微弱信号检测基本理论和技术

合集下载

《微弱信号检测》课件

《微弱信号检测》课件

实验结果的评估与验证
评估指标
根据实验目的确定评估指标,如信噪比 、检测限等。
VS
验证方法
采用对比实验、重复实验等方法对实验结 果进行验证,确保结果的可靠性和准确性 。
CHAPTER 05
微弱信号检测的未来发展
新技术的应用与探索
人工智能与机器学习
01
利用人工智能和机器学习技术,对微弱信号进行自动识别、分
微弱信号的特点包括幅度小、信噪比 低、不易被察觉等。由于其容易被噪 声淹没,因此需要采用特殊的检测技 术才能提取出有用的信息。
微弱信号检测的重要性
总结词
微弱信号检测在科学研究、工程应用和日常生活中具有重要意义。
详细描述
在科学研究领域,微弱信号检测是研究物质性质、揭示自然规律的重要手段。在工程应用中,微弱信号检测可用 于故障诊断、产品质量控制等方面。在日常生活中,微弱信号检测的应用也非常广泛,如医疗诊断、环境保护等 。
智能制造
将微弱信号检测技术应用于智能 制造领域,实现设备故障预警、 产品质量控制等。
THANKS
[ 感谢观看 ]
研究新的信号处理算法,提高微弱信号的提取、处理 和辨识能力。
集成化与微型化
实现微弱信号检测设备的集成化和微型化,便于携带 和应用。
微弱信号检测与其他领域的交叉融合
生物医学工程
将微弱信号检测技术应用于生物 医学工程领域,如生理信号监测 、医学影像处理等。
环境监测
将微弱信号检测技术应用于环境 监测领域,实现对噪声、振动、 磁场等的微弱变化进行检测和分 析。
小波变换法
总结词
多尺度分析、自适应能力强
详细描述
小波变换法是一种时频分析方法,能够将信号在不同尺度上进行分解,从而在不同尺度 上检测微弱信号的存在和特性。这种方法自适应能力强,能够适应不同特性的微弱信号

微弱信号检测的基本理论和技术

微弱信号检测的基本理论和技术

微弱信号检测的基本理论和技术微弱信号检测的基本理论和技术微弱信号检测技术是采用电子学、信息论、计算机和物理学的方法,分析噪声产生的原因和规律,研究被测信号的特点和相关性,检测被噪声淹没的微弱有用信号。

微弱信号检测的宗旨是研究如何从强噪声中提取有用信号,任务是研究微弱信号检测的理论、探索新方法和新技术,从而将其应用于各个学科领域当中。

在微弱信号检测中,总是伴随着噪声,噪声属于电路中的随机扰动,它可能来自电路中元器件中的电子热运动,或者是半导体器件中载流子的不规则运动。

噪声是限制信号检测系统性能的决定性因素,因此它是信号检测中的不利因素。

对于微弱信号检测来说,如能有效克服噪声,就可以提高信号检测的灵敏度。

电路中噪声是一种连续型随机变量,即它在某一时刻可能出现各种可能数值。

电路处于稳定状态时,噪声的方差和数学期望一般不再随时间变化,这时噪声电压称为广义平稳随机过程。

若噪声的概率分布密度不随时间变化,则称为狭义平稳随机过程(或严格平稳随机过程)。

显然,一个严格平稳随机过程一定为广义平稳随机过程,反之则不然。

1.滤波器被噪声污染的信号波形恢复称为滤波。

这是信号处理中经常采用的主要方法之一,具有十分重要的应用价值。

现在,在各种信号检测仪器中均离不开各种滤波器,它起到了排除干扰,分出信号的功能。

常用的滤波器是采用电感、电容等分立元件构成(例如,RC低通滤波器、LC谐振回路等),它对于滤去某些干扰谱线(例如,电源50Mz滤波,收音机、电视机中干扰的滤波),有较好的效果。

对于混在随机信号中的噪声滤波,这种简单的滤波器就不是最佳的滤波电路。

这是因为信号与噪声均可能具有连续的功率谱。

因此需要寻找一种使误差最小的最佳滤波方法,有称为最小最佳滤波准则。

维纳线性滤波理论就是一种在最小均方误差准则下的最佳线性滤波方法。

出于维纳滤波器电路实现上的困难,在维纳滤波基础上发展了一种基于状态空间方法的最佳线性递推滤波方法,称为卡尔曼滤波。

第一部份 微弱信号检测-基础PPT课件

第一部份 微弱信号检测-基础PPT课件

微弱信号检测—基础
实例一、深空探测
微弱信号检测—基础
实例二、生命探测仪
生命探测仪是借着感应人体 所发出超低频电波产生之电场(由 心脏产生)来找到"活人"的位置。 配备特殊电波过滤器可将其它动 物,诸如狗、猫、牛、马、猪等 不同于人类的频率加以过滤去除, 使生命探测仪只会感应到人类所 发出的频率产生之电场。
微弱信号检测—基础
第1节 微弱信号检测绪论
1.1 微弱信号检测概述 1.2 课程内容安排及要求 1.3 常规小信号检测方法 1.4 微弱信号检测的基本方法 1.5 微弱信号检测的应用成效
微弱信号检测—基础
1.1 微弱信号检测方法概述
(1) 当今科学技术的进步对测量技术提出了更高的要求。 极端条件下的测量,是当今科学技术的前沿课题。
微弱信号检测—基础
1.1 微弱信号检测方法概述
(5) “微弱信号”的含义 2
0
y(t) 2Asin(t ) n(t) -2 0
SNRV S / N A /
5
A 1
0
0.1 SNRV 10
-5
0
1.0 SNRV 1
50
10 SNRV 0.1
0
50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500
微弱信号检测—基础
1.2 课程内容安排及要求
(1)课程内容和学时分配
微弱信号检测 (36学时)
课堂讲授 (24学时)
实验 (9学时)
研讨课 (3学时)
基础理论 (12学时)
检测方法 (9学时)
案例教学 (3学时)

