初三培优二次函数辅导专题训练附详细答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三培优二次函数辅导专题训练附详细答案
一、二次函数
1.新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y (盒)与销售单价x (元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w 元.
(1)求w 与x 之间的函数关系式;
(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想卖得快.那么销售单价应定为多少元?
【答案】(1)w=﹣2x 2+480x ﹣25600;(2)销售单价定为120元时,每天销售利润最大,最大销售利润3200元(3)销售单价应定为100元
【解析】
【分析】
(1)用每件的利润()80x -乘以销售量即可得到每天的销售利润,即
()()()80802320w x y x x =-=--+, 然后化为一般式即可; (2)把(1)中的解析式进行配方得到顶点式()221203200w x =--+,然后根据二次函
数的最值问题求解;
(3)求2400w =所对应的自变量的值,即解方程()2
212032002400x --+=.然后检验即可.
【详解】
(1)()()()80802320w x y x x =-=--+,
2248025600x x =-+-,
w 与x 的函数关系式为:2248025600w x x =-+-;
(2)()2224802560021203200w x x x =-+-=--+,
2080160x -<≤≤Q ,,
∴当120x =时,w 有最大值.w 最大值为3200.
答:销售单价定为120元时,每天销售利润最大,最大销售利润3200元.
(3)当2400w =时,()2212032002400x --+=.
解得:12100140x x ,.
== ∵想卖得快, 2140x ∴=不符合题意,应舍去.
答:销售单价应定为100元.
2.如图,抛物线y=ax 2+bx 过点B (1,﹣3),对称轴是直线x=2,且抛物线与x 轴的正半
轴交于点A.
(1)求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x的取值范围;
(2)在第二象限内的抛物线上有一点P,当PA⊥BA时,求△PAB的面积.
【答案】(1)抛物线的解析式为y=x2﹣4x,自变量x的取值范图是0≤x≤4;(2)△PAB的面积=15.
【解析】
【分析】
(1)将函数图象经过的点B坐标代入的函数的解析式中,再和对称轴方程联立求出待定系数a和b;
(2)如图,过点B作BE⊥x轴,垂足为点E,过点P作PE⊥x轴,垂足为F,设P(x,x2-4x),证明△PFA∽△AEB,求出点P的坐标,将△PAB的面积构造成长方形去掉三个三角形的面积.
【详解】
(1)由题意得,
3 2
2
a b
b
a
+-
⎧
⎪
⎨
-⎪
⎩
=
=
,
解得
1
4
a
b-
⎧
⎨
⎩
=
=
,
∴抛物线的解析式为y=x2-4x,
令y=0,得x2-2x=0,解得x=0或4,
结合图象知,A的坐标为(4,0),
根据图象开口向上,则y≤0时,自变量x的取值范围是0≤x≤4;
(2)如图,过点B作BE⊥x轴,垂足为点E,过点P作PE⊥x轴,垂足为F,
设P(x,x2-4x),
∵PA⊥BA
∴∠PAF+∠BAE=90°,
∵∠PAF+∠FPA=90°,
∴∠FPA=∠BAE
又∠PFA=∠AEB=90°
∴△PFA ∽△AEB, ∴PF AF AE BE =,即244213x x x --=-, 解得,x= −1,x=4(舍去)
∴x 2-4x=-5
∴点P 的坐标为(-1,-5),
又∵B 点坐标为(1,-3),易得到BP 直线为y=-4x+1
所以BP 与x 轴交点为(
14,0) ∴S △PAB=
115531524
⨯⨯+= 【点睛】
本题是二次函数综合题,求出函数解析式是解题的关键,特别是利用待定系数法将两条直线表达式解出,利用点的坐标求三角形的面积是关键.
3.(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m ,宽是4 m .按照图中所示的直角坐标系,抛物线可以用y=16-
x 2+bx+c 表示,且抛物线上的点C 到OB 的水平距离为3 m ,到地面OA 的距离为172
m. (1)求抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;
(2)一辆货运汽车载一长方体集装箱后高为6m ,宽为4m ,如果隧道内设双向车道,那么这辆货车能否安全通过?
(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m ,那么两排灯的水平距离最小是多少米?
【答案】(1)抛物线的函数关系式为y=16
-
x 2+2x+4,拱顶D 到地面OA 的距离为10 m ;(2)两排灯的水平距离最小是3.
