人教版数学中考专题复习试题课件版

合集下载

人教版数学中考复习课件第七章第一节 尺规作图

人教版数学中考复习课件第七章第一节 尺规作图
的周长是 16 .
尺规作图题常见考查类型 1.直接作图,如作角平分线,线段的垂直平分线,作一个角等于已 知角等,直接利用五种基本的尺规作图来解答. 2.给出作图痕迹或步骤,判断结论正误或进行相关计算,对于此种 类型的题目,平时要对五种基本尺规作图了熟于心,从而判断是哪种基 本作图,再根据作图依据进行结论判断或计算.
5.★(2020·郴州)如图,在矩形 ABCD 中,AD=4,AB=8.分别以点 B,D 为圆心,以大于12BD 的长为半径画弧,两弧相交于点 E 和 F.作直线 EF 分别与 DC,DB,AB 交于点 M,O,N,则 MN= 2 5 .
6.(2020·扬州)如图,在△ABC 中,按以下步骤作图: ①以点 B 为圆心,任意长为半径作弧,分别交 AB,BC 于点 D,E. ②分别以点 D,E 为圆心,大于12DE 的长为半径作弧,两弧交于点 F. ③作射线 BF 交 AC 于点 G. 如果 AB=8,BC=12,△ABG 的面积为 18,则△CBG 的面积为 27 .
∴∠DBA=∠ACD=45°, ∵AC=6,BC=8,∴AB=10, ∴AD=BD=AB·sin 45°=10× 22=5 2.
7.(2020·青海)如图,在 Rt△ABC 中,∠C=90°.
(1)尺规作图:作 Rt△ABC 的外接圆⊙O;作∠ACB 的角平分线交⊙O 于点 D,连接 AD;(不写作法,保留作图痕迹)
解:如图,Rt△ABC 的外接圆⊙O,线段 CD 即为所求.
(2)若 AC=6,BC=8,求 AD 的长. 解:连接 BD, ∵∠C=90°. ∴AB 是⊙O 的直径, ∴∠BDA=90°, ∵CD 平分∠ACB, ∴∠ACD=∠BCD=45°,
命题点:尺规作图及相关的证明与计算(2020 年考查 2 次,2019 年考 查 2 次,2018 年考查 2 次,2017 年考查 1 次)

人教版中考数学专题课件:一次函数

人教版中考数学专题课件:一次函数
例 3 [教材母题] 某一次函数的图象过点(-1,2),且 函数 y 的值随 x 的增大而减小,请写出符合上述条件的函 数解析式(只写一个).
皖考解读
考点聚焦
皖考探究
当堂检测
一次函数
解 析
由于函数 y 的值随 x 的增大而减小,∴k<0,
可设 y=-x+b,把点(-1,2)代入 y=-x+b,2=-(-1) +b,b=1,所以 y=-x+1.
皖考解读
考点聚焦
皖考探究
当堂检测
一次函数
变式题 [2012· 长春] 有一道题目:已知一次函数 y=2x +b, 其中 b<0, „, 与这段描述相符的函数图象可能是( A )
图 10-1
皖考解读
考点聚焦
皖考探究
当堂检测
一次函数
探究二 一次函数图象的平移
命题角度: 1.一次函数图象平移的规律; 2.求一次函数图象平移后的解析式.
当堂检测
一次函数
变式题 [2012· 南宁] 若点 A(2, 4)在函数 y=kx-2 的图象 上,则下列各点在此函数图象上的是 A.(1,1) C.(-2,-2) B.(-1,1) D.(2,-2) ( A )
皖考解读
考点聚焦
皖考探究
当堂检测
一次函数
探究四
一次函数与一次方程(组),一元一次不等式(组)的关系
皖考解读 考点聚焦 皖考探究 当堂检测
一次函数 考点3 一次函数的解析式的确定
关键点回顾 1.写出一次函数的一般形式; 2.把已知条件代入解析式,得到关于待定系数的 方程(组); 3.解方程(组),求出待定系数; 4.将求得的待定系数的值代回所设解析式.
名称 用待定系 数法求一 次函数解 析式的一 般步骤

