【免费下载】二保焊焊接参数
二氧化碳气体保护焊各项参数
![二氧化碳气体保护焊各项参数](https://img.taocdn.com/s3/m/e3864ec985868762caaedd3383c4bb4cf6ecb710.png)
二氧化碳气体保护焊各项参数二氧化碳(简称CO2)气体保护焊是一种常用的金属焊接方法。
在CO2气体保护焊过程中,需要控制和调节多个参数,以获得理想的焊接效果。
这些参数包括焊接电流、焊接电压、气流量、喷嘴直径等等。
本文将详细介绍CO2气体保护焊的各项参数。
首先,焊接电流是CO2气体保护焊中最重要的参数之一、电流的大小决定了焊缝的温度、焊接速度以及焊接的质量。
一般来说,焊接电流与焊接材料的导电性有关,对于高导电材料,需要较大的电流,而对于低导电材料,则需要较小的电流。
焊接电流的选择应根据焊接材料的种类和厚度进行调节。
其次,焊接电压也是CO2气体保护焊中需要调节的参数之一、焊接电压决定了焊接弧的长度和稳定性。
一般来说,焊接电压与焊接电流呈正相关关系,电压越高,焊接电流越大。
不同的焊接材料和工件的厚度需要不同的焊接电压,通常需要进行试验和实际操作来确定最佳的焊接电压。
气流量是控制CO2气体保护焊中气体输送的重要参数。
气流量的大小决定了气体的喷射速度和稳定性。
一般来说,气流量与焊接材料的种类和厚度、焊接电流和焊接速度有关。
较高的气流量可以更好地保护焊缝并提高焊缝质量,但过高的气流量会导致气体散失和焊接效果不佳。
因此,在实际焊接过程中,需要根据不同的焊接条件进行调节和控制。
喷嘴直径是CO2气体保护焊过程中另一个需要调节的参数。
喷嘴直径决定了气流的喷射速度和功率。
较大的喷嘴直径可以增加气流量和喷射速度,适用于较大的焊缝和厚度较大的工件。
而较小的喷嘴直径则适用于焊缝较细小的工件。
喷嘴的选择应根据焊接材料的种类和厚度进行调节。
此外,CO2气体保护焊的焊接速度也是需要注意的参数之一、焊接速度的选择应根据焊接材料的种类和厚度进行调节。
通常情况下,焊接速度应保持一定的稳定性和合理性,既不能过快导致焊缝不充实,也不能过慢导致熔渣积聚和气孔产生。
总之,CO2气体保护焊的各项参数包括焊接电流、焊接电压、气流量、喷嘴直径和焊接速度等。
二保焊焊接技术参数
![二保焊焊接技术参数](https://img.taocdn.com/s3/m/4d4d67da09a1284ac850ad02de80d4d8d15a01e6.png)
二保焊焊接技术参数
二保焊焊接技术参数:
(1)焊丝直径
焊丝的直径通常是根据焊件的厚薄、施焊的位置和效率等要求选择。
焊接薄板或中厚板的全位置焊缝时,多采用1.6mm以下的焊丝(称为细丝CO2气保焊)。
(2)焊接电流焊接电流的大小主要取决于送丝速度。
送丝的速度越快,则焊接的电流就越大。
焊接电流对焊缝的熔深的影响最大。
当焊接电流为60~250A,即以短路过渡形式焊接时,焊缝熔深一般为1mm~2mm;只有在300A以上时,融身才明显的增大。
(3)电弧电压短路过渡时,则电弧电压可用下式计算:U=0.04I+16±2(V)
电流在200A以上时,则电弧电压的计算公式如下。
U=0.04I+20±2(V)
(4)焊接速度
半自动焊接时,熟练的焊工的焊接速度为18m/h~36m/h;自动焊时,焊接速度可高达150m/h。
(5)焊丝的伸出长度
一般的焊丝的伸出长度约为焊丝的直径的10倍左右,并随焊接电流的增加而增加。
(6)气体的流量正常的焊接时,200A已下薄板焊接,CO2的流量为10L/min~25L/min.200A以上厚板焊接,CO2的流量为15L/min~25L/min.粗丝大规范自动焊为25L/min~50L/min。
CO2 保护焊的焊接参数
![CO2 保护焊的焊接参数](https://img.taocdn.com/s3/m/772e62d4b9d528ea81c779b3.png)
CO2 保护焊的焊接参数一、焊丝直径焊丝直径越粗,允许使用的焊接电流越大焊接直径/mm 焊件厚度/mm施焊位置熔滴过渡形式0.8 1-3 各种位置短路过程1.0 1.5-6 各种位置短路过程1.2 2-12 各种位置短路过程中厚平焊、平角焊细颗粒过程1.6 6-25 各种位置短路过程中厚平焊、平角焊细颗粒过程2.0 中厚平焊、平角焊细颗粒过程焊接电流相同时,熔深将随着焊丝直径的减小而增加。
焊接电流相同时,焊丝越细则熔敷速度越快。
二、焊接电流应根据焊件厚度、材料、焊丝直径、施焊位置及要求的熔滴过渡形式来选择焊接电流的大小。
每种直径的焊丝都有一个合适的焊接电流范围,只有在这个范围内焊接过程才稳定进行。
通常直径0.8-1.6mm的焊丝,短路过渡的焊接电流在40-230A范围内;细颗粒过程过渡的焊接电流在250-500A范围内当电源外特性不变时,改变送丝速度,此时电弧电压不变,焊接电流则发生变化。
送丝速度越快,焊接电流越大。
在相同的送丝速度下,随着焊丝直径的增加,焊接电流也增加。
焊接电流的增大,熔深也会增加。
焊接电流的增加熔敷速度和熔深都会增加。
二、电弧电压电弧电压是指导电嘴与焊件间测得的电压。
焊接电压是焊机上电压表所显示的电压。
焊接电压比电弧电压高。
焊缝成形好,电弧电压与焊接电流配合适当。
通常焊接电流小时,电弧电压较低,焊接电流大时电弧电压较高。
三、焊接的速度在焊丝直径、焊接电流、电弧电压不变的条件下,焊接速度增加时,熔宽与熔深都减小。
焊接速度过快,产生咬边、未熔合出现气孔;速度过低变形增大。
四、CO2气体的流量流量过大过小都影响保护效果。
通常细丝焊接时,流量为止5-15L/min。
五、焊丝伸出长度焊丝伸出长度是指从导电嘴端部到焊件的距离。
保持伸长不变是保证焊接过程稳定的基本条件。
采用的电流密度较高,伸出长度越大,焊接的预热作用越强。
当送丝速度不变时,若焊丝伸出长度增加,因预热作用强,焊丝熔化快,电弧电压升高,使焊接电流变小,熔滴与熔池温度降低,将造成热量不足,容量引起未焊透、未熔合。
二氧化碳气体保护焊的焊接参数设定
![二氧化碳气体保护焊的焊接参数设定](https://img.taocdn.com/s3/m/ac894d07680203d8ce2f24f8.png)
精心整理二氧化碳气体保护焊的焊接参数设定二氧化碳气体保护焊的焊接参数有:焊丝直径、焊接电流、电弧电压、焊接速度、气体流量、干伸长度、电源极性、回路电感、焊枪倾角。
一、焊丝直径,焊丝直径影响焊缝熔深。
本文就最常用的焊丝直径1.2mm 实心焊丝展开论述。
牌号:H08MnSiA 。
焊接电流在150~300时,焊缝熔深在6~7mm 。
二、焊接电流,依据焊件厚度、材质、施焊位置及要求的过渡形式来选择焊接电流的大小。
短路过渡的焊接电流在110~230A 之间(焊工手册为40~230A );细颗粒过渡的焊接电流在250~300A 之间。
焊接电流决定送丝速度。
焊接电流的变化对熔池深度有决定性的影响,随着焊接电流的增大,熔深三、在六、八、;焊接电流制在以达到焊接电流是根据焊接结构母材厚度及焊缝位置来确定,如平焊时焊接电流一般在160-320A 、立焊、仰焊、横焊时一般在100-130A 。
电弧电压是根据焊接电流而定公式如下:(1) 实芯焊丝:当电流≥300A 时×0.04+20±2=电压当电流≤300A 时×0.05+16±2=电压(2) 药芯焊丝:当电流≥200A 时×0.06+20±2=电压当电流≤200A 时×0.07+16±2=电压CO2气体保护焊机操作规程CO2气体保护焊机操作规程1、操作者必须持电焊操作证上岗。