【解析】
【详解】
试题分析:根据点B 和点C 在函数图象上,利用待定系数法求出b 和c 的值,从而得出函数解析式,根据解析式求出顶点坐标,得出最大值;根据题意得出车最外侧与地面OA 的交点为(2,0)(或(10,0)),然后求出当x=2或x=10时y 的值,与6进行比较大小,比6大就可以通过,比6小就不能通过;将y=8代入函数,得出x 的值,然后进行做差得出最小值.
试题解析:(1)由题知点17(0,4),3,2B C ⎛⎫ ⎪⎝⎭
在抛物线上 所以4171932
6c b c =⎧⎪⎨=-⨯++⎪⎩,解得24b c =⎧⎨=⎩,所以21246y x x =-++ 所以,当62b x a =-
=时,10t y =≦ 答:21246
y x x =-++,拱顶D 到地面OA 的距离为10米 (2)由题知车最外侧与地面OA 的交点为(2,0)(或(10,0)) 当x=2或x=10时,2263y =
>,所以可以通过 (3)令8y =,即212486
x x -++=,可得212240x x -+=
,解得1266x x =+=-
12x x -=
答:两排灯的水平距离最小是考点:二次函数的实际应用.
4.对于某一函数给出如下定义:若存在实数m ,当其自变量的值为m 时,其函数值等于﹣m ,则称﹣m 为这个函数的反向值.在函数存在反向值时,该函数的最大反向值与最小反向值之差n 称为这个函数的反向距离.特别地,当函数只有一个反向值时,其反向距离n 为零.
例如,图中的函数有4,﹣1两个反向值,其反向距离n 等于5.
(1)分别判断函数y =﹣x +1,y =1x
-
,y =x 2有没有反向值?如果有,直接写出其反向距离;
(2)对于函数y =x 2﹣b 2x ,
①若其反向距离为零,求b 的值;
②若﹣1≤b ≤3,求其反向距离n 的取值范围;
(3)若函数y=
2
2
3()
3()
x x x m
x x x m
⎧-≥
⎨
--<
⎩
请直接写出这个函数的反向距离的所有可能值,并写出
相应m的取值范围.
【答案】(1)y=−1
x
有反向值,反向距离为2;y=x2有反向值,反向距离是1;(2)
①b=±1;②0≤n≤8;(3)当m>2或m≤﹣2时,n=2,当﹣2<m≤2时,n=4.
【解析】
【分析】
(1)根据题目中的新定义可以分别计算出各个函数是否有方向值,有反向值的可以求出相应的反向距离;
(2)①根据题意可以求得相应的b的值;
②根据题意和b的取值范围可以求得相应的n的取值范围;
(3)根据题目中的函数解析式和题意可以解答本题.
【详解】
(1)由题意可得,
当﹣m=﹣m+1时,该方程无解,故函数y=﹣x+1没有反向值,
当﹣m=
1
m
-时,m=±1,∴n=1﹣(﹣1)=2,故y=
1
x
-有反向值,反向距离为2,
当﹣m=m2,得m=0或m=﹣1,∴n=0﹣(﹣1)=1,故y=x2有反向值,反向距离是1;
(2)①令﹣m=m2﹣b2m,
解得,m=0或m=b2﹣1,
∵反向距离为零,
∴|b2﹣1﹣0|=0,
解得,b=±1;
②令﹣m=m2﹣b2m,
解得,m=0或m=b2﹣1,
∴n=|b2﹣1﹣0|=|b2﹣1|,
∵﹣1≤b≤3,
∴0≤n≤8;
(3)∵y=
2
2
3()
3() x x x m
x x x m
⎧-≥
⎨
--<
⎩
,
∴当x≥m时,
﹣m=m2﹣3m,得m=0或m=2,
∴n =2﹣0=2,
∴m >2或m ≤﹣2;
当x <m 时,
﹣m =﹣m 2﹣3m ,
解得,m =0或m =﹣4,
∴n =0﹣(﹣4)=4,
∴﹣2<m ≤2,
由上可得,当m >2或m ≤﹣2时,n =2,
当﹣2<m ≤2时,n =4.
【点睛】
本题是一道二次函数综合题,解答本题的关键是明确题目中的新定义,找出所求问题需要的条件,利用新定义解答相关问题.
5.已知抛物线2(5)6y x m x m =-+-+-.
(1)求证:该抛物线与x 轴总有交点;
(2)若该抛物线与x 轴有一个交点的横坐标大于3且小于5,求m 的取值范围;
(3)设抛物线2(5)6y x m x m =-+-+-与y 轴交于点M ,若抛物线与x 轴的一个交点
关于直线y x =-的对称点恰好是点M ,求m 的值.