人教版初中数学中考复习 一轮复习 二次函数及其应用2(课件)

人教版初中数学中考复习  一轮复习   二次函数及其应用2(课件)

解方程,得 m1=-2,m2=3(不符合题意,舍去) ∴m=-2
典型例题——二次函数与方程、不等式的关系
9. (2021•泸州)直线 l 过点(0,4)且与 y 轴垂直,若二次函数 y=(x﹣a)2+(x﹣2a)2+
(x﹣3a)2﹣2a2+a(其中 x 是自变量)的图象与直线 l 有两个不同的交点,且其对称轴
解方程,得 m1= 41-1 ,m2= - 41+1 (不符合题意,舍去)
4
4
∴m= 41-1 , 4
1 - m>3,即 m<-3,当 x=3 时,y=6.∴9来自6m+2m2-m=6,
解方程,得 m1=-1,m2= - 3 (均不符合题意,舍去). 2
综上所述,m=-2 或 m=
41-1
.
4
2 1<- m≤3,即-3≤m<-1,当 x=-m 时,y=6. ∴m2-m=6
bx+c=0有 两个不相等的 实数根;
②如果抛物线y=ax2+bx+c(a≠0)与x轴 只有一个 交点,则一元二次方
程ax2+bx+c=0有两个 相等 的实数根;
③如果抛物线y=ax2+bx+c(a≠0)与x轴没有交点,则一元二次方程ax2+bx
+c=0 没有 实数根.
知识点梳理——知识点4:二次函数与一元二次方程及不等式的关系
A(1,0),B(m,0)(-2<m<-1),下列结论①2b+c>0;②2a+c<0;
③a(m+1)-b+c>0;④若方程a(x-m)(x-1)-1=0有两个不等实数根,
A 则4ac-b2<4a;其中正确结论的个数是(
)
A.4
B.3
C.2
D.1
典型例题——二次函数与方程、不等式的关系

2022年中考数学人教版一轮复习课件:八、解答题专练——网格作图

2022年中考数学人教版一轮复习课件:八、解答题专练——网格作图
(1)在图①中,以点 A,B,C 为顶点画一个等腰三角形; (2)在图②中,以点 A,B,D,E 为顶点画一个面积为 3 的平 行四边形.
解:(1)如图①中,△ABC 即为所求(答案不唯一).
解:(2)如图②中,四边形 ABDE 即为所求.
5.(2021·长春)图①、图②、图③均是 4×4 的正方形网格,每个 小正方形的边长均为 1,每个小正方形的顶点称为格点,点 A, B,C 均为格点,只用无刻度的直尺,分别在给定的网格中找 一格点 M,按下列要求作图:
(1)在图①中,连结 MA,MB,使 MA=MB; (2)在图②中,连结 MA,MB,MC,使 MA=MB=MC; (3)在图③中,连结 MA,MC,使∠AMC=2∠ABC.
解:(1)(2)(3)如图.
6.(2021·绥化)如图,在网格中,每个小正方形的边长均为 1 个 单位长度,把小正方形的顶点叫做格点,O 为平面直角坐标系 的原点,矩形 OABC 的 4 个顶点均在格点上,连接对角线 OB.
八、解答题专练——网格作图
1.(2021·深圳)如图,在正方形网格中,每个小正方形的边长为 1 个单位. (1)过直线 m 作四边形 ABCD 的对称图形; (2)求四边形 ABCD 的面积.
解:(1)如图所示,四边形积=S△ABD+S△BCD
解:(1)如图①,四边形 ABCD 即为所求(答案不唯一).
解:(2)如图②,四边形 AEBF 即为所求.
3.(2021·丽水)如图,在 5×5 的方格纸中,线段 AB 的端点均在格 点上,请按要求画图.
(1)如图①,画出一条线段 AC,使 AC=AB,C 在格点上; (2)如图②,画出一条线段 EF,使 EF,AB 互相平分,E,F 均在格点上; (3)如图③,以 A,B 为顶点画出一个四边形,使其是中心对 称图形,且顶点均在格点上.

