件
课件
课件
课件
课件
课件
个人简历:课件/jianli/
课件
课件
手抄报:课件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
一般三角形
等腰三角形
{ 底≠腰
一般 有二条边相等 等腰
三角形
三角形 底=腰
等边三角形
∴有一个角等于60°的等腰三角形是等边三角形
当∠B=60°时,∠C=∠B=60°
归纳总结
由此得出,等边三角形的判定:有一个角是60°的等腰三
角形是等边三角形。
几何语言:
∵AB=AC,∠A=60°(∠B=60°或者∠C=60°)
∴AB=AC=BC(有一个角等于60°的等腰三角形是等边
三角形)
合作探究
∴∠B=∠C
当∠A=60°时,又∵∠A+∠B+∠C=180°
1
2
∠A=180°-∠B-∠C=180°-60°-60°=60°
∴∠A=∠B=∠C=60°
∴∠B=∠C= (180°-60°)=60°
∴△ABC是等边三角形.
∴∠A=∠B=∠C=60°
当∠C=60°时,同理可得△ABC是等边三角形
∴△ABC是等边三角形
(1)求∠F的度数;
(2)若CD=2,求DF的长.
解:(1)∵△ABC为等边三角形
(2)∵ ∠DEC= 60°, ∠DEF= 90°,
∴∠A=∠B=∠ACB=60°,
∴∠CEF=30°=∠F,
八年级数学等腰三角形和等边三角形的轴对称性
初二数学等腰三角形和等边三角形的轴对称性江苏科技版【本讲教育信息】教学内容:等腰三角形和等边三角形的轴对称性[目标]探索等腰三角形及其特殊形式一一等边三角形的轴对称性及其相关性质。
•重、难点:1. 等腰三角形及其性质和一个三角形是等腰三角形的条件;2. 等边三角形的概念及其性质。
三.知识要点:1. 等腰三角形(1)等腰三角形是轴对称图形。
顶角平分线所在直线是它的对称轴。
(2)等腰三角形的性质(等腰三角形的判别法)①等腰三角形的顶角平分线、底边上的中线、高重合,它们都是等腰三角形的对称轴。
(简称“三线合一”)②等腰三角形的两底角相等。
(简称“等边对等角”)③如果一个三角形有两个角相等,那么这两个角所对的边也相等。
(简称“等角对等边”) ☆ ( 3)直角三角形斜边上的中线等于斜边的一半。
2. 等边三角形(a)三边相等的三角形叫做等边三角形或正三角形。
等边三角形是一种特殊的等腰三角形。
(b)等边三角形特殊的性质:①等边三角形是轴对称图形,并且有3条对称轴。
②等边三角形各角相等,并且每一个角都等于60 o(有一个角是60的等腰三角形是等边三角形)【典型例题】例1.已知等腰三角形的周长为10cm,那么当三边为正整数时,它的边长为( )(A)2, 2, 6 ( B) 3, 3, 4(C) 4, 4, 2 ( D) 3, 3, 4 或4, 4, 2分析:可采用排除法。
三角形两边之和大于第三边,两边之差小于第三边。
2, 2, 6不满足;而3,3,4或4, 4, 2都满足题意。
答:选D。
例2. O为锐角△ ABC的/ C平分线上一点,0关于AC、BC的对称点分别为P、Q,则△ POQ - -定是( )(A)等边三角形(B)等腰三角形(C)直角三角形(D)等腰直角三角形分析:设OP、0Q分别交AC、BC于E、F,由线段的对称轴是它的垂直平分线知:1 1OE_AC,且0E = 0P;同理OF_BC,且OF = 0Q;2 2由角平分线的性质知:0E = OF,贝U 0P= 0Q。
新人教版八年级数学上册第十三章《轴对称》知识点归纳并练习
第十三章(精编)轴对称《轴对称、线段垂直平分线、、等腰三角形、等边三角形》轴对称图形如果一个图形沿某一条直线折叠,直线两旁的部分能够互相重合,•这个图形就叫做轴对称图形,这条直线就是它的对称轴.有的轴对称图形的对称轴不止一条,如圆就有无数条对称轴.轴对称有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,•那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.图形轴对称的性质如果两个图形成轴对称,•那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。
轴对称与轴对称图形的区别轴对称是指两个图形之间的形状与位置关系,•成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.考点一、关于“轴对称图形”与“轴对称”的认识1.下列几何图形中,○1线段○2角○3直角三角形○4半圆,其中一定是轴对称图形的有【】A.1个B.2个C.3个D.4个2.图中,轴对称图形的个数是【】A.4个 B.3个 C.2个 D.1个3.正n 边形有___________条对称轴,圆有_____________条对称轴线段的垂直平分线 (1)经过线段的中点并且垂直于这条线段的直线,•叫做这条线段的垂直平分线(或线段的中垂线).(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,•与一条线段两个端点距离相等的点在这条线段的垂直平分线上.因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.考点二、线段垂直平分线的性质4.如图,△ABC 中,∠A =90°,BD 为∠ABC 平分线,DE ⊥BC ,E 是BC 的中点,求∠C 的度数。
浙教版初中数学八年级上册等腰三角形性质定理(基础)知识讲解
等腰三角形性质定理(基础)【学习目标】1. 了解等腰三角形的有关概念, 掌握等腰三角形的轴对称性2.利用轴对称变换推导等腰三角形的性质,并加深对轴对称变换的认识.3. 掌握等腰三角形的下列性质:等腰三角形的两个底角相等;等腰三角形三线合一.4. 会利用等腰三角形的性质进行简单的推理、判断、计算和作图.【要点梳理】要点一、等腰三角形的定义1.等腰三角形有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.如图所示,在△ABC中,AB=AC,△ABC是等腰三角形,其中AB、AC为腰,BC为底边,∠A是顶角,∠B、∠C是底角.2.等腰三角形的作法已知线段a,b(如图).用直尺和圆规作等腰三角形ABC,使AB=AC=b,BC=a.作法:1.作线段BC=a;2.分别以B,C为圆心,以b为半径画弧,两弧相交于点A;3.连接AB,AC.△ABC为所求作的等腰三角形.3.等腰三角形的对称性(1)等腰三角形是轴对称图形;(2)∠B=∠C;(3)BD=CD,AD为底边上的中线.(4)∠ADB=∠ADC=90°,AD为底边上的高线.结论:等腰三角形是轴对称图形,顶角平分线(底边上的高线或中线)所在的直线是它的对称轴.4.等边三角形三条边都相等的三角形叫做等边三角形.也称为正三角形.等边三角形是一类特殊的等腰三角形,有三条对称轴,每个角的平分线(底边上的高线或中线)所在的直线就是它的对称轴.要点诠释:(1)等腰直角三角形的两个底角相等,且都等于45°,等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A=180°-2∠B,∠B=∠C=1802A︒-∠.(2)用尺规作图时,画图的痕迹一定要保留,这些痕迹一般是画的轻一些,能看清就可以了,题目中要求作的图要画成实线,最后一定要点题,即“xxx即为所求”.(3) 等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形.等边三角形是中考中常考的知识点,并且有关它的计算也很常见,因此对于等边三角形的特殊数据要熟记于心,比如边长为a2.【:389301 等腰三角形的性质及判定,知识要点】要点二、等腰三角形的性质1.等腰三角形的性质性质1:等腰三角形的两个底角相等,简称“在同一个三角形中,等边对等角”.推论:等边三角形的各个内角都等于60°.