【答案】(1)证明见解析;(2)1?<?m?3<;(3)56m m ==或
【解析】
【分析】
(1)本题需先根据判别式解出无论m 为任何实数都不小于零,再判断出物线与x 轴总有交点.
(2)根据公式法解方程,利用已有的条件,就能确定出m 的取值范围,即可得到结果. (3)根据抛物线y=-x 2+(5-m )x+6-m ,求出与y 轴的交点M 的坐标,再确定抛物线与x 轴的两个交点关于直线y=-x 的对称点的坐标,列方程可得结论.
【详解】
(1)证明:∵()()()22
2454670b ac m m m ∆=-=-+-=-≥
∴抛物线与x 轴总有交点.
(2)解:由(1)()27m ∆=-,根据求根公式可知,
方程的两根为:x = 即121
6x x m =-=-+, 由题意,有 3<-m 6<5+
1<?m 3∴<
(3)解:令 x = 0, y =6m -+
∴ M (0,6m -+)
由(2)可知抛物线与x 轴的交点为(-1,0)和(6m -+,0),
它们关于直线y x =-的对称点分别为(0 , 1)和(0, 6m -),
由题意,可得:
6166m m m 或-+=-+=-
56m m ∴==或
【点睛】
本题考查对抛物线与x 轴的交点,解一元一次方程,解一元一次不等式,根的判别式,对称等,解题关键是熟练理解和掌握以上性质,并能综合运用这些性质进行计算.
6.如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+≠与x 轴交于A ,B 两点,直线y x m =+过顶点C 和点B .
(1)求m 的值;
(2)求函数2(0)y ax b a =+≠的解析式;
(3)抛物线上是否存在点M ,使得15MCB ∠=︒?若存在,求出点M 的坐标;若不存在,请说明理由.
【答案】(1)﹣3;(2)y 13
=
x 2﹣3;(3)M 的坐标为(3632). 【解析】
【分析】 (1)把C (0,﹣3)代入直线y =x +m 中解答即可;
(2)把y =0代入直线解析式得出点B 的坐标,再利用待定系数法确定函数关系式即可; (3)分M 在BC 上方和下方两种情况进行解答即可.
【详解】
(1)将C (0,﹣3)代入y =x +m ,可得:
m =﹣3;
(2)将y =0代入y =x ﹣3得:
x =3,
所以点B 的坐标为(3,0),
将(0,﹣3)、(3,0)代入y =ax 2+b 中,可得:
390b a b =-⎧⎨+=⎩
, 解得:13
3
a b ⎧=⎪⎨⎪=-⎩,
所以二次函数的解析式为:y 13
=
x 2﹣3; (3)存在,分以下两种情况:
①若M 在B 上方,设MC 交x 轴于点D ,
则∠ODC =45°+15°=60°,
∴OD =OC •tan30°3=
设DC 为y =kx ﹣33,0),可得:k 3= 联立两个方程可得:233133y x y x ⎧=-⎪⎨=-⎪⎩
, 解得:121203336
x x y y ⎧=⎧=⎪⎨⎨=-=⎪⎩⎩, 所以M 1(36);
②若M 在B 下方,设MC 交x 轴于点E ,
则∠OEC =45°-15°=30°,
∴OE =OC •tan60°=3
设EC 为y =kx ﹣3,代入(30)可得:k 3= 联立两个方程可得:2333133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩
,
解得:12120332
x x y y ⎧=⎧=⎪⎨⎨=-=-⎪⎩⎩,, 所以M 2(3,﹣2).
综上所述M 的坐标为(33,6)或(3,﹣2).
【点睛】
此题是一道二次函数综合题,熟练掌握待定系数法求函数解析式等知识是解题关键.
7.如图,对称轴为直线x 1=-的抛物线()2
y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).
(1)求点B 的坐标;
(2)已知a 1=,C 为抛物线与y 轴的交点.
①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;
②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.
【答案】(1)点B 的坐标为(1,0).
(2)①点P 的坐标为(4,21)或(-4,5).
②线段QD 长度的最大值为
94
. 【解析】
【分析】
(1)由抛物线的对称性直接得点B 的坐标.
(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.
②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解.
【详解】
解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0), ∴点B 的坐标为(1,0).