2、打开配电箱开关,电源开关置于“开”的位置,供气开关置于“检查”位置。
3、打开气瓶盖,将流量调节旋钮慢慢向“OPEN”方向旋转,直到流量表上的指示数为需要值。
供气开关置于“焊接”位置。
4、焊丝在安装中,要确认送丝轮的安装是否与丝径吻合,调整加压螺母,视丝径大小加压。
5、将收弧转换开关置于“有收弧”处,先后两次将焊枪开关按下、放开进行焊接。
6、焊枪开关“ON”,焊接电弧的产生,焊枪开关“OFF”,切换为正常焊接条件的焊接电弧,焊枪开关再次“ON”,切换为收弧焊接条件的焊接电弧,焊枪开关再次“OFF”焊接电弧停止。
二氧化碳气体保护焊焊接参数
![二氧化碳气体保护焊焊接参数](https://img.taocdn.com/s3/m/0b56506bf61fb7360a4c652a.png)
分享]二氧化碳气体保护焊的焊接参数分析二氧化碳气体保护焊的焊接参数分析二氧化碳气体保护焊的焊接参数有:焊丝直径、焊接电流、电弧电压、焊接速度、气体流量、干伸长度、电源极性、回路电感、焊枪倾角。
本文是笔者站在巨人的肩膀上结合自身实践心得而成的一家之言,文中以自己观点、经验为主。
本文已经发表。
这次上传论坛,旨在抛砖引玉。
一、焊丝直径,焊丝直径影响焊缝熔深。
本文就最常用的焊丝直径1.2mm实心焊丝展开论述。
牌号:H08MnSiA。
焊接电流在150~300时,焊缝熔深在6~7mm。
二、焊接电流,依据焊件厚度、材质、施焊位置及要求的过渡形式来选择焊接电流的大小。
短路过渡的焊接电流在110~230A之间(焊工手册为40~230A);细颗粒过渡(射滴/我习惯称为喷射)的焊接电流在250~300A之间(我习惯280A)。
焊接电流决定送丝速度。
焊接电流的变化对熔池深度有决定性的影响,随着焊接电流的增大,熔深明显增加,熔宽略有增加。
三、电弧电压,电弧电压不是焊接电压。
电弧电压是在导电嘴和焊件之间测得的电压,而焊接电压是焊机上的电压表所显示的电压。
焊接电压是电弧电压与焊机和焊件间连接的电缆上的电压降之和。
通常情况下,电弧电压在17~24V之间。
电压决定熔宽。
四、焊接速度,焊接速度决定焊缝成形。
焊接速度过快,熔深和熔宽都减小,并且容易出现咬肉、未熔合、气孔等焊接缺陷;过慢,会出现塌焊、增加焊接变形等焊接缺陷。
通常情况下,焊接速度在80mm/min比较合适。
五、气体流量,CO2气体具有冷却特点。
因此,气体流量的多少决定保护效果。
通常情况下,气体流量为15L/min;当在有风的环境中作业,流量在20L/min以上(混合气体也应当加热)。
六、干伸长度,干伸长度是指从导电嘴到焊件的距离。
保证干伸长度不变是保证焊接过程稳定的重要因素。
干伸长度决定焊丝的预热效果,直接影响焊接质量。
当焊接电流、电压不变,焊丝伸出过长,焊丝熔化快,电弧电压升高,使焊接电流变小,熔滴与熔池温度降低,会造成未焊透、未熔合等焊接缺陷;过短,熔滴与熔池温度过高,在全位置焊接时会引起铁水流失,出现咬肉、凹陷等焊接缺陷。
二氧化碳气体保护焊的焊接参数设定
![二氧化碳气体保护焊的焊接参数设定](https://img.taocdn.com/s3/m/5eae17d9ba0d4a7302763a6a.png)
二氧化碳气体保护焊的焊接参数设定二氧化碳气体保护焊的焊接参数有:焊丝直径、焊接电流、电弧电压、焊接速度、气体流量、干伸长度、电源极性、回路电感、焊枪倾角。
一、焊丝直径,焊丝直径影响焊缝熔深。
本文就最常用的焊丝直径1.2mm实心焊丝展开论述。
牌号:H08MnSiA。
焊接电流在150~300时,焊缝熔深在6~7mm。
二、焊接电流,依据焊件厚度、材质、施焊位置及要求的过渡形式来选择焊接电流的大小。
短路过渡的焊接电流在110~230A之间(焊工手册为40~230A);细颗粒过渡的焊接电流在250~300A之间。
焊接电流决定送丝速度。
焊接电流的变化对熔池深度有决定性的影响,随着焊接电流的增大,熔深明显增加,熔宽略有增加。
三、电弧电压,电弧电压不是焊接电压。
电弧电压是在导电嘴和焊件之间测得的电压,而焊接电压是焊机上的电压表所显示的电压。
焊接电压是电弧电压与焊机和焊件间连接的电缆上的电压降之和。
通常情况下,电弧电压在17~24V之间。
电压决定熔宽。
四、焊接速度,焊接速度决定焊缝成形。
焊接速度过快,熔深和熔宽都减小,并且容易出现咬肉、未熔合、气孔等焊接缺陷;过慢,会出现塌焊、增加焊接变形等焊接缺陷。
通常情况下,焊接速度在80mm/min比较合适。
五、气体流量,CO2气体具有冷却特点。
因此,气体流量的多少决定保护效果。
通常情况下,气体流量为15L/min;当在有风的环境中作业,流量在20L/min以上(混合气体也应当加热)。
六、干伸长度,干伸长度是指从导电嘴到焊件的距离。
保证干伸长度不变是保证焊接过程稳定的重要因素。
干伸长度决定焊丝的预热效果,直接影响焊接质量。
当焊接电流、电压不变,焊丝伸出过长,焊丝熔化快,电弧电压升高,使焊接电流变小,熔滴与熔池温度降低,会造成未焊透、未熔合等焊接缺陷;过短,熔滴与熔池温度过高,在全位置焊接时会引起铁水流失,出现咬肉、凹陷等焊接缺陷。
根据焊接要求,干伸长度在8~20mm之间。
另外,干伸长度过短,看不清焊接线,并且,由于导电嘴过热会夹住焊丝,甚至烧毁导电嘴。
二氧化碳气体保护焊的焊接参数分析
![二氧化碳气体保护焊的焊接参数分析](https://img.taocdn.com/s3/m/317ba13048d7c1c708a14570.png)
二氧化碳气体保护焊的焊接参数分析二氧化碳气体保护焊的焊接参数有:焊丝直径、焊接电流、电弧电压、焊接速度、气体流量、干伸长度、电源极性、回路电感、焊枪倾角。
一、焊丝直径,焊丝直径影响焊缝熔深。
本文就最常用的焊丝直径实心焊丝展开论述。
牌号:H08MnSiA。
焊接电流在150~300时,焊缝熔深在6~7mm。
二、焊接电流,依据焊件厚度、材质、施焊位置及要求的过渡形式来选择焊接电流的大小。
短路过渡的焊接电流在110~230A之间(焊工手册为40~230A);细颗粒过渡的焊接电流在250~300A之间。
焊接电流决定送丝速度。
焊接电流的变化对熔池深度有决定性的影响,随着焊接电流的增大,熔深明显增加,熔宽略有增加。
三、电弧电压,电弧电压不是焊接电压。
电弧电压是在导电嘴和焊件之间测得的电压,而焊接电压是焊机上的电压表所显示的电压。
焊接电压是电弧电压与焊机和焊件间连接的电缆上的电压降之和。
通常情况下,电弧电压在17~24V之间。
电压决定熔宽。
四、焊接速度,焊接速度决定焊缝成形。
焊接速度过快,熔深和熔宽都减小,并且容易出现咬肉、未熔合、气孔等焊接缺陷;过慢,会出现塌焊、增加焊接变形等焊接缺陷。
通常情况下,焊接速度在80mm/min比较合适。
五、气体流量,CO2气体具有冷却特点。
因此,气体流量的多少决定保护效果。
通常情况下,气体流量为15L/min;当在有风的环境中作业,流量在20L/min以上(混合气体也应当加热)。
六、干伸长度,干伸长度是指从导电嘴到焊件的距离。
保证干伸长度不变是保证焊接过程稳定的重要因素。
干伸长度决定焊丝的预热效果,直接影响焊接质量。
当焊接电流、电压不变,焊丝伸出过长,焊丝熔化快,电弧电压升高,使焊接电流变小,熔滴与熔池温度降低,会造成未焊透、未熔合等焊接缺陷;过短,熔滴与熔池温度过高,在全位置焊接时会引起铁水流失,出现咬肉、凹陷等焊接缺陷。
根据焊接要求,干伸长度在8~20mm之间。
