特殊平行四边形测试题及答案
北师大九年级上《第1章特殊平行四边形》单元测试含答案解析
![北师大九年级上《第1章特殊平行四边形》单元测试含答案解析](https://img.taocdn.com/s3/m/788af4f4284ac850ad0242a6.png)
《第1章 特殊平行四边形》一、选择题1.平行四边形ABCD 中,AC 、BD 是两条对角线,如果添加一个条件,即可推出平行四边形ABCD 是矩形,那么这个条件是( )A .AB=BCB .AC=BDC .AC ⊥BD D .AB ⊥BD2.在平面直角坐标系中,正方形A 1B 1C 1D 1、D 1E 1E 2B 2、A 2B 2C 2D 2、D 2E 3E 4B 3、A 3B 3C 3D 3…按如图所示的方式放置,其中点B 1在y 轴上,点C 1、E 1、E 2、C 2、E 3、E 4、C 3…在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O=60°,B 1C 1∥B 2C 2∥B 3C 3…则正方形A 2015B 2015C 2015D 2015的边长是( )A .()2014B .()2015C .()2015 D .()2014二、填空题 3.如图,▱ABCD 的对角线相交于点O ,请你添加一个条件 (只添一个即可),使▱ABCD 是矩形.4.如图,在正方形ABCD 的外侧,作等边△ADE ,则∠BED 的度数是 .5.如图,正方形ABCD 的边长为1,以对角线AC 为边作第二个正方形,再以对角线AE 为边作第三个正方形AEGH ,如此下去,第n 个正方形的边长为 .6.如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E .若∠CBF=20°,则∠AED 等于 度.7.边长为1的一个正方形和一个等边三角形如图摆放,则△ABC 的面积为 .8.如图,点E 在正方形ABCD 的边CD 上.若△ABE 的面积为8,CE=3,则线段BE 的长为 .9.正方形OA 1B 1C 1、A 1A 2B 2C 2、A 2A 3B 3C 3,按如图放置,其中点A 1、A 2、A 3在x 轴的正半轴上,点B 1、B 2、B 3在直线y=﹣x+2上,则点A 3的坐标为 .10.已知E 是正方形ABCD 的对角线AC 上一点,AE=AD ,过点E 作AC 的垂线,交边CD 于点F ,那么∠FAD= 度.11.如图,要使平行四边形ABCD 是矩形,则应添加的条件是 (只填一个).12.如图,正方形ABCD 的边长为a ,在AB 、BC 、CD 、DA 边上分别取点A 1、B 1、C 1、D 1,使AA 1=BB 1=CC 1=DD 1=a ,在边A 1B 1、B 1C 1、C 1D 1、D 1A 1上分别取点A 2、B 2、C 2、D 2,使A 1A 2=B 1B 2=C 1C 2=D 1D 2=A 1B 2,….依次规律继续下去,则正方形A n B n C n D n 的面积为 .13.如图,▱ABCD 中,AB >AD ,AE ,BE ,CM ,DM 分别为∠DAB ,∠ABC ,∠BCD ,∠CDA 的平分线,AE 与DM 相交于点F ,BE 与CM 相交于点N ,连接EM .若▱ABCD 的周长为42cm ,FM=3cm ,EF=4cm ,则EM= cm ,AB= cm .三、解答题14.如图,在△ABC 中,AB=BC ,BD 平分∠ABC .四边形ABED 是平行四边形,DE 交BC 于点F ,连接CE .求证:四边形BECD 是矩形.15.如图,在平面直角坐标系中,点A(2,n),B(m,n)(m>2),D(p,q)(q<n),点B,D在直线y=x+1上.四边形ABCD的对角线AC,BD相交于点E,且AB∥CD,CD=4,BE=DE,△AEB 的面积是2.求证:四边形ABCD是矩形.16.如图,在△ABC中,AB=AC,点D(不与点B重合)在BC上,点E是AB的中点,过点A作AF∥BC交DE延长线于点F,连接AD,BF.(1)求证:△AEF≌△BED.(2)若BD=CD,求证:四边形AFBD是矩形.17.正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A按顺时针方向旋转,记旋转角∠DAG=α,其中0°≤α≤180°,连结DF,BF,如图.(1)若α=0°,则DF=BF,请加以证明;(2)试画一个图形(即反例),说明(1)中命题的逆命题是假命题;(3)对于(1)中命题的逆命题,如果能补充一个条件后能使该逆命题为真命题,请直接写出你认为需要补充的一个条件,不必说明理由.18.如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:BE=CE.(2)求∠BEC的度数.19.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.20.在平面直角坐标系xOy中,直线y=﹣x+3与x轴、y轴分别交于A、B,在△AOB内部作正方形,使正方形的四个顶点都落在该三角形的边上,求正方形落在x轴正半轴的顶点坐标.21.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.22.已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.(1)求证:四边形ADBE是矩形;(2)求矩形ADBE的面积.23.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.24.如图,在梯形ABCD中,AD∥BC,点E是BC的中点,连接AC,DE,AC=AB,DE∥AB.求证:四边形AECD是矩形.25.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE ⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.26.如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.(1)求证:△ADE≌△CBF;(2)求证:四边形BFDE为矩形.27.如图,在正方形ABCD中,点P在AD上,且不与A、D重合,BP的垂直平分线分别交CD、AB于E、F两点,垂足为Q,过E作EH⊥AB于H.(1)求证:HF=AP;(2)若正方形ABCD的边长为12,AP=4,求线段EQ的长.28.如图,在梯形ABCD中,AD∥BC,∠ADC=90°,∠B=30°,CE⊥AB,垂足为点E.若AD=1,AB=2,求CE的长.29.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.30.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.《第1章 特殊平行四边形》参考答案与试题解析一、选择题1.平行四边形ABCD 中,AC 、BD 是两条对角线,如果添加一个条件,即可推出平行四边形ABCD 是矩形,那么这个条件是( )A .AB=BCB .AC=BDC .AC ⊥BD D .AB ⊥BD【考点】矩形的判定;平行四边形的性质.【专题】证明题;压轴题.【分析】根据对角线相等的平行四边形是矩形判断.【解答】解:A 、是邻边相等,可得到平行四边形ABCD 是菱形,故不正确;B 、是对角线相等,可推出平行四边形ABCD 是矩形,故正确;C 、是对角线互相垂直,可得到平行四边形ABCD 是菱形,故不正确;D 、无法判断.故选B .【点评】本题主要考查的是矩形的判定定理.但需要注意的是本题的知识点是关于各个图形的性质以及判定.2.在平面直角坐标系中,正方形A 1B 1C 1D 1、D 1E 1E 2B 2、A 2B 2C 2D 2、D 2E 3E 4B 3、A 3B 3C 3D 3…按如图所示的方式放置,其中点B 1在y 轴上,点C 1、E 1、E 2、C 2、E 3、E 4、C 3…在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O=60°,B 1C 1∥B 2C 2∥B 3C 3…则正方形A 2015B 2015C 2015D 2015的边长是( )A .()2014B .()2015C .()2015D .()2014【考点】正方形的性质.【专题】压轴题;规律型.【分析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.【解答】方法一:解:如图所示:∵正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O=60°,B 1C 1∥B 2C 2∥B 3C 3…∴D 1E 1=B 2E 2,D 2E 3=B 3E 4,∠D 1C 1E 1=∠C 2B 2E 2=∠C 3B 3E 4=30°,∴D 1E 1=C 1D 1sin30°=,则B 2C 2=()1,同理可得:B 3C 3==()2,故正方形A n B n C n D n 的边长是:()n ﹣1.则正方形A 2015B 2015C 2015D 2015的边长是:()2014. 故选:D .方法二:∵正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O=60°,∴D 1E 1=B 2E 2=,∵B 1C 1∥B 2C 2∥B 3C 3…∴∠E 2B 2C 2=60°,∴B 2C 2=, 同理:B 3C 3=×=…∴a 1=1,q=,∴正方形A 2015B 2015C 2015D 2015的边长=1×.【点评】此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.二、填空题3.如图,▱ABCD的对角线相交于点O,请你添加一个条件AC=BD (只添一个即可),使▱ABCD 是矩形.【考点】矩形的判定;平行四边形的性质.【专题】开放型.【分析】根据矩形的判定定理(对角线相等的平行四边形是矩形)推出即可.【解答】解:添加的条件是AC=BD,理由是:∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故答案为:AC=BD.【点评】本题考查了矩形的判定定理的应用,注意:对角线相等的平行四边形是矩形,此题是一道开放型的题目,答案不唯一.4.如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是45°.【考点】正方形的性质;等边三角形的性质.【分析】根据正方形的性质,可得AB与AD的关系,∠BAD的度数,根据等边三角形的性质,可得AE与AD的关系,∠AED的度数,根据等腰三角形的性质,可得∠AEB与∠ABE的关系,根据三角形的内角和,可得∠AEB的度数,根据角的和差,可得答案.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°.∵等边三角形ADE,∴AD=AE,∠DAE=∠AED=60°.∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AE,∠AEB=∠ABE=(180°﹣∠BAE)÷2=15°,∠BED=∠DAE﹣∠AEB=60°﹣15°=45°,故答案为:45°.【点评】本题考查了正方形的性质,先求出∠BAE的度数,再求出∠AEB,最后求出答案.5.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为()n﹣1.【考点】正方形的性质.【专题】压轴题;规律型.【分析】首先求出AC、AE、HE的长度,然后猜测命题中隐含的数学规律,即可解决问题.【解答】解:∵四边形ABCD为正方形,∴AB=BC=1,∠B=90°,∴AC2=12+12,AC=;同理可求:AE=()2,HE=()3…,=()n﹣1.∴第n个正方形的边长an故答案为()n﹣1.【点评】该题主要考查了正方形的性质、勾股定理及其应用问题;应牢固掌握正方形有关定理并能灵活运用.6.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于65 度.【考点】正方形的性质;全等三角形的判定与性质.【分析】根据正方形的性质得出∠BAE=∠DAE,再利用SAS证明△ABE与△ADE全等,再利用三角形的内角和解答即可.【解答】解:∵正方形ABCD,∴AB=AD,∠BAE=∠DAE,在△ABE与△ADE中,,∴△ABE≌△ADE(SAS),∴∠AEB=∠AED,∠ABE=∠ADE,∵∠CBF=20°,∴∠ABE=70°,∴∠AED=∠AEB=180°﹣45°﹣70°=65°,故答案为:65【点评】此题考查正方形的性质,关键是根据正方形的性质得出∠BAE=∠DAE,再利用全等三角形的判定和性质解答.7.边长为1的一个正方形和一个等边三角形如图摆放,则△ABC的面积为.【考点】正方形的性质;等边三角形的性质;含30度角的直角三角形.【分析】过点C作CD和CE垂直正方形的两个边长,再利用正方形和等边三角形的性质得出CE的长,进而得出△ABC的面积即可.【解答】解:过点C作CD和CE垂直正方形的两个边长,如图∵一个正方形和一个等边三角形的摆放,∴四边形DBEC是矩形,∴CE=DB=,∴△ABC的面积=AB•CE=×1×=,故答案为:.【点评】此题考查正方形的性质,关键是根据正方形和等边三角形的性质得出BE和CE的长.8.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为 5 .【考点】正方形的性质;三角形的面积;勾股定理.【分析】根据正方形性质得出AD=BC=CD=AB,根据面积求出EM,得出BC=4,根据勾股定理求出即可.【解答】解:过E作EM⊥AB于M,∵四边形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面积为8,∴×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE===5,故答案为:5.【点评】本题考查了三角形面积,正方形性质,勾股定理的应用,解此题的关键是求出BC 的长,难度适中.9.正方形OA 1B 1C 1、A 1A 2B 2C 2、A 2A 3B 3C 3,按如图放置,其中点A 1、A 2、A 3在x 轴的正半轴上,点B 1、B 2、B 3在直线y=﹣x+2上,则点A 3的坐标为 (,0) .【考点】正方形的性质;一次函数图象上点的坐标特征.【专题】压轴题;规律型.【分析】设正方形OA 1B 1C 1的边长为t ,则B 1(t ,t ),根据t 一次函数图象上点的坐标特征得到t=﹣t+2,解得t=1,得到B 1(1,1),然后利用同样的方法可求得B 2(,),B 3(,),则A 3(,0).【解答】解:设正方形OA 1B 1C 1的边长为t ,则B 1(t ,t ),所以t=﹣t+2,解得t=1,得到B 1(1,1);设正方形A 1A 2B 2C 2的边长为a ,则B 2(1+a ,a ),a=﹣(1+a )+2,解得a=,得到B 2(,);设正方形A 2A 3B 3C 3的边长为b ,则B 3(+b ,b ),b=﹣(+b )+2,解得b=,得到B 3(,),所以A 3(,0).故答案为(,0).【点评】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角.也考查了一次函数图象上点的坐标特征.10.已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD= 22.5 度.【考点】正方形的性质;全等三角形的判定与性质.【分析】根据正方形的性质可得∠DAC=45°,再由AD=AE易证△ADF≌△AEF,求出∠FAD.【解答】解:如图,在Rt△AEF和Rt△ADF中,∴Rt△AEF≌Rt△ADF,∴∠DAF=∠EAF,∵四边形ABCD为正方形,∴∠CAD=45°,∴∠FAD=22.5°.故答案为:22.5.【点评】本题考查了正方形的性质,全等三角形的判定与性质,求证Rt△AEF≌Rt△ADF是解本题的关键.11.如图,要使平行四边形ABCD是矩形,则应添加的条件是∠ABC=90°或AC=BD(不唯一)(只填一个).【考点】矩形的判定;平行四边形的性质.【专题】开放型.【分析】根据矩形的判定定理:①对角线相等的平行四边形是矩形,②有一个角是直角的平行四边形是矩形,直接添加条件即可.【解答】解:根据矩形的判定定理:对角线相等的平行四边形是矩形,有一个角是直角的平行四边形是矩形故添加条件:∠ABC=90°或AC=BD .故答案为:∠ABC=90°或AC=BD .【点评】本题主要应用的知识点为:矩形的判定. ①对角线相等且相互平分的四边形为矩形.②一个角是90度的平行四边形是矩形.12.如图,正方形ABCD 的边长为a ,在AB 、BC 、CD 、DA 边上分别取点A 1、B 1、C 1、D 1,使AA 1=BB 1=CC 1=DD 1=a ,在边A 1B 1、B 1C 1、C 1D 1、D 1A 1上分别取点A 2、B 2、C 2、D 2,使A 1A 2=B 1B 2=C 1C 2=D 1D 2=A 1B 2,….依次规律继续下去,则正方形A n B n C n D n 的面积为 .【考点】正方形的性质.【专题】压轴题;规律型.【分析】首先在Rt △A 1BB 1中,由勾股定理可求得正方形A 1B 1C 1D 1的面积=,然后再在Rt △A 2B 1B 2中,由勾股定理求得正方形A 2B 2C 2D 2的面积=,然后找出其中的规律根据发现的规律即可得出结论.【解答】解:在Rt △A 1BB 1中,由勾股定理可知; ==,即正方形A 1B 1C 1D 1的面积=;在Rt △A 2B 1B 2中,由勾股定理可知:==;即正方形A 2B 2C 2D 2的面积= …∴正方形A n B n C n D n 的面积=.故答案为:.【点评】本题主要考查的是正方形的性质和勾股定理的应用,通过计算发现其中的规律是解题的关键.13.如图,▱ABCD 中,AB >AD ,AE ,BE ,CM ,DM 分别为∠DAB ,∠ABC ,∠BCD ,∠CDA 的平分线,AE 与DM 相交于点F ,BE 与CM 相交于点N ,连接EM .若▱ABCD 的周长为42cm ,FM=3cm ,EF=4cm ,则EM= 5 cm ,AB= 13 cm .【考点】矩形的判定与性质;勾股定理的应用;平行四边形的性质;相似三角形的应用.【专题】综合题;压轴题.【分析】由条件易证∠AEB=∠AFD=∠DMC=90°.进而可证到四边形EFMN 是矩形及∠EFM=90°,由FM=3cm ,EF=4cm 可求出EM .易证△ADF ≌△CBN ,从而得到DF=BN ;易证△AFD ∽△AEB ,从而得到4DF=3AF .设DF=3k ,则AF=4k .AE=4(k+1),BE=3(k+1),从而有AD=5k ,AB=5(k+1).由▱ABCD 的周长为42cm 可求出k ,从而求出AB 长.【解答】解:∵AE 为∠DAB 的平分线,∴∠DAE=∠EAB=∠DAB ,同理:∠ABE=∠CBE=∠ABC ,∠BCM=∠DCM=∠BCD ,∠CDM=∠ADM=∠ADC .∵四边形ABCD 是平行四边形,∴∠DAB=∠BCD ,∠ABC=∠ADC ,AD=BC .∴∠DAF=∠BCN ,∠ADF=∠CBN .在△ADF 和△CBN 中,.∴△ADF≌△CBN(ASA).∴DF=BN.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAB+∠ABC=180°.∴∠EAB+∠EBA=90°.∴∠AEB=90°.同理可得:∠AFD=∠DMC=90°.∴∠EFM=90°.∵FM=3,EF=4,∴ME==5(cm).∵∠EFM=∠FMN=∠FEN=90°.∴四边形EFMN是矩形.∴EN=FM=3.∵∠DAF=∠EAB,∠AFD=∠AEB,∴△AFD∽△AEB.∴=.∴=.∴4DF=3AF.设DF=3k,则AF=4k.∵∠AFD=90°,∴AD=5k.∵∠AEB=90°,AE=4(k+1),BE=3(k+1),∴AB=5(k+1).∵2(AB+AD)=42,∴AB+AD=21.∴5(k+1)+5k=21.∴k=1.6.∴AB=13(cm).故答案为:5;13.【点评】本题考查了平行四边形的性质、平行线的性质、矩形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识,综合性较强.三、解答题14.(2015•聊城)如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC 于点F,连接CE.求证:四边形BECD是矩形.【考点】矩形的判定.【专题】证明题.【分析】根据已知条件易推知四边形BECD是平行四边形.结合等腰△ABC“三线合一”的性质证得BD⊥AC,即∠BDC=90°,所以由“有一内角为直角的平行四边形是矩形”得到▱BECD是矩形.【解答】证明:∵AB=BC,BD平分∠ABC,∴BD⊥AC,AD=CD.∵四边形ABED是平行四边形,∴BE∥AD,BE=AD,∴BE=CD,∴四边形BECD是平行四边形.∵BD⊥AC,∴∠BDC=90°,∴▱BECD是矩形.【点评】本题考查了矩形的判定.矩形的定义:有一个角是直角的平行四边形是矩形.15.如图,在平面直角坐标系中,点A(2,n),B(m,n)(m>2),D(p,q)(q<n),点B,D在直线y=x+1上.四边形ABCD的对角线AC,BD相交于点E,且AB∥CD,CD=4,BE=DE,△AEB 的面积是2.求证:四边形ABCD是矩形.【考点】矩形的判定;一次函数图象上点的坐标特征.【专题】证明题.【分析】首先利用对角线互相平分的四边形是平行四边形判定该四边形为平行四边形,然后根据△ABE的面积得到整个四边形的面积和AD的长,根据平行四边形的面积计算方法得当DA⊥AB即可判定矩形.