(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0), ∴2a 1b 12a 9a 3b c 0
=⎧⎪⎪-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩. ∴抛物线的解析式为2y x 2x 3=+-.
∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13S 1322∆=
⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13S 3p p 22∆=
⨯⨯=. ∵POC BOC S 4S ∆∆=,∴
3p 62=,解得p 4=±. 当p 4=时2p 2p 321+-=;当p 4=-时,2p 2p 35+-=,
∴点P 的坐标为(4,21)或(-4,5).
②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:
3k b 0b 3-+=⎧⎨=-⎩
,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.
∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3).
又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).
∴()
22239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝⎭. ∵a 10<=-,-3302<<-
∴线段QD 长度的最大值为94
.
8.某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y (件)与价格x (元/件)之间满足一次函数关系.
(1)试求y 与x 之间的函数关系式;
(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?
【答案】(1)y 10000x 80000=-+(2)当销售价格定为6元时,每月的利润最大,每月的最大利润为40000元
【解析】解:(1)由题意,可设y=kx+b ,
把(5,30000),(6,20000)代入得:5k b 300006k b 20000+=⎧⎨+=⎩,解得:k 10000b 80000=-⎧⎨=⎩。
∴y 与x 之间的关系式为:y 10000x 80000=-+。
(2)设利润为W ,则
()()()()2
2W x 410000x 8000010000x 12x 3210000x 640000=--+=--+=--+,
∴当x=6时,W 取得最大值,最大值为40000元。
答:当销售价格定为6元时,每月的利润最大,每月的最大利润为40000元。
(1)利用待定系数法求得y 与x 之间的一次函数关系式。
(2)根据“利润=(售价﹣成本)×售出件数”,可得利润W 与销售价格x 之间的二次函数关系式,然后求出其最大值。
9.已知,m ,n 是一元二次方程x 2+4x +3=0的两个实数根,且|m |<|n |,抛物线y =x 2+bx +c 的图象经过点A (m ,0),B (0,n ),如图所示. (1)求这个抛物线的解析式;
(2)设(1)中的抛物线与x 轴的另一个交点为抛物线的顶点为D ,求出点C ,D 的坐标,并判断△BCD 的形状;
(3)点P 是直线BC 上的一个动点(点P 不与点B 和点C 重合),过点P 作x 轴的垂线,交抛物线于点M ,点Q 在直线BC 上,距离点P 为
2个单位长度,设点P 的横坐标为t ,△PMQ 的面积为S ,求出S 与t 之间的函数关系式.
【答案】(1)2
23y x x =--;(2)C (3,0),D (1,﹣4),△BCD 是直角三角形;
(3)2213
(03)22
13(03)2
2t t t S t t t t ⎧-+⎪⎪=⎨⎪-⎪⎩<<<或>
【解析】
试题分析:(1)先解一元二次方程,然后用待定系数法求出抛物线解析式;
(2)先解方程求出抛物线与x 轴的交点,再判断出△BOC 和△BED 都是等腰直角三角形,从而得到结论;
(3)先求出QF=1,再分两种情况,当点P 在点M 上方和下方,分别计算即可. 试题解析:解(1)∵2+430x x +=,∴11x =-,23x =-,∵m ,n 是一元二次方程
2+430x x +=的两个实数根,且|m|<|n|,∴m=﹣1,n=﹣3,∵抛物线2
23
y x x =--的图象经过点A (m ,0),B (0,n ),∴10{3b c c -+==-,∴2{3
b c =-=-,∴抛物线解析式为
223y x x =--;
(2)令y=0,则2230x x --=,∴11x =-,23x =,∴C (3,0),
∵223y x x =--=2(1)4x --,∴顶点坐标D (1,﹣4),过点D 作DE ⊥y 轴,∵OB=OC=3,∴BE=DE=1,∴△BOC 和△BED 都是等腰直角三角形,∴∠OBC=∠DBE=45°,∴∠CBD=90°,∴△BCD 是直角三角形;
(3)如图,∵B (0,﹣3),C (3,0),∴直线BC 解析式为y=x ﹣3,∵点P 的横坐标为t ,PM ⊥x 轴,∴点M 的横坐标为t ,∵点P 在直线BC 上,点M 在抛物线上,∴P (t ,t ﹣3),M (t ,223t t --),过点Q 作QF ⊥PM ,∴△PQF 是等腰直角三角形,∵PQ=2,∴QF=1.