另外,干伸长度过短,看不清焊接线,并且,由于导电嘴过热会夹住焊丝,甚至烧毁导电嘴。
二氧化碳气体保护焊焊接工艺参数(参考)
![二氧化碳气体保护焊焊接工艺参数(参考)](https://img.taocdn.com/s3/m/ea509b347275a417866fb84ae45c3b3567ecdd2e.png)
二氧化碳气体保护焊焊接工艺参数(参考)A.1焊丝直径一般情况下,可根据表A.1选用焊丝直径。
表A.1焊丝直径母材厚度≤4>4焊丝直径0.5~1.2 1.0~1.6A.2焊丝伸出长度A.2.1焊丝伸出长度见图A.1。
图A.1焊丝伸出长度A.2.2焊丝伸出长度与焊丝直径,焊接电流及焊接电压有关。
A.2.3焊接过程中焊丝伸出长度一般为焊丝直径的10倍~15倍。
A.3焊接电流A.3.1在保证母材焊透又不致焊穿的原则下,应根据母材厚度、接头形式以及焊丝直径正确选择焊接电流。
A.3.2各种直径的焊丝常用的焊接电流范围见表A.2。
表A.2焊接电流范围焊丝直径mm0.50.60.8 1.0 1.2 1.6焊接电流A30~7049~9050~12070~18090~350150~500A.3.3立焊、仰焊,及对接接头横焊焊缝表面焊接,当所用焊丝直径大于或等于1.0mm时,应选用较小的焊接电流见表A.3。
表A.3焊接电流范围焊丝直径mm 1.0 1.2焊接电流A70~15090~180A.4电弧电压电弧电压与焊接电流合理的匹配,不同直径的焊丝常用电流与相应电弧电压的匹配关系见图A.2。
图A.2电弧电压与焊接电流匹配A.5焊接速度A.5.1半自动焊时,焊接速度一般不超过30m/h;自动焊时,焊接速度一般不超过90m/h;A.5.2焊接速度应能满足不同种类钢材对焊接线能量的要求。
A.6气体流量A.6.1当焊丝直径小于1.2mm时,气体流量一般为(6~15)L/min;焊丝直径大于或等于1.2mm时,气体流量应取(15~25)L/min。
A.6.2焊接电流较大,焊接速度较高,在室外焊接以及仰焊时,应采用较大的气体流量。
二保焊立焊焊接参数
![二保焊立焊焊接参数](https://img.taocdn.com/s3/m/45f6d8ab846a561252d380eb6294dd88d1d23d42.png)
二保焊立焊焊接参数二保焊,也称为氩弧焊,是一种常用的焊接方法,广泛应用于金属材料的连接。
在二保焊中,焊接参数是指影响焊接过程和焊缝质量的一系列参数,包括焊接电流、电压、氩气流量等。
这些参数的合理设定对于保证焊接质量、提高生产效率至关重要。
二保焊(氩弧焊)是一种常见的金属焊接方法,通过电弧的热能使金属工件熔化,并在熔融池中形成均匀、牢固的焊缝。
在二保焊的焊接过程中,合理设置焊接参数对于获得高质量的焊接连接至关重要。
其中,焊接电流、电压、氩气流量等参数是决定焊接性能的关键因素。
首先,焊接电流是二保焊中最为关键的参数之一。
焊接电流的大小直接影响到焊接过程中电弧的稳定性和熔融池的温度。
通常来说,电流过大会导致焊缝过深,热影响区扩大,而电流过小则可能导致焊缝穿透不足,焊接质量不稳定。
因此,焊工在设定焊接电流时需要综合考虑金属材料的种类、厚度以及具体的焊接要求。
其次,焊接电压是影响二保焊焊接质量的重要参数。
电压的设定会直接影响到电弧的长度和熔融池的稳定性。
电压过高容易造成焊缝表面的飞溅,而电压过低则可能使电弧不稳定,焊缝形成不均匀。
因此,在进行二保焊时,焊工需要根据具体情况调整电压,以确保焊接过程中电弧稳定、焊缝均匀。
除了电流和电压,氩气流量也是二保焊中需要重点关注的参数之一。
氩气在焊接过程中的主要作用是保护熔融池,防止氧气、水蒸气等对焊缝的污染。
因此,合理设定氩气流量对于获得清晰、牢固的焊缝至关重要。
流量过大可能浪费气体资源,而流量过小则可能无法有效保护焊缝,导致焊接质量下降。
此外,二保焊中还有一些其他需要考虑的焊接参数,如焊接速度、焊枪角度等。
焊接速度的设定直接关系到焊缝的形成速度和焊接效率。
合适的焊接速度能够保证焊缝质量,提高生产效率。
焊枪角度的选择也会影响焊缝的形状和质量,因此在二保焊过程中需要根据具体情况进行调整。
综合而言,二保焊中的焊接参数的合理设置对于焊接过程和焊接质量具有重要意义。
焊工需要根据焊接材料、工件厚度、焊接要求等多方面因素进行综合考虑,调整电流、电压、氩气流量等参数,以确保焊接质量稳定、牢固。
二保焊焊接工艺参数
![二保焊焊接工艺参数](https://img.taocdn.com/s3/m/def9f25db6360b4c2e3f5727a5e9856a5612261f.png)
二保焊焊接工艺参数
二保焊焊接工艺参数是指在二氧化碳保护气体下进行的焊接工艺的参数设置。
具体参数包括以下几个方面:
1. 电压(Voltage):决定焊接电弧的长度和传热速度。
一般根据焊接材料的厚度和焊接位置选择适当的电压。
2. 电流(Current):控制焊接电弧的热量和熔池的流动。
根据焊接材料和厚度选择适当的电流。
3. 送丝速度(Wire feed speed):用于控制焊丝的输入速度和熔池的尺寸。
根据焊接材料和厚度选择适当的送丝速度。
4. 保护气体流量(Shielding gas flow rate):保护气体流量越大,越能有效地保护焊接区域免受氧气和杂质的污染。
通常根据焊接电流和焊接材料选择适当的保护气体流量。
5. 焊丝直径(Wire diameter):决定焊接材料的输入速度和熔池的尺寸。
根据焊接材料和厚度选择适当的焊丝直径。
6. 电弧长度(Arc length):控制焊接电弧的稳定性和熔池的形状。
通常保持适当的电弧长度可以获得良好的焊接质量。
以上是一些常见的二保焊焊接工艺参数,具体的参数设置还需要根据具体的焊接材料、厚度和焊接位置等因素进行调整。
二氧化碳气体保护焊的焊接参数设定
![二氧化碳气体保护焊的焊接参数设定](https://img.taocdn.com/s3/m/83f398770066f5335a812186.png)
二氧化碳气体保护焊的焊接参数设定二氧化碳气体保护焊的焊接参数有:焊丝直径、焊接电流、电弧电压、焊接速度、气体流量、干伸长度、电源极性、回路电感、焊枪倾角。
一、焊丝直径,焊丝直径影响焊缝熔深。
本文就最常用的焊丝直径1.2mm实心焊丝展开论述。
牌号:H08MnSiA。
焊接电流在150~300时,焊缝熔深在6~7mm。
二、焊接电流,依据焊件厚度、材质、施焊位置及要求的过渡形式来选择焊接电流的大小。
短路过渡的焊接电流在110~230A之间(焊工手册为40~230A);细颗粒过渡的焊接电流在250~300A之间。
焊接电流决定送丝速度。
焊接电流的变化对熔池深度有决定性的影响,随着焊接电流的增大,熔深明显增加,熔宽略有增加。
三、电弧电压,电弧电压不是焊接电压。
电弧电压是在导电嘴和焊件之间测得的电压,而焊接电压是焊机上的电压表所显示的电压。
焊接电压是电弧电压与焊机和焊件间连接的电缆上的电压降之和。
通常情况下,电弧电压在17~24V之间。
电压决定熔宽。
四、焊接速度,焊接速度决定焊缝成形。
焊接速度过快,熔深和熔宽都减小,并且容易出现咬肉、未熔合、气孔等焊接缺陷;过慢,会出现塌焊、增加焊接变形等焊接缺陷。
通常情况下,焊接速度在80mm/min比较合适。
五、气体流量,CO2气体具有冷却特点。
因此,气体流量的多少决定保护效果。
通常情况下,气体流量为15L/min;当在有风的环境中作业,流量在20L/min以上(混合气体也应当加热)。