2024年中考数学复习专题课件(共30张PPT)一元一次不等式(组)及其应用

2024年中考数学复习专题课件(共30张PPT)一元一次不等式(组)及其应用

解:设普通水稻的亩产量是 x kg,则杂交水稻的亩产量是 2x kg,依题 意得 7 200 9 600
x - 2x =4,解得 x=600, 经检验,x=600 是原分式方程的解,且符合题意,则 2x=2×600=1 200(kg). 答:普通水稻的亩产量是 600 kg,杂交水稻的亩产量是 1 200 kg.
__00__.
6.[2023·贵州第 17(2)题 6 分]已知 A=a-1,B=-a+3.若 A>B,求 a 的取值范围. 解:由 A>B 得 a-1>-a+3, 解得 a>2, 即 a 的取值范围为 a>2.
7.[2021·贵阳第 17(1)题 6 分]有三个不等式 2x+3<-1,-5x>15, 3(x-1)>6,请在其中任选两个不等式, 组成一个不等式组,并求出它 的解集.
4.风陵渡黄河公路大桥是连接山西、陕西、河南三省的交通要塞 ,该 大桥限重标志牌显示,载重后总质量超过 30 t 的车辆禁止通行,现有一 辆自重 8 t 的卡车,要运输若干套某种设备,每套设备由 1 个 A 部件和 3 个 B 部件组成,这种设备必须成套运输,已知 1 个 A 部件和 2 个 B 部件 的总质量为 2.8 t,2 个 A 部件和 3 个 B 部件的质量相等. (1)求 1 个 A 部件和 1 个 B 部件的质量各是多少; (2)卡车一次最多可运输多少套这种设备通过此大桥?
解:(1)设出售的竹篮 x 个,陶罐 y 个,依题意有 5x+12y=61, x=5, 6x+10y=60,解得y=3. 答:小钢出售的竹篮 5 个,陶罐 3 个.
(2)设购买鲜花 a 束,依题意有 0<61-5a≤20, 解得 8.2≤a<12.2, ∵a 为整数, ∴共有 4 种购买方案, 方案一:购买鲜花 9 束; 方案二:购买鲜花 10 束; 方案三:购买鲜花 11 束; 方案四:购买鲜花 12 束.

九年级数学 人教版中考专题复习《一元一次方程》课件(共16张PPT)

九年级数学 人教版中考专题复习《一元一次方程》课件(共16张PPT)
2x a x a x 1 3 2
中,得
- 2 - a 1 a 1 1 3 2
解得a=-11
综合运用
自主探究
10 1.如果 2x2ab1 3 y3a2b16 是一个二元一次方 程,那么a=_____. 3 b=______ 4
2 x y 5 2.解方程组: 4 x 3 y 7
2 x y 5 2.解方程组: 4 x 3 y 7
(1) ( 2)
解:(2)-(1)x2得 y=-3 将y=-3代入(1)得 x=4 x4 所以原方程组的解是 y 3

组内交流
陈老师为学校购买运动会的奖品后,回学校向后勤处王 老师交账说:“我买了两种书,共105本,单价分别为8 元和12元,买书前我领了1500元,现在还余418元. ” 王 老师算了一下,说:“你肯定搞错了. ”王老师为什么说 他搞错了?试用方程的知识给予解释.
解:设原来的两位数个位数字是x,则十位数字 是9-x. 10x+(9-x)=10(9-x)+x+9 解得 x=5 9-x=4 所以原来的两位数是45.
1.如果2005-200.5=x-20.05,那么x等于(B) A.1814.55 B.1824.55 C.1 774.45 D.1 784.45 2.已知一个正方体的每一表面都填有唯一一个 数字,且各相对表面上所填的数互为倒数.若这 个正方体的表面展开图如图1所示,则A、B的 值分别是( A ) 1 2 A 1 3 B
2.若方程 3x 4 m7+5=0 是一元一次方程, 求 m的值,并求此一元一次方程的解.
根据题意,得 4m-7=1 解得 m=2 当m=2时,原方程变为 3x+5=0 3x=-5