①当点P 在点M 上方时,即0
<t <3时,PM=t ﹣3﹣(223t t --)=23t t -+,∴S=
12
PM×QF=21(3)2t t -+=213
22t t -+,②如图3,当点P 在点M 下方时,即t <0或t
>3时,PM=223t t --﹣(t ﹣3)=23t t -,∴S=
12PM×QF=12
(23t t -)=213
22t t -.
综上所述,S=2213
(03)22
{13 (03)22
t t t t t t t 或-+<<-.
考点:二次函数综合题;分类讨论.
10.已知矩形ABCD 中,AB =5cm ,点P 为对角线AC 上的一点,且AP =25cm .如图①,动点M 从点A 出发,在矩形边上沿着A B C →→的方向匀速运动(不包含点C ).设动点M 的运动时间为t (s ),APM ∆的面积为S (cm ²),S 与t 的函数关系如图②所示: (1)直接写出动点M 的运动速度为 /cm s ,BC 的长度为 cm ;
(2)如图③,动点M 重新从点A 出发,在矩形边上,按原来的速度和方向匀速运动.同时,另一个动点N 从点D 出发,在矩形边上沿着D C B →→的方向匀速运动,设动点N 的运动速度为()/v cm s .已知两动点M 、N 经过时间()x s 在线段BC 上相遇(不包含点C ),动点M 、N 相遇后立即停止运动,记此时APM DPN ∆∆与的面积为()()
2212,S cm S cm .
①求动点N 运动速度()/v cm s 的取值范围;
②试探究12S S ⋅是否存在最大值.若存在,求出12S S ⋅的最大值并确定运动速度时间x 的值;若不存在,请说明理由.
【答案】(1)2,10;(2)①2/6/3cm s v cm s ≤<;②当154x =时,12S S ⋅取最大值
225
4
. 【解析】 【分析】
(1)由题意可知图像中0~2.5s 时,M 在AB 上运动,求出速度,2.5~7.5s 时,M 在BC 上运动,求出BC 长度;(2)①分别求出在C 点相遇和在B 点相遇时的速度,取中间速度,注意C 点相遇时的速度不能取等于;②过M 点做MH ⊥AC ,则125
MH CM ==
得到S 1,同时利用12()PAD CDM ABM N ABCD S S S S S S ∆∆∆+=---(N )矩形=15,得到S 2,再得到12S S ⋅关于x 的二次函数,利用二次函数性质求得最大值 【详解】
(1)5÷2.5=2/cm s ;(7.5-2.5)×2=10cm (2)①解:在C 点相遇得到方程5
7.5v
= 在B 点相遇得到方程
15
2.5v
= ∴5
=7.515=2.5v
v
⎧⎪⎪⎨⎪⎪⎩
解得 23=5
v v ⎧=
⎪⎨⎪⎩
∵在边BC 上相遇,且不包含C 点 ∴
2
/6/3
cm s v cm s ≤< ②如下图12()PAD CDM ABM N ABCD S S S S S S ∆∆∆+=---(N )矩形
()
()
515252575102
2
x x ⨯-⨯-=---
=15
过M 点做MH ⊥AC ,则125
MH CM ==
∴11
2152
S MH AP x =
⋅=-+ ∴22S x =
()122152S S x x ⋅=-+⋅ =2430x x -+ =2
15225444x ⎛
⎫--+ ⎪⎝
⎭
因为152.57.54<<,所以当154x =时,12S S ⋅取最大值
225
4
. 【点睛】
本题重点考查动点问题,二次函数的应用,求不规则图形的面积等知识点,第一问关键能够从图像中得到信息,第二问第一小问关键在理清楚运动过程,第二小问关键在能够用x 表示出S 1和S 2
11.如图,抛物线y=ax 2+6x+c 交x 轴于A ,B 两点,交y 轴于点C .直线y=x ﹣5经过点B ,C .
(1)求抛物线的解析式;
(2)过点A 的直线交直线BC 于点M .
①当AM ⊥BC 时,过抛物线上一动点P (不与点B ,C 重合),作直线AM 的平行线交直线BC 于点Q ,若以点A ,M ,P ,Q 为顶点的四边形是平行四边形,求点P 的横坐标; ②连接AC ,当直线AM 与直线BC 的夹角等于∠ACB 的2倍时,请直接写出点M 的坐标.
【答案】(1)抛物线解析式为y=﹣x2+6x﹣5;(2)①P点的横坐标为4或
41
2
或
5-41
②点M的坐标为(13
6
,﹣
17
6
)或(
23
6
,﹣
7
6
).