微弱信号检测技术概述

微弱信号检测技术概述

1213225王聪微弱信号检测技术概述在自然现象和规律的科学研究和工程实践中, 经常会遇到需要检测毫微伏量级信号的问题, 比如测定地震的波形和波速、比如测定地震的波形和波速、材料分析时测量荧光光强、材料分析时测量荧光光强、材料分析时测量荧光光强、卫星信号的接收、卫星信号的接收、红外探测以及电信号测量等, 这些问题都归结为噪声中微弱信号的检测。

在物理、化学、生物医学、遥感和材料学等领域有广泛应用。

材料学等领域有广泛应用。

微弱信号检测技术是采用电子学、微弱信号检测技术是采用电子学、微弱信号检测技术是采用电子学、信息论、信息论、计算机和物理学的方法, 分析噪声产生的原因和规律, 研究被测信号的特点和相关性, 检测被噪声淹没的微弱有用信号。

微弱信号检测的宗旨是研究如何从强噪声中提取有用信号, 任务是研究微弱信号检测的理论、探索新方法和新技术, 从而将其应用于各个学科领域当中。

微弱信号检测的不同方法( 1) 生物芯片扫描微弱信号检测方法微弱信号检测是生物芯片扫描仪的重要组成部分, 也是生物芯片技术前进过程中面临的主要困难之一, 特别是在高精度快速扫描中, 其检测灵敏度及响应速度对整个扫描仪的性能将产生重大影响。

随着生物芯片制造技术的蓬勃发展, 与之相应的信号检测方法也迅速发展起来。

根据生物芯片相对激光器及探测器是否移动来对生物芯片进行扫读, 有扫描检测和固定检测之分。

扫描检测法是将激光器及共聚焦显微镜固定, 生物芯片置于承片台上并随着承片台在X 方向正反线扫描和r 方向步进向前运动, 通过光电倍增管检测激发荧光并收集数据对芯片进行分析。

激光共聚焦生物芯片扫描仪就是这种检测方法的典型应用, 这种检测方法灵敏度高, 缺点是扫描时间较长。

固定检测法是将激光器及探测器固定, 激光束从生物芯片侧向照射, 以此解决固定检测系统的荧光激发问题, 激发所有电泳荧光染料通道, 由CCD 捕获荧光信号并成像, 从而完成对生物芯片的扫读。

微弱信号检测技术

微弱信号检测技术

ej2fd
Rxy
Sxyf
ej2fdf
特性:S (f)与R ()是一对傅立叶变换对,满足
Wiener-Khintchine定理 功率谱密度的物理意义
R x0x 2 T l i T 1 m T 2 T 2x2(t)d t sx(f)df
Sx(f) 曲线下的面积即为信号x(t)的平均功率,即 Sx(f) 表示信号功率密度沿频率轴的分布,故称 功率密度函数。
二、自相关检测 三、互相关检测
b
29
一、相关函数的定义与计算
能量有限信号的自相关函数
R () R x( x ) x ( t) x ( t ) d t x ( t) x ( t ) dt
功率有限信号的自相关函数
R ()R x(x)T l i T 1 m T 2 T 2x(t)x(t)dt
2、相关函数的基本性质
=0时,R() 取最大值。
对实函数,R() 为偶函数
RxyRyx 对复函数 RxyR* yx
b
31
2、周期信号相关函数特征
正弦信号 xtx0si n t 自相关函数
R x()T l i m T 1 T 2 T 2x0si n t ()x0si n(t [)]dt
lim 1x0 2
式中,ρ为相关系数 当ρ=0时,完全不相关 当| ρ|=1时,同一噪声源
x2 x12x22 x2(x1x2)2
b
23
四、噪声电路的计算
叠加法的应用
对于线性网络的噪声电路,可以应用叠加法进行 多源网络噪声分析
I1
E1 R1 R2
R1
I
R2
E1
E2
E1、E2为两个不相关的噪声b源
I2
E2 R1 R2

微弱信号检测

微弱信号检测

第一章绪论1.1弱信号检测的发展随着科学技术的发展,被噪声掩盖的各种微弱信号的检测(如弱光小位移微振动微应变微温差低电平电压等)越来越受到人们的重视,因而逐渐形成微弱信号检测(Weak Signal Detection,简称WSD)这门新兴的分支技术学科,应用范围遍及光电磁声热生物力学地质环保医学激光材料等领域。

近30年来在研究宏观和微观世界的过程中,科学工作者们不断开发出能把淹没在噪声中的大量有用信息检测出来的理论和方法,通过不断的系统化完整化,从而形成了一门新的微弱信号检测的学科分支,其仪器已成为现在科学研究中不可缺少的设备。

1.2弱信号检测的意思目的与意义微弱信号检测技术是采用电子学信息论计算机及物理学的方法,分析噪声产生的原因和规律,研究被测信号的特点与相关性,检测被噪声淹没的微弱有用信号。

微弱信号检测的目的是从强噪声中提取有用的信号,或用一些新技术和新方法来提高检测系统输出信号的信噪比。

对微弱信号检测理论的研究。

探索新的微弱信号检测方法,研制新的微弱信号检测设备是目前检测技术领域的一个热点。

微弱信号检测技术在许多领域具有广泛的应用,例如物理学、化学、电化学、生物医学、天文学、地学、磁学等。

微弱信号检测所针对的检测对象,是用常规和传统方法不能检测到的微弱量,例如弱光、弱磁、弱声、小位移、微流量、微振动、微温差、微压差以及微电导、微电流、微电压等。

随着科学技术的发展,对微弱信号进行检测的需要日益迫切,可以说,微弱信号检测是发展高新技术,探索及发现新的自然规律的重要手段,对推动相关领域的发展具有重要意义。

1.3提高信号检测灵敏度的两种基本方法检测有用微弱信号的困难并不在于信号的微笑,而主要在于信号的不干净,被噪声污染了淹没了。

所以,将有用信号从强背景噪声下检测出来的关键是设法抑制噪声。

提高信号检测灵敏度或抑制或降低噪声的基本方法有以下两种:一是从传感器及放大器入手,降低它们的固有噪声水平,研制和设计低噪声放大器,例如,对直流信号采用斩波稳零运算放大器(如F7650),对交流信号采用OP系列运算放大器等:二是分析噪声产生的原因和规律,以及被测信号的特征,采用适当的技术手段和方法,把有用信号从噪声中提取出来,即研究其检测方法。