性质2:等腰三角形的顶角平分线、底边上中线和高线互相重合.简称“等腰三角形三线合一”.2.等腰三角形的性质的作用证明两条线段或两个角相等的一个重要依据.3.尺规作图:已知底边和底边上的高已知线段a,h(如图)用直尺和圆规作等腰三角形ABC,使底边BC=a,BC边上的高线为h.作法:1.作线段BC=a.2.作线段BC的垂直平分线l,交BC与点D.3.在直线l上截取DA=h,连接AB,AC.△ABC就是所求作的等腰三角形.【典型例题】类型一、等腰三角形中有关度数的计算题【:389301 等腰三角形的性质及判定:例1】1、如图,在△ABC中,D在BC上,且AB=AC=BD,∠1=30°,求∠2的度数.【答案与解析】解:∵AB=AC∴∠B =∠C∵AB=BD∴∠2=∠3∵∠2=∠1+∠C∴∠2=∠1+∠B∵∠2+∠3+∠B=180°∴∠B=180°-2∠2∴∠2=∠1+180°-2∠2∴3∠2=∠1+180°∵∠1=30°∴∠2=70°【总结升华】解该题的关键是要找到∠2和∠1之间的关系,显然∠2=∠1+∠C,只要再找出∠C与∠2的关系问题就好解决了,而∠C=∠B,所以把问题转化为△ABD的角之间的关系,问题就容易的多了.关于角度问题可以通过建立方程进行解决.【:389301 等腰三角形的性质及判定:例1练习】举一反三:【变式】已知:如图,D、E分别为AB、AC上的点,AC=BC=BD,AD=AE,DE=CE,求∠B的度数.【答案】解:∵AC=BC=BD,AD=AE,DE=CE,∴设∠ECD=∠EDC=x,∠BCD=∠BDC=y,则∠AED=∠ADE=2x,∠A=∠B=180°-4x在△ABC中,根据三角形内角和得,x+y+180°-4x+180°-4x=180°①又∵A、D、B在同一直线上,∴2x+x+y=180°②由①,②解得x=36°∴∠B=180°-4x=180°-144°=36°.类型二、等腰三角形中的分类讨论2、(2016秋•威海期中)在等腰三角形中,已知一个角为40°,那么另两个角的度数是.【思路点拨】由一个等腰三角形内角为40°,分别从40°是等腰三角形顶角与40°是底角的角度去分析求解即可求得答案.【答案与解析】解:(1)当40°的角为顶角时,由三角形内角和定理可知:两个底角的度数之和=180°-40°=140°,又由等腰三角形的性质可知:两底角相等,故每个底角的度数1140702=⨯︒=︒;(2)当40°的角为底角时,另一个底角也为40°,则顶角的度数=180°-40°-40°=100°.∴另两个角为70°,70°或40°,100°.【总结升华】此题考查了等腰三角形的性质.此题比较简单,注意掌握分类讨论思想的应用,小心别漏解.【:389301 等腰三角形的性质及判定:例2(2)】3、已知等腰三角形的周长为13,一边长为3,求其余各边.【答案与解析】解:(1)3为腰长时,则另一腰长也为3,底边长=13-3-3=7;(2)3为底边长时,则两个腰长的和=13-3=10,则一腰长1105 2=⨯=.这样得两组:①3,3,7 ②5,5,3.由三角形三边关系可知:两边之和大于第三边,3+3<7,故不能构成三角形,应舍去.∴等腰三角形的周长为13,一边长为3,其余各边长为5,5.【总结升华】唯独等腰三角形的边有专用名词“腰”“底”,别的三角形没有,此题没有说明边长为3的边是腰还是底,所以做此题应分类讨论.同时结合三角形内角和定理、三角形两边之和大于第三边、两边之差小于第三边,来验证讨论哪些情况符合,哪些情况不符合,从而决定取舍,最后得到正确答案.举一反三:【变式】计算:(1)一个等腰三角形的一边长为8cm,周长为20cm,求其它两边的长.(2)已知等腰三角形的一边长等于6cm,一边长等于7cm,求它的周长.(3)已知等腰三角形的一边长等于5cm,一边长等于12cm,求它的周长.【答案】解:(1)①底边长为8,则腰长为:(20﹣8)÷2=6,所以另两边的长为6cm,6cm,能构成三角形;②腰长为8,则底边长为:20﹣8×2=4,底边长为8cm,另一个腰长为4cm,能构成三角形.因此另两边长为8cm、4cm或6cm、6cm;(2)①6是腰长时,周长=6+6+7=19;②6是底边时,7是腰,周长=6+7+7=20;综上,它的周长为19或20;(3)分两种情况:当腰为5cm时,5+5<12,所以不能构成三角形;当腰为12cm时,12+12>5,12﹣12<5,所以能构成三角形,周长是:12+12+5=29cm.类型三、等腰三角形的性质及其运用4、如图,△ABC是等腰三角形,D,E分别是腰AB及AC延长线上的一点,且BD=CE,连接DE交底BC于G.求证GD=GE.【思路点拨】过E作EF∥AB交BC延长线于F,根据等腰三角形的性质及平行线的性质可推出∠F=∠FCE,从而可得到BD=CE=EF,再根据AAS判定△DGB≌△EGF,根据全等三角形的性质即可证得结论.【答案与解析】证明:过E作EF∥AB交BC延长线于F.∵AB=AC,∴∠B=∠ACB,∵EF∥AB,∴∠F=∠B,∵∠ACB=∠FCE,∴∠F=∠FCE,∴CE=EF,∵BD=CE,∴BD=EF,在△DBG 与△GEF 中,,∴△DGB≌△EGF(AAS ),∴GD=GE.【总结升华】此题主要考查等腰三角形的性质及全等三角形的判定与性质的综合运用.5、如图,已知△ABC 为等边三角形,点D 、E 分别在BC 、AC 边上,且AE=CD ,AD 与BE 相交于点F .(1)求证:△ABE ≌△CAD ;(2)求∠BFD 的度数.【思路点拨】(1)根据等边三角形的性质可知∠BAC=∠C=60°,AB=CA ,结合AE=CD ,可证明△ABE ≌△CAD (SAS ); (2)根据∠BFD=∠ABE+∠BAD ,∠ABE=∠CAD ,可知∠BFD=∠CAD+∠BAD=∠BAC=60°.【答案与解析】(1)证明:∵△ABC 为等边三角形,∴∠BAC=∠C=60°,AB=CA ,即∠BAE=∠C=60°,在△ABE 和△CAD 中,AB CA BAE C AE CD ⎧⎪∠∠⎨⎪⎩===, ∴△ABE ≌△CAD (SAS ).(2)解:∵∠BFD=∠ABE+∠BAD ,又∵△ABE ≌△CAD ,∴∠ABE=∠CAD .∴∠BFD=∠CAD+∠BAD=∠BAC=60°.【总结升华】本题考查三角形全等的性质和判定方法以及等边三角形的性质.判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.举一反三:【变式】如图,将一个钝角△ABC (其中∠ABC=120°)绕点B 顺时针旋转得△A 1BC 1,使得C点落在AB的延长线上的点C1处,连接AA1.(1)写出旋转角的度数;(2)求证:∠A1AC=∠C1.【答案】(1)解:∵∠ABC=120°,CBC1=180°-∠ABC=180°-120°=60°,∴旋转角为60°;(2)证明:由题意可知:△ABC≌△A1BC1,∴A1B=AB,∠C=∠C1,由(1)知,∠ABA1=60°,∴△A1AB是等边三角形,∴∠BAA1=60°,∴∠BAA1=∠CBC1,∴AA1∥BC,∴∠A1AC=∠C,∴∠A1AC=∠C1.。
2022八年级数学上册 第十三章 轴对称13.3 等腰三角形 1等腰三角形第2课时 等腰三角形的判定
13.3 等腰三角形
13.3.1 等腰三角形 第2课时 等腰三角形的判定
知识点一 等角对等边
1.如图,在△ABC中,∠B=∠C,AB=5,则AC的长为( D )
A.2
B.3
C.4
D.5
2.如图,已知OC平分∠AOB,CD∥OB,若OD=8 cm,则CD等于( A )
A.8 cm B.4 cm
C.15 cm
D.20 cm
3.(课本P79练习T1改编)如图,在△ABC中,AB=AC,∠A=36°,BD平 分∠ABC交AC于点D,则图中等腰三角形有___△__A_B_C_,__△__A_B_D_,__△__B_D_C___.