【解答】证明:作EF⊥AB于点F,∵AB∥CD,∴∠1=∠2,∠3=∠4,在△ABE和△CDE中,,∴△ABE≌△CDE,∴AE=CE,∴四边形ABCD是平行四边形,∵A(2,n),B(m,n),易知A,B两点纵坐标相同,∴AB∥CD∥x轴,∴m﹣2=4,m=6,将B(6,n)代入直线y=x+1得n=4,∴B(6,4),∵CD=4=AB,△AEB的面积是2,∴EF=1,∵D(p,q),∴E(,),F(,4),∴+1=4,∴q=2,p=2,∴DA⊥AB,∴四边形ABCD是矩形.【点评】本题考查了矩形的判定,解题的关键是了解有一个角是直角的平行四边形是矩形,难度不大.16.如图,在△ABC中,AB=AC,点D(不与点B重合)在BC上,点E是AB的中点,过点A作AF∥BC交DE延长线于点F,连接AD,BF.(1)求证:△AEF≌△BED.(2)若BD=CD,求证:四边形AFBD是矩形.【考点】矩形的判定;全等三角形的判定与性质.【专题】证明题.【分析】(1)AAS或ASA证全等;(2)根据对角线互相平分的证明四边形AFBD是平行四边形,再根据等腰三角形三线合一证明∠ADB=90°,进而根据有一个角是直角的平行四边形是矩形得证.【解答】证明:(1)∵AF∥BC,∴∠AFE=∠EDB,∵E为AB的中点,∴EA=EB,在△AEF和△BED中,,∴△AEF≌△BED(ASA);(2)∵△AEF≌△BED,∴AF=BD,∵AF∥BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴AD⊥BD,∴四边形AFBD是矩形.【点评】本题考查了矩形的判定,三角形全等的判定及性质,能够了解矩形的判定定理是解答本题的关键,难度不大.17.(2015•义乌市)正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A按顺时针方向旋转,记旋转角∠DAG=α,其中0°≤α≤180°,连结DF,BF,如图.(1)若α=0°,则DF=BF,请加以证明;(2)试画一个图形(即反例),说明(1)中命题的逆命题是假命题;(3)对于(1)中命题的逆命题,如果能补充一个条件后能使该逆命题为真命题,请直接写出你认为需要补充的一个条件,不必说明理由.【考点】正方形的性质;全等三角形的判定与性质;命题与定理;旋转的性质.【专题】压轴题.【分析】(1)利用正方形的性质证明△DGF≌△BEF即可;(2)当α=180°时,DF=BF.(3)利用正方形的性质和△DGF≌△BEF的性质即可证得是真命题.【解答】(1)证明:如图1,∵四边形ABCD和四边形AEFG为正方形,∴AG=AE,AD=AB,GF=EF,∠DGF=∠BEF=90°,∴DG=BE,在△DGF和△BEF中,,∴△DGF≌△BEF(SAS),∴DF=BF;(2)解:图形(即反例)如图2,(3)解:补充一个条件为:点F在正方形ABCD内;即:若点F在正方形ABCD内,DF=BF,则旋转角α=0°.【点评】本题主要考查正方形的性质及全等三角形的判定和性质,旋转的性质,命题和定理,掌握全等三角形的对应边相等是解题的关键,注意利用正方形的性质找三角形全等的条件.18.(2015•鄂州)如图,在正方形ABCD的外侧,作等边三角形ADE,连接BE,CE.(1)求证:BE=CE.(2)求∠BEC的度数.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)根据正方形的性质,可得AB=AD=CD,∠BAD=∠ADC=90°,根据正三角形的性质,可得AE=AD=DE,∠EAD=∠EDA=60°,根据全等三角形的判定与性质,可得答案;(2)根据等腰三角形的性质,∠ABE=∠AEB,根据三角形的内角和定理,可得∠AEB,根据角的和差,可得答案.【解答】(1)证明:∵四边形ABCD为正方形∴AB=AD=CD,∠BAD=∠ADC=90°∵三角形ADE为正三角形∴AE=AD=DE,∠EAD=∠EDA=60°∴∠BAE=∠CDE=150°在△BAE和△CDE中,∴△BAE≌△CDE∴BE=CE;(2)∵AB=AD,AD=AE,∴AB=AE,∴∠ABE=∠AEB,又∵∠BAE=150°,∴∠ABE=∠AEB=15°,同理:∠CED=15°∴∠BEC=60°﹣15°×2=30°.【点评】本题考查了正方形的性质,(1)利用了正方形的性质,等腰三角形的性质,全等三角形的判定与性质;(2)利用了等腰三角形的判定与性质,角的和差.19.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.【考点】正方形的性质;全等三角形的判定与性质;菱形的性质.【专题】证明题.【分析】(1)先证出△ABP≌△CBP,得PA=PC,由于PA=PE,得PC=PE;(2)由△ABP≌△CBP,得∠BAP=∠BCP,进而得∠DAP=∠DCP,由PA=PC,得到∠DAP=∠E,∠DCP=∠E,最后∠CPF=∠EDF=90°得到结论;(3)借助(1)和(2)的证明方法容易证明结论.【解答】(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∴PC=PE;(2)由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC,∴∠DAP=∠AEP,∴∠DCP=∠AEP∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,【点评】本题考查了正方形的性质,全等三角形的判定与性质,菱形的性质,等边对等角的性质,熟记正方形的性质确定出∠ABP=∠CBP是解题的关键.20.在平面直角坐标系xOy中,直线y=﹣x+3与x轴、y轴分别交于A、B,在△AOB内部作正方形,使正方形的四个顶点都落在该三角形的边上,求正方形落在x轴正半轴的顶点坐标.【考点】正方形的性质;一次函数图象上点的坐标特征.【分析】分两种情况:①如图1,令x=0,则y=3,令y=0,则x=3,得到OA=OB=3,∠BAO=45°,根据DE⊥OA,推出DE=AE,由于四边形COED是正方形,得到OE=DE,等量代换得到OE=AE,即可得到结论;②如图2,由(1)知△OFC,△EFA是等腰直角三角形,由四边形CDEF是正方形,得到EF=CF,于是得到AF=OF=2OF,求出OA=OF+2OF=3,即可得到结论.【解答】解:分两种情况;①如图1,令x=0,则y=3,令y=0,则x=3,∴OA=OB=3,∴∠BAO=45°,∵DE⊥OA,∴DE=AE,∵四边形COED是正方形,∴OE=DE,∴OE=AE,∴OE=OA=,∴E(,0);②如图2,由①知△OFC,△EFA是等腰直角三角形,∴CF=OF,AF=EF,∵四边形CDEF是正方形,∴EF=CF,∴AF=OF=2OF,∴OA=OF+2OF=3,∴OF=1,∴F(1,0).【点评】本题考查了正方形的性质,一次函数图象上点的坐标特征,等腰直角三角形的性质,正确的画出图形是解题的关键.21.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.【考点】矩形的判定;全等三角形的判定与性质.【专题】证明题.【分析】求出∠BAE=∠CAD,证△BAE≌△CAD,推出∠BEA=∠CDA,BE=CD,得出平行四边形BCDE,根据平行线性质得出∠BED+∠CDE=180°,求出∠BED,根据矩形的判定求出即可.【解答】证明:∵∠BAD=∠CAE,∴∠BAD﹣∠BAC=∠CAE﹣∠BAC,∴∠BAE=∠CAD,∵在△BAE和△CAD中∴△BAE≌△CAD(SAS),∴∠BEA=∠CDA,BE=CD,∵DE=CB,∴四边形BCDE是平行四边形,∵AE=AD,∴∠AED=∠ADE,∵∠BEA=∠CDA,∴∠BED=∠CDE,∵四边形BCDE是平行四边形,∴BE∥CD,∴∠CDE+∠BED=180°,∴∠BED=∠CDE=90°,∴四边形BCDE是矩形.【点评】本题考查了矩形的判定,平行四边形的性质和判定,平行线的性质全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力,注意:有一个角是直角的平行四边形是矩形.22.已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.(1)求证:四边形ADBE是矩形;(2)求矩形ADBE的面积.【考点】矩形的判定与性质;勾股定理;平行四边形的性质.【分析】(1)利用三线合一定理可以证得∠ADB=90°,根据矩形的定义即可证得;(2)利用勾股定理求得BD的长,然后利用矩形的面积公式即可求解.【解答】解:(1)∵AB=AC,AD是BC边上的中线,∴AD⊥BC,∴∠ADB=90°,∵四边形ADBE是平行四边形.∴平行四边形ADBE是矩形;(2)∵AB=AC=5,BC=6,AD是BC的中线,∴BD=DC=6×=3,在直角△ACD中,AD===4,∴S=BD•AD=3×4=12.矩形ADBE【点评】本题考查了三线合一定理以及矩形的判定,理解三线合一定理是关键.23.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.【考点】矩形的判定;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,根据全等三角形对应边相等可得AF=CD,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90°,由等腰三角形三线合一的性质可知必须是AB=AC.【解答】解:(1)BD=CD.理由如下:依题意得AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD(三线合一),∴∠ADB=90°,∴▱AFBD是矩形.【点评】本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键.24.(2014•宁德)如图,在梯形ABCD中,AD∥BC,点E是BC的中点,连接AC,DE,AC=AB,DE∥AB.求证:四边形AECD是矩形.【考点】矩形的判定.【专题】证明题.【分析】先判断四边形AECD为平行四边形,然后由∠AEC=90°即可判断出四边形AECD是矩形.【解答】证明:∵AD∥BC,DE∥AB,∴四边形ABED是平行四边形.∴AD=BE.∵点E是BC的中点,∴EC=BE=AD.∴四边形AECD是平行四边形.∵AB=AC,点E是BC的中点,∴AE⊥BC,即∠AEC=90°.∴▱AECD是矩形.【点评】本题考查了梯形和矩形的判定,难度适中,解题关键是掌握平行四边形和矩形的判定定理.25.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE ⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.【考点】矩形的判定;角平分线的性质;等腰三角形的性质;正方形的判定.【专题】证明题;开放型.(1)根据矩形的有三个角是直角的四边形是矩形,已知CE⊥AN,AD⊥BC,所以求证∠DAE=90°,【分析】可以证明四边形ADCE为矩形.