第十一章-微弱信号检测技术

第十一章-微弱信号检测技术

锁相放大器的工作过程
I 随时间缓变的信号
经过调制
λ(t)
I
信号恢复
输出信号 (与信号幅度成 λ(t) 正比,与相对相 位有关)
ωm
送入锁相放大器
信号输入
Lock-in
参考信号
ωm
互相关函数
两个具有确定频率和相位的周期性信号,它们的相关特
性可以用互相关函数来表达:
lim R12 ( ) T
1 2T
模拟锁相放大器
数字锁相放大器
锁相放大器
2. 锁定放大器抑制噪声的基本出发点
( 1 )用调制器将直流或慢变信号的频谱迁移到调制频率处,再进行放 大, 以避开1/f 噪声的不利影响; ( 2 )利用相关器实现对调制信号的解调,同时检测频率和相位,噪声
与信号同频又同相的概率很小; (3)利用低通滤波器来抑制噪声,低通滤波器的频带可以做的较窄,
1.锁相放大器概述
自从1962年,美国EG&G PARC公司制作了第一台锁相放大器(LIA)的 后,微弱信号检测技术得到了突破性的发展。后来又出现了模拟锁相放 大器(ALIA) 和数字锁相放大器(DLIA) 。对于数字锁相放大器而言,又 出现基于单片机的DLIA 和基于专用DSP的DLIA 。还有基于PC的系统级 模块化DLIA ,这种锁相的算法是采用C,C++等语言实现的。由于整个 系统运行在PC平台上,所以可以使用各种仿真软件对算法进行研究。
通常把由于材料或器件的物理原因产生的扰动称为噪 声。
把来自外部的原因的扰动称为干扰,有一定的规律性, 可以减少或消除。
锁相放大器要解决的就是如何在很强的外部干扰环境 中检测弱信号。
通常干扰是可以减少或消除的外部扰动,而由于材料 或器件的物理原因产生的噪声则很难消除。

微弱信号检测教学

微弱信号检测教学
微弱信号检测教学
目录
• 微弱信号检测概述 • 微弱信号检测的基本原理 • 微弱信号检测的常用方法 • 微弱信号检测的实验操作
目录
• 微弱信号检测的案例分析 • 微弱信号检测的未来发展与挑战
01
微弱信号检测概述
定义与特点
定义
微弱信号检测是指对幅度较低、容易 被噪声淹没的信号进行提取、测量和 分析的过程。
信号放大
信号放大
通过放大器将微弱信号放大,使其更容易被检测和处理。常用的放大器类型包括电压放大器和电流放大器。
放大器选择
选择合适的放大器是关键,需要考虑放大倍数、带宽、输入噪声、线性范围等因素。
噪声抑制
噪声来源
噪声是影响微弱信号检测的重要因素 ,主要来源于环境、电路和器件本身 。
噪声抑制方法
采用滤波器、消噪电路、数字信号处 理等技术抑制噪声,提高信噪比。
ABCD
数据特征提取
从处理后的数据中提取有用的特征,如幅度、频 率等。
结果评估与优化
根据分析结果,评估微弱信号检测的效果,优化 实验参数和方法,提高检测精度和可靠性。
05
微弱信号检测的案例分析
案例一:生物电信号的检测
总结词
生物电信号是生物体内产生的微弱电流信号,检测这些 信号对于了解生物生理状态和疾病诊断具有重要意义。
信号滤波
滤波器类型
根据信号特性和需求选择合适的滤波器,如低通滤波器、高通滤波器、带通滤波器和陷波滤波器等。
滤波器设计
根据信号频谱和噪声频谱设计滤波器,以保留有用信号并抑制噪声。
相关检测
相关检测原理
相关检测是一种利用信号自相关或互相关特性进行检测的方法,可以有效抑制噪声和干 扰。
相关检测应用

微弱信号检测技术

微弱信号检测技术
详细描述
同步检测法通过将输入信号与参考信号进行相关运算,提取 出目标信号。该方法能够有效地抑制噪声干扰,提高信噪比 。在实际应用中,同步检测法常用于雷达、通信等领域。
滤波器法
总结词
一种利用滤波器对信号进行筛选和处理的微弱信号检测方法。
详细描述
滤波器法通过设计合适的滤波器对输入信号进行筛选和处理,提取出目标信号。该方法具有简单易实 现的特点,适用于多种类型的微弱信号检测。在实际应用中,滤波器法常用于音频、图像等领域。
射级跟踪放大器法
总结词
一种通过调整放大器的增益来跟踪输入信号幅度的微弱信号检测方法。
详细描述
射级跟踪放大器法利用射级反馈电路来调整放大器的增益,使得放大器的输出信 号幅度与输入信号幅度保持一致。该方法能够有效地提高信噪比,降低噪声干扰 。
同步检测法
总结词
一种利用相关技术对信号进行同步检测的微弱信号检测方法 。
环境监测领域
噪声污染检测
在噪声污染控制和环境保护方面,微弱的噪声信号往往代表着环境质量的恶化,微弱信号检测技术能够对这些信 号进行准确的监测和分析,为环境治理提供科学依据。
放射性检测
在核能和核工业领域,放射性物质释放的微弱信号对人类健康和环境安全具有重要影响,微弱信号检测技术能够 实时监测和评估放射性水平,保障公共安全。
微弱信号检测技术的发展历程
基础理论建立
早期的研究主要集中在噪声抑制和放大技术上,为微弱信号检测奠 定了基础。
技术突破
随着电子技术和数字化技术的发展,如放大器技术、数字滤波技术、 相关检测技术等,微弱信号检测的灵敏度和分辨率得到显著提高。
应用拓展
随着微弱信号检测技术的不断发展,其应用领域也在不断扩大,涉及 到众多领域和行业。