4.如图,在△ABC中,BD⊥AC,∠A=50°,∠CBD=25°,若AC=3 cm,则AB=___3_c_m___.
C.8个
D.9个
考查角度一 等腰三角形的判定 11.如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O, 给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC. (1)上述三个条件中,由哪两个条件可以判定△ABC是等腰 三角形?(用序号写出所有成立的情形) (2)请选择(1)中的一种情形,写出证明过程.
9.在如图所示的三角形中,若AB=AC,则能被一条直线分成①②③
B.①②④
C.②③④
D.①③④
10.在如图所示的正方形网格中,网格线的交点称为格点.已知点A,B是两
格点,如果点C也是图中的格点,且使得△ABC为等腰三角形,那么这样
的点C有( C )
A.6个
B.7个
5.如图,在△ABC中,AB=AC,D是AB上一点,过点D作DE⊥BC于点E, 并与CA的延长线交于点F,试判断△ADF的形状,并说明理由. 解:△ADF是等腰三角形.理由如下:∵AB=AC, ∴∠B=∠C.∵DE⊥BC,∴∠DEB=∠DEC=90°, ∴∠BDE+∠B=90°,∠F+∠C=90°, ∴∠BDE=∠F.∵∠BDE=∠ADF, ∴∠ADF=∠F,∴AF=AD, ∴△ADF是等腰三角形.
人教版八年级数学上册课件 第十三章 轴对称 等腰三角形 等边三角形 第1课时 等边三角形的性质与判定
27 2
(cm)
17.(14分)(原创题)已知△ABC是等边三角形,点D是直线BC上一点, 以AD为一边在AD的右侧作等边三角形ADE.
(1)如图①,点D在线段BC上移动时,求证:CE+CD=AB; (2)如图②,点D在线段BC的延长线上移动时,那么: ①线段CE,CD,AB之间有怎样的数量关系?请加以证明; ②∠DCE的度数为___6_0_°___; (3)如图③,点D在线段BC的反向延长线上移动时,∠DCE的大小是否 发生变化?线段CE,CD,AB之间又有怎样的数量关系?请直接写出结 论.
2.(3分)如图,△ABC是等边三角形,点D在AC边上,∠DBC=35°,
则∠ADB的度数为( ) D
A.25°
B.60°
C.85°
D.95°
3.(3分)如图,已知△ABC是等边三角形,点B,C,D,E在同一直线 上,且CG=CD,DF=DE,则∠E=___1_5_°___.
4 . (3 分 ) 如 图 , 在 等 边 三 角 形 ABC 中 , CD⊥AB 于 点 D , 过 点 D 作 DE∥BC交AC于点E,若△ABC的边长为2,则△ADE的周长是__3__.
∠E,∴DB=DE
6.(3分)下列四个说法中,正确的有( D ) ①三个角都相等的三角形是等边三角形;②有两个角等于60°的三角形 是等边三角形;③有一个角是60°的等腰三角形是等边三角形;④有两个 角相等的等腰三角形是等边三角形. A.0个 B.1个 C.2个 D.3个
7.(3分)等腰三角形补充下列条件后,仍不一定成为等边三角形的是 ( C)
14.(台州中考)如图,等边三角形纸片ABC的边长为6,E,F是边BC 上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪 下的△DEF的周长是___6_.
八年级数学上册 2.5《等腰三角形的轴对称性》等腰三角形要点全析素材 (新版)苏科版
要点全析:等腰三角形1.等腰三角形(isosceles triangle)有两条边相等的三角形叫做等腰三角形.如图14-3-1,△ABC中,AB=AC,则△ABC是等腰三角形.相等的两条边叫腰,另一条边BC叫底边,两腰所夹的角叫顶角,如∠BAC,底边和腰的夹角∠ABC和∠ACB叫底角.如图14-3-2中,∠C=90°,AC=BC,那么,AC、BC为腰,AB边为底,∠A、∠B为底角,∠C为顶角.【说明】要理解等腰三角形的定义,需注意以下几点:(1)等腰三角形的底不一定在下方,而顶角不一定在上方,如图14-3-2中,AB为底,∠C为顶角.它是根据两腰的位置来确定的.(2)等腰三角形的三边仍要满足条件:任意两边之和大于第三边(或任意两边之差小于第三边).若图14-3-1中,AB=AC=m,BC=a,则2m>a,即m>a/2时,才能构成三角形,否则不成立.如边长分别为2,2.5的三条线段不能构成三角形,因为2+2<5.例如:(1)下列各组数据为边长时,能否组成三角形?①a=2,b=3,c=5;②a=4,b=3,c=2;③a=1,b=2,c=2;④a=2 005,b=2 004,c=2 008.(2)已知等腰三角形的两边为6 cm,7 cm,求其周长.(3)已知等腰三角形的两边长为2 cm,7 cm,求其周长.解:(1)①由于2+3=5,即a+b=c,而不满足a+b>c,∴不能组成三角形.②由于2+3=5>4,即b+c>a,所以a、b、c可以组成三角形.③由于1+2>2,即a+b>c,所以a、b、c可以组成三角形.④由于a+b>c,因此a、b、c可以组成三角形.(2)因等腰三角形的两边长分别为6 cm、7 cm当腰长为6 cm时,周长为6+6+7=19(cm)当腰长为7 cm时,周长为6+7+7=20(cm).∴等腰三角形的周长为19 cm或20 cm.(3)因等腰三角形的两边长分别为2 cm,7 cm,所以腰长为7 cm,而不能是2 cm.若为2 cm,则2+2=4<7,不能组成三角形.因此周长为7+7+2=16(cm),∴等腰三角形的周长为16 cm.2.等腰三角形的性质1等腰三角形的两个底角相等(简写成“等边对等角”)如图14-3-3,△ABC中,AB=AC,则∠B=∠C证法一:(利用轴对称)过点A作△ABC的对称轴AD.∵AB=AC,∴点A在BC的垂直平分线上.又∵AD为△ABC的对称轴,∴△ABD≌△ACD(轴对称性质).∴∠B=∠C证法二:(作顶角平分线)过点A作AD平分∠BAC交BC于D,如图14-3-3,在△ABD和△ACD中⎪⎩⎪⎨⎧∠∠ADADCADBADACAB===∴△ABD≌△ACD(SAS).∴∠B=∠C【说明】还可以作底边BC的中线和高来证明.3.等腰三角形的性质2(简称“三线合一”)等腰三角形的顶角平分线、底边上的中线、底边上的高线相互重合.如图14-3-6,在△ABC中,AB=AC,AD为顶角的平分线,那么AD既是中线,又是高线,这三条线重合.在使用时,在这三条线段中,只要作出其中一条,另外两条也就可以认为作出来了.即△ABC中,AB=AC,若AD平分∠BAC,则AD⊥BC,BD=CD;若BD=CD,则AD⊥BC,∠BAD=∠CAD;若AD⊥BC,则BD=DC,∠BAD=∠CAD.因此,等腰三角形中的这条线非常重要,一旦作出,边、角的等量关系就都有了.【说明】(1)“三线合一”仅限于等腰三角形中才有,其他三角形中没有.(2)在一般三角形中,这三条线是不会重合的.如图14-3-7,在△ABC中,AD为高,AE为中线,AF平分∠BAC,因此,这三条线不重合.只有等腰时,三条线才会重合;反过来,若某一三角形中三线重合,则该三角形为等腰三角形.(3)在今后的证明题中,经常会使用“三线合一”进行证明.