六、干伸长度,干伸长度是指从导电嘴到焊件的距离。
保证干伸长度不变是保证焊接过程稳定的重要因素。
干伸长度决定焊丝的预热效果,直接影响焊接质量。
当焊接电流、电压不变,焊丝伸出过长,焊丝熔化快,电弧电压升高,使焊接电流变小,熔滴与熔池温度降低,会造成未焊透、未熔合等焊接缺陷;过短,熔滴与熔池温度过高,在全位置焊接时会引起铁水流失,出现咬肉、凹陷等焊接缺陷。
根据焊接要求,干伸长度在8~20mm之间。
另外,干伸长度过短,看不清焊接线,并且,由于导电嘴过热会夹住焊丝,甚至烧毁导电嘴。
二氧化碳气体保护焊工艺参数
![二氧化碳气体保护焊工艺参数](https://img.taocdn.com/s3/m/d31fd370e3bd960590c69ec3d5bbfd0a7856d500.png)
二氧化碳气体保护焊工艺参数1. 引言大家好,今天咱们聊聊二氧化碳气体保护焊,这可是焊接界的明星选手!说到焊接,很多人第一反应就是火花四溅、噼里啪啦的声音,确实,焊接的世界就是这么热闹。
不过呢,二氧化碳气体保护焊(CO2焊)又是另一个层次,它用二氧化碳保护焊接区域,避免氧化和污染,让焊缝又美观又结实。
咱们今天就来聊聊这门技术背后的那些事儿,保证让你听得津津有味,想要自己动手试试!2. CO2焊的基本参数2.1 焊接电流首先,咱们得说说焊接电流。
这就像是给焊机“加油”,电流越大,焊接的热量也就越高,焊缝也越深。
可是,电流太大了也不行,容易导致焊接缺陷,焊缝表面可能出现咕噜咕噜的小孔,这可不是咱们想要的效果。
通常,电流范围在100A到250A之间比较合适,当然这也得根据材料和焊接位置来定,毕竟没有一个“放之四海而皆准”的标准。
2.2 焊接电压接下来是焊接电压,简单来说,这就是电流的“压力”。
电压高了,焊缝的熔深会增加,但同时焊缝的宽度也会变得比较大。
电压如果调得低了,熔深就不足,焊接效果自然就打了折扣。
所以,电压一般在18V到30V之间调节是比较靠谱的。
就像做菜一样,调料加多了、加少了都不对,要找到那个平衡点,才能出好菜!3. 保护气体的流量3.1 气体流量说到保护气体,流量可不是随便调的,得认真对待。
流量一般在10到20升每分钟(L/min)之间,太少了可保护效果不好,太多了又可能造成气体的浪费,简直是“瞎折腾”!而且,如果流量调得合适,焊接时气体能够很好的覆盖焊接区域,保证焊缝的质量,不会被氧化。
3.2 气体纯度再来谈谈气体的纯度,二氧化碳的纯度是影响焊接质量的关键因素之一。
一般来说,纯度越高,焊接效果越好,杂质少了,焊缝的质量就越高。
不过,二氧化碳气体也不能太“干净”,因为有时候适量的杂质反而能帮助稳定弧光,哈哈,这就像给焊接加点儿“调味料”,让整体效果更上一层楼。
4. 焊接速度与工艺4.1 焊接速度焊接速度也是个重要的参数,快了焊缝就可能不够饱满,慢了又容易出现过热的现象。
二氧化碳气体保护焊的焊接参数设定
![二氧化碳气体保护焊的焊接参数设定](https://img.taocdn.com/s3/m/4b66f19b8bd63186bdebbc07.png)
二氧化碳气体保护焊得焊接参数设定二氧化碳气体保护焊得焊接参数有:焊丝直径、焊接电流、电弧电压、焊接速度、气体流量、干伸长度、电源极性、回路电感、焊枪倾角。
一、焊丝直径,焊丝直径影响焊缝熔深。
本文就最常用得焊丝直径1、2mm实心焊丝展开论述。
牌号:H08MnSiA。
焊接电流在150~300时,焊缝熔深在6~7mm。
二、焊接电流,依据焊件厚度、材质、施焊位置及要求得过渡形式来选择焊接电流得大小。
短路过渡得焊接电流在110~230A之间(焊工手册为40~230A);细颗粒过渡得焊接电流在250~300A之间。
焊接电流决定送丝速度。
焊接电流得变化对熔池深度有决定性得影响,随着焊接电流得增大, 熔深明显增加,熔宽略有增加。
三、电弧电压,电弧电压不就是焊接电压。
电弧电压就是在导电嘴与焊件之间测得得电压,而焊接电压就是焊机上得电压表所显示得电压。
焊接电压就是电弧电压与焊机与焊件间连接得电缆上得电压降之与。
通常情况下,电弧电压在17~24V之间。
电压决定熔宽。
四、焊接速度,焊接速度决定焊缝成形。
焊接速度过快,熔深与熔宽都减小,并且容易出现咬肉、未熔合、气孔等焊接缺陷;过慢,会出现塌焊、增加焊接变形等焊接缺陷。
通常情况下,焊接速度在80mm/min比较合适。
五、气体流量,CO2气体具有冷却特点。
因此,气体流量得多少决定保护效果。
通常情况下,气体流量为15L/min;当在有风得环境中作业,流量在20L/min以上(混合气体也应当加热)。
六、干伸长度,干伸长度就是指从导电嘴到焊件得距离。
保证干伸长度不变就是保证焊接过程稳定得重要因素。
干伸长度决定焊丝得预热效果,直接影响焊接质量。
当焊接电流、电压不变,焊丝伸出过长,焊丝熔化快,电弧电压升高,使焊接电流变小,熔滴与熔池温度降低,会造成未焊透、未熔合等焊接缺陷;过短,熔滴与熔池温度过高,在全位置焊接时会引起铁水流失,出现咬肉、凹陷等焊接缺陷。
根据焊接要求,干伸长度在8~20mm之间。
二氧化碳气体保护焊的焊接参数设定
![二氧化碳气体保护焊的焊接参数设定](https://img.taocdn.com/s3/m/42a84c4503020740be1e650e52ea551810a6c99f.png)
二氧化碳气体保护焊的焊接参数设定二氧化碳气体保护焊(CO2焊)是一种常用的金属焊接方法,广泛应用于工业生产中。
在进行CO2气体保护焊时,合理设定焊接参数是确保焊接质量和效率的关键之一、以下是关于CO2气体保护焊焊接参数设定的一些建议。
1.电流设定:焊接电流是决定焊缝形成的主要参数。
一般来说,焊接电流应根据焊接材料厚度和焊缝类型进行调整。
当焊接材料较薄且焊缝较细时,可以使用较低的焊接电流,以防止焊缝过宽或产生焊剂。
2.电压设定:电压设定与焊接电流息息相关。
较低的焊接电压可以获得较小的焊缝宽度和较高的焊接速度,但容易产生飞溅和松散的焊缝。
相反,较高的焊接电压可以获得较宽的焊缝宽度和较好的穿透力,但会增加气孔的风险。
因此,应根据焊接要求确定适当的电压范围。
3.引弧电流:引弧电流是在引弧开始时设置的电流。
适当的引弧电流可以确保良好的引弧稳定性和焊缝质量。
通常,引弧电流可略高于焊接电流,以便快速形成稳定的弧。
4.进给速度:进给速度是指焊丝的送丝速度。
它直接影响焊丝的熔化量和焊缝宽度。
通常,较高的进给速度可以获得较高的焊接速度,但必须与焊接电流和电压相匹配,以确保焊缝质量。
5.气体流量:CO2气体是用来保护焊缝和电弧的,因此设定合适的气体流量非常重要。
正常情况下,CO2气体流量应保持在10-20升/分钟之间,具体取决于焊接条件、焊丝直径和焊缝类型。
气体流量过低会导致气孔和气体不足的问题,而气体流量过高则会导致浪费和松散的焊缝。
6.焊丝直径:焊接材料的厚度和焊接要求决定了合适的焊丝直径。
一般来说,较薄的材料适合使用较小直径的焊丝,而较厚的材料则需要较大直径的焊丝。
选择合适的焊丝直径可以提高焊缝质量和焊接效率。
总之,设置合理的焊接参数是保证CO2气体保护焊质量和效率的重要因素之一、电流、电压、引弧电流、进给速度、气体流量和焊丝直径应根据焊接材料、厚度和焊缝类型进行调整,以获得最佳的焊接效果。
在设定参数时,需要参考相关标准和实践经验,并进行实际焊接试验,以优化焊接质量和生产效率。
二保焊焊接参数
![二保焊焊接参数](https://img.taocdn.com/s3/m/289bc3dd3186bceb19e8bb6c.png)