【解析】
分析:(1)利用一次函数解析式确定C(0,-5),B(5,0),然后利用待定系数法求抛物线解析式;
(2)①先解方程-x2+6x-5=0得A(1,0),再判断△OCB为等腰直角三角形得到
∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以2,接着根据平行四边形的性质得到2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到2PQ=4,设P(m,-m2+6m-5),则D(m,m-5),讨论:当P点在直线BC上方时,PD=-m2+6m-5-(m-5)=4;当P点在直线BC下方时,PD=m-5-(-m2+6m-5),然后分别解方程即可得到P点的横坐标;
②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N(3,-2),
AC的解析式为y=5x-5,E点坐标为(1
2
,-
5
2
),利用两直线垂直的问题可设直线EM1的
解析式为y=-1
5
x+b,把E(
1
2
,-
5
2
)代入求出b得到直线EM1的解析式为y=-
1
5
x-
12
5
,则
解方程组
5
112
55
y x
y x
-
⎧
⎪
⎨
--
⎪⎩
=
=
得M1点的坐标;作直线BC上作点M1关于N点的对称点M2,
如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x-5),根据中点坐标公式
得到3=13
+
6
2
x
,然后求出x即可得到M2的坐标,从而得到满足条件的点M的坐标.
详解:(1)当x=0时,y=x ﹣5=﹣5,则C (0,﹣5), 当y=0时,x ﹣5=0,解得x=5,则B (5,0), 把B (5,0),C (0,﹣5)代入y=ax 2+6x+c 得
253005a c c ++=⎧⎨
=-⎩,解得1
5a b =-⎧⎨=-⎩
, ∴抛物线解析式为y=﹣x 2+6x ﹣5;
(2)①解方程﹣x 2+6x ﹣5=0得x 1=1,x 2=5,则A (1,0), ∵B (5,0),C (0,﹣5), ∴△OCB 为等腰直角三角形, ∴∠OBC=∠OCB=45°, ∵AM ⊥BC ,
∴△AMB 为等腰直角三角形, ∴AM=
2AB=2×4=22, ∵以点A ,M ,P ,Q 为顶点的四边形是平行四边形,AM ∥PQ , ∴PQ=AM=22,PQ ⊥BC ,
作PD ⊥x 轴交直线BC 于D ,如图1,则∠PDQ=45°,
∴222=4,
设P (m ,﹣m 2+6m ﹣5),则D (m ,m ﹣5), 当P 点在直线BC 上方时,
PD=﹣m 2+6m ﹣5﹣(m ﹣5)=﹣m 2+5m=4,解得m 1=1,m 2=4, 当P 点在直线BC 下方时,
PD=m ﹣5﹣(﹣m 2+6m ﹣5)=m 2﹣5m=4,解得m 15+41,m 25-41
, 综上所述,P 点的横坐标为4或
5+412或5-41
2
; ②作AN ⊥BC 于N ,NH ⊥x 轴于H ,作AC 的垂直平分线交BC 于M 1,交AC 于E ,如图2,
∵M1A=M1C,
∴∠ACM1=∠CAM1,
∴∠AM1B=2∠ACB,
∵△ANB为等腰直角三角形,∴AH=BH=NH=2,
∴N(3,﹣2),
易得AC的解析式为y=5x﹣5,E点坐标为(1
2
,﹣
5
2
,
设直线EM1的解析式为y=﹣1
5
x+b,
把E(1
2
,﹣
5
2
)代入得﹣
1
10
+b=﹣
5
2
,解得b=﹣
12
5
,
∴直线EM1的解析式为y=﹣1
5x﹣
12
5
解方程组
5
112
55
y x
y x
=-
⎧
⎪
⎨
=--
⎪⎩
得
13
6
17
6
x
y
⎧
=
⎪⎪
⎨
⎪=-
⎪⎩
,则M1(
13
6
,﹣
17
6
);
作直线BC上作点M1关于N点的对称点M2,如图2,则∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),
∵3=13
+ 6
2
x
∴x=23
6
,
∴M2(23
6,﹣
7
6
).
综上所述,点M的坐标为(13
6
,﹣
17
6
)或(
23
6
,﹣
7
6
).
点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、等腰直角的判定与性质和平行四边形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.
12.如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,
∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.
(1)求A、B两点的坐标;
(2)求抛物线的解析式;
(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y轴交BC 于点D,求△DMH周长的最大值.