例如:△ABC中,AB=AC,BD⊥AC交AC于D,如图14-3-8.求证:∠BAC=2∠DBC证法一:在△BCD中,∵BD⊥AC,∴∠BDC=90°.∴∠DBC=90°-∠C.在△ABC中,∵AB=AC,∴∠ABC=∠ACB.∴∠BAC=180°-(∠ABC+∠ACB)=180°-2∠ACB=2(90°-∠C).∴∠BAC=2∠DBC证法二:借助于三线合一的性质,过A作AM⊥BC于M,则AM平分∠BAC,∴∠BAC=2∠BAM=2∠CAM.又∵BD⊥AC交AC于D,AM⊥BC交BC于M,∴∠DBC=90°-∠C又∵AM⊥BC,∴∠CAM=90°-∠C,∴∠DBC=∠CAM4.等腰三角形的性质3(轴对称性)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在的直线就是它的对称轴.如图14-3-9,△ABC中,AB=AC,AD平分∠BAC,则△ABC的对称轴为AD所在的直线,△ABD≌△ACD.过D作DE⊥AB,交AB于E,作DF⊥AC,交AC于F.由△ABD≌△ACD可知DE=DF.同理,过D分别作AB、AC边上的中线和角平分线,它们都相等.因此,得到等腰三角形的一个重要结论.重要结论:过等腰三角形底边的中点向两腰所作的高线、中线以及角平分线,其与两腰所截得的线段都分别对应相等.5.等腰三角形的性质4(两腰上的对应线段相等)等腰三角形两腰上的中线、高线和两底角平分线对应相等.例如:如图14-3-10,△ABC中,AB=AC,若BD、CE分别为AC、AB边上的高线,则BD =CE.证明:∵AB=AC,∴∠ABC=∠ACB(等边对等角).又∵BD⊥AC,CE⊥AB,∴∠BDC=∠CEB=90°.在△BCD和△CBE中,⎪⎩⎪⎨⎧∠∠∠∠,=,=,=CBBCCEBBDCCBEBCD∴△BCD≌△CBE(AAS).∴BD=CE.或S△ABC=0.5×AB·CE=0.5×AC·BD.∵ AB=AC,∴BD=CE.此法较为简便.同样道理,可分别作出两腰上的中线,两底角的平分线,也分别对应相等.6.等腰三角形的判定定理(等角对等边)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).例如:如图14-3-11,△ABC中,若∠B=∠C,则AB=AC证明:过点A作AD平分∠BAC,交BC于点D,则∠BAD=∠CAD.在△ABD和△ACD中,∴△ABD≌△ACD(AAS).∴AB=AC因此,这一结论可直接利用.【说明】(1)在使用“等边对等角”或“等角对等边”时,一定要注意是在同一个三角形中才有这一对应关系,不在同一三角形中的边、角没有这一对应关系.(2)有了这一结论,为今后证明线段相等又添了一种重要的解题途径.例如:如图14-3-12,△ABC中,AB=AC,BD、CE相交于O点.且BE=CD求证:OB=OC.证明:∵AB=AC,∴∠ABC=∠ACB(等边对等角).在△BCE和△CBD中⎪⎩⎪⎨⎧∠∠,=,=,=CBBCDCBEBCCDBE∴△BCE≌△CBD(SAS).∴∠BCE=∠CBD,即∠OBC=∠BCO∴OB=OC(等角对等边).【说明】证两条线段相等,若这两条线段在同一个三角形中,可利用等腰三角形的判定定理来证明.7.已知底边和底边上的高,求作等腰三角形已知线段a、b,求作等腰三角形ABC,使底边BC=a,高为b.作法:(1)作线段BC=a;(2)作线段BC的垂直平分线MN与BC交于点D;(3)在MN上截取AD=b;(4)连接AB、AC,△ABC就是所求的等腰三角形.【说明】(1)由作法知MN为BC的垂直平分线,∴AB=AC∴△ABC为等腰三角形,如图14-3-13.(2)以前所作的三角形分别为:已知三边,两边夹角,两角夹边和已知斜边、直角边求作三角形,今天又学习了已知底边和底边上的高求作等腰三角形,共有五种情况,今后还将学习一些更为复杂的作法,都是以这五种为基础进行作图的.8.等边三角形(equilateral triangle)(1)定义:三条边都相等的三角形,叫等边三角形.如图14-3-14,△ABC中,AB=BC =CA,则△ABC为等边三角形.(2)性质:①等边三角形的三个内角都相等,并且每一个角都等于60°.如图14-3-14中,若△ABC 为等边三角形,则∠A=∠B=∠C=60°.②除此之外,还具有等腰三角形的一切性质,如三线合一,轴对称等.(3)判定:①三个角都相等的三角形是等边三角形.②有一个角是60°的等腰三角形是等边三角形.下面证明以上两条判定.判定①:如图14-3-15,已知△ABC中,∠A=∠B=∠C求证:△ABC是等边三角形.证明:∵∠B=∠C,∴AB=AC又∵∠A=∠B∴AC=BC∴AB=AC=BC,∴△ABC是等边三角形.判定②:如图14-3-15,已知△ABC中,AB=AC,∠B=60°.求证:△ABC是等边三角形.证明:∵AB=AC,∴∠B=∠C.又∵∠B=60°,∴∠B=∠C=60°.又∵∠A+∠B+∠C=180°,∴∠A=180°-(∠B+∠C)=60°.∴∠A=∠B=∠C,∴AB=BC=AC.∴△ABC为等边三角形.(4)应用:例如:如图14-3-16,△ABC为等边三角形,D、E为直线BC上的两点,且BD=BC=CE,求∠DAE的度数.分析:要求∠DAE的度数,需分开求,先求∠BAC,再求∠DAB和∠CAE,由△ABC为等边三角形知∠BAC=60°,又∵BD=BC,而BC=BA,则BD=BA,∴△ABD为等腰三角形,∴∠D=∠DAB=0.5×∠ABC=30°.同理可知,∠CAE=30°.解:∵△ABC为等边三角形,∴AB=BC=AC,∠BAC=∠ABC=∠ACB=60°.又∵BD=BC,∴BD=BC=AB.∴∠DAB=∠D,又∵∠ABC=∠D+∠DAB,∴∠ABC=2∠DAB=60°,∴∠DAB=30°.同理,∠CAE=30°.∴∠DAE=∠DAB+∠BAC+∠CAE=30°+60°+30°=120°.【说明】本题中用到了等边三角形的性质.再如:如图14-3-17,已知△ABC为等边三角形,D、E、F分别为△ABC三边上的点,且BD=CE=AF,直线AD、BE、CF两两相交于点R、Q、P.求证:△PQR是等边三角形.分析:本题既用到了等边三角形的性质,又用到了其判定.要证△PQR为等边三角形,证三边相等难度较大,可考虑证其三角相等.也可先证∠PQR=60°,而∠PQR=∠ACQ+∠QAC,又因为∠ACQ+∠BCF =60°,只需证∠BCF=∠DAC,由此可联想证△BCF与△CAD全等.证明:∵△ABC为等边三角形,∴∠BAC=∠ABC=∠BCA=60°,AB=BC=CA.又∵BD=CE=AF,∴BF=DC=AE在△ABE和△BCF和△CAD中,⎪⎩⎪⎨⎧∠∠∠,==,==,==CDBFAEDCAFBCBAECABCAB∴△ABE≌△BCF≌△CAD(SAS).∴∠ABE=∠BCF=∠CAD.∵∠ACQ+∠BCF=60°,∴∠ACQ+∠CAQ=60°.∴∠AQF=∠ACQ+∠CAQ=60°,即∠PQR=60°.同理,∠RPQ=∠PRQ=60°.∴△PQR为等边三角形.【说明】(1)此题证明思路比较清晰,只是步骤书写较繁,书写应认真;(2)在证明过程中用到了三个三角形全等的连等形式,可仿照两个三角形全等的方式使用.9.含30°角的直角三角形的性质在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.如图14-3-18,在Rt△ABC中,∠C=90°,∠A=30°,则BC=0.5×AB,这一性质反过来也成立.即在Rt△ABC中,∠C=90°,若BC=0.5×AB,则∠A=30°.因此Rt△ABC 中,∠C=90°,∠A=30° BC=AB/2这一性质在解题中经常用到.例如:如图14-3-19,在Rt△ABC中,∠BAC为直角,高AD交BC于D,∠B=30°,BC =12米,求CD,BD的长.解:∵在Rt△ABC中,∠BAC=90°,∠B=30°,∴∠C=60°,BC=2AC∴AC=BC/2=6(米).在Rt△ACD中,∵AD⊥BC,∠C=60°,∴∠CAD=30°.∴DC=AC/2=0.5××6=3(米).∴BD=BC-DC=9-6=12-3=9(米).【说明】在本题中两次用到直角三角形的这一性质,并且用的方式都一样.。