微弱信号检测技术的原理及应用(含卡尔曼滤波与维纳滤波)

微弱信号检测技术的原理及应用(含卡尔曼滤波与维纳滤波)

微弱信号检测技术的原理及应用2018年1月一、微弱信号检测的基本原理、方法及技术在自然现象和规律的科学研究和工程实践中,经常会遇到需要检测诸如地震的波形和波速、材料分析时测定荧光光强、卫星信号的接收、红外探测以及生物电信号测量等。

这些测量量被强背景噪声或检测电路的噪声所淹没,无法用传统的测量方法检测出来。

微弱信号,为了检测被背景噪声淹没的微弱信号,人们进行了长期的研究工作,分析背景噪声产生的原因和规律,研究被测信号的特点、相关性以及噪声的统计特性,以寻找出从背景噪声中检测出目标信号的方法。

微弱信号检测技术的首要任务是提高信噪比,这就需要采用电子学、信息论和物理学的方法,以便从强噪声中检测出有用的微弱信号。

微弱信号检测技术不同于一般的检测技术,主要是考虑如何抑制噪声和提高信嗓比,因此可以说,微弱信号检测是一门专门抑制噪声的技术。

抑制噪声的现代信号处理手段的理论基础是概率论、数理统计和非线性科学。

1、经典检测与估计理论时期这一时期检测理论主要是建立在统计学家工作的基础上的。

美国科学家WienerN .将随机过程和数理统计的观点引入到通信和控制系统中,提出了信息传输和处理过程的统计本质,建立了最佳线性滤波理论,即维纳滤波理论。

NorthD.O.于1943年提出以输出最大信噪比为准则的匹配滤波器理论;1946年卡切尼科夫(BA.K)提出了错误判决概率为最小的理想接收机理论,证明了理想接收机应在其输出端重现出后验概率为最大的信号,即是将最大后验概率准则作为一个最佳准则。

1950年在仙农信息理论的基础上,WoodwardP.M.把信息量的概念用于雷达信号的检测中,提出了理想接收机应能从接收到的信号加噪声的混合波形中提取尽可能多的有用信息。

但要知道后验概率分布。

所以,理想接收机应该是一个计算后验概率分布的装里。

1953年以后,人们直接利用统计推断中的判决和统计理论来研究雷达信号检测和参盘估计。

密德尔顿(Middleton D)等用贝叶斯准则(最小风险准则)来处理最佳接收问题,并使各种最佳准则统一于风险理论。

《微弱信号检测》

《微弱信号检测》

S/N << 1 --微弱信号(微弱光电信号)
整理ppt
3
微弱信号检测定义:利用电子学、信息论 和物理学的方法,分析噪声产生的规律找 到抑制的方法;研究被测信号的特点和相 干性,检测被背景噪声淹没的弱信号。
微弱信号检测是测量技术中的尖端和综合 领域,可划归“低噪声电子学”。
整理ppt
4
二 . 微弱信号检测的途径
噪声是一种平稳随机信号; 噪声一般采用长周期测定其均方值(即噪声功率)的方法,通 常采用先计算噪声电压(电流)的平方值,然后将其对时间作 平均,来求噪声电压(电流)的均方值,即:
u i Un 2
lim 1 T T
T 0
2(t)d t或
n
in2
lim1 TT
T 0
2(t)dt
n
表示噪声电压(电流)消耗在1Ω电阻上的
利用时域中周期信号的相关性而噪声的随机、不相关性(或弱 相关性),通过求取信号的自相关函数或互相关函数,在强噪声背 景下提取周期信号的“相关检测”。这相当于在频率中窄带化滤除 干扰和噪声。特别适用窄带信号。例如锁定放大器。
2.平均积累处理
对于一些宽带周期信号应用上述方法处理效果不佳,一种根据 时域特征用取样平均来改善信噪比并能恢复波形的取样积分器可获 得良好探测效果。其基本原理是对于任何重复的(周期性)信号波 形,每周期如在固定的取样间隔内取样m次积累则信噪比改善。因 为“信号电压幅值为线性叠加”(有规律的周期信号)而“噪声功 率为矢量相加”(无规律的随机信号)。
fin A v 2(f)d f
0
V
2 so
是系统的功率增益,我们可以取中频区最大值,即
V
2 si
所以:
SNIRAv2(f0)

《微弱信号检测》PPT课件

《微弱信号检测》PPT课件

电子器件的固有噪声
工程上常用测量综合噪声效果衡量电子器件的噪声, 不再区分具体噪声源。 图(a)所示接信号源的放大器,其 综合噪声等效电路可用图(b)表示。
(a)实际电路
(b)等效噪声电路
图 -2 连接到信号源的放大器 us—待放大信号;Rs—ቤተ መጻሕፍቲ ባይዱ号源电阻;unt— Rs≠0引起的热噪声; uni—折算到输入端的噪声电压;ini—折算到输入端的噪声电流
Eni:位于信号源处放大系统的等效输入噪声, 假定Eni是白噪声,其功率谱密度为常数。
SNIR
f in 可等效为:SNIR f n
Δfin为输入噪声的带宽;
Δfn为系统的等效噪声带宽。
减小系统的等效噪声带宽,可提高SNIR。
SNIR越高,系统检测微弱信号的能力越强。
使用微弱信号检测技术,SNIR可达103~105,甚 至107。
举例: A741 的输入端的噪声电压、噪声电流功 率谱密度函数Su(f)、Si(f)的曲线如下图所示 。
图-3 A741的噪声特性
3.低噪声放大器
为放大微弱信号,必然要用放大器。放大器 本身不可避免地产生噪声,对信噪比本来就比较 低的微弱信号造成进一步影响。
因此,微弱信号检测的首要问题是尽量地降
几种常见电子噪声
噪声种类 热噪声 特点 降低途径 减小输入电阻和带宽 减小平均直流电流和带宽
属于白噪声,功率 谱密度在很宽的频 散粒噪声 率范围内恒定。 属有色噪声,频率 接触噪声 增加,功率谱减小。
减小平均直流电流
微弱信号检测中要处理的绝大多数是随机噪声。
源头:电子自由运动-热噪声;越过PN结的载流子扩散和电 子空穴对的产生复合;接触噪声-导体连接处点到的随机涨落。