1、短路过渡焊接CO2电弧焊中短路过渡应用最广泛,主要用于薄板及全位置焊接,规范参数为电弧电压焊接电流、焊接速度、焊接回路电感、气体流量及焊丝伸出长度等。
(1)电弧电压和焊接电流,对于一定的焊丝直径及焊接电流(即送丝速度),必须匹配合适的电弧电压,才能获得稳定的短路过渡过程,此时的飞溅最少。
不同直径焊丝的短路过渡时参数如表:焊丝直径(㎜)0.8 1.2 1.6电弧电压(V)18 19 20焊接电流(A)100-110 120-135 140-180(2)焊接回路电感,电感主要作用:a 调节短路电流增长速度di/dt, di/dt过小发生大颗粒飞溅至焊丝大段爆断而使电弧熄灭,di/dt 过大则产生大量小颗粒金属飞溅。
b 调节电弧燃烧时间控制母材熔深。
c 焊接速度。
焊接速度过快会引起焊缝两侧吹边,焊接速度过慢容易发生烧穿和焊缝组织粗大等缺陷。
d 气体流量大小取决于接头型式板厚、焊接规范及作业条件等因素。
通常细丝焊接时气流量为5-15 L/min,粗丝焊接时为20-25 L/min。
e 焊丝伸长度。
合适的焊丝伸出长度应为焊丝直径的10-20倍。
焊接过程中,尽量保持在10-20㎜范围内,伸出长度增加则焊接电流下降,母材熔深减小,反之则电流增大熔深增加。
电阻率越大的焊丝这种影响越明显。
f 电源极性。
CO2电弧焊一般采用直流反极性时飞溅小,电弧稳定母材熔深大、成型好,而且焊缝金属含氢量低。
2、细颗粒过渡。
(1)在CO2气体中,对于一定的直径焊丝,当电流增大到一定数值后同时配以较高的电弧压,焊丝的熔化金属即以小颗粒自由飞落进入熔池,这种过渡形式为细颗粒过渡。
细颗粒过渡时电弧穿透力强母材熔深大,适用于中厚板焊接结构。
细颗粒过渡焊接时也采用直流反接法。
(2)达到细颗粒过渡的电流和电压范围:焊丝直径(mm)电流下限值(A)电弧电压(V)1.2 300 34- 351.6 4002.0 500随着电流增大电弧电压必须提高,否则电弧对熔池金属有冲刷作用,焊缝成形恶化,适当提高电弧电压能避免这种现象。
二氧化碳气体保护焊的焊接参数设定
![二氧化碳气体保护焊的焊接参数设定](https://img.taocdn.com/s3/m/1dcaab7902d276a201292ef7.png)
二氧化碳气体保护焊的焊接参数设定二氧化碳气体保护焊的焊接参数有:焊丝直径、焊接电流、电弧电压、焊接速度、气体流量、干伸长度、电源极性、回路电感、焊枪倾角。
一、焊丝直径,焊丝直径影响焊缝熔深。
本文就最常用的焊丝直径1.2mm实心焊丝展开论述。
牌号:H08MnSiA。
焊接电流在150~300时,焊缝熔深在6~7mm。
二、焊接电流,依据焊件厚度、材质、施焊位置及要求的过渡形式来选择焊接电流的大小。
短路过渡的焊接电流在110~230A之间〔焊工手册为40~230A〕;细颗粒过渡的焊接电流在250~300A之间。
焊接电流决定送丝速度。
焊接电流的变化对熔池深度有决定性的影响,随着焊接电流的增大,熔深明显增加,熔宽略有增加。
三、电弧电压,电弧电压不是焊接电压。
电弧电压是在导电嘴和焊件之间测得的电压,而焊接电压是焊机上的电压表所显示的电压。
焊接电压是电弧电压与焊机和焊件间连接的电缆上的电压降之和。
通常情况下,电弧电压在17~24V之间。
电压决定熔宽。
四、焊接速度,焊接速度决定焊缝成形。
焊接速度过快,熔深和熔宽都减小,并且容易出现咬肉、未熔合、气孔等焊接缺陷;过慢,会出现塌焊、增加焊接变形等焊接缺陷。
通常情况下,焊接速度在80mm/min比拟适宜。
五、气体流量,CO2气体具有冷却特点。
因此,气体流量的多少决定保护效果。
通常情况下,气体流量为15L/min;当在有风的环境中作业,流量在20L/min以上〔混合气体也应当加热〕。
六、干伸长度,干伸长度是指从导电嘴到焊件的距离。
保证干伸长度不变是保证焊接过程稳定的重要因素。
干伸长度决定焊丝的预热效果,直接影响焊接质量。
当焊接电流、电压不变,焊丝伸出过长,焊丝熔化快,电弧电压升高,使焊接电流变小,熔滴与熔池温度降低,会造成未焊透、未熔合等焊接缺陷;过短,熔滴与熔池温度过高,在全位置焊接时会引起铁水流失,出现咬肉、凹陷等焊接缺陷。
根据焊接要求,干伸长度在8~20mm之间。
另外,干伸长度过短,看不清焊接线,并且,由于导电嘴过热会夹住焊丝,甚至烧毁导电嘴。
二氧化碳气体保护焊的焊接参数设定
![二氧化碳气体保护焊的焊接参数设定](https://img.taocdn.com/s3/m/8b394c0042323968011ca300a6c30c225801f050.png)
二氧化碳气体保护焊的焊接参数设定二氧化碳气体保护焊的焊接参数有:焊丝直径、焊接电流、电弧电压、焊接速度、气体流量、干伸长度、电源极性、回路电感、焊枪倾角.一、焊丝直径,焊丝直径影响焊缝熔深.本文就最常用的焊丝直径1.2mm实心焊丝展开论述.牌号:H08MnSiA.焊接电流在150~300时,焊缝熔深在6~7mm.二、焊接电流,依据焊件厚度、材质、施焊位置及要求的过渡形式来选择焊接电流的大小.短路过渡的焊接电流在110~230A之间焊工手册为40~230A;细颗粒过渡的焊接电流在250~300A之间.焊接电流决定送丝速度.焊接电流的变化对熔池深度有决定性的影响,随着焊接电流的增大,熔深明显增加,熔宽略有增加.三、电弧电压,电弧电压不是焊接电压.电弧电压是在导电嘴和焊件之间测得的电压,而焊接电压是焊机上的电压表所显示的电压.焊接电压是电弧电压与焊机和焊件间连接的电缆上的电压降之和.通常情况下,电弧电压在17~24V之间.电压决定熔宽.四、焊接速度,焊接速度决定焊缝成形.焊接速度过快,熔深和熔宽都减小,并且容易出现咬肉、未熔合、气孔等焊接缺陷;过慢,会出现塌焊、增加焊接变形等焊接缺陷.通常情况下,焊接速度在80mm/min比较合适.五、气体流量,CO2气体具有冷却特点.因此,气体流量的多少决定保护效果.通常情况下,气体流量为15L/min;当在有风的环境中作业,流量在20L/min以上混合气体也应当加热.六、干伸长度,干伸长度是指从导电嘴到焊件的距离.保证干伸长度不变是保证焊接过程稳定的重要因素.干伸长度决定焊丝的预热效果,直接影响焊接质量.当焊接电流、电压不变,焊丝伸出过长,焊丝熔化快,电弧电压升高,使焊接电流变小,熔滴与熔池温度降低,会造成未焊透、未熔合等焊接缺陷;过短,熔滴与熔池温度过高,在全位置焊接时会引起铁水流失,出现咬肉、凹陷等焊接缺陷.根据焊接要求,干伸长度在8~20mm之间.另外,干伸长度过短,看不清焊接线,并且,由于导电嘴过热会夹住焊丝,甚至烧毁导电嘴.七、电源极性,通常采取直流反接反极性.焊件接阴极,焊丝接阳极,焊接过程稳定、飞溅小、熔深大.如果直流正接,在相同条件下,焊丝融化速度快约为反接的1.6倍,熔深浅,堆高大,稀释率小,飞溅大.八、回路电感,回路电感决定电弧燃烧时间,进而影响母材的熔深.通过调节焊接电流的大小来获得合适的回路电感,应当尽可能的选择大电流.通常情况下,焊接电流150A,电弧电压19V;焊接电流280A,电弧电压22~24V比较合适,能够满足大多数焊接要求.九、焊枪倾角,当倾角大于25°时,飞溅明显增大,熔宽增加,熔深减小.所以焊枪倾角应当控制在10~25°之间.尽量采取从右向左的方向施焊,焊缝成形好.如果采用推进手法,焊枪倾角可以达到60度,并且可以得到非常平整、光滑的漂亮焊缝.焊接电流是控制送丝速度,电弧电压是控制焊丝融化速度,电流加大焊丝送进加快、电压增大焊丝熔化加快.