【答案】(1)(﹣1,0)(2)y=﹣x2+x+(3)
【解析】
试题分析:(1)由直线解析式可求得B、C坐标,在Rt△BOC中由三角函数定义可求得∠OCB=60°,则在Rt△AOC中可得∠ACO=30°,利用三角函数的定义可求得OA,则可求得A点坐标;
(2)由A、B两点坐标,利用待定系数法可求得抛物线解析式;
(3)由平行线的性质可知∠MDH=∠BCO=60°,在Rt△DMH中利用三角函数的定义可得到DH、MH与DM的关系,可设出M点的坐标,则可表示出DM的长,从而可表示出△DMH 的周长,利用二次函数的性质可求得其最大值.
试题解析:(1)∵直线y=﹣x+分别与x轴、y轴交于B、C两点,
∴B(3,0),C(0,),
∴OB=3,OC=,
∴tan∠BCO==,
∴∠BCO=60°,
∵∠ACB=90°,
∴∠ACO=30°,
∴=tan30°=,即=,解得AO=1,
∴A(﹣1,0);
(2)∵抛物线y=ax2+bx+经过A,B两点,
∴,解得,
∴抛物线解析式为y=﹣x2+x+;
(3)∵MD∥y轴,MH⊥BC,
∴∠MDH=∠BCO=60°,则∠DMH=30°,
∴DH=DM,MH=DM,
∴△DMH的周长=DM+DH+MH=DM+DM+DM=DM,
∴当DM有最大值时,其周长有最大值,
∵点M是直线BC上方抛物线上的一点,
∴可设M(t,﹣t2+t+),则D(t,﹣t+),
∴DM=﹣t2+t+),则D(t,﹣t+),
∴DM=﹣t2+t+﹣(﹣t+)=﹣t2+t=﹣(t﹣)2+,∴当t=时,DM有最大值,最大值为,
此时DM=×=,
即△DMH周长的最大值为.
考点:1、二次函数的综合应用,2、待定系数法,3、三角函数的定义,4方程思想
13.某大学生利用暑假40天社会实践参与了一家网店经营,了解到一种成本为20元/件的新型商品在第x天销售的相关信息如下表所示.
销售量p(件)P=50—x
(1)请计算第几天该商品的销售单价为35元/件? (2)求该网店第x 天获得的利润y 关于x 的函数关系式. (3)这40天中该网店第几天获得的利润最大?最大利润是多少? 【答案】(1)第10天或第35天该商品的销售单价为35元/件(2)
()()21
x 15x 5001x 202y {26250
52521x 40x
-++≤≤=-≤≤(3)这40天中该网店第21天获得的利润最大?最
大利润是725元 【解析】 【分析】
(1)分别将q=35代入销售单价关于x 的函数关系式,求出x 即可. (2)应用利润=销售收入-销售成本列式即可.
(3)应用二次函数和反比例函数的性质,分别求出最大值比较即得所求. 【详解】
解:(1)当1≤x≤20时,令1
q 30x 352
=+=,解得;x 10=; 当21≤x≤40时,令525
q 2035x
=+
=,解得;x 35=. ∴第10天或第35天该商品的销售单价为35元/件.
(2)当1≤x≤20时,()211y 30x 2050x x 15x 50022⎛⎫
=+--=-++ ⎪⎝⎭
; 当21≤x≤40时,()52526250y 202050x 525x x ⎛
⎫
=+
--=- ⎪⎝⎭
. ∴y 关于x 的函数关系式为()()21
x 15x 5001x 202
y {26250
52521x 40x
-++≤≤=-≤≤.
(3)当1≤x≤20时,()2
211y x 15x 500x 15612.522
=-++=--+, ∵1
02
-
<,∴当x=15时,y 有最大值y 1,且y 1=612.5.
当21≤x≤40时,∵26250>0,∴
26250x 随着x 的增大而减小, ∴当x=21时,26250y 525x =
-有最大值y 2,且226250y 52572521
=-=. ∵y 1<y 2, ∴这40天中该网店第21天获得的利润最大?最大利润是725元.
14.已知二次函数y=﹣
316x 2+bx+c 的图象经过A (0,3),B (﹣4,﹣92)两点. (1)求b ,c 的值.
(2)二次函数y=﹣
316
x 2+bx+c 的图象与x 轴是否有公共点,求公共点的坐标;若没有,请说明情况. 【答案】(1)983
b c ⎧=⎪⎨⎪=⎩;(2)公共点的坐标是(﹣2,0)或(8,0).