八年级上册数学第十三章 轴对称 知识点总结
第十三章轴对称一、知识框架:二、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.⑶关于坐标轴对称的点的坐标性质①点P (x, y) 关于x 轴对称的点的坐标为P ' (x, y) .②点P (x, y) 关于y 轴对称的点的坐标为P " ( x, y) .⑷等腰三角形的性质:①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一(1 条).⑸等边三角形的性质:①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3 条).3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形.②三个角都相等的三角形是等边三角形.③有一个角是60°的等腰三角形是等边三角形.4.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.。
八年级上册数学等腰三角形的轴对称性(3)
学案1.5 等腰三角形的轴对称性班级姓名学号教学目标:1、知道等腰梯形的概念,等腰梯形的轴对称性极其相关性质能够画出简单的轴对称图形.2、等边三角形性质的运用教学重点:等腰梯形的轴对称性极其相关性质;教学难点:能利用等腰梯形的性质进行有条理的说理;教学过程:一、复习提问:1.等边三角形是轴对称图形,它有______条对称轴,它们分别是_______.2.等边三角形ABC中,AD是BC•边上的中线,•那么∠ADB=•_____•°,•∠BAD=_____°.3.在Rt△ABC中,∠C=90°,∠A=30°,CD是AB边上的中线,△BCD•是等边三角形吗?为什么?二、探索新知:1、等边三角形的概念三边相等的三角形叫做等边三角形或正三角形.2、那么等边三角形具有什么性质?等边三角形是轴对称图形,并且有3条对称轴.等边三角形都等于0603、探索活动思考:(1)3个角相等的三角形是等边三角形吗?为什么?(2)有两个角等于060的三角形是等边三角形吗?为什么?(3)有一个角等于060的等腰三角形是等边三角形吗?为什么?(对于问题2要引导学生借助于两块相同的含060直角三角板进行拼图实验;对于问题3要引导分类思考.)CDEBA三、例题示范:例1. 有一个角等于60°的等腰三角形是等边三角形吗?为什么? 分析:应分两情况讨论,一是当这个角是底角时;二是当这个角是顶角时.例2如图,在△ABC 中,AB=AC ,∠BAC=120°, AD ⊥AB,AE ⊥AC. ⑴图中,等于30°的角有__ _,等于60°的角有 ; ⑵△ADE 是等边三角形吗?为什么?⑶在Rt △ABD 中, ∠B=_____,AD=_____BD;在Rt △ACE 中,有类似结论吗?五、课堂小结:等边三角形是底和腰相等的等腰三角形,有3条对称轴,每个角都是600. 六、课后作业: 七、教学后记:【课后作业】1、底角等于顶角一半的等腰三角形是____________三角形.2、剪四个同样大小的等边三角形,你能将这四个三角形拼成一个三角形吗?是一个什么三角形?3、在等边三角形、角、线段这三个图形中,对称轴最多的是 ,它共有 条对称轴,最少的是 ,有 条对称轴.4、等腰三角形一腰上的高与另一腰的夹角是45°,这个等腰三角形的顶角是________°.ABCMNP Q5、下列说法:(1)等腰三角形的高、中线、角平分线互相重合;(2)等腰三角形的两腰上的中线长相等;(3)等腰三角形的腰一定大于其腰上的高;(4)等腰三角形的一边长为8,一边长为16,那么它的周长是32或40.其中不正确...的个数是 ( )A .1B .2C .3D .46、如图,在△ABC 中,AB=AC , B F 与CF 是角平分线且交于点F ,DE ∥BC ,若B D+CE=9,则线段DE 的长为( )A .6B .7C .8D .97、如图,在△ABC 中,PM 、QN 分别是AB 、AC 的垂直平分线, ∠BAC=110°,那么∠PA Q 等于 °.8、如图,在等边三角形ABC 的边BC 、AC 上分别取点D 、E ,使BD=CE ,AD 与BE 相交于点F .求∠AFE 的度数.(第7题)ABCD E FEF DC BAABCP ′P9.如图,△ABC 是等边三角形,点D 、E 、F 分别在AB 、BC 、CA 的延长线上,•且BD=CE=AF .△DEF 也是等边三角形吗?为什么?F CB A10、如图,△ABC 是等边三角形,P 为△ABC 内部一点,将△ABP 绕点A 逆时针旋转后,能与△ACP ˊ重合,如果A P=3,求PP ˊ的长.11、在两个三角形中,它们的内角分别为:(1)20°,40°,120°;(2) 20°,60°,100°,怎样把每个三角形分成两个等腰三角形?试画出图形.。
2022年秋八年级数学上册 第13章 轴对称 13.3 等腰三角形 13.3.1 等腰三角形 第1课
•
12、人乱于心,不宽余请。2022/3/12022/3/12022/3/1Tuesday, March 01, 2022
•
13、生气是拿别人做错的事来惩罚自 己。2022/3/12022/3/12022/3/12022/3/13/1/2022
•
14、抱最大的希望,作最大的努力。2022年3月1日 星期二2022/3/12022/3/12022/3/1
A.80°
B.80°或 20°
C.80°或 50°
D.20°
1.如图,AB=AC,△ABC 的外角∠DAC=100°,则∠B 的度数为( D )
A.80° C.60°
B.70° D.50°
2.如图在等腰△ABC 中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD 等 于( B )
A.36° C.18°
•
15、一个人炫耀什么,说明他内心缺 少什么 。。2022年3月 2022/3/12022/3/12022/3/13/1/2022
•
16、业余生活要有意义,不要越轨。2022/3/12022/3/1Marc h 1, 2022
等腰三角形的三线合一
等腰三角形的顶角平分线 、底边上的中线、 底边上的高线 相互重合(简写
成“三线合一”).