焊接电流是根据焊接结构母材厚度及焊缝位置来确定,如平焊时焊接电流一般在160-320A、立焊、仰焊、横焊时一般在100-130A.电弧电压是根据焊接电流而定公式如下:(1)实芯焊丝:当电流≥300A时×0.04+20±2=电压当电流≤300A时×0.05+16±2=电压(2)药芯焊丝:当电流≥200A时×0.06+20±2=电压当电流≤200A时×0.07+16±2=电压CO2气体保护焊机操作规程CO2气体保护焊机操作规程1、操作者必须持电焊操作证上岗.2、打开配电箱开关,电源开关置于“开”的位置,供气开关置于“检查”位置.3、打开气瓶盖,将流量调节旋钮慢慢向“OPEN”方向旋转,直到流量表上的指示数为需要值.供气开关置于“焊接”位置.4、焊丝在安装中,要确认送丝轮的安装是否与丝径吻合,调整加压螺母,视丝径大小加压.5、将收弧转换开关置于“有收弧”处,先后两次将焊枪开关按下、放开进行焊接.6、焊枪开关“ON”,焊接电弧的产生,焊枪开关“OFF”,切换为正常焊接条件的焊接电弧,焊枪开关再次“ON”,切换为收弧焊接条件的焊接电弧,焊枪开关再次“OFF”焊接电弧停止.7、焊接完毕后,应及时关闭焊电源,将CO2气源总阀关闭.8、收回焊把线,及时清理现场.9、定期清理机上的灰尘,用空压机或氧气吹机芯的积尘物,一般时间为一周一次.CO2气体保护焊焊接工艺钢结构二氧化碳气体保护焊工艺规程1适用范围本标准适用于本公司生产的各种钢结构,标准规定了碳素结构钢的二氧化碳气体保护焊的基本要求.注:产品有工艺标准按工艺标准执行.1.1编制参考标准气焊、手工电弧焊及气体保护焊焊缝坡口的基本形成与尺寸GB.985-881.2术语2.1母材:被焊的材料2.2焊缝金属:熔化的填充金属和母材凝固后形成的部分金属.2.3层间温度:多层焊时,停后续焊接之前,相邻焊道应保持的最低温度.2.4船形焊:T形、十字形和角接接头处于水平位置进行的焊接.3焊接准备3.1按图纸要求进行工艺评定.3.2材料准备3.3坡口选择原则焊接过程中尽量减小变形,节省焊材,提高劳动生产率,降低成本.3.4作业条件3.4.1当风速超过2m/s时,应停止焊接,或采取防风措施.3.4.2作业区的相对湿度应小于90%,雨雪天气禁止露天焊接.4施工工艺4.1工艺流程清理焊接部位检查构件、组装、加工及定位按工艺文件要求调整焊接工艺参数按合理的焊接顺序进行焊接自检、交检焊缝返修焊缝修磨合格交检查员检查关电源现场清理4操作工艺4.1焊接电流和焊接电压的选择不同直径的焊丝,焊接电流和电弧电压的选择见下表焊丝直径短路过渡细颗粒过渡电流A电压V0.850--10018--211.070--12018--221.290--15019--23160--40025--381.6140--20020--24200--50026--404.2焊速:半自动焊不超过0.5m/min.4.3打底焊层高度不超过4㎜,填充焊时,焊枪横向摆动,使焊道表面下凹,且高度低于母材表面1.5㎜――2㎜:盖面焊时,焊接熔池边缘应超过坡口棱边0.5――1.5㎜防止咬边.4.4不应在焊缝以外的母材上打火、引弧.4.5定位焊所用焊接材料应与正式施焊相当,定位焊焊缝应与最终焊缝有相同的质量要求.钢衬垫的定位焊宜在接头坡口内焊接,定位焊厚度不宜超过设计焊缝厚度的2/3,定位焊长度不宜大于40㎜,填满弧坑,且预热高于正式施焊预热温度.定位焊焊缝上有气孔和裂纹时,必须清除重焊.4.9焊接工艺参数见表一和表二表一:Φ1.2焊丝CO2焊对接工艺参数板厚层数焊接电流电弧电压焊丝外伸焊机速度气体流量装配间隙㎜AVmmm/minLminmm612702712-140.5510-151.0-1.562190/21019/30150.25150-182120-130/130-14026-27/28-30150.55201-1.5102130-140/280-30020-30/30-33150.55201-1.5102300-320/300-32037-39/37-39150.55201-1.5121310-33032-33150.5201-1.5163120-140/300-340/300-340A25-2733-3535-3715201-1.5 164140-160/260-280/270-290/270-290A24-26/31-33/34-36/34-3615201-1.5204120-140/300-340/300-340/300-340A25-2733-3533-3533-3715251-1.5204140-160/260-280/300-320/300-320A24-26/31-33/35-37/201-1.5表二:Φ1.2焊丝CO2气体保护焊T形接头板厚焊丝直径焊接电流电弧电压焊接速度气体流量焊角尺寸㎜㎜Avm/minL/min㎜2.3Φ1.2120200.510-153.03.2Φ1.214020.50.510-153.04.5Φ1.2160210.4510-154.06Φ1.2230230.5510-156.012Φ1.2290280.510-157.05交检6焊接缺陷与防止方法,缺陷形成原因,防止措施焊缝金属裂纹形成原因:1.焊缝深宽比太大2.焊道太窄3.焊缝末端冷却快.防治措施:1.增大焊接电弧电压,减小焊接电流2.减慢焊接速度3.适当填充弧坑.夹杂形成原因:1.采用多道焊短路电弧2.高的行走速度.防治措施:1.仔细清理渣壳2.减小行走速度,提高电弧电压.气孔形成原因:1.保护气体覆盖不足2.焊丝污染3.工件污染4.电弧电压太高5.喷嘴与工件距离太远.防治措施:1.增加气体流量,清除喷嘴内的飞溅,减小工件到喷嘴的距离2.清除焊丝上的润滑剂3.清除工件上的油锈等杂物.4.减小电压5.减小焊丝的伸出长度.咬边形成原因:1.焊接速度太高2.电弧电压太高3.电流过大4.停留时间不足5.焊枪角度不正确.防治措施:1.减慢焊速2.降低电压3.降低焊速4.增加在熔池边缘停留时间5.改变焊枪角度,使电弧力推动金属流动.未融合形成原因:1.焊缝区有氧化皮和锈2.热输入不足3.焊接熔池太大4.焊接技术不高5.接头设计不合理.防治措施:1.仔细清理氧化皮和锈2.提高送丝速度和电弧电压,减慢焊接速度3.采用摆动技术时应在靠近坡口面的边缘停留,焊丝应指向熔池的前沿4.坡口角度应足够大,以便减小焊丝伸出长度,使电弧直接加热熔池底部.未焊透形成原因:1.坡口加工不合适2.焊接技术不高3.热输入不合适.防治措施:1.加大坡口角度,减小钝边尺寸,增大间隙2.调整行走角度3.提高送丝的速度以获得较大的焊接电流,保持喷嘴与工件的距离合适.飞溅形成原因:1.电压过低或过高2.焊丝与工件清理不良3.焊丝不均匀4.导电嘴磨损5.焊机动特性不合适.防治措施:1.根据电流调电压2.清理焊丝和坡口3.检查送丝轮和送丝软管4.更新导电嘴5.调节直流电感.蛇行焊道形成原因:1.焊丝伸出过长2.焊丝的矫正机构调整不良3.导电嘴磨损.防治措施:1.调焊丝伸出长度2.调整矫正机构3.更新导电.CO2气保焊的使用近况CO2气体保护焊自50年代诞生以来,作为一种高效率的焊接方法,在我国工业经济的各个领域获得了广泛的运用.尤其是近几年,中国成为“世界工厂”后,大量的外贸金属加工、钢结构行业大力发展,CO2气体保护焊以其高生产率比手工焊高1~3倍、焊接变形小和高性价比的特点,得到了前所未有的普及,成为最优先选择的焊接方法之一.