2021人教版数学中考总复习课件-专题18 等腰、等边三角形问题

2021人教版数学中考总复习课件-专题18 等腰、等边三角形问题
P.若∠BPC=70°,则∠ABC 的度数等于( B )
A.75°
B.70°
C.65°
D.60°
20
4.已 知 等 边 三 角 形 的 边 长 为 3,点 P 为 等 边 三 角 形 内 任 意 一 点 ,则 点 P 到 三 边 的 距 离 之 和 为
( B)
A.
B.
C.
D. 不能 确 定
5.(2019•浙江衢州)“三等分角”大约是在公元前五世纪由古希腊人提出来的。借助如图所示 的“三等分角仪”能三等分任一角。这个三等分角 仪由两根有槽的棒 OA,OB 组成,两根棒在 O 点相连并可绕 O 转动,C 点固定,OC=CD=DE, 点 D,E 可在槽中滑动,若∠BDE=75形 ABC 的边 BC、AC 上分别取点 D、E,使
BD=CE,AD 与 BE 相交于点 P.则∠APE 的度数为 60 °.
11
【解析】根据 BD=CE 可得 CD=AE,即可证明△ACD≌△BAE,得∠CAD=∠ABE,再根 据内角和为 180°的性质即可解题。 ∵BD=CE,∴BC﹣BD=AC﹣CE,即 CD=AE,
题上,我们常将中线延长一倍,这样添辅助线有助于我们解决有关中线的问题。
3.分类讨论是等腰三角形问题中常用的思想方法,在已知等腰三角形的边和角的 情况下求其他三角形的边或角,要对已知的边和角进行讨论,分类的标准一般是 根据边是腰还是底来分类。
5
例题解析
【例 1】(2020•临沂)如图,在△ABC 中,AB=AC,∠A= 40°,CD∥AB,则∠BCD=( D )
∴∠DAE=n°﹣∠BAD=n°﹣90° m°,∵EA=EC,
∴∠CAE AEB=90° n° m°,
∴∠DAC=∠DAE+∠CAE=n°﹣90° m°+90° n° m° n°.

人教版初中数学中考复习专题复习 数与式(37张PPT)

人教版初中数学中考复习专题复习 数与式(37张PPT)

知识回顾
五、实数的运算 1.包括加法、减法、乘法、除法、乘方、开方共六种,
运算时先确定___符__号___,再运算. 2.实数的运算顺序:先算乘方、开方,再算__乘__除____,
最后算_加__减_____;如果有括号,先算__括__号____里面的; 同级运算按照_从__左__到__右_的顺序依次计算. 六、整式的有关概念 1.整式:__单__项__式__和_多__项__式__统称为整式. 单项式中的_数__字__因__数_叫作单项式的系数,所有字母的 __指__数__和__叫作单项式的次数. 组成多项式的每一个单项式叫作多项式的__项______,多 项式的每一项都要带着前面的符号.
中考·数学
2020版
第一部分 系统复习
第一讲 数与式
知识回顾
一.按实数的定义分类:
负整数
分数
正分数
负无理数
知识回顾
二、实数的基本概念和性质 1.数轴 (1)定义:规定了 _原__点____ 、 _正__方__向__ 、 _单__位__长__度__的直
线叫作数轴. (2)性质: _实___数___和数轴上的点是一一对应的. 2.相反数 (1)定义:a的相反数是___-a____ ,0的相反数是__0___ . (2)性质:a,b互为相反数⇔ __a_+_ b_=__0__ .
2.整式的乘法
知识回顾
(1)单项式乘单项式:把它们的系数、相同字母分别 ___相__乘___,对于只在一个单项式里含有的字母,则连同 它的__指__数____作为积的一个因式.
(2)单项式乘多项式:பைடு நூலகம்单项式去乘多项式的每一项,再 把所得的积__相__加____.
即m(a+b+c)=___m__a_+_m_b_+_m__c__.