(2)根据正方形的判定,我们可以假设当AD=BC,由已知可得,DC=BC,由(1)的结论可知四边形ADCE为矩形,所以证得,四边形ADCE为正方形.【解答】(1)证明:在△ABC中,AB=AC,AD⊥BC,∴∠BAD=∠DAC,∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠CAE,∴∠DAE=∠DAC+∠CAE=180°=90°,又∵AD⊥BC,CE⊥AN,∴∠ADC=∠CEA=90°,∴四边形ADCE为矩形.(2)当△ABC满足∠BAC=90°时,四边形ADCE是一个正方形.理由:∵AB=AC,∴∠ACB=∠B=45°,∵AD⊥BC,∴∠CAD=∠ACD=45°,∴DC=AD,∵四边形ADCE为矩形,∴矩形ADCE是正方形.∴当∠BAC=90°时,四边形ADCE是一个正方形.【点评】本题是以开放型试题,主要考查了对矩形的判定,正方形的判定,等腰三角形的性质,及角平分线的性质等知识点的综合运用.26.如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.(1)求证:△ADE≌△CBF;(2)求证:四边形BFDE为矩形.【考点】矩形的判定;全等三角形的判定与性质;平行四边形的性质.【专题】证明题.【分析】(1)由DE与AB垂直,BF与CD垂直,得到一对直角相等,再由ABCD为平行四边形得到AD=BC,对角相等,利用AAS即可的值;(2)由平行四边形的对边平行得到DC与AB平行,得到∠CDE为直角,利用三个角为直角的四边形为矩形即可的值.【解答】证明:(1)∵DE⊥AB,BF⊥CD,∴∠AED=∠CFB=90°,∵四边形ABCD为平行四边形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(AAS);(2)∵四边形ABCD为平行四边形,。
北师版九年级数学第一章特殊平行四边形单元测试题含答案
![北师版九年级数学第一章特殊平行四边形单元测试题含答案](https://img.taocdn.com/s3/m/96b0882aa5e9856a56126098.png)
本页为预览页,下载后将此页内容删除后就可打印使用,后面附有答案。
欢迎批评指正!九年级数学上册第一章特殊平行四边形单元测试(时间60分钟 满分120分)一、选择题(每小题3分,共30分) 1.下列说法中错误的是( )A 两条对角线互相平分的四边形是平行四边形B 两条对角线相等的菱形是正方形C 两条对角线互相垂直的矩形是正方形;D .两条对角线相等的四边形是矩形2.矩形具有而平行四边形不具有的性质是( )A 、对角线互相平分B 、对角线相等C 、对角线互相垂直D 、四边相等 3.能够找到一点,使该点到各顶点的距离都相等的图形是( ) ①平行四边形 ②菱形 ③矩形 ④正方形 A .①与② B .②与③ C .②与④ D .③与④4.给出五种图形:①矩形; ②菱形; ③等腰三角形(腰与底边不相等); ④等边三角形; ⑤平行四边形(不含矩形、菱形).其中,能用完全重合的含有30°角的两块直角三角板拼成的图形是( )A .②③B .②③④C .①③④⑤D .①②③④⑤5.已知一矩形的两边长分别为10 cm 和15 cm ,其中一个内角的平分线分长边为两部分,这两部分的长为( )A.6 cm 和9 cmB. 5 cm 和10 cmC. 4 cm 和11 cmD. 7 cm 和8 cm6.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形中满足条件的是( ) ①平行四边形;②菱形; ③矩形;④对角线互相垂直的四边形.A.①③B.②③C.③④D.②④7. 如图,在菱形ABCD 中,∠BAD=800,AB 的垂直平分线交对角线AC 于点F ,E 为垂足,连结DF ,则∠CDF 等于( ) A 、80B 、70C 、650D 、60AEO DBFCG8.如图,正方形ABCD ,AF BE 于点F ,交BD 于点G ,则下述结论中不成立的是( ) A. AG=BE B. △ABG ≌△BCE C. AE=DG D. ∠AGD=∠DAG9.如图,正方形ABCD 的对角线AC 是菱形AEFC 的一边,则∠FAB 等于( ) A.135° B.45° C.22.5° D.30°10.如图矩形ABCD 中,AB=2AD,AE=AB,则∠CBE 等于( ) A.30° B.22.5° C.15° D.以上答案都不对 二、填空题(每小题3分,共30分)11.已知菱形的周长为40,一条对角线长为12,则这个菱形的面积为_________. 12.四边形ABCD 为菱形,∠A=60°, BD=10cm , 则此菱形的周长________cm . 13.已知正方形的一条对角线长为8cm ,则其面积是__________cm 2. 14.已知矩形ABCD 中,CE ⊥BD 于E ,∠BCE ︰∠ECD=3︰1,则∠ACE=____度.15.一个菱形的边长与一个等腰直角三角形的直角边长相等,若菱形的一个内角为30°,则菱形的面积与等腰直角三角形的面积之比为________.16.矩形ABCD 中,M 是BC 的中点,且MA ⊥MD ,若矩形的周长为48cm ,则矩形ABCD 的面积为________. 17.如图,矩形ABCD 中过点O 作AC 的垂线EF ,已知△CDE 的周长为24 cm ,则矩形ABCD 的周长 是 cm.18.如图,矩形ABCD 中AC=10,BC=8,则图中五个小矩形的周长之和为_______.19.如图,在RtΔABC,∠ACB=900,∠A<∠B,CM 是斜边AB 的中线,将ΔACM 沿直线CM 折叠,点A 落在点D 处,若CD 恰好与AB 垂直,则∠A 等于 度。
特殊平行四边形综合测试题(可直接打印)
![特殊平行四边形综合测试题(可直接打印)](https://img.taocdn.com/s3/m/1d7d8b17a1c7aa00b52acbde.png)
2.如图,在矩形 ABCD 中,∠BOC=120o,AB=5,则 BD=_______;矩形的面积为_______。
3.如图,边长为 1 的正方形 ABCD 中,点 E 是对角线 BD 上的一点,且 BE=BC,点 P 在 EC 上,PM
为________.
三.解答题(共 8 题,共 85 分) 1.(10 分)如图,矩形 ABCD 中,AC 与 BD 交于点 O,BE⊥AC,CF⊥BD,垂足分别为 E,F,
求证:BE=CF
2.(10 分)如图,在平行四边形 ABCD 中,点 E、F 分别在 AB、CD 上,且 AE=CF (1)求证: △ADE ≌ △CBF (2)若 DF=BF,求证:四边形 DEBF 为菱形。
的面积为( A )
A. 2 3
B.4 C. 4 3
D.8
6.如图,矩形 ABCD 中,AB=8,BC=6,E、F 是 AC 上的三等分点,则三角形 BEF 的面积为( A )
A.8
B.12
C.16
D.24
1
7.已知如图,矩形 ABCD 中 AB=4cm,BC=3cm,点 P 是 AB 上除 A、B 外任意一点,对角线 AC 与 BD 相交 与点 O,DP,CP 分别交 AC,BD 于点 E、F,且△ADE 和△BCF 面积之和为 4cm2,则四边形 PEOF 的面积为(A )
A.AB=CD B.AC⊥BD C.AC=BD D.∠BAC=∠DAC
4.如图,矩形 ABCD 的对角线交于点 O,若∠ACB=30o,AB=2,则 OC 的长为(A )
A.2 B.3
(必考题)初中数学九年级数学上册第一单元《特殊平行四边形》测试(答案解析)
![(必考题)初中数学九年级数学上册第一单元《特殊平行四边形》测试(答案解析)](https://img.taocdn.com/s3/m/ff0e385fe53a580216fcfef7.png)
一、选择题1.如图,矩形ABCD 被两条对角线分成4个小三角形OAB ∆、OAD ∆、OBC ∆和OCD ∆,若这4个小三角形的周长之和为68,对角线10AC =,则矩形ABCD 的周长是( )A .14B .18C .21D .282.在一个四边形ABCD 中依次连接各边的中点得到的四边形是矩形,则对角线AC 与BD 需要满足的条件是( )A .垂直B .相等C .垂直且相等D .不再需要条件 3.下列命题是假命题的是( )A .有一组邻边相等的矩形是正方形B .对角线互相垂直的平行四边形是正方形C .对角线相等的平行四边形是矩形D .有三个角是直角的四边形是矩形 4.如图,四边形ABCD 中,90A B ∠=∠=︒,60C ∠=°,2CD AD =,4AB =,点P 是AB 上一动点,则PC PD +的最小值是( )A .4B .6C .8D .105.如图,将长方形纸片ABCD 沿AE 折叠,使点D 恰好落在BC 边上点F 处.若6AB =,10AD =,则EC 的长为( )A .2B .83C .3D .1036.给出下列命题,其中错误命题的个数是( )①四条边相等的四边形是正方形;②四边形具有不稳定性;③有两个锐角对应相等的两个直角三角形全等;④一组对边平行的四边形是平行四边形.A .1B .2C .3D .47.如图,四边形ABCD 中,∠BAD =∠C =90°,AB =AD ,AE ⊥BC ,垂足是E ,若线段AE =4,则四边形ABCD 的面积为( )A .12B .16C .20D .248.如图,在ABC 中,D 是BC 边上的中点,连结AD ,把ACD △沿AD 翻折,得到ADC ',DC '与AB 交于点E ,连结BC ',若2BD BC ='=,3AD =,则点D 到AC '的距离为( )A .332B .3217C .7D .139.如图,在平行四边形ABCD 中,AD =2AB 、点F 是AD 的中点,作CE ⊥AB 垂足E 在线段AB 上,连接 EF 、CF ,则下列结论:①2BCD DCF ∠=∠;②EF =CF ; ③S △BCE =S △CEF ;④∠DFE =3∠AEF .其中正确的结论有( )A .1个B .2个C .3个D .4个10.如图,正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展开后折痕DE 分别交AB 、AC 于点E 、G ,连结GF ,给出下列结论:①∠ADG=22.5°;②AD=2AE ;③ACD OGD S S ∆∆=;④四边形AEFG 是菱形;⑤BE=2OG :⑥若1OGF S ∆=,则正方形ABCD 的面积是642+,其中正确的结论个数为( )A .2个B .3个C .4个D .5个11.如图,AB AF ⊥,EF AF ⊥,BE 与AF 交于点C ,点D 是BC 的中点,2AEB B ∠=∠.若8BC =,7EF =,则AF 的长是( )A 6B 7C .3D .5 12.□ABCD 中,AC 、BD 是两条对角线,如果添加一个条件,可推出□ABCD 是菱形,那么这个条件可以是( )A .AB=CDB .AC=BDC .AC ⊥BD D .AB ⊥BD二、填空题13.