但是据我们这几年的工作经历,CO2气体保护焊在实际生产运用中还存在不少问题,综合如下:一、气源的问题我国现在还没有对焊接用CO2气体纯度要求的国家标准,市场上出售的CO2气体主要是制氧厂、酿造厂、化工厂的副产品,如未经处理就作为焊接保护气体使用,其水分及杂质气体含量很高且不稳定,从而增加焊接飞溅、焊缝产生气孔及影响焊缝塑性等焊接缺陷.比对国外多数国家规定,要求焊接用CO2气体纯度不低于99.5%,有些国家甚至要求CO2纯度高于99.8%,水分含量低于0.0066%,来作为获得优质焊缝的前提条件.二、焊接参数选择的问题一般焊工培训大多把手工电弧焊作为基础项目,主要让焊工掌握焊接电流的选择、焊接速度及运条方法、焊接电弧的控制.在施焊操作上,一个熟练的手工电弧焊焊工对掌握CO2气保焊基本不成问题,但在焊接参数的选择上,很大一部份焊工显得不够老练,以我国CO2气保焊中应用最为广泛的短路过渡形式为例,归纳下来问题主要在电弧电压、焊接电流、焊接回路电感匹配得不太合适,以及焊丝干伸长不合适,造成焊接电弧不稳定、飞溅以及未焊透等,影响焊缝成形、焊缝的机械性能.只有电弧电压与焊接电流匹配得较合适时,才能获得较稳定的焊接过程,在一定的焊丝直径和焊接电流下,若电弧电压偏低,电弧短、焊缝成型高,甚至会造成冲丝、电弧引燃困难,使焊接过程不稳定;若电弧电压偏高,则熔滴过渡的频率变慢、颗粒变大,电弧长度长、焊缝成型宽,过高的电弧电压会烧毁导电咀;因焊接回路电感量的大小直接影响焊接电弧的燃烧时间,关系到熔滴过渡的稳定、焊接熔深及焊缝成型,在一定的焊丝直径和焊接电流、电压下,若选择过小的电感量,焊接时会造成熔深太浅,即使再增加焊接电流、电压,只能会使过渡到熔池的液态金属溢出熔池,形成未熔合、未焊透.要选择合适的电感量,一般视焊丝直径、母材厚薄及不同的焊接设备通过试焊来确定;合适的焊丝伸出导电咀长度应为焊丝直径的10~12倍一般在10~20mm范围内,焊丝的干伸长太短,就会因为焊枪喷嘴与工件距离近而增加飞溅金属堵塞喷嘴,焊丝的干伸长太长,则会增加飞溅、引起焊接不稳定,气体保护效果变差等.在实际工作中,一般先根据工件厚薄、坡口形式、焊接位置等选好焊丝直径,再确定焊接电流,调节好回路电感量,使飞溅降低到最小.CO2气体保护焊操作规程1.准备工作1认真熟悉焊接有关图样,弄清焊接位置和技术要求.2焊前清理.CO2焊虽然没有钨极氩弧焊那样严格,但也应清理坡口及其两侧表面的油污、漆层、氧化皮以及铁金属等杂物.3检查设备.检查电源线是否破损;地线接地是否可靠;导电嘴是否良好;送丝机构是否正常;极性是否选择正确.4气路检查.CO2气体气路系统包括CO2气瓶、预热器、干燥器、减压阀、电磁气阀、流量计.使用前检查各部连接处是否漏气,CO2气体是否畅通和均匀喷出.2.安全技术1穿好白色帆布工作服,戴好手套,选用合适的焊接面罩.2要保证有良好的通风条件,特别是在通风不良的小屋内或容器内焊接时,要注意排风和通风,以防CO2气体中毒.通风不良时应戴口罩或防毒面具.3CO2气瓶应远离热源,避免太阳曝晒,严禁对气瓶强烈撞击以免引起爆炸.4焊接现场周围不应存放易燃易爆品.3.焊接工艺CO2气体保护焊的工艺参数有焊接电流、电弧电压、焊丝直径、焊丝伸出长度、气体流量等.在其采用短路过渡焊接时还包括短路电流峰值和短路电流上升速度.1焊接电流和电弧电压短路过渡焊接时,焊接电流和电弧电压周期性的变化.电流和电压表上的数值是其有效值,而不是瞬时值,一定的焊丝直径具有一定的电流调节范围.2焊丝伸出长度是指导电嘴端面至工件的距离.由于CO2焊时选用焊丝较细,焊接电流流经此段所产生的电阻热对焊接过程有很大影响.生产经验表明,合适的伸出长度应为焊丝直径的10~20倍,一般在5~15mm范围内.3气体流量小电流时,气体流量通常为5~15L/min;大电流时,气体流量通常为10~20L/min,并不是流量越大保护效果越好.气体流量过大时,由于保护气流的紊流度增大,反而会把外界空气卷入焊接区.4电源极性CO2气体保护焊一般都采用直流反接,飞溅小,电弧稳定,成形好.常用焊接术语在实际应用过程中,经常会碰到一些与焊接相关的术语,行话.先总结如下:正极性:指直流焊接时,被焊物接+极,焊条、焊丝接-极反极性:与正极性直流电弧焊或电弧切割时,焊件与焊接电源输出端正、负极的接法称为极性.极性分正极性和反极性两种.焊件接电源输出端的正极,电极接电源输出端的负极的接法为正极性常表示为DCSP.反之,焊件接电源输出端的负极,电极接电源输出端的正极的接法为反极性常表示为DCRP.欧美常常用另外一种表示方法,将DCSP称为DCEN,而将DCRP称为DCEP.焊接电流:为向焊接提供足够的热量而流过的电流电弧电压指电弧部的电压,与电弧长大致成比例地增加,一般电压表所示电压值包括电弧电压及焊丝伸出部,焊接电缆部的电压下降值.弧长:弧部长度弧坑:在焊缝终点产生的凹坑气孔:熔敷金属里有气产生空洞飞溅:焊接时未形成熔融金属而飞出来的金属小颗粒焊渣:焊后覆盖在焊缝表面上的固态熔渣熔渣:包覆在熔融金属表面的玻璃质非金属物咬边:由于焊缝两端的母材过烧,致使熔融金属未能填满,形成槽状凹坑.熔深:母材熔化部的最深位与母材表面之间的距离熔池:因焊弧热而熔化成池状的母材部分熔化速度:单位时间里熔敷金属的重量熔敷率:有效附着在焊接部的金属重量占熔融焊条、焊丝重量的比例未熔合:对焊底部的熔深不良部,或第一层等里面未融合部余高:鼓出母材表面的部分或角焊末端连接线以上部分的熔敷金属坡口角度:母材边缘加工面的角度预热:为防止急热,焊接前先对母材预热如火焰加热后热:为防止急冷进行焊后加热如火焰加热平焊:从接头上面焊接横焊:从接头一侧开始焊接立焊:沿接头由上而下或由下而上焊接仰焊:从接头下面焊接垫板:为防止熔融金属落下,在焊接接头下面放上金属、石棉等支撑物.夹渣:夹渣是非金属固体物质残留于焊缝金属中的现象,夹杂物出现在熔焊过程中焊剂:焊接时,能够熔化形成熔渣和气体,对熔化金属起保护和冶金处理作用的一种物质.碳弧气刨:使用石磨棒或碳棒与工件间产生的电弧将金属熔化,并用压缩空气将其吹掉,实现在金属表面上加工沟槽的方法保护气体:焊接过程中用于保护金属熔滴、熔池及焊缝区的气体,它使高温金属免受外界气体的侵害焊接夹具:为保证焊件尺寸,提高装配精度和效率,防止焊接变形所采用的夹具焊接工作台为焊接小型焊件而设置的工作台焊接操作机:将焊接机头或焊枪送到并保持在待焊位置,或以选定的焊接速度沿规定的轨迹移动焊剂的装置焊接变位机:将焊件回转或倾斜,使接头处于水平或船行位置的装置焊接滚轮架:借助焊件与主动滚轮间的摩擦力来带动圆筒形或圆锥形焊件旋转的装置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、短路过渡焊接
CO2电弧焊中短路过渡应用最广泛,主要用于薄板及全位置焊接,规范参数为电弧电压焊接电流、焊接速度、焊接回路电感、气体流量及焊丝伸出长度等。
(1)电弧电压和焊接电流,对于一定的焊丝直径及焊接电流(即送丝速度),必须匹配合适的电弧电压,才能获得稳定的短路过渡过程,此时的飞溅最少。
不同直径焊丝的短路过渡时参数如表:
焊丝直径(㎜)0.8 1.2 1.6
电弧电压(V)18 19 20
焊接电流(A)100-110 120-135 140-180
(2)焊接回路电感,电感主要作用:
a 调节短路电流增长速度di/dt, di/dt过小发生大颗粒飞溅至焊丝大段爆断而使
电弧熄灭,di/dt 过大则产生大量小颗粒金属飞溅。
b 调节电弧燃烧时间控制母材熔深。
c 焊接速度。
焊接速度过快会引起焊缝两侧吹边,焊接速度过慢容易发生烧穿和焊缝组织粗大等缺陷。
d 气体流量大小取决于接头型式板厚、焊接规范及作业条件等因素。