微弱信号检测第一章

微弱信号检测第一章

第一章概论1.1 检测的概念国际通用计量学基本名词中,检测(detect)指示某些特殊量的存在但无需指示量值的过程。

信号检测指对信号存在与否的判决。

测量(measurement)指以确定量值为目的的一组操作。

检测技术指为了对被观测量进行定性判决或定量测量所采用的理论方法和技术措施。

微弱信号(Weak Signal)有两个方面的含义:其一是指有用信号的幅度相对于噪声或干扰来说十分微弱;其二是指有用信号幅度绝对值极小,如检测uV,nV,pV量级的电压信号。

这两种情况既有联系又有区别,本文讨论的主要是前一种情况,即研究如何从强噪声背景中检测有用信号。

对于各种微弱的被测量,例如弱光、弱磁、弱声、小位移、小电容、微流量、微压力、微振动和微温差等,一般都是通过相应的传感器将其转换为微电流或低电压,再经放大器放大其幅值以期反映被测量的大小。

但是,由于被测量的信号很微弱,传感器的本底噪声、放大电路及测量仪器的固有噪声以及外界的干扰噪声往往比有用信号的幅值大的多。

同时,放大被测信号的过程也放大了噪声,而且必然还会附加一些额外的噪声,例如放大器的内部固有噪声和各种外部干扰的影响,因此只靠放大是不能把微弱信号检测出来的。

只有在有效地抑制噪声的条件下增大微弱信号的幅值,才能提取出有用信号。

为了达到这样的目的,必须研究微弱信号检测的理论、方法和设备。

1.1.1微弱信号检测的特点微弱信号检测技术(Weak Signal Detecting,简称WSD)的首要任务就是提高信号的信噪比或信干比,这就需要采用电子学、信息论、计算机和物理学等方法,从噪声及干扰中检测出有用的微弱信号,从而满足现代科学研究和技术应用的需要。

为了从噪声中提取出有用信号,就需要分析噪声的来源、性质、规律和传播途径,研究被测信号和噪声的统计特性与差别,以寻找从背景噪声中检测出有用信号的理论和方法[9]。

微弱信号检测不同于一般的检测技术,它注重的不是传感器的物理模型、传感原理、相应的信号转换电路和仪表实现方法,而是如何抑制噪声和提高信噪比。

微弱信号检测技术的原理及应用

微弱信号检测技术的原理及应用

微弱信号检测技术的原理及应用随着科技的发展,人们对于信息的敏感度在不断地提升。

而在信息的传输中,信号的检测是至关重要的一环。

微弱信号检测技术就是为了能够检测到那些非常微弱的信号而研究出来的一种技术。

本文将会介绍微弱信号检测技术的原理及应用。

一、微弱信号检测技术的原理微弱信号检测技术的原理主要基于信号的增强和噪声的下降。

在信号增强上,主要是通过信号的处理和滤波来实现的。

在噪声的下降上,主要是通过降噪处理和信噪比的提高来实现的。

1. 信号的处理和滤波在信号处理和滤波中,主要的思路就是将信号进行处理,从而去除掉可能会影响检测准确度的那一部分,并增强信号带来的信息和特征。

目前,信号处理和滤波主要是通过数字信号处理和模拟信号处理来实现的。

数字信号处理主要是通过对信号进行抽样和量化,而后通过数字滤波器、数字滤波器组合或者数字滤波器与模拟滤波器的组合来实现信号的滤波和增强。

模拟信号处理则是通过对信号进行直接处理来达到滤波和增强的目的。

模拟滤波器的最主要目标就是对信号过滤并提高信号的幅度。

2. 降噪处理和信噪比提高噪声在信号检测和传输中是非常普遍的,它可通过无线电波、用户感知以及地球上的其他电磁辐射形式进行传播。

在降噪处理中,主要是通过去噪的方式将噪声去除。

主要的去噪方法有多项式拟合、小波去噪以及基于深度学习的去噪方法。

在信噪比提高方面,主要是利用增益放大器和滤波器来实现的。

通过增益放大器可以将信号的幅度放大,提高信号的强度,而滤波器可以去除波形中一些噪声或者干扰,从而提高信号的质量。

二、微弱信号检测技术的应用微弱信号检测技术,目前在多个领域都有广泛的应用。

以下是几个具体的应用场景。

1. 医学检测微弱信号检测技术在医学检测中有着广泛应用。

例如,在心电图中,微弱信号检测技术可以帮助医生检测出心脏病的症状并提供对应的治疗方法;在脑电图检测中,可以检测出一些脑病的情况。

2. 通信领域在通信领域,微弱信号检测技术可以帮助信号的传输和接收。

微弱信号检测技术 第一讲概述

微弱信号检测技术 第一讲概述
而噪声功率谱密度相对较宽的特点,使用 一个窄带通道滤波器,将有用的信号功率 提取出来。
• 由于窄带滤波器只让噪声功率的很小一 部分通过.而滤掉了大部分噪声功率,由 此而得到了高信噪比。
窄带滤波法特性
• 窄带滤波器可以用来作周期信号的 复现,以及持续时间较长的单次信号 的存在与否的检测。主要实现方式: 双T选频、LC调谐、晶体窄带等,但 其带宽与锁定放大器.取样积分器等 比较起来相对仍嫌宽,故一般只用在 噪声特性要求不高的场合。
微弱信号检测技术 Weak Signal Detection
Technology
第一讲 概论
1.0 微弱信号检测技术的内涵
• 1、 内容 • 微弱信号检测技术是一门新兴的技术学
科,是利用电子学、信息论和物理的方法, 分析噪声产生的原理和规律,研 究淹没在噪声背景下的被测信号的特点与 相关性,检测被测信号,得到被测信号的 特性。
• ②来自检测系统内部——常称之为“噪声”——任 何实际系统都将引入噪声——存在于电路内部的一 种固有扰动信号,它是由于组成电路的器材材料的 物理性质及温度等原因引起的电荷载流子运动发生 不规则变化而产生的。
1.2.3 外部噪声特性
• 耦合途径 电源耦合,电场耦合,磁场耦合,电磁辐射耦
合,传导耦合,共地耦合等等。
• 4、均方值