【人教版】中考数学六大专题冲刺复习优质PPT课件

【人教版】中考数学六大专题冲刺复习优质PPT课件

满分解答
变式训练
1.(2015•珠海)如图-3,在平面直角坐标系中, 矩形OABC的顶点A,C分别在x轴、y轴上,函数 y=k/x的图象过点P(4,3)和矩形的顶点B(m,n )(0<m<4). (1)求k的值; (2)连接PA,PB,若△ABP的面积为6,求直线BP 的表达式.
2.(2015•佛山)若正比例函数y=k 1x的图象与 反比例函数y=k2/x的图象有一个交点的坐标是(2,4). (1)求这两个函数的表达式; (2)求这两个函数图象的另一个交点的坐标.
试题分析
本题以一次函数与反比例函数的图象交点问题为背景, 考查学生利用轴对称求最短路线问题,具体分析如下: (1)根据点A的坐标以及AB=3BD先求出点D的坐标,再代 入反比例函数表达式即可求出k的值; (2)点C是直线与反比例函数图象的交点,由直线与反 比例函数的表达式联立方程组即可求出点C的坐标; (3)作点D关于y轴的对称点E,连接CE交y轴于点M,则 d=MC+MD最小.得到E(-1,1),求得直线CE的表达式为 y=(2√3-3)x+2√3-2,其与y轴的交点即为所求.
真题回顾
例 (2015•广东)如图-1,反比例函数y=k/x( k≠0,x>0)的图象与直线y=3x相交于点C,过直 线上点A(1,3)作AB⊥x轴于点B,交反比例函数 的图象于点D,且AB=3BD. (1)求k的值; (2)求点C的坐标; (3)在y轴上确定一点M,使点 M到C,D两点的距离之和d=MC+MD, 求点M的坐标.
解题策略:应用函数思想解题,确立变量之间的 函数表达式是关键步骤,主要分为下面四种情况 : (1)根据题意建立变量之间的函数表达式,把问 题转化为相应的函数问题; (2)用待定系数法求函数表达式; (3)利用两个三角形相似解决最值问题; (4)动点与图形面积的关系,动点与线段之和最 短问题的关系.

中考数学专题复习圆的基本性质课件人教版

中考数学专题复习圆的基本性质课件人教版

中考总复习 8.1 提高 No.13
选择填空题答案
中考总复习 8.1 答案
8.1 课中检测
8.1 课后检测 1-5 DCADD
A
中考总复习 8.1 课中 No.3
中考总复习 8.1 课中 No.4
中考总复习 8.1 课中 No.5
E
中考总复习 8.1 课后
中考总复习 8.1 课后 No.1D中来自总复习 8.1 课后 No.2
C
中考总复习 8.1 课后 No.3
A
中考总复习 8.1 课后 No.4
D
中考总复习 8.1 课后 No.5
D
中考总复习 8.1 课后 No.6
中考总复习 8.1 课后 No.7
中考总复习 8.1 课后 No.8
中考总复习 8.1 课后 No.9
中考总复习 8.1 课后 No.10
中考总复习 8.1 课后 No.11
中考总复习 8.1 提高 No.12
中考总复习 8.1 提高 No.12
中考总复习 8.1 提高 No.13
中考总复习 8.1
中考总复习 8.1例题
中考总复习 知识填空
中考总复习 知识填空
中考总复习 引入
中考总复习 问题
中考总复习 问题
中考总复习 拓展
中考总复习 拓展
中考总复习 拓展
中考总复习
中考总复习 8.1检测
中考总复习 8.1 课中
中考总复习 8.1 课中 No.1
B
中考总复习 8.1 课中 No.2