如图,把一张长方形的纸沿对角线折叠,若118ABC ∠=︒,则BAC ∠=_______.14.D 为等腰Rt △ABC 斜边BC 上一点(不与B 、C 重合),DE ⊥BC 于点D ,交直线BA 于点E ,作∠EDF =45°,DF 交AC 于F ,连接EF ,BD =nDC ,当n =__________时,△DEF 为等腰直角三角形.15.如图,△ABC 中,13AB AC ==,10BC =,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长是________.16.如图,在ABC ∆中,AC BC =,点D 、E 分别是边AB 、AC 的中点.延长DE 到点F ,使DE EF =,得四边形ADCF .当ACB =∠________︒时,四边形ADCF 是长方形.17.如图,在ABC 中,90C ∠=︒,60B ∠=︒,AD ,CE 都是ABC 的中线,点M 是CE 的中点,若1CM =,则CD =______.18.如图,四边形ABCD 中,30,120B D ∠=︒∠=︒,且,6AB AC AD CD ⊥+=,则四边形ABCD 周长的最小值是_______________________.19.如图所示,长方形ABCD由四个等腰直角三角形和一个正方形EFGH构成.若长方形ABCD的面积为6,则三角形ABE的面积为 ______,正方形EFGH的面积为______.20.如图将一张长方形纸片沿EF折叠后,点A、B分别落在A′、B′的位置,如果∠2=70°,则∠1的度数是___________.三、解答题21.如图,长方形ABCD中,AD=a cm,AB=b cm,且a、b满足|8-a|+(b-4)2=0.(1)长方形ABCD的面积为;(2)动点P在AD所在直线上,从A出发向左运动,速度为2cm/s,动点Q在DC所在直线上,从D出发向上运动,速度为4cm/s.动点P、Q同时出发,设运动时间为t秒.①当点P在线段AD上运动时,求以D、P、B、Q为顶点的四边形面积;(用含t的式子表示)②求当t为何值时,S△BAP=S△CQB.22.如图,AB为⊙O的直径,C为⊙O上一点,D是弧BC的中点,过点D作AC的垂线,交AC的延长线于点E,连接AD.(1)求证:DE是⊙O的切线;(2)连接CD,若∠CDA=30°,AC=2,求CE的长.23.如图,在ABC 中,,,,AC BC D E F =分别是,,AB AC BC 的中点,连接,DE DF .求证:四边形DFCE 是菱形.24.长方形OABC 是一张放在平面直角坐标系中的长方形纸片,O 为原点,点A 在x 轴上,点C 在y 轴上,10OA =,6OC =.(1)如图,在AB 上取一点M ,使得CBM 沿CM 翻折后,点B 落在x 轴上,记作B ′点,求B ′点的坐标.(2)求折痕CM 所在直线的解析式.(3)在x 轴上是否能找到一点P ,使B CP '△的面积为13?若存在,直接写出点P 的坐标?若不存在,请说明理由.25.如图,长方形ABCD 沿着直线DE 和EF 折叠,使得AB 的对应点A′,B′和点E 在同一条直线上.(1)写出∠AEF 的补角和∠ADE 的余角;(2)求∠DEF .26.如图,四边形OABC 是一张放在平面直角坐标系中的长方形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA=10,OC=8,在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处.(1)求点E 的坐标;(2)求点D 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】四个小三角形的周长是两条对角线长的2倍与矩形周长的和,由此可求矩形周长.【详解】∵四边形ABCD是矩形,∴AC=BD,四个小三角形的周长=2AC+2BD+AD+DC+BC+BA,即40+矩形周长=68,所以矩形周长为28.故选:D.【点睛】本题考查了矩形的性质和矩形的周长,抓住矩形的对角线相等和四个小三角形的周长=4倍的对角线长+矩形的周长是解决本题的关键.2.A解析:A【分析】根据题意画出相应的图形,如图所示,由四边形EFGH为矩形,根据矩形的四个角为直角得到∠FEH=90°,又EF为三角形ABD的中位线,根据中位线定理得到EF与DB平行,根据两直线平行,同旁内角互补得到∠EMO=90°,同理根据三角形中位线定理得到EH与AC 平行,再根据两直线平行,同旁内角互补得到∠AOD=90°,根据垂直定义得到AC与BD垂直.【详解】解:如图,∵四边形EFGH是矩形,∴∠FEH=90°,又∵点E、F、分别是AD、AB边的中点,∴EF是三角形ABD的中位线,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵点E、H分别是AD、CD各边的中点,∴EH是三角形ACD的中位线,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD.故选:A.【点睛】此题考查了矩形的性质,三角形的中位线定理,以及平行线的性质.这类题的一般解法是:借助图形,充分抓住已知条件,找准问题的突破口,由浅入深多角度,多侧面探寻,联想符合题设的有关知识,合理组合发现的新结论,围绕所探结论环环相加,步步逼近,所探结论便会被“逼出来”.3.B解析:B【分析】根据特殊平行四边形的判定与性质可以对各选项的正误作出判断.【详解】由平行四边形的性质及特殊平行四边形的判定可以得到:(1)有一组邻边相等的矩形是正方形,故A正确;(2)对角线互相垂直的平行四边形是菱形,故B错误;(3)对角线相等的平行四边形是矩形,故C正确;(4)有三个角是直角的四边形是矩形,故D正确.故选B.【点睛】本题考查特殊平行四边形的应用,熟练掌握特殊平行四边形的判定与性质是解题关键.4.C解析:C【分析】作D点关于AB的对称点D',连接CD'交AB于P,根据两点之间线段最短可知此时PC+PD 最小;再作D'E⊥BC于E,则EB=D'A=AD,先根据等边对等角得出∠DCD'=∠DD'C,然后根据平行线的性质得出∠D'CE=∠DD'C,从而求得∠D'CE=∠DCD',得出∠D'CE=30°,根据30°角的直角三角形的性质求得D'C=2D'E=2AB,即可求得PC+PD的最小值.【详解】作D点关于AB的对称点D',连接CD'交AB于P,P即为所求,此时PC+PD=PC+PD'=CD',根据两点之间线段最短可知此时PC+PD最小.作D'E⊥BC于E,则EB=D'A=AD.∵CD=2AD,∴DD'=CD,∴∠DCD'=∠DD'C.∵∠DAB=∠ABC=90°,∴四边形ABED'是矩形,∴DD'∥EC,D'E=AB=4,∴∠D'CE=∠DD'C,∴∠D'CE=∠DCD'.∵∠DCB=60°,∴∠D'CE=30°,∴在Rt△D'CE中,D'C=2D'E=2×4=8,∴PC+PD的最小值为8.故选:C.【点睛】本题考查了轴对称﹣最短路线问题,轴对称的性质,矩形的判定和性质,等腰三角形的性质,平行线的性质,含30°角的直角三角形的性质等,确定出P点是解答本题的关键.5.B解析:B【分析】由翻折可知:AD=AF=10.DE=EF,设EC=x,则DE=EF=6-x.在Rt△ECF中,利用勾股定理构建方程即可解决问题.【详解】解:∵四边形ABCD是矩形,∴AD=BC=10,AB=CD=6,∴∠B=∠BCD=90°,由翻折可知:AD=AF=10,DE=EF,设EC=x,则DE=EF=6-x.在Rt△ABF中,2222=-=-=,BF AF AB1068∴CF=BC-BF=10-8=2,在Rt△EFC中,EF2=CE2+CF2,∴(6-x)2=x2+22,∴x=8,3∴EC=8.3故选:B.【点睛】本题考查了折叠的性质,矩形的性质,勾股定理,熟练掌握方程的思想方法是解题的关键.6.C解析:C【分析】利用正方形的判定、直角三角形全等的判定、平行四边形的判定定理对每个选项依次判定解答.【详解】①四条边相等的四边形是菱形,故①错误;②四边形具有不稳定性,故②正确;③两直角三角形隐含一个条件是两直角相等,两个锐角对应相等,因此构成了AAA ,不能判定全等,故③错误;④一组对边平行且相等的四边形是平行四边形,故④错误;综上,错误的命题有①③④共3个.故选:C .【点睛】本题考查了命题与定理的知识,解题的关键是了解正方形的判定、平行四边形的判定及直角三角形全等的判定.7.B解析:B【分析】延长CD ,作AF CD ⊥的延长线于点F ,构造出全等三角形,()ABE ADF AAS ≅,即可得到四边形ABCD 的面积就等于正方形AECF 的面积.【详解】解:如图,延长CD ,作AF CD ⊥的延长线于点F ,∵AE BC ⊥,∴90AEC AEB ∠=∠=︒,∵AF CD ⊥,∴90AFC ∠=︒,∵90C ∠=︒,∴四边形AECF 是矩形,∴90EAF ∠=︒,∵BAD EAF ∠=∠,∴BAD EAD EAF EAD ∠-∠=∠-∠,即BAE DAF ∠=∠,在ABE △和ADF 中,BAE DAF AEB AFD AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ABE ADF AAS ≅,∴AE AF =,∴四边形AECF 是正方形,∵ABE ADF S S ,∴216ABCD AECF S S AE ===.故选:B .【点睛】本题考查全等三角形的性质和判定,正方形的性质和判定,解题的关键是作辅助线构造全等三角形.8.B解析:B【分析】过点D 作DF ⊥BC',垂足为F ,过点A 作AG ⊥BC',交BC'的延长线于G ,则四边形ADFG 是矩形,计算AC '的长,后利用三角形ADC 'M 面积 的不同计算方法计算即可.【详解】如图,过点D 作DF ⊥BC',垂足为F ,过点A 作AG ⊥BC',交BC'的延长线于G ,∵把ACD △沿AD 翻折,得到ADC ',∴DC=DC ',∠ADC=∠A DC ',∵D 是BC 边上的中点,∴DC=BD ,∵2BD BC ='=,∴DC '=2BD BC ='=,∴BDC '是等边三角形,∴∠ADC=∠A DC '=∠B DC '=∠DC 'B=60°,∵DF ⊥BC',AG ⊥BC',∴四边形ADFG 是矩形,∴BF=FC'=1,FG=AD=3,=,∴GC '=2,∴AC '=,设点D 到AC '的距离为h , ∴1122AC h AD DF '=,∴11322h =⨯,∴h=7, 故选B.【点睛】 本题考查了三角形的折叠问题,等边三角形的判定和性质,平行线的判定,矩形的判定,勾股定理,三角形的面积,熟练掌握折叠的性质,矩形的判定,三角形面积不同表示方法是解题的关键.9.C解析:C【分析】由在平行四边形ABCD 中,AD=2AB ,F 是AD 的中点,证明AF=FD=CD ,继而证得①2BCD DCF ∠=∠;然后延长EF ,交CD 延长线于M ,分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF ≌△DMF (ASA ),可得EF MF =,再证明90ECM ∠=︒,从而可判断②;由,CBE CEF S S =可得:13CBE ABCD S S =,可得:2,3BE AB =与已知不符,从而可判断③;设∠FEC=x ,则∠FCE=x ,再分别表示∠EFD=9018022703x x x ︒-+︒-=︒-,∠AEF=90,M FCM x ∠=∠=︒-从而可判断④.