均方值表示随机噪声瞬时取值平方的数学期
望值,反映的是随机噪声的功率。
x2 E[x2 (t)] x2 (t) p(x)dx
x2 lim 1 T x2 (t)dt T 2T T
• 5、相关函数
• 均值、均方值和方差描述的是一维随机 变量的统计特性,不能反映不同时刻各数 值之间的相互关系。例如,随机信号x(t) 分 别在t1,t2时刻的随机取值x(t1),x(t2) 之间的 关联程度如何?同样,两个随机信号x(t)和 y(t)数值之间的关联程度如何?这依靠相关 函数来解答。

微弱信号检测的原理和方法

微弱信号检测的原理和方法

如有一个信号掩埋在噪声中 , V 即输入信噪比: E < 1 那么只要检测放大系统的等效噪声带宽做得很小, 使Δfn<<Δfni ,就可能将此信号检测出来。 Δ Δ V 例如,若 V = 0.1 而 Δfin=100KHz,Δfn=1KHz。 则 SNIR = ∆f = 100
2 si 2 ni
2 si 2 ni
2
微弱信号检测的途径
微弱信号检测的途径: ●一是降低传感器与放大器的固有噪声,尽 量提高其信噪比; ●二是研制适合弱信号检测的原理,并能满 足特殊需要的器件, ●三是研究并采用各种弱信号检测技术,通 过各种手段提取信号, 这三者缺一不可。
3 信噪比改善(SNIR) 信噪比改善(SNIR)
在介绍微弱信号检测的一般方法之前, 先介绍信噪比改善(SNIR)的定义; ●信噪比改善(SNIR)是衡量弱检仪器的 一项重要性能指标。 ●信噪比改善的定义为:
SNIR = 输出信噪比 S 0 / N 0 = 输入信噪比 S i / N i
从数学表达式看,SNIR是噪声系数NF的 倒数,但实质上两者是有差别的。 ●噪声系数是对窄带噪声而言的,并且得 到结论NF≥1。 这个结论的产生是由于假设了输入噪声 的带宽等于或小于放大系统的带宽; ●实际上输入噪声的带宽要大于放大系统 的带宽,因而噪声系数NF便有可能要小 于1,同时又考虑到实际的情况,因此而 给出信噪比改善的概念。
加法器出来的信号,最后再通过一个阈电路进行计数。 加法器出来的信号,最后再通过一个阈电路进行计数。 加法器通常做成可调,使得无正弦波而仅有噪声时, 加法器通常做成可调,使得无正弦波而仅有噪声时,加法器的 输出略为正,但是不超过阈电路的阈值电平, 输出略为正,但是不超过阈电路的阈值电平,因而计数器通常 无计数。但考虑到加法器输出的电压有起伏,所以, 无计数。但考虑到加法器输出的电压有起伏,所以,有时会有 高于阈值的脉冲电压通过阈电路产生本底计数, 高于阈值的脉冲电压通过阈电路产生本底计数,但由于噪声的 统计性,本底计数的次数在某个一定的时间内t是个恒定值 是个恒定值, 统计性,本底计数的次数在某个一定的时间内 是个恒定值,可 以通过实验测出这个时间t。 以通过实验测出这个时间 。 如果输入信号中有正弦波存在,那么在这个时间 内的计数就会 如果输入信号中有正弦波存在,那么在这个时间t内的计数就会 增加。所以,通过观察t时间内计数的变化 时间内计数的变化, 增加。所以,通过观察 时间内计数的变化,就可以判断正弦波 信号是否存在。 信号是否存在。

微弱信号检测

微弱信号检测

微弱信号检测引言微弱信号检测是一种在噪声背景下探测和提取微弱信号的技术,广泛应用于无线通信、地质勘探、生物医学等领域。

由于噪声的存在,使得微弱信号很难被准确地捕获和识别。

本文将介绍常见的微弱信号检测方法以及在实际应用中的一些注意事项。

常见的微弱信号检测方法统计方法统计方法是最常用的微弱信号检测方法之一。

基于统计学的原理,通过对观测数据进行统计分析,计算信号的统计特性,从而达到检测信号的目的。

常用的统计方法包括最小二乘法、方差分析和卡尔曼滤波等。

时频分析方法时频分析方法是一种将信号在时域和频域进行联合分析的方法,可以捕捉信号在不同时间和频率上的变化。

通过时频分析,可以提高对微弱信号的检测能力。

常见的时频分析方法包括小波变换、短时傅里叶变换和Wigner-Ville分析等。

自适应滤波方法自适应滤波方法是一种通过对信号进行滤波来提高微弱信号检测的方法。

该方法通过对滤波器的参数进行自适应调整,以适应不同噪声环境下的信号特性。

常见的自适应滤波方法包括最小均方差滤波和递归自适应滤波等。

特征提取方法特征提取方法是一种通过对信号的特征进行提取来实现微弱信号检测的方法。

该方法通过提取信号的频率、幅值、相位等特征,从而分离出微弱信号。

常见的特征提取方法包括功率谱密度分析、相关分析和熵分析等。

微弱信号检测的注意事项噪声抑制在进行微弱信号检测之前,首先需要进行噪声抑制。

由于噪声的存在,会干扰和掩盖微弱信号,因此必须采取适当的方法对噪声进行抑制。

常见的噪声抑制方法包括滤波、降噪算法和信号增强等。

多样性处理由于微弱信号往往具有多样性,不同的信号可能有不同的统计特性和时频特性。

因此,在进行微弱信号检测时,需要采用多样性处理方法,以适应不同信号的特点。

常见的多样性处理方法包括特征级联、多传感器融合和多分类器组合等。

实时性要求在某些应用场景中,微弱信号的检测需要具备实时性要求。

这就要求微弱信号检测算法具备较高的计算速度和低延迟。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微弱信号检测的基本理论和技术微弱信号检测技术是采用电子学、信息论、计算机和物理学的方法,分析噪声产生的原因和规律,研究被测信号的特点和相关性,检测被噪声淹没的微弱有用信号。