人教版数学中考一轮专题复习课件 一次函数

人教版数学中考一轮专题复习课件  一次函数

中考真题
一、选择题 1.(2021·来宾改编)一次函数y=2x+1向下平移3个单位后的图象不经过
(B) A.第一象限 B.第二象限 C.第三象限 D.第四象限

2.(2021·营口)已知一次函数y=kx-k过点(-1,4),则下列结论正确的 是( C ) A.y随x增大而增大 B.k=2 C.直线过点(1,0) D.与坐标轴围成的三角形面积为2
【变式】 根据下列条件分别确定函数y=kx+b(k,b为常数,k≠0)的解析式: (1)当x=2时,y=-4,当x=-2时,y=4; (2)函数y=kx+b的图象经过点(-2,9)与点(1,3); (3)说明(2)中函数图象是由(1)中函数图象如何平移得到的?
(1)当x=2时,y=-4,当x=-2时,y=4;
二、填空题
7.(2021·上海)已知函数y=kx经过第二、四象限,且函数不经过(-1, 1),请写出一个符合条件的函数解析式_y_=__-__2_x_(k__<__0_且__k_≠_-__1_即__可__).
8.(2021·眉山)一次函数y=(2a+3)x+2的值随x值的增大而减少,则常 数a的取值范围是__a_<__-_32__.
(2)一次函数y=x-3的大致图象为( C )
(3)将直线y=-6x向下平移2个单位长度,平移后直线的解析式为______ y=_-__6_x_-__2_.
3.(1)已知正比例函数y=kx(k≠0)的图象经过点A(-1,3),则正比例函数 的解析式为____y_=__-__3_x___;
(2)一次函数的图象经过(3,5)和(-4,-9)两点,则一次函数的解析式 为____y_=__2_x_-__1_____.
y=200-2x. 自变量x的取值范围是50≤x≤100.

人教版中考数学一轮复习--二次函数的应用(精品课件)

人教版中考数学一轮复习--二次函数的应用(精品课件)
∴易得c=3,即y=- 1 x2+bx+3. 4
∵A(1,0),即二次函数图象的对称轴为直线x=1,
∴x=-2×b-14=1,∴b=12,
∴二次函数的解析式为 y=-14x2+12x+3.
(2)若点C与点B重合,求tan∠CDA的值.
解:过点D作x轴的垂线,垂足为E.
∵∠CAD=90°,∴∠BAO+∠DAE=90°.
解:当m=-2时,直线l2:y=-2x+n(n≠10), ∴直线l2:y=-2x+n(n≠10)与直线l1:y=-2x+10不重合, 假设l1与l2不平行,则l1与l2必相交,设交点为P(xP,yP), ∴ yyPP= =- -22xxPP+ +n10,,解得n=10. ∵n=10与已知n≠10矛盾,∴l1与l2不相交,∴l2∥l1.
综上所述,当a≥50时,矩形菜园ABCD面积的最大值为1 250 m2; 当0<a<50时,矩形菜园ABCD面积的最大值为 50a-12a2 m2.

考点3 销售问题 例4 某药店选购了一批消毒液,进价为每瓶10元,在销售过
程中发现,每天销售量y(瓶)与每瓶售价x(元)之间存在 一次函数关系(其中10≤x≤21,且x为整数).当每瓶消毒 液售价为12元时,每天销售量为90瓶;当每瓶消毒液售 价为15元时,每天销售量为75瓶. (1)求y与x之间的函数关系式;
∴直线MN的解析式为y=-x+4,
由-x2+2x+3=-x+4 得,x=3±2 5,
∴M 点横坐标为3+2
5或3-2
5 .
例2 【2020福建节选14分】已知直线l1:y=-2x+10交y轴 于点A,交x轴于点B,二次函数的图象过A,B两点,交 x轴于另一点C,BC=4,且对于该二次函数图象上的任 意两点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.