【详解】解:①∵F 是AD 的中点,∴AF=FD ,∵在▱ABCD 中,AD=2AB ,∴AF=FD=CD ,∴∠DFC=∠DCF ,∴∠DFC=∠FCB ,∴∠DCF=∠BCF ,∴∠BCD 2DCF =∠,故①正确;②延长EF ,交CD 延长线于M ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠A=∠MDF ,∵F 为AD 中点,∴AF=FD ,在△AEF 和△DFM 中,A FDM AF DFAFE DFM ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEF ≌△DMF (ASA ),∴FE=MF ,∠AEF=∠M ,∵CE ⊥AB ,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF ,∴EF=CF ,故②正确;③∵EF=FM ,EFC CFM S S ∴=,若,CBE CEF SS = 则13CBE ABCD S S = 11,23BE EC AB EC ∴= 32,BE AB ∴=2,3BE AB ∴= 与已知条件不符, 故CBE CEFS S =不一定成立,故③错误; ④设∠FEC=x ,,EF CF =∴∠FCE=x ,∴∠DCF=∠DFC=90x ︒-,∠EFC=1802x ︒-,∴∠EFD=9018022703x x x ︒-+︒-=︒-,∵∠AEF=90,M FCM x ∠=∠=︒-∴∠DFE=3∠AEF ,故④正确.故选:C .【点睛】本题考查的是平行四边形的性质,三角形全等的判定与性质,平行线的性质,三角形的内角和定理,直角三角形斜边上的中线的性质,等腰三角形的性质,掌握以上知识是解题关键.10.B解析:B【分析】由题意易得AC ⊥BD ,OA=OC=OB=OD ,∠ADO=∠ABD=45°,AD=AB ,△ADE ≌△FDE ,则有BE =,进而可得四边形AEFG 是平行四边形,然后根据等腰直角三角形的性质及线段的等量关系可求解.【详解】解:∵四边形ABCD 是正方形,∴AC ⊥BD ,OA=OC=OB=OD ,∠ADO=∠ABD=45°,AD=AB ,∵折叠正方形ABCD ,∴△ADE ≌△FDE ,∴∠ADE=∠FDE=22.5°,AD=DF ,AE=FE ,∠EFD=∠DAE=90°,故①正确;∴△EFB 是等腰直角三角形, ∴BE =, ∴AD AB AE ==+,故②错误; 由图可直接判定③错误;∵∠EFB=∠AOB=90°,∴OA ∥EF ,由折叠的性质可得:∠GFO=∠DAO=45°,∴∠GFO=∠ABO=45°,∴GF ∥AE ,∴四边形AEFG 是平行四边形,∵AE=AF ,∴四边形AEFG 是菱形,故④正确;∵∠GFO=45°,∠AOB=90°,∴△GOF 是等腰直角三角形, ∴EF GF ==,∴2BE OG =,故⑤正确; ∵2112OGF S OG ∆==, ∴OG =∴2BE EF AE ===, ∴2AB =, ∴()22212ABCD S AB ===+正方形⑥错误;∴正确的有三个;故选B .【点睛】本题主要考查正方形的性质、菱形的判定及等腰直角三角形的性质与判定,熟练掌握正方形的性质、菱形的判定及等腰直角三角形的性质与判定是解题的关键.11.C解析:C【分析】根据直角三角形的性质和等腰三角形的判定和性质即可得到结论.【详解】∵AB ⊥AF ,∴∠FAB=90°,∵点D 是BC 的中点,∴AD=BD=12BC=4, ∴∠DAB=∠B , ∴∠ADE=∠B+∠BAD=2∠B ,∵∠AEB=2∠B ,∴∠AED=∠ADE ,∴AE=AD ,∴AE=AD=4,∵,EF ⊥AF ,∴==3,故选:C .【点睛】本题考查了直角三角形斜边中线的性质,三角形的外角性质,等腰三角形的判定和性质,勾股定理,正确的识别图形是解题的关键.12.C解析:C【分析】根据菱形的定义和判定定理逐项作出判断即可.【详解】解:A. AB=CD ,无法判断四边形ABCD 是菱形,不合题意;B. AC=BD ,根据对角线相等的平行四边形是矩形可以判断□ABCD 是矩形,不合题意;C. AC ⊥BD ,根据对角线互相垂直的平行四边形是菱形可以判断□ABCD 是菱形,符合题意;D. AB ⊥BD ,可以得到∠B=90°,根据有一个角是直角的平行四边形叫矩形可以判断□ABCD 是矩形,不合题意.故选:C【点睛】本题考查了菱形的判定,熟知菱形的定义和判定定理是解题的关键.二、填空题13.【分析】根据折叠的性质可以判断出三角形ABC 是等腰三角形继而根据三角形内角和为180°求解即可;【详解】将翻折后的图形如图所示:∵四边形ADCF 是矩形三角形ACE 是由三角形ACF 翻折得到的∴∠D=∠解析:31︒【分析】根据折叠的性质可以判断出三角形ABC 是等腰三角形,继而根据三角形内角和为180°求解即可;【详解】将翻折后的图形如图所示:∵ 四边形ADCF 是矩形,三角形ACE 是由三角形ACF 翻折得到的,∴ ∠D=∠E=90°,AD=CE在△ABD 和△BCE 中:AD CE D EABD CBE =⎧⎪⎨⎪=⎩∠=∠∠∠ ∴△ABD ≌△BCE (AAS )∴AB=BC∵∠ABC=118°,∴∠BAC=∠BCA=()11180118=62=3122︒-︒⨯︒︒ , 故答案为:31°.【点睛】本题考查了矩形的性质,全等三角形的判定,以及等腰三角形的性质,正确理解知识点是解题的关键;14.或1【分析】分两种情况①当∠DEF=90°时由题意得出EF∥BC作FG⊥BC 于G证出△CFG△BDE是等腰直角三角形四边形EFGD是正方形得出BD=DE=EF=DG=FG=CG继而可得结果;②当∠E解析:12或1【分析】分两种情况①当∠DEF=90°时,由题意得出EF∥BC,作FG⊥BC于G,证出△CFG、△BDE 是等腰直角三角形,四边形EFGD是正方形,得出BD=DE=EF=DG=FG=CG,继而可得结果;②当∠EFD=90°时,求出∠DEF=45°,得出E与A重合,D是BC的中点,BD=CD,即可得出结果.【详解】解:分两种情况:①当∠DEF=90°时,如图1所示:∵DE⊥BC,∴∠BDE=90°=∠DEF,∴EF∥BC,作FG⊥BC于G,∵△ABC是等腰直角三角形,∴△CFG、△BDE是等腰直角三角形,四边形EFGD是正方形,∴BD=DE=EF=DG=FG=CG,∴BD=12CD,∴n=12;②当∠EFD=90°时,如图2所示:∵∠EDF=45°,∴∠DEF=45°,此时E与A重合,D是BC的中点,∴BD=CD,∴n=1.综上所述:n=12或1,故答案为:12或1【点睛】本题主要考查等腰直角三角形的判定与性质、平行线的判定、正方形的判定与性质;熟练掌握等腰直角三角形的性质,分两种情况讨论是解题的关键.15.18【详解】根据等腰三角形三线合一的性质可得AD⊥BCDC=BC再根据直角三角形的性质可得DE=EC=AC=65然后可得答案【解答】解:∵AB=ACAD平分∠BAC∴AD⊥BCDC=BC∵BC=10解析:18【详解】根据等腰三角形三线合一的性质可得AD⊥BC,DC=12BC,再根据直角三角形的性质可得DE=EC=12AC=6.5,然后可得答案.【解答】解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,DC=12BC,∵BC=10,∴DC=5,∵点E为AC的中点,∴DE=EC=1AC=6.5,2∴△CDE的周长为:DC+EC+DE=13+5=18,故答案为:18.【点睛】此题主要考查了等腰三角形的性质,以及直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.16.60【分析】由E是AC中点且DE=EF据对角线互相平分的四边形是平行四边形知四边形ADCF是平行四边形因此只需DF和AC相等据对角线相等的平行四边形是矩形就得四边形ADCF是矩形所以只需∠ACB的大解析:60【分析】由E是AC中点且DE=EF,据“对角线互相平分的四边形是平行四边形”知四边形ADCF是平行四边形.因此只需DF和AC相等据“对角线相等的平行四边形是矩形”就得四边形ADCF 是矩形,所以只需∠ACB的大小能使DF=AC就行了.【详解】当∠ACB=60°时,四边形ADCF是矩形.理由如下:∵AB=AC,∠ACB=60°∴△ABC为正三角形∴AC=BC∵D、E是AB、AC的中点∴DE=1BC(三角形中位线定理)2又∵DE=EF∴DF=BC=AC①∵E是AC中点且DE=EF∴四边形ADCF是平行四边形(对角线互相平分的四边形是平行四边形)又由①知DF=AC∴四边形ADCF是矩形即长方形.(对角线相等的平行四边形是矩形)故答案为:60.【点睛】本题综合考查平行四边形、矩形的判定,也运用了三角形中位线定理.其中关键是结合图形和题目所给条件选择合适判定方法.17.1【分析】证明△BCE是等边三角形求出BE=CE=BC=2由D是BC的中点可得结论【详解】解:在中∵是的中线∴∵∴是等边三角形∴∵点是的中点且∴∵是边上的中线∴故答案为:1【点睛】此题主要考查了等边解析:1【分析】证明△BCE是等边三角形,求出BE=CE=BC=2,由D是BC的中点可得结论.【详解】解:在ABC 中,90C ∠=︒,∵CE 是ABC 的中线, ∴12==CE BE AB ∵60B ∠=︒, ∴BCE ∆是等边三角形∴BC CE =∵点M 是CE 的中点,且1CM =,∴22CE CM BC ===∵AD 是BC 边上的中线, ∴112122CD BC ==⨯= 故答案为:1.【点睛】 此题主要考查了等边三角形的判定和三角形中线的性质,证明BCE ∆是等边三角形是解答此题的关键.18.【分析】延长AD 至点E 使得连接CE 过点C 作证明△CDE 为等边三角形分别求出四边形ABCD 的边长判断即可;【详解】如图所示延长AD 至点E 使得连接CE 过点C 作∵∴又∵∴△CDE 为等边三角形∴设则∵∴则∴解析:15+【分析】延长AD 至点E ,使得DE CD =,连接CE ,过点C 作CH AE ⊥,证明△CDE 为等边三角形,分别求出四边形ABCD 的边长判断即可;【详解】如图所示,延长AD 至点E ,使得DE CD =,连接CE ,过点C 作CH AE ⊥,∵120ADC =∠︒,∴180********EDC ADC ∠=︒-∠=︒-︒=︒,又∵DE CD =,∴△CDE 为等边三角形,∴CD DE CE ==,60E ∠=︒,设CE x =,则CD DE x ==,∵CH DE ⊥,∴9030ECH E ∠=︒-∠=︒, 则1122EH CE x ==, ∴=+-=+-=-11622AH AD DE EH AD CD x x , 22221342CH CE EH x x x =-=-=, ∴()⎛⎫=+=-+=-+≥ ⎪⎝⎭222221363273324AC AH CH x x x , ∴当3x =时,AC 取得最小值为33 此时,3AD CD x ===,∵AB AC ⊥,∴90BAC =︒,又30B ∠=︒,∴12AC BC =,即2BC AC =,AB ===,∴四边形ABCD 周长AD CD AB BC=+++, ()2AD CD AC =+++, ))626215AC =++≥++⨯=+; ∴四边形ABCD 的最小值为15+故答案是15+【点睛】本题主要考查了四边形综合,等边三角形的判定和性质,含30度角的直角三角形的性质,勾股定理等知识,解答本题的关键是明确题意,找出所求问题需要的条件.19.