通常细丝焊接时气流量为5-15 L/min,粗丝焊接时为20-25 L/min。
e 焊丝伸长度。
合适的焊丝伸出长度应为焊丝直径的10-20倍。
焊接过程中,尽量保持在10-20㎜范围内,伸出长度增加则焊接电流下降,母材熔深减小,
反之则电流增大熔深增加。
电阻率越大的焊丝这种影响越明显。
f 电源极性。
CO2电弧焊一般采用直流反极性时飞溅小,电弧稳定母材熔深大、成型好,而且焊缝金属含氢量低。
2、细颗粒过渡。
(1)在CO2气体中,对于一定的直径焊丝,当电流增大到一定数值后同时
配以较高的电弧压,焊丝的熔化金属即以小颗粒自由飞落进入熔池,这种过渡形式为细颗粒过渡。
细颗粒过渡时电弧穿透力强母材熔深大,适用于中厚板焊接结构。
细颗粒过渡焊接时也采用直流反接法。
(2)达到细颗粒过渡的电流和电压范围:
焊丝直径(mm)电流下限值(A)电弧电压(V)
1.2 300 34- 35
1.6 400
2.0 500
随着电流增大电弧电压必须提高,否则电弧对熔池金属有冲刷作用,焊缝成形恶化,适当提高电弧电压能避免这种现象。
然而电弧电压太高飞溅会显著增大,在同样电流下,随焊丝直径增大电弧电压降低。
CO2细颗粒过渡和在氩弧焊中的喷射过渡有着实质性差别。
氩弧焊中的喷射过渡是轴向的,而CO2中的细颗
粒过渡是非轴向的,仍有一定金属飞溅。
另外氩弧焊中的喷射过渡界电流有明显较变特征。
(尤其是焊接不锈钢及黑色金属)而细颗粒过渡则没有。
3、减少金属飞溅措施:
(1)正确选择工艺参数,焊接电弧电压:在电弧中对于每种直径焊丝其飞溅率和焊接电流之间都存在着一定规律。
在小电流区,短路过渡飞溅较小,进入大电流区(细颗粒过渡区)飞溅率也较小。
(2)焊枪角度:焊枪垂直时飞溅量最少,倾向角度越大飞溅越大。
焊枪前倾或后倾最好不超过20度。
(3)焊丝伸出长度:焊丝伸出长对飞溅影响也很大,焊丝伸出长度从20增
至30㎜,飞溅量增加约5%,因而伸出长度应尽可能缩短。
4、保护气体种类不同其焊接方法有区别。
(1)利用CO2气体为保护气的焊接方法为CO2电弧焊。
在供气中要加装预热器。
因为液态CO2在不断气化时吸收大量热能,经减压器减压后气体体积膨胀也会使气体温度下降,为了防止CO2气体中水分在钢瓶出口及减压阀中结冰而堵塞气路,所以在钢瓶出口及减压之间将CO2气体经预热器进行加热。
(2)CO2+Ar气作为保护气的焊接方法MAG焊接法,称为物性气体保护。
此种焊接方法适用于不锈钢焊接。
(3)Ar作为气体保护焊的MIG焊接方法,此种焊接方法适用于铝及铝合金
焊接。
五、基本操作技术
1、注意事项
(1)电源、气瓶、送丝机、焊枪等连接方式参阅说明书。
(2)选择正确的持枪姿势:
a 身体与焊枪处于自然状态,手腕能灵活带动焊枪平移或转动。
b 焊接过程中软管电缆最小曲率半径应大于300m/m焊接时可任意拖动焊枪。
c 焊接过程中能维持焊枪倾角不变还能清楚方便观察熔池。
d 保持焊枪匀速向前移动,可根据电流大小、熔池的形状、工件熔和情况调整焊枪前移速度,力争匀速前进。
2、基本操作
(1)检查全部连接是否正确,水、电、气连接完毕合上电源,调整焊接规范参数。
(2)引弧:CO2气体保护焊采用碰撞引弧,引弧时不必抬起焊枪,只要保证焊枪与工作距离。
a 引弧前先按遥控盒上的点动开关或焊枪上的控制开关将焊丝送出枪嘴,保持伸出长度10 ~15 mm。
b 将焊枪按要求放在引弧处,此时焊丝端部与工件未接触,枪嘴高度由焊接电流决定。
c 按下焊枪上控制开关,焊机自动提前送气,延时接通电源,保持高电压、慢送丝,当焊丝碰撞工件短路后自然引燃电弧。
短路时,焊枪有自动顶起的倾向,故引弧时要稍用力下压焊枪,防止因焊枪抬起太高,电弧太长而熄灭。
3、焊接
引燃电弧后,通常采用左焊法,焊接过程中要保持焊枪适当的倾斜和枪嘴高度,使焊接尽可能地匀速移动。
当坡口较宽时为保证二侧熔合好,焊枪作横向摆动。
焊接时,必须根据焊接实际效果判断焊接工艺参数是否合适。
看清熔池情况、
电弧稳定性、飞溅大小及焊缝成形的好坏来修正焊接工艺参数,直至满意为止。
4、收弧
焊接结束前必须收弧。
若收弧不当容易产生弧坑并出现裂纹、气孔等缺陷。
焊接结束前必须采取措施。
(1)焊机有收弧坑控制电路。
焊枪在收弧处停止前进,同时接通此电路,焊接电流电弧电压自动减小,待熔池填满。
(2)若焊机没有弧坑控制电路或因电流小没有使用弧坑控制电路。
在收弧处焊枪停止前进,并在熔池未凝固时反复断弧、引弧几次,直至填满弧坑为止。
操作要快,若熔池已凝固才引弧,则可能产生未熔合和气孔等缺陷。
是焊接方法中的一种
是以二氧化碳气为保护气体,进行焊接的方法。
在应用方面操作简单,适合自动焊和全方位焊接。
在焊接时不能有风,适合室那作业由于它成本低,二氧化碳气体易生产,广泛应用于各大小企业二氧化碳气体保护电弧焊(简称CO2焊)的保护气体是二氧化碳有时采用CO2+O2的混合气体)。
由于二氧化碳气体的0热物理性能的特殊影响,使用常规焊接电
源时,焊丝端头熔化金属不可能形成平衡的轴向自由过渡,通常需要采用短路和熔滴缩颈爆断、因此,与MIG焊自由过渡相比,飞溅较多。
但如采用优质焊机,参数选择合适,可以得到很稳定的焊接过程,使飞溅降低到最小的程度。
由于所用保护气体价格低廉,采用短路过渡时焊缝成形良好,加上使用含脱氧剂的焊无内部缺的刘质量焊接接头。
因此这种焊接方法目前已成为黑色金属材料最重要焊接方法之一。
1)焊丝直径
焊丝的直径通常是根据焊件的厚薄、施焊的位置和效率等要求选择。
焊接薄板或中厚板的全位置焊缝时,多采用1.6mm以下的焊丝(称为细丝CO2气保焊)。
焊丝直径的选择残照下表
焊丝直径(mm)熔滴过渡形式可焊板厚(mm)施焊位置
0.5~0.8短路过渡0.4~3各种位置
细颗粒过渡2~4平焊、横角
1.0~1.2短路过渡2~8各种位置
细颗粒过渡2~12平焊、横角
1.6短路过渡2~12平焊、横角
细颗粒过渡〉8平焊、横角
2.0~2.5细颗粒过渡〉10平焊、横角
(2)焊接电流焊接电流的大小主要取决于送丝速度。
送丝的速度越快,则焊接的电流就越大。
焊接电流对焊缝的熔深的影响最大。
当焊接电流为60~250A,即以短路过渡形式焊接时,焊缝熔深一般为1mm~2mm;只有在300A以上时,融身才明显的增大。
(3)电弧电压短路过渡时,则电弧电压可用下式计算:
U=0.04I+16±2(V)
此时,焊接电流一般在200A以下,焊接电流和电弧电压的最佳配合值见表2。
当电流在20 0A以上时,则电弧电压的计算公式如下。
U=0.04I+20±2(V)
4)焊接速度
半自动焊接时,熟练的焊工的焊接速度为18m/h~36m/h;自动焊时,焊接速度可高达150m/ h。
(5)焊丝的伸出长度
一般的焊丝的伸出长度约为焊丝的直径的10倍左右,并随焊接电流的增加而增加。
(6)气体的流量正常的焊接时,200A已下薄板焊接,CO2的流量为10L/min~25L/min.200 A以上厚板焊接,CO2的流量为15L/min~25L/min.粗丝大规范自动焊为25L/min~50L/min。
1.焊接成本低。
其成本只有埋弧焊和手工电弧焊的40~50%。
2.生产效率高。
其生产率是手工电弧焊的1~4倍。
3.操作简便。
明弧,对工件厚度不限,可进行全位置焊接而且可以向下焊接。
4.焊缝抗裂性能高。
焊缝低氢且含氮量也较少。
5.焊后变形较小。
角变形为千分之五,不平度只有千分之三。
6.焊接飞溅小。
当采用超低碳合金焊丝或药芯焊丝,或在CO2中加入Ar,都可以降低焊接飞溅。