自我诊断 2. 如图,AB=AC,D 是 BC 的中点,下列结论不正确的是( D )
A.∠B=∠C
B.AD⊥BC
C.AD 平分∠BAC
D.AB=2BD
易错点:在求等腰三角形的角时易漏解.
自我诊断 3. 等腰三角形的一个角是 80°,则它的顶角的度数是( B )
14.如图,已知点 E 为等腰△ABC 的底边 BC 上一动点,过点 E 作 EF⊥ BC 交 AB 于点 D,交 CA 的延长线于点 F,问: (1)∠F 与∠ADF 的关系怎样?说明理由; (2)若 E 在 BC 延长线上,其余条件不变,上题的结论是否成立?若不成立, 说明理由;若成立,画出图形并给予证明.
八年级上册数学轴对称知识点总结
八年级上册数学轴对称知识点总结八年级上册数学轴对称知识点总结1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(2)角平分线上的点到角两边距离相等。
(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。
(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
(5)轴对称图形上对应线段相等、对应角相等。
3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一〞。
5.等腰三角形的判定:等角对等边。
6.等边三角形角的特点:三个内角相等,等于60°,7.等边三角形的判定:三个角都相等的三角形是等腰三角形。
有一个角是60°的.等腰三角形是等边三角形有两个角是60°的三角形是等边三角形。
8.直角三角形中,30°角所对的直角边等于斜边的一半。
9.直角三角形斜边上的中线等于斜边的一半。
数学学习方法诀窍1细心地发掘概念和公式很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。
例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式〞。
二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。
这样就不能很好的将学到的知识点与解题联系起来。
三是,一部分同学不重视对数学公式的记忆。
记忆是理解的基础。
如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。
2养成良好的解题习惯要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。
八年级数学上册轴对称知识点总结
轴对称知识点总结∵CA=CB,1、轴对称图形:直线m⊥AB于C,一个图形沿一条直线对折,直线两旁的部分点P是直线m上的点。
能够完全重合。
∴PA=PB。
这条直线叫做对称轴。
互相重合的点叫做对(3)判定。
应点。
与线段两端点距离相等的点在线段的垂直2、轴对称:平分线上。
两个图形沿一条直线对折,其中一个图形能如图3,∵PA=PB,够与另一个图形完全重合。
直线m是线段AB的垂直平分线,这条直线叫做对称轴。
互相重合的点叫做对∴点P 在直线m上。
应点。
6、等腰三角形:3、轴对称图形与轴对称的区别与联系:(1)定义。
有两条边相等的三角形,叫做等腰(1)区别。
轴对称图形讨论的是“一个图形与三角形。
一条直线的对称关系”;轴对称讨论的是“两相等的两条边叫做腰。
个图形与一条直线的对称关系”。
(2)联系。
把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两第三条边叫做底。
两腰的夹角叫做顶角。
腰与底的夹角叫做底角。
腰顶角腰说明:顶角=180°-2底角底角底角A'H I180顶角1底角=顶角90-22底边图4D J D'B'可见,底角只能是锐角。
(2)性质。
K C'A等腰三角形是轴对称图形,其对称轴是“底边的垂直平分线”,只有一条。
等边对等角。
如图5,在△ABC中个图形看作一个整体”便是轴对称图形。
∵AB=AC4、轴对称的性质:(1)成轴对称的两个图形全等。
(2)对称轴与连结“对应点的线段”垂直。
(3)对应点到对称轴的距离相等。
∴∠B=∠C。
三线合一。
(3)判定。
BDC图5(4)对应点的连线互相平行。
有两条边相等的三角形是等腰三角形。
如图5,在△ABC中,5、线段的垂直平分线:(1)定义。
经过线段的中点且与线段垂直的直∵AB=ACm∴△ABC是等腰三角形。
线,叫做线段的垂直平分线。
如图2,∵CA=CB,图1有两个角相等的三角形是等腰三角形。
如图5,在△ABC中∵∠B=∠C直线m⊥AB于C,∴直线m是线段AB的垂直平分线。
八年级数学上册“第十三章轴对称”必背知识点
八年级数学上册“第十三章轴对称”必背知识点一、轴对称与轴对称图形的定义1. 轴对称:如果两个图形关于某一条直线对称,那么这两个图形就叫做关于这条直线的轴对称图形,这条直线叫做对称轴。
折叠后重合的点是对应点,叫做对称点。
2. 轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。
这条直线就是它的对称轴。
二、轴对称的性质1. 对应点性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
2. 对应线段与对应角:轴对称图形上对应线段相等、对应角相等。
三、线段的垂直平分线1. 定义:经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(或线段的中垂线)。
2. 性质:线段垂直平分线上的点与这条线段两个端点的距离相等。
与一条线段两个端点距离相等的点,在线段的垂直平分线上。
四、坐标表示轴对称1. 关于x轴对称:点(x, y)关于x轴对称的点的坐标为(x, -y)。
2. 关于y轴对称:点(x, y)关于y轴对称的点的坐标为(-x, y)。
五、等腰三角形与等边三角形的性质1. 等腰三角形:性质:等腰三角形的两个底角相等 (等边对等角);顶角平分线、底边上的中线、底边上的高互相重合 (三线合一)。
判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。
2. 等边三角形:性质:等边三角形的三个角都相等,并且每一个角都等于60°;等边三角形具有等腰三角形所有的性质。
判定:三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形。
六、特殊线段的性质1. 三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线。
三角形的中位线平行于第三边,并且等于它的一半。
2. 三角形三条边的垂直平分线:三角形的三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等。
苏科版数学八年级上册等腰三角形的轴对称性复习课件
(3)在等腰三角形ABC中,若∠A=80°,则∠B= 50°、20°、. 80°
例题精讲 等腰三角形对形状进行分类讨论 例3. (1)△ABC中,AB=AC,AB的垂直平分线与AC所在的直线
等腰三角形
如图,在△ABC中,AD平分∠BAC,CD⊥AD,故可以 延长CD交AB于点E,则△ACE是等腰三角形.