【分析】设EH =x 由等腰直角三角形的性质得AB =AE =BEEH =HDGC =GDFB =CF ∠CGD =∠BFC =90°则HD =xGC =GD =GH +HD =2xFB =CF =3xCD =CG =2xBC =FB =3 解析:12【分析】设EH =x ,由等腰直角三角形的性质得AB =AE =2BE ,EH =HD ,GC =GD ,FB =CF .∠CGD =∠BFC =90°,则HD =x ,GC =GD =GH +HD =2x ,FB =CF =3x ,CD CG =x ,BC FB =x ,由矩形ABCD 的面积得出方程,得出x 2=12,x =2,进而得出答案.【详解】解:设EH =x ,∵四边形EFGH 是正方形,∴EF =FG =GH =EH =x ,∵△ABE 、△EHD 、△CGD 、△BCF 是等腰直角三角形,∴AB =AE =2BE ,EH =HD ,GC =GD ,FB =CF .∠CGD =∠BFC =90°, ∴HD =x ,∴GC =GD =GH +HD =2x ,∴FB =CF =3x ,在等腰Rt △CGD 和等腰Rt △BCF 中,CD CG =x ,BC =x , ∴x =6,则x 2=12,解得:x =±2(负值舍去),∴x =2,∴EF =2,FB =2, ∴BE =FB +EF =,∴AB =2BE =2, ∴△ABE 的面积=12AB×AE =12×2×2=2; 正方形EFGH 的面积=x 2=12; 故答案为:2;12. 【点睛】 本题考查了矩形的性质、正方形的性质、等腰直角三角形的性质、勾股定理等知识;熟练掌握矩形的性质、正方形的性质和勾股定理是解题的关键.20.55°【分析】先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°再根据折叠的性质可得答案【详解】∵四边形ABCD 是矩形∴AD ∥BC ∴∠B′FC=∠2=70°∴∠1+∠B′FE=180°-∠B解析:55°【分析】先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°,再根据折叠的性质可得答案.【详解】∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠B′FC=∠2=70°,∴∠1+∠B′FE=180°-∠B′FC=110°,由折叠知∠1=∠B′FE ,∴∠1=∠B′FE=55°,故答案为:55°.【点睛】本题主要考查折叠的性质和平行线的性质,解题的关键是掌握矩形的对边平行、两直线平行同位角相等性质.三、解答题21.(1)32cm 2;(2)①四边形的面积为S =12t +16(cm 2);②当t =43或45时,S △BAP =S △CQB .【分析】 (1) 由|8-a|+(b -4)2=0.可求=8=4a b ,,可求长方形ABCD 的面积=AD•AB =32(cm 2);(2)① 当P 在线段AD 上运动时,如图,DP =8-2t ,DQ =4t ,连BD ,可求S 四边形BPDQ =S △BDP +S △BDQ =12t +16(cm 2);②由S △BAP =S △CQB ,可列方程12×2t×4=12×|4t -4|×8,化去绝对值44t t -=±分类解方程即可.【详解】解:(1) a 、b 满足|8-a|+(b -4)2=0.∵()28-0,40a b ≥-≥, ∴8-=04=0a b -,,∴=8=4a b ,,∴AD =8cm ,AB =4cm ,∴长方形ABCD 的面积=AD•AB =32(cm 2);(2)① 当P 在线段AD 上运动时,如图,DP =8-2t ,DQ =4t ,连BD ,S 四边形BPDQ =S △BDP +S △BDQ ,=12(8-2t)×4+12×4t×8, =12t +16(cm 2); ②由S △BAP =S △CQB ,得:12×2t×4=12×|4t -4|×8, 即|4t -4|=t ,44t t -=±,44t t -=或44t t -=-,解得:t =43或45, 当t =43或45时,S △BAP =S △CQB . 【点睛】本题考查非负数和的性质,矩形面积,四边形面积,一元一次方程,掌握非负数的性质,利用非负数求出AD,AB,会求矩形面积,以及四边形面积,会利用三角形面积列方程解决问题是解题关键.22.(1)见解析;(2)1.【分析】(1)连接OD,由D为弧BC的中点,得到CD BD=,求得∠BAD=∠CAD,根据等腰三角形的性质得到∠BAD=∠ADO,推出AC∥OD,根据平行线的性质得到OD⊥DE,于是得到DE是⊙O的切线;(2)连接OC,易得△AOC是等边三角形,继而证得四边形ACDO是菱形,根据菱形的性质可得CD=AC=2,∠CDE=30°,继而即可求解.【详解】(1)证明:如下图所示,连接OD,∵D是弧BC的中点,即CD BD=∴∠BAD=∠CAD,∵OA=OD,∴∠BAD=∠ODA,∴∠CAD=∠ODA,∴OD//AE,∵DE⊥AC,∴DE⊥OD,∴DE是⊙O的切线.;(2)解:如下图所示,连接OC,∵∠CDA=30°,∴∠AOC=2∠CDA=60°,∴△AOC是等边三角形,∴AC=AO=OD由(1)可得,AC∥OD,∴四边形ACDO既是平行四边形,也是菱形,∴CD=AC=2,∠CDO=∠CAO=60°,∠CDE=90°-60°=30°,∵DE⊥AE, ∠CED=90°∴CE=1.【点睛】本题考查了切线的判定和性质,等边对等角、平行线的判定及其性质,等边三角形的判定和性质,菱形的判定及性质,正确的作出辅助线是解题的关键.23.证明见解析【分析】根据三角形的中位线的性质和菱形的判定定理即可得到结论;【详解】证明:,,D E F 分别是,,AB AC BC 的中点,11//,,//,22DE CF DE BC DF CE DF AC ∴==, ∴四边形DECF 是平行四边形.AC BC =,DE DF ∴=,∴四边形DFCE 是菱形.【点睛】本题考查了菱形的判定和性质,三角形的中位线的性质,熟练掌握菱形的判定定理是解题的关键.24.(1)B ′点的坐标为(8,0);(2)163y x =-+;(3)存在,点P 的坐标为37,03⎛⎫ ⎪⎝⎭或11,03⎛⎫ ⎪⎝⎭. 【分析】(1)折叠的性质得到CB′=CB=10,B′M=BM ,在Rt △OCB′中,利用勾股定理易得OB′=8,即可得到B′点的坐标;(2)设AM=t ,则BM=B′M=6-t ,而AB′=OA -OB′=2,在Rt △AB′M 中,利用勾股定理求出t 的值,确定M 点的坐标,然后利用待定系数法求直线CM 的解析式即可;(3)由△B′CP 的面积11|8|61322PB OC x '=⨯=-⨯=,即可求解. 【详解】解:(1)∵四边形ABCO 为矩形,∴10CB OA ==,6AB OC ==, ∵CBM 沿CM 翻折后,点B 落在x 轴上,记作B ′点,∴10CB CB '==,B M BM '=,在Rt OCB '△中,6OC =,10CB '=,∴8OB '=,∴B ′点的坐标为(8,0);(2)设AM t =,则6BM B M t ='=-,而2AB OA OB '=-'=,在Rt AB M '△中,222B M B A AM '='+,即222(6)2t t -=+, 解得83t =,∴M 点的坐标为810,3⎛⎫ ⎪⎝⎭,设直线CM 的解析式为y kx b =+,把(0,6)C 和810,3M ⎛⎫ ⎪⎝⎭代入得,68103b k b =⎧⎪⎨+=⎪⎩,解得136k b ⎧=-⎪⎨⎪=⎩, ∴直线CM 的解析式为163y x =-+; (3)存在,理由:设点P 的坐标为(,0)x ,则B CP '△的面积11|8|61322PB OC x '=⨯=-⨯=, 解得373x =或113, 故点P 的坐标为37,03⎛⎫ ⎪⎝⎭或11,03⎛⎫ ⎪⎝⎭. 【点睛】本题考查的是一次函数和几何的综合运用,涉及到一次函数的性质、图形的翻折、勾股定理的运用、面积的计算等,综合性较强,熟练掌握相关知识是解题的关键.25.(1)∠AEF 的补角有∠BEF 和∠B′EF ,∠ADE 的余角有∠AED 、∠A′ED 和∠CDE ;(2)∠DEF=90°【分析】(1)根据折叠的性质以及补角的定义和余角的定义即可写出;(2)由折叠的性质得到∠AED=∠A′ED ,∠BEF=∠B′EF ,根据平角的定义即可得到结论;【详解】(1)根据折叠的性质知:∠AED=∠A′ED ,∠BEF=∠B′EF ,∵四边形ABCD 是长方形,∴∠ADC=∠A=90︒,∴∠AEF+∠BEF=180︒,∴∠AEF 的补角有∠BEF 和∠B′EF ,∠ADE+∠CDE=90︒,∠ADE+∠AED =90︒,∠ADE 的余角有∠AED 、∠A′ED 和∠CDE ;(2)由折叠可知∠AED=∠A′ED ,∠BEF=∠B′EF ,∵∠AED+∠A′ED+∠BEF+∠B′EF=180°,∴∠D EA′+∠B′EF=12⨯180°=90°,∴∠DEF=90°;【点睛】本题考查了折叠的性质,补角和余角的定义,正确的识别图形解题的关键.26.(1)()4,8E ;(2)()0,5D【分析】(1)由折叠的性质得10AO AE ==,利用勾股定理求出BE 长,得到CE 的长,就可以得到点E 的坐标;(2)设OD x =,8CD x =-,由折叠的性质得OD DE x ==,再在Rt CDE △中利用勾股定理列式求出x 的值,就可以得到点D 的坐标.【详解】解:(1)∵折叠,∴10AO AE ==,在Rt ABE △中,6BE ===, ∴1064CE BC BE =-=-=, ∴()4,8E ;(2)设OD x =,则8CD x =-,∵折叠,∴OD DE x ==,在Rt CDE △中,222CD CE DE +=,即()22284x x -+=,解得5x =,∴()0,5D .【点睛】本题考查折叠问题,解题的关键是掌握折叠的性质,并结合勾股定理进行边长的求解.。
北师大版八年级数学下册第一章特殊的平行四边形专项测试题-附答案解析(一)
![北师大版八年级数学下册第一章特殊的平行四边形专项测试题-附答案解析(一)](https://img.taocdn.com/s3/m/25498d84dc88d0d233d4b14e852458fb770b38e2.png)
矩形形、正方形、菱形都属于平行四边形,
它们之间的关系是: .