中考数学专题 反比例函数复习课件 人教新课标版

中考数学专题 反比例函数复习课件 人教新课标版
A.2 B.6 C.10 D.8
【解析】由y=-8x y=x+2
得 A(-2,4)、B(4,-2)可求得 S△AOB=6.
【答案】B
11.(2011 中考预测题)反比例函数 y=kx的图象如图所示,点 M 是该函数图象上一点, MN 垂直于 x 轴,垂足是点 N,如果 S△MON=2,则 k 的值为( )
A.y1<y2<y3 B.y2<y1<y3 C.y3<y1<y2 D.y3<y2<y1
【解析】∵y=6x,∴k=6>0,∴图象在每个象限内 y 随 x 的增大而减小.∵x1<x2,∴y1>y2, ∴y2<y1<y3.
【答案】B
6.(2010·莱芜)已知反比例函数 y=-2x,下列结论不.正.确.的是(
(1)求直线和双曲线的函数关系式;(2)求△CDO(其中 O 为原点)的面积.
答案:(1)直线的函数关系式为 y=-x-3 双曲线的函数关系式为 y=-4x (2)S△CDO=6
考点训练 15
反比例函数 反比例函数 训练时间:60分钟 分值:100分
训练时间:60分钟 分值:100分
一、选择题(每小题 4 分,共 44 分)
反比例函数
考点一 反比例函数的定义
一般地,函数 y=k或 y=kx-1(k 是常数,k≠0)叫做反比例函数. x
1.反比例函数 y=k中的k是一个分式,所以自变量 x≠0,函数与 x 轴、y 轴无交点. xx
2.反比例函数解析式可以写成 xy=k(k≠0),它表明在反比例函数中自变量 x 与其对应 函数值 y 之积,总等于已知常数 k.
A.增大
B.减小
C.不变
D.先减小后增大

人教版中考数学一轮复习--二次函数与三角形的综合应用(精品课件)

人教版中考数学一轮复习--二次函数与三角形的综合应用(精品课件)

若不存在,请说明理由.
(图1)
解:存在.∵PD∥OB,
∴∠DPC=∠BOC,∠PDC=∠OBC,
∴△DPC∽△BOC,∴CCOP=CCDB=OPDB.
∵SS12=CCDB,SS23=CCOP,∴SS12+SS23=2CCOP.
(答图3)
如答图 3,过点 P 作 PH⊥x 轴,垂足为 H,PH 交 AB 于点
①若-1≤a≤- 1 ,求线段MN长度的取值范围; 2
解:由(2)知ax2+(a-2)x-2a+2=0, ∵a≠0,∴x2+1-2ax-2+2a=0, ∴(x-1)x-2a-2=0,解得 x=1 或 x=2a-2,
将 x=2a-2 代入 y=2x-2,得 y=4a-6, ∴N 点的坐标为2a-2,4a-6. ∴MN2=2a-2-12+(4a-6)2=2a02 -6a0+45=20(1a-32)2. ∵-1≤a≤-12,∴-2≤1a≤-1, ∴易知 MN2 随1a的增大而减小,
ax+b有一个公共点M(1,0),且a<b. (3)直线与抛物线的另一个交点记为N.
②求△QMN面积的最小值.
解:如答图
1,作抛物线的对称轴
x=-12交直线
(答图1) y=2x-2 于 E
点,将 x=-12代入 y=2x-2,得 y=-3,∴E-12,-3.
设△QMN 的面积为 S,
∵M(1,0),N2a-2,4a-6,a<0, ∴S=S△QEN+S△QEM=12|(2a-2)-1|·|-94a-(-3)|=247-3a-278a, ∴易得 27a2+(8S-54)a+24=0, ∴Δ=(8S-54)2-4×27×24≥0,即(8S-54)2≥(36 2)2. ∵a<0,∴S=247-3a-278a>247,