4 课堂小结
课堂小结 1、知识点 2、(按边、角、形状)分类讨论思想 3、构造等腰三角形(基本图形)
再见
知识点复习:
3.等腰三角形的判定
判定1:有两条边相等的三角形是等腰三角形.
判定2:有两个角相等的三角形是等腰三角形. “等角对等边”
热身练习
1.如图,在△ABC 中,AC=AD=DB, ∠C=70°则∠CAB的度数是( A )
A. 75° B. 70° C. 40° D. 35° 运用等腰三角形“两底角相等”求角的度数
基本图形:“角平分线+平行线”
等腰三角形
若∠1=∠2,AC∥OB,则△OAC为等腰三角形.
例题精讲 利用角平分线和垂线得到等腰三角形
例6. 如图,在等腰直角三角形ABC中,AB=AC,∠BAC=90°, BF平分∠ABC,CD⊥BF交BF的延长线于点D. 求证:BF=2CD.
基本图形:“角平分线+垂线”
热身练习
1.如图,以正方形ABCD的一边CD为边向形外作等边三角形CDE, 则∠AEB = ___3_0_°____.
A
D
E
B
C
运用等边三角形“每个内角都等于60°”求角的度数
人教版初中八年级上册数学《轴对称》知识归纳
第十三章轴对称13.1 轴对称(对称点)轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合。
这条直线就是它的对称轴。
垂直平分线:经过线段中点并且垂直于这条线段的直线。
图形轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
线段垂直平分线的性质:垂直平分线上的点到两端的距离相等。
若PA=PB,点C为AB中点,则PC⊥AB或点P在线段AB的垂直平分线上。
13.2 画轴对称图形先画对称点(过该点画对称轴的垂线,取等长),然后连接对称点,形成轴对称图形。
13.3 等腰三角形概念:有两边相等的三角形。
性质:等边对等角,三线合一(顶角平分线、底边上的中线、底边上的高)。
判定:等角对等边等边三角形:三边都相等的特殊的等腰三角形。
三个内角都相等,每个内角60º。
(判定:三个角都相等的三角形;有一个角是60º的等腰三角形。
)在RtΔ中,如果一个锐角等于30º,那么它所对的直角边等于斜边的一半。
(在RtΔ中,斜边上的中线等于斜边的一半。
)13.4 课题学习最短路径问题利用轴对称、平移作出最短路径选择。
(两点之间线段最短)作者留言:非常感谢!您浏览到此文档。
为了提高文档质量,欢迎您点赞或留言告诉我文档的不足之处,以便于对该文档进行完善优化,在此本人深表感谢!祝您天天快乐!制定学习计划有什么好处?一、计划是实现目标的蓝图。
目标不是什么花瓶,你需要制定计划,脚踏实地、有步骤地去实现它。
通过计划合理安排时间和任务,使自己达到目标,也使自己明确每一个任务的目的。
二、促使自己实行计划。
学习生活是千变万化的,它总是在引诱你去偷懒。
制定学习计划,可以促使你按照计划实行任务,排除困难和干扰。
三、实行计划是意志力的体现。
持实行计划可以磨练你的.意志力,而意志力经过磨练,你的学习收获又会更一步提升。
这些进步只会能使你更有自信心,取得更好的成功。
四、有利于学习习惯的形成。
苏科版八年级上册数学 第2章 等腰三角形的性质
感悟新知
知1-讲
特别提醒 1. 适用条件:必须在同一个三角形中. 2. 作用:是证明角相等的常用方法,应用它证角 相等时可省去三角形全等的证明,因而更简便.
感悟新知
由上面的操作过程获得启发,我们可以利用 三角形的全等证明这些性质. 如图, △ABC中, AB=AC,作底边BC的中线AD. AB=AC,
知1-练
感悟新知
知1-练
1 如图,在下列等腰三角形中,分别求出它们的底 2 角的度数.
解:(1)72°; (2)30°.
感悟新知
知1-练
2 (中考•盐城)若等腰三角形的顶角为40°,则它的 底角度数为( ) D
3 A.40°B.50°C.60°D.70°
感悟新知
知1-练
3 (中考•湘西州)如图,等腰三角形ABC中,AB= AC,BD平分∠ABC,∠A=36°,则∠1的度 数为( )
第2章轴对称图形
2.5等腰三角形的轴对称性
第1课时等腰三角形的性质
学习目标
1 课时讲解
等腰三角形边角性质:等边对等角 等腰三角形的轴对称性:“三线合
一”
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
课时导入
看到下边三角形了吗,它有何特点呢? 我们今天来探讨一下等腰三角形的性质.
腰
顶 角
腰
底角 底角 底边
4 A.36°CB.60°C.72°D.108°
感悟新知
4 (中考•广西)如图,在△ABC中,AB=AC,
知1-练
∠BAC=100°,AB的垂直平分线DE分别交AB、
BC于点D、E,则∠BAE=( ) 5 A.80°B.60°C.50D°D.40°
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一. 教学内容:等腰三角形和等边三角形的轴对称性[目标]探索等腰三角形及其特殊形式——等边三角形的轴对称性及其相关性质。
二. 重、难点:1. 等腰三角形及其性质和一个三角形是等腰三角形的条件;2. 等边三角形的概念及其性质。
三. 知识要点:1. 等腰三角形(1)等腰三角形是轴对称图形。
顶角平分线所在直线是它的对称轴。
(2)等腰三角形的性质(等腰三角形的判别法)①等腰三角形的顶角平分线、底边上的中线、高重合,它们都是等腰三角形的对称轴。
(简称“三线合一”)②等腰三角形的两底角相等。
(简称“等边对等角”)③如果一个三角形有两个角相等,那么这两个角所对的边也相等。
(简称“等角对等边”)☆(3)直角三角形斜边上的中线等于斜边的一半。
2. 等边三角形(a)三边相等的三角形叫做等边三角形或正三角形。
等边三角形是一种特殊的等腰三角形。
(b)等边三角形特殊的性质:①等边三角形是轴对称图形,并且有3条对称轴。
60。
②等边三角形各角相等,并且每一个角都等于60的等腰三角形是等边三角形)(有一个角是【典型例题】例1. 已知等腰三角形的周长为10cm ,那么当三边为正整数时,它的边长为( ) (A )2,2,6 (B )3,3,4 (C )4,4,2(D )3,3,4或4,4,2分析:可采用排除法。
三角形两边之和大于第三边,两边之差小于第三边。
2,2,6不满足;而3,3,4或4,4,2都满足题意。
答:选D 。
例2. O 为锐角△ABC 的∠C 平分线上一点,O 关于AC 、BC 的对称点分别为P 、Q ,则△POQ 一定是( )(A )等边三角形 (B )等腰三角形 (C )直角三角形 (D )等腰直角三角形分析:设OP 、OQ 分别交AC 、BC 于E 、F ,由线段的对称轴是它的垂直平分线知:OE ⊥AC ,且OE =21OP ;同理OF ⊥BC ,且OF =21OQ ;由角平分线的性质知:OE =OF ,则OP =OQ 。