二、填空题(本大题共有5小题,每小题5分,共25分)
16、已知矩形的一条对角线长 ,则另一条对角线的一半是 .
【答案】4
【解析】解:
根据矩形的对角线相等,另一条对角线长 ,则另一条对角线的一半是 .
故正确答案是 .
14、将四根长度相等的细木条首尾相接,用钉子钉成四边形 ,转动这个四边形,使它形状改变,当 时,如图 ,测得 ,当 时,如图 , ( )
A.
B.
C.
D.
15、如图所示,设 表示平行四边形, 表示矩形, 表示菱形, 表示正方形,则下列四个图形中,能表示它们之间关系的是( )
A.
B.
C.
D.
二、填空题(本大题共有5小题,每小题5分,共25分)
四条边相等的四边形是菱形,不一定是正方形,该说法错误,符合题意;
对角线相等的菱形是正方形,该说法正确,不符合题意;
对角线垂直的矩形是正方形,该说法正确,不符合题意.
故正确答案选:四条边相等的四边形是正方形.
3、矩形、菱形、正方形都具有的性质是( ).
A. 对角线互相垂直
B. 对角线平分每一组对角
C. 对角线互相平分
6、 在 中, , 是边 上一点, 交 于点 , 交 于点 ,若要使四边形 是菱形,只需添加条件( ).
A.
B.
C.
D.
【答案】C
【解析】解:只需添加
,
四边形 是平行四边形
四边形 是菱形
故正确答案是:
7、过矩形 的四个顶点作对角线 、 的平行线分別交于 、 、 、 四点,则四边形 是().
中考数学专题复习《特殊平行四边形综合题》测试卷(附带答案)
![中考数学专题复习《特殊平行四边形综合题》测试卷(附带答案)](https://img.taocdn.com/s3/m/3c492b57cd1755270722192e453610661fd95a59.png)
中考数学专题复习《特殊平行四边形综合题》测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一 单选题1.如图 在平行四边形ABCD 中 AB AD ≠ ()0180A αα∠=︒<<︒ 点E F G H 分别是AB BC CD DA 的中点 连接EF FG GH HE 当α从锐角逐渐增大到钝角的过程中 四边形EFGH 的形状的变化依次为( )A .平行四边形→菱形→平行四边形B .平行四边形→菱形→矩形→平行四边形C .平行四边形→矩形→平行四边形D .平行四边形→菱形→正方形→平行四边形 2.如图 平行四边形ABCD 中 16AB = 12AD = 60A ∠=︒E 是边AD 上一点 且8AE =F 是边AB 上的一个动点 将线段EF 绕点E 逆时针旋转60︒ 得到EG 连接BG CG 则BG CG +的最小值是( ).A .4B .415C .421D 373.图1是一张菱形纸片ABCD 点,EF 是边,AB CD 上的点.将该菱形纸片沿EF 折叠得到图2 BC 的对应边B C ''恰好落在直线AD 上.已知60,6B AB ∠=︒= 则四边形AEFC '的周长为( )A .24B .21C .15D .124.如图 在矩形ABCD 中 8AB = 6BC = 点H 是AC 的中点 沿对角线AC 把矩形剪开得到两个三角形 固定ABC 不动 将ACD 沿AC 方向平移 (A '始终在线段AC 上)得到A C D '''△ 连接HD ' 设平移的距离为x 当HD '长度最小时 平移的距离x 的值为( )A .710B .185C .75D .2455.如图 Rt ABC △中 90C ∠=︒ 30A ∠=︒ 9AC = D 为AB 中点 以DB 为对角线长作边长为3的菱形DFBE 现将菱形DFBE 绕点D 顺时针旋转一周 旋转过程中当BF 所在直线经过点A 时 点A 到菱形对角线交点O 之间的距离为( )A B C D 6.中国结寓意团圆 美满 以独特的东方神韵体现中国人民的智慧和深厚的文化底蕴 小陶家有一个菱形中国结装饰.测得8cm,6cm BD AC ==.则该菱形的面积为( )A .224cmB .248cmC .210cmD .212cm7.如图 在矩形ABCD 中 点O M 分别是,AC AD 的中点 3,5OM OB == 则AD 的长为( )A .12B .10C .9D .88.如图 已知正方形ABCD 和正方形BEFG 且A B E 三点在一条直线上 连接CE 以CE 为边构造正方形CPQE PQ ,交AB 于点M 连接CM 设APM BCM αβ∠=∠=,.若点Q B F 三点共线 tan tan n αβ= 则n 的值为( )A .12 B .23 C .35 D .67二 填空题9.如图 矩形ABCD 中 BE BF 将ABC ∠三等分 连接EF .若90BEF ∠=︒ 则:AB BC 的比值为 .10.如图 四边形ABCD 是边长为6的正方形 点E 在直线BC 上 若2BE = 连接AE 过点A 作AF AE ⊥ 交直线CD 于点F 连接EF 点H 是EF 的中点 连接BH 则BH = .11.如图 在平行四边形ABCD 中 对角线AC BD 、相交于点O 在不添加任何辅助线的情况下 请你添加一个条件 使平行四边形ABCD 是菱形.12.如图 在矩形ABCD 中 2AB = 对角线AC 与BD 交于点O 且120AOD ∠=︒ DE OC ∥ CE OD ∥ 则四边形OCED 的周长为 .13.如图 在菱形ABCD 中 2BD BC == 点E 是BC 的中点 点P 是对角线AC 上的动点 连接PB PE 则PB PE +的最小值是 .三 解答题14.如图 在菱形ABCD 中 连接AC 过B 作BE BA ⊥交AC 于点E 过D 作DF DC ⊥交AC 于点F .(1)求证:ADF CBE △≌△(2)若12AD = 60DAB ∠=︒ 求EF 的长.15.已知:在梯形ABCD 中 AD BC ∥ 90ABC ∠=︒ 6AB = :1:3BC AD = O 是AC 的中点 过点O 作OE OB ⊥ 交BC 的延长线于点E .(1)当BC EC =时 求证:AB OE =(2)设BC a = 用含a 的代数式表示线段BE 的长 并写出a 的取值范围(3)连结OD DE 当DOE 是以DE 为直角边的直角三角形时 求BC 的长.16.如图 平行四边形ABCD 中 点E 是对角线AC 上一点 连接BE DE , 且BE DE =.(1)求证:四边形ABCD 是菱形(2)若5AB = tan 2BAC ∠= 求四边形ABCD 的面积.17.已知:矩形ABCD 中 动点M 在BC 边上(不与点B C 、重合) MN AM ⊥交CD 于点N 连接DM .(1)如图1 若DM 平分ADC ∠ 求证:BM CN =(2)如图2 若2,3AB BC == 动点M 在移动过程中 设BM 的长为,x CN 的长为y ①则y 与x 之间的函数关系式为______①线段CN 的最大值为______.18.如图1 正方形ABCD 和正方形QMNP M 是正方形ABCD 的对称中心 MN 交AB 于F QM 交AD 于E .(1)猜想:ME 与MF 的数量关系为______(2)如图2 若将原题中的“正方形”改为“菱形” 且NMQ ABC 其它条件不变 探索线段ME 与线段MF 的数量关系 并说明理由(3)如图3 若将原题中的“正方形”改为“矩形” 且:1:2AB BC = 其它条件不变 直接写出:线段ME 与线段MF 的数量关系为______.参考答案:1.A2.C3.C4.C5.D6.A7.D8.B93:10.24211.AC BD ⊥12.8133①点E 是BC 的中点14.(1)解:①菱形ABCD①ADC CBA ∠=∠ AD BC = DAC BCA ∠=∠①BE BA ⊥ DF DC ⊥①90CDF ABE ∠=∠=︒①ADC CDF CBA ABE ∠-∠=∠-∠ 即:ADF CBE ∠=∠①()ASA ADF CBE ≌(2)解:①60DAB ∠=︒ 12AD = ①11603022BAE BAD ∠=∠=⨯︒=︒ 12AB CD AD === 33123AC AB ===①cos30ABAE===︒同理FC=BE CE==AC AE CE∴=+=①EF AE FC AC=+-==故答案为:15.(1)证明:90ABC∠=︒O是AC的中点OB OC∴=OBC OCB∴∠=∠OE BC⊥90BOEBC EC=CO BC∴=BC BO∴=90ABC BOE∠=∠=︒()ASAABC EOB∴≌AB EO∴=(2)解:OBC OCB∠=∠ABC BOE∠=∠ABC EOB∴∽∴BC ACOB BE=BC a=6AB=AC∴∴1a=236(06)2aBE aa+∴=<<(3)解:设BC a=则3AD a=①当90OED∠=︒时延长BO交AD于点G90BOE =︒∠BOE OED ∴∠=∠∴BG ED ∥//BE AD∴四边形BGDE 是平行四边形 BE DG ∴=BC AD ∥ ∴BCCOAG AO =BC AG a ∴== ∴23632a a a a +=-23a ∴= ①当90ODE ∠=︒时 分别过点O E 作OM AD ⊥ EN AD ⊥ 垂足分别为MNOMD DNE ∴∠=∠ MOD EDN ∠=∠OMD DNE ∴∽ ∴OMMDDN EN = 1122AM CB a ==52MD a ∴=2236365322a a DN AN AD a a a +-=-=-=∴253236562aa a=-a ∴=.综上所述BC 的长为 16.(1)证明:如图 连接BD 交AC 于O①平行四边形ABCD①BO DO =①BO DO = OE OE = BE DE = ①()SSS BOE DOE ≌①BEO DEO ∠=∠①AE AE = BEA DEA ∠=∠ BE DE = ①()SAS BEA DEA ≌①AB AD =①四边形ABCD 是菱形(2)解:①tan 2BAC ∠= ①2BO AO= 即2BO AO = ①四边形ABCD 是菱形①AC BD ⊥ 22AC AO BD BO ==,由勾股定理得 AB =解得 2AO =①48AC BD ==, ①1162ABCD S AC BD =⨯=四边形 ①四边形ABCD 的面积为16. 17.(1)解:在矩形ABCD 中 ,90AB CD B C ADC =∠=∠=∠=︒ DM 平分ADC ∠1452CDM ADC ∴∠=∠=︒ 45CDM CMD ∴∠=∠=︒CM CD AB ∴==90,BAM AMB MN AM ∠+∠=︒⊥90AMB CMN ∴∠