2022年人教版数学中考总复习-专题复习:创新作图题课件

2022年人教版数学中考总复习-专题复习:创新作图题课件

类型二 与多边形有关
解:(1)作图如解图①所示,DF即为所 求.(2)作图如解图②所示,PQ即为所求.
类型二 与多边形有关
9.如图所示的正六边形ABCDEF中,连接FD,请你只用无
刻度的直尺,完成下列作图:(1)请在图①中,作出一个
边长等于DF的等边三角形;(2)请在图②中,作出一个周 长等于DF的等边三角形.
的中点.
类型二 与多边形有关
图①
图②
解:(1)如解图①,直线EF即为所求;菱形
的对角线互相平分,三角形中位线的性质;
(2)如解图②,点F即为所求.
类型二 与多边形有关
7.请分别在下列图中使用无刻度的直尺按要求画
图.(1)在图1中,点P是▱ABCD的边AD的中点,过点P画 一条线段PM,使PM=12 AB;(2)在图2中,点A,D分别是 ▱FBCE的边FB和EC的中点,且点P是边EC上的动点,画 出△PAB的一条中位线.
图①
图②
类型二 与多边形有关
图①
图②
解:(1)图 1 中,线段 PM 即为所求; (2) 图 2 中,线段 GH 即为所求.
类型二 与多边形有关
8.已知五边形ABCDE中,AB=BC=CD=DE=AE,∠A= ∠B=90°,∠D=60°.请仅用不含刻度的直尺按要求画 图.(1)在图①中,作AB的垂直平分线DF;(2)在图②中, 作线段BC的垂直平分线PQ,其中点P在AE上,点Q在BC 上.
类型三 与圆有关
11.⊙O为△ABC的外接圆,请仅用无刻度的直尺,根据下列 条件分别在图①,图②中画出一条弦,使这条弦将△ABC分 成面积相等的两部分(保留作图痕迹,不写作法).(1)如图①, AC=BC;(2)如图②,直线l与⊙O相切于点P,且l∥BC.

2021年人教版数学中考总复习课件-专题28求几何图形面积及面积法解题的问题

2021年人教版数学中考总复习课件-专题28求几何图形面积及面积法解题的问题
17
强化训练
一、选择题
1.(2020•株洲)如图所示,点 A、B、C 对应的 刻度分别为 0、2、4、将线段 CA 绕点 C 按顺时针 方向旋转,当点 A 首次落在矩形 BCDE 的边 BE 上 时,记为点 A1,则此时线段 CA 扫过的图形的面
积为( D )
A.4π
B.6
C.4
D. π
18
2.(2020•攀枝花)如图,直径 AB=6 的半圆, 绕 B 点顺时针旋转 30°,此时点 A 到了点 A',
则这个扇形的弧长为
cm(结果保留π).
19.(2020•凉山州)如图,点 C、D 分别是半圆 AOB 上的三等分点,若阴影部分的面积是 π, 则半圆的半径 OA 的长为 3 .
33
20.(2020•泰安)如图,点 O 是半圆圆心,BE 是半圆的直径, 点 A,D 在半圆上,且 AD∥BO,∠ABO=60°, AB=8,过点 D 作 DC⊥BE 于点 C,则阴影部分
12
解:(1)利用等腰三角形的性质得到 AD⊥BC,BD=CD,则可计算出 BD=6 ,然后利用扇形的面积 公式,利用由弧 EF 及线段 FC.CB.BE 围成图形(图中阴影部分)的面积=S△ABC﹣S 扇形 EAF 进行计算; ∵在等腰△ABC 中,∠BAC=120°,∴∠B=30°,∵AD 是∠BAC 的角平分线, ∴AD⊥BC,BD=CD,∴BD= AD=6 ,∴BC=2BD=12 , ∴由弧 EF 及线段 FC.CB.BE 围成图形(图中阴影部分)的面积
A.
B.π
C. 2 D.π﹣2
8
对点练习
1.如图,在▱ ABCD 中,∠B=60°,⊙C 的半径 为 3,则图中阴影部分的面积是( C )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档