微弱信号检测的宗旨是研究如何从强噪声中提取有用信号,任务是研究微弱信号检测的理论、探索新方法和新技术,从而将其应用于各个学科领域当中。

在微弱信号检测中,总是伴随着噪声,噪声属于电路中的随机扰动,它可能来自电路中元器件中的电子热运动,或者是半导体器件中载流子的不规则运动。

噪声是限制信号检测系统性能的决定性因素,因此它是信号检测中的不利因素。

对于微弱信号检测来说,如能有效克服噪声,就可以提高信号检测的灵敏度。

电路中噪声是一种连续型随机变量,即它在某一时刻可能出现各种可能数值。

电路处于稳定状态时,噪声的方差和数学期望一般不再随时间变化,这时噪声电压称为广义平稳随机过程。

若噪声的概率分布密度不随时间变化,则称为狭义平稳随机过程(或严格平稳随机过程>。

显然,一个严格平稳随机过程一定为广义平稳随机过程,反之则不然。

1.滤波器被噪声污染的信号波形恢复称为滤波。

这是信号处理中经常采用的主要方法之一,具有十分重要的应用价值。

现在,在各种信号检测仪器中均离不开各种滤波器,它起到了排除干扰,分出信号的功能。

常用的滤波器是采用电感、电容等分立元件构成(例如,RC低通滤波器、LC谐振回路等>,它对于滤去某些干扰谱线(例如,电源50Mz滤波,收音机、电视机中干扰的滤波>,有较好的效果。

对于混在随机信号中的噪声滤波,这种简单的滤波器就不是最佳的滤波电路。

这是因为信号与噪声均可能具有连续的功率谱。

因此需要寻找一种使误差最小的最佳滤波方法,有称为最小最佳滤波准则。

维纳线性滤波理论就是一种在最小均方误差准则下的最佳线性滤波方法。

出于维纳滤波器电路实现上的困难,在维纳滤波基础上发展了一种基于状态空间方法的最佳线性递推滤波方法,称为卡尔曼滤波。

这种滤波器特别适用于对离散时间序列的实时滤波。

可以很方便用计算机处理,因而是近代滤波理论的重要发展,在自动控制领域起到了重要作用。

维纳滤波理论的另一发展方向是自适应滤波,它可以自动地调节其自身参数,在设计时,只需要很少的,或根本不需要任何关于信号和噪声的先验统计知识。

因此.目前在模型识别、通信信道的自适应均衡、生物医学信号周期干扰消除等方面均有重要应用。

从噪声中提取信号波形的各种估计方法中,维纳(Wiener>滤波是一种最基本的方法,适用于需要从噪声中分离出的有用信号是整个信号(波形>,而不只是它的一个或某几个参量。

其基本依据就是最小均方误差准则。

维纳滤波从广义上看,实际上属于一种信号最佳估计。

最小均方误差实际上属于线性最小方差估计。

对平稳随机信号的最优预测与滤波.过去均用维纳滤波法来研究。

这种方法是在已知信号与噪声的相关函数或功率谱的情况下,将带噪声干扰的信号的最优滤波值与预测值求出来。

这样,需要求解维纳——霍夫积分方程.这是很麻烦的,而且不易实现要求的滤波网络。

因此。

目前实用的方法是建立在信号时间序列模型基础上的线性递推滤波及预测形式,即称为卡尔曼滤波理论和方法。

它是在对系统(信号模型与观测模型>及其统计特性作了某些在实际应用中具有相当广泛的假设之后,给出了一整套最佳线性滤波的递推算法,并且可以方便地用到非平稳随机过程中去,又便于解决矢量信号波形的最佳线性滤波问题,从而获得了极广泛的应用。

卡尔曼滤波理论和方法的首要问题或前提是,对于所研究的系统——信号模型与观察模型及其参量的统计特性予以明确的规定和符合实际的描述,在此基础上按线性最小均方准则进行滤波。

对于维纳滤波器与卡尔曼滤波器。

前者参数是固定的,适用于平稳随机情况下的最优滤波;后者参数是时变的,适用于非平稳随机情况下的最优滤波。

因此,要设计这两种滤波器,必须对信号和噪声的统计特性(数学期望、相关函数>有先验知识。

在实际中,常常无法预先知道这些统计特性或者它们是随时间变化的.而实现不了最优滤波。

因而必须采用一种新的滤波方法——自适应滤波,它采用噪声抵消方法来消除混入信号中的观察噪声,达到滤波的目的。

图1-1为噪声抵消系统的原理,即采用相关噪声源()n t'与n<t)相关)送入参考通道,通过自适应滤波器H<jw)后,使输出噪声抵消n<t),从而系统输出端得到噪声的最佳抑制。

1-1噪声抵消系统原理图这种滤波器在设计时,只需要很少的或根本不需要任何关于信号和噪声的先验统计知识就可以完成。

且其滤波效果与维纳滤波效果一样。

因为自适应滤波器的这些优点,它现在已被广泛用于对混入信号中的周期干扰的抑制(即自适应陷波滤波器>,例如,胎儿心电图中干扰信号滤波,自适应谱线增强.以及通信信道的自适应均衡等。