∴△POQ 一定是等腰三角形 答:选B例3. (1)如果等腰直角三角形两直角边的和比斜边长4cm ,那么斜边长等于_________。
(2)等腰三角形的三个内角与顶角的一个外角之和等于260,则这个等腰三角形的顶角等于_______,底角等于__________。
(3)等边三角形的周长是30cm ,一边上的高是8cm ,则三角形的面积为______ _______。
解:(1)设斜边长为x cm ,则直角边长为x 22,根据题意,4222=-⨯x x 。
解得)21(4+=x cm(2)设顶角的一个外角为m ,则 260180=+m 。
而顶角的一个外角等于一个底角的2倍,所以等腰三角形的底角等于 40,顶角等于100。
(3)等边三角形三边相等,则其边长为cm 10330=,∴24081021cm S =⨯⨯=∆例4. 一个等腰三角形的一个内角比另一个内角的2倍少︒30,求这个三角形的三个内角 的度数。
(考虑两种情况)解:①设等腰三角形的底角为x ,则顶角为)302(-x ,则 180)302(=-++x x x解得:x =5.52 ∴)302(-x = 75②设等腰三角形的顶角为x ,则底角为)302(-x ,则180)302()302(=-+-+x x x解得:x = 48 ∴)302( -x = 66 综上可得:三个内角的度数分别为 5.52,5.52, 75或 48, 66, 66。
例5. 如图所示,点D 在AC 上,点E 在AB 上,且AB =AC ,BC =BD ,AD =DE =EB ,求∠A 的度数。
CDA E B解:设∠EBD =x ,∵DE =EB ,∴∠EDB =∠EBD =x ,∴∠AED =∠EDB+∠EBD =2x (三角形外角=不相邻的两个内角和)∵AD =DE ,∴∠AED =∠A =2x ,∴∠CDB =∠ABD +∠A =3x (同上) ∵BC =BD ,∴∠C =∠CDB =3x ,又∵AB =AC ,∴∠ABC =∠C =3x ; 在△ABC 中∠A+∠C+∠ABC =180,即2x +3x +3x =180 解得:x =5.22 ∴∠A =2x =45°例6. 如图,在Rt △ABC 中,AB =AC ,BD 平分∠B ,DE ⊥BC ,若BC =10cm ,求△DCE 的周长。
ADCB E解:∵BD 平分∠B , DA ⊥AB , DE ⊥BC ∴AB =BE (易证Rt △BAD ≌Rt △BED )又∵AB =AC = BE , DE = DA∴△DCE 的周长=EC+DE+DC = EC+DA+DC = EC+AC = EC+BE =BC =10cm 。
例7. 已知:如图,在△ABC 中,AB =AC ,BD ⊥AC ,求证:∠DBC =21∠A分析1:用折半法。
找出或作出较大角的一半的角,证明它与较小的角相等。
证法1:作顶角平分线AE 。
∵AE ⊥BC (等腰三角形“三线合一”),∴∠EAC+∠C =9090180=-(三角形内角和定理) ∵BD ⊥AC (已知),∵∠DBC+∠C =9090180=-∴∠DBC+∠C =∠EAC+∠C (等量代换) ∴∠DBC =∠EAC∵∠EAC =21∠A (角平分线定义),∴∠DBC =21∠A (等量代换)分析2:用加倍法。
找出或作出等于较小角的两倍的角,证明它与较大的角相等。
证法2:作∠DBF =∠DBC ,BF 交AC 于F 。
由作法得∠FBC =2∠DBC ,即∠DBC =∠FBD 。
在△BFD 与△BCD 中,∠=∠=︒∠=∠=⎧⎨⎪⎩⎪BDC BDF DBF DBC BD BD 90(垂直定义)(辅助线作法)(公共边)∴△BFD ≌△BCD (ASA ) ∴∠BFD =∠C ,∴∠FBC =C C BFD ∠-=∠-∠-2180180(三角形内角和定理) 又∵∠C =∠ABC ,∴∠A = 180-∠B -∠C =180-2∠C ∴∠FBC =∠A (等量代换)∵∠DBC =21∠FBC (已证),∴∠DBC =21∠A【模拟试题】(答题时间:30分钟)1. 下列说法正确的是( )(A )等腰三角形的高、中线、角平分线互相重合 (B )顶角相等的两个等腰三角形全等(C )等腰三角形一边不可以是另一边的二倍 (D )等腰三角形的两个底角相等2. ABC ∆中,90=∠C ,有一点既在BC 的对称轴上,又在AC 对称轴上,则该点一定是( )(A )C 点 (B )BC 中点(C )AC 中点(D )AB 中点3. 已知ABC ∆中,AC AB =,且θ=∠B ,则θ的取值范围是( )(A )45≤θ(B )900<<θ(C )90=θ (D )18090<<θ 4. 下列轴对称图形中,对称轴最多的是( )(A )等腰直角三角形 (B )有一角为︒60的等腰三角形 (C )正方形 (D )圆5. 在等腰三角形ABC 中,AB =AC ,BE 、CD 分别是底角的平分线,DE ∥BC ,图中等腰三角形的个数有( )A D EB CA. 3个B. 4个C. 5个D. 6个6. (1)等腰三角形中有一个角为52,则它的一条腰上的高与底边的夹角为___________。
(2)等腰三角形的一个内角为︒110,则其它两个内角为_____________。
(3)一个等腰三角形有两边分别为4 cm 和8cm ,则周长是_____________cm 。
(4)若等腰三角形的顶角为120,则腰上的高与底边的夹角为_____________。
7. 如图,△ABC中,AB=AC,D是BC的中点,点E在AD上,用轴对称的性质证明:BE=CE。
AEB D C8. 等腰△ABC的腰长AB=10cm,AB的垂直平分线交另一腰AC于D,△BCD的周长为26cm,则底边BC的长是多少?ADB C9. 如图,有三条交叉的公路,现要在三条公路交叉所形成的区域内建一货运站,使得货运站到三条公路交叉点的路程一样长,请问如何确定货运站的位置?简单叙述你的方法。
10. 用1-3种方法,将一个等边三角形分割成4个等腰三角形。
试题答案1. D2. D3. B4. D5.D6. (1) 38或26;(2) 35,35;(3)20;(4)607. 证明:∵△ABC 中,AB =AC ,BD =CD (已知), ∴AD ⊥BC (等腰三角形“三线合一”), ∴AD 垂直平分线段BC ,∴点C 和点B 关于直线AD 对称, 又∵点E 在对称轴AD 上, ∴BE =CE (轴对称的性质)8. 解:∵AB 的垂直平分线交另一腰AC 于D∴AD =BD∴BD+CD =AD+CD =AC 又∵AC =AB =10cm∴BC =△BCD 的周长-(BD+CD )= △BCD 的周长-AC =26-10=16cm 。
9. 作法:分别作三条公路的垂直平分线交于一点O ,则点O 的位置即为所求货运站的位置。
10. 作法如下:。