【解析】
【分析】(1)把点A 、B 的坐标分别代入函数解析式求得b 、c 的值;
(2)利用根的判别式进行判断该函数图象是否与x 轴有交点,由题意得到方程﹣239168
x x ++3=0,通过解该方程求得x 的值即为抛物线与x 轴交点横坐标. 【详解】(1)把A (0,3),B (﹣4,﹣92
)分别代入y=﹣316x 2+bx+c , 得33916416
2c b c =⎧⎪⎨-⨯-+=-⎪⎩, 解得983
b c ⎧=⎪⎨⎪=⎩;
(2)由(1)可得,该抛物线解析式为:y=﹣
316x 2+98x+3, △=(98)2﹣4×(﹣
316)×3=22564>0, 所以二次函数y=﹣
316x 2+bx+c 的图象与x 轴有公共点, ∵﹣316x 2+98
x+3=0的解为:x 1=﹣2,x 2=8, ∴公共点的坐标是(﹣2,0)或(8,0).
【点睛】本题考查了抛物线与x 轴的交点,二次函数图象上点的坐标特征.注意抛物线解
析式与一元二次方程间的转化关系.
15.如图,△ABC 的顶点坐标分别为A (﹣6,0),B (4,0),C (0,8),把△ABC 沿直线BC 翻折,点A 的对应点为D ,抛物线y=ax 2﹣10ax+c 经过点C ,顶点M 在直线BC 上.
(1)证明四边形ABCD 是菱形,并求点D 的坐标;
(2)求抛物线的对称轴和函数表达式;
(3)在抛物线上是否存在点P ,使得△PBD 与△PCD 的面积相等?若存在,直接写出点P 的坐标;若不存在,请说明理由.
【答案】(1)详见解析
(2)22y x 4x 85
=
-+ (3)详见解析
【解析】
【分析】 (1)根据勾股定理,翻折的性质可得AB=BD=CD=AC ,根据菱形的判定和性质可得点D 的坐标.
(2)根据对称轴公式可得抛物线的对称轴,设M 的坐标为(5,n ),直线BC 的解析式为y=kx+b ,根据待定系数法可求M 的坐标,再根据待定系数法求出抛物线的函数表达式. (3)分点P 在CD 的上面下方和点P 在CD 的上方两种情况,根据等底等高的三角形面积相等可求点P 的坐标:
设P 22x,x 4x 85⎛
⎫-+ ⎪⎝⎭
, 当点P 在CD 的上面下方,根据菱形的性质,知点P 是AD 与抛物线22y x 4x 85=
-+的交点,由A,D 的坐标可由待定系数法求出AD 的函数表达式:1y x 32
=+,二者联立可得P 1
(529,48
); 当点P 在CD 的上面上方,易知点P 是∠D 的外角平分线与抛物线22y x 4x 85=
-+的交点,此时,∠D 的外角平分线与直线AD 垂直,由相似可知∠D 的外角平分线PD 的斜率等于-2,可设其为y 2x m =-+,将D (10,8)代入可得PD 的函数表达式:y 2x 28=-+,与抛物线22y x 4x 85
=
-+联立可得P 2(﹣5,38). 【详解】
(1)证明:∵A (﹣6,0),B (4,0),C (0,8),
∴AB=6+4=10
,AC 10==.∴AB=AC .
由翻折可得,AB=BD ,AC=CD .∴AB=BD=CD=AC .∴四边形ABCD 是菱形.
∴CD ∥AB .
∵C (0,8),∴点D 的坐标是(10,8). (2)∵y=ax 2﹣10ax+c ,∴对称轴为直线10a x 52a
-=-
=. 设M 的坐标为(5,n ),直线BC 的解析式为y=kx+b , ∴4k b 0b 8+=⎧⎨=⎩,解得k 2b 8=-⎧⎨=⎩
. ∴直线BC 的解析式为y=﹣2x+8.
∵点M 在直线y=﹣2x+8上,∴n=﹣2×5+8=﹣2.
∴M (5,,-2).
又∵抛物线y=ax 2﹣10ax+c 经过点C 和M ,
∴25a 50a c 2c 8-+=-⎧⎨=⎩,解得2a 5c 8
⎧=⎪⎨⎪=⎩. ∴抛物线的函数表达式为22y x 4x 85
=-+. (3)存在.点P 的坐标为P 1(
529,48),P 2(﹣5,38)。