2.信号判决噪声中信号的判决问题是微弱信号检测技术中的一项重要内容,对于这类问题的解决采用维纳滤波的方法是不行的。

这里主要采用时域中的统计检验方法,把具有T时间内的信号判决转化为相关积分。

信号判决问题中,因为有许多随机因素的影响,特别是在噪声较强而信号较弱的情况(低信噪比>判决中.有可能产生错误。

当然,希望这种判决错误越小越好,因此应当研究最佳的判决准则,使得在某种“最佳”的意义下带来的平均风险(或错误概率)最小。

信号判决必须依赖某种信号判决准则,其中包括用于判决的检验统计量(由取样信号产生>及判决门限。

这些准则有:最大后验概率准则,二元信号判决的最佳准则——贝叶斯准则,最小总错误概率准则,奈曼-皮尔逊准则,极大极小准则等。

二元信号检测的最常见情况是指对噪声中信号判决有无问题.即H1事件表示噪声中有信号,而H0事件表示噪声中无信号。

例如,雷达信号检测、数字通信检测等均属干这种情况。

二元信号检测最终归结为用互相关器来得到检验统计量、然后再由给定的判决门限来对信号有无作出判决。

因此,二元信号检测系统中互相关器是一个关键部件,通过它可以得到要求的检验统计量。

这种互相关器也有不方便之处,就是必须提供参考信号后,才能进行互相关运算。

还有另一种信号判决用的电路,即匹配滤波器。

这种电路具有特定的传递函数以确保最佳的信号判决效果.这种匹配滤波器等效于互相关器,因而在信号检测中也得到了广泛的应用。

匹配滤波器不同于一般的滤波器,其目的不是为了最好地恢复信号波形,而是使滤波器的输出端在某一判决时刻T时,具备最大的输出信噪比,从而可以最好地实现噪声中信号的检测或发现信号。

3.信号参量的估计信号判决是解决噪声中信号的有无的检测,而不是解决信号参量的准确测定。

关于噪声中信号未知参量的测量问题是属于参量估值的范畴。

信号参量估计是指在肯定信号存在的前提下,研究信号的参量θ的计算问题,即决定θ的数值,这里参量θ可以有不同含义,例如,可以指正弦信号的幅度,也可以指正弦信号的频率或相位等。

这时,输入信号可以写为1()(,,,)()m x t s t n t θθ=⋅⋅⋅+由此可见,参量估计就是指要寻找最佳的估计方法来决定1ˆˆ,,m θθ⋅⋅⋅。

因为样本容量有限,估计值与真实值之间必然存在误差ε,在这种情况下,如何是误差ε达到某种意义的最小,就是信号的参量估计理论要解决的问题。

估计理论是微弱信号检测技术中的一个重要方面,有很多重要应用。

例如,雷达信号测量中.从雷达天线到目标的脱离。

是和发射信号与接收到它的回波之间的时间间隔成比例的。

要测定这个距离,必须确定回波信号的时延。

因为接收到的回波混杂在噪声之中,所以测量会产生误差。

这样,回波的时延不可能精确地测定,只能加以估计。

又如,目标径向速度与多普勒频移<即发射信号频率与回波信号频率差)成正比。

但因噪声的影响.多普勒频移的测量同样会产生误差,因此.尽可能精确地估计信号的这些参量<如信号的时延、频移等)就是估计理论的任务。

常用的估计准则有:最大后验概率估计准则,贝叶斯估计准则,线性最小方差估计,线性递推估计,独立最佳组合估计,最小二乘估计等。

通常对信号的振幅和相位根据以上的估计准则进行估计,判断估计的好坏的标准主要是根据<1)无偏性<2)有效性<3)一致性。

4.锁定放大器正弦信号是测量中最常遇到的一种信号。

对于这种信号,要测量的是它们的幅度和相位。

在微弱信号检测领域中,因为信号幅度很小<通常为10-12V 到10-9V 量级),而伴随的噪声却很大,从而给信号的精确测量带来很大的困难。

要实现对噪声中的微弱正弦信号测量,必须采用噪声信号参量估计中的最大似然估计,振幅和相位估计可以用互相关器来实现,这种互相关器又称为相关解调器或相敏检波器<PSD )。

完成正弦信号幅度及相位检测的相关检测装置被称为锁定放大器<LIA )。

下面介绍相关解调器的基本原理设接受信号为0()cos ()s r t U w t n t =+<1)式中s U 为被测量的正弦信号幅度;n<t )为观察噪声。

可以用最大似然估计来对噪声中的正弦信号幅度s U 进行估计,即0()cos T s o U c x t tdt ω=⎰<2)信号振幅的最大似然估计为T T0T020()()ˆ()()()m x t s t dta c x t s t dt s t dt ==⎰⎰⎰<3)<2)式中0cos t ω为<3)中的()s t ;T 201()c s t dt =⎰,其中()s t 用0cos t ω代入即可算出。

上式表明,幅度估计s U 可以通过()x t 与同频正弦信号互相关得到。

如下面给出的相关解调器的原理图相关解调器原理图 则000001lim [cos ()]cos()T T U K U t n t t dt T ωωϕ→∞=++⎰又因为正弦信号与噪声不相关,故0cos 2s r KU U U ϕ=显然,如果能做到0ϕ=,即参考信号与被测量信号同相位,则0U 将达到最大值,从而可以实现对s U 最准确测量。

5.取样积分器锁定放大器用于对淹没在噪声中的正弦信号幅度及相位测量,但是有时候还会遇到对淹没在噪声中的周期短脉冲波形的检测。

对于这类信号测量,必须使用如取样积分器之类的仪器。

下面介绍取样积分器的基本原理下图<a )为取样积分器电路,()r t 是与被测信号()s t 同频的参考信号。

经延时t0后形成取样脉冲,作用到取样开关K ,实现对输入信号X<t )=S<t )+n<t )的取样。

因为每隔周期T 进行一次取样,因此在电容C 上的电压就得到取样信号的积分。

为防止积累造成溢出现象,在计算机的存储器代替C 的情况下,对存储信号还要做平均处理,故又称为积累平均。

<b )图给出波形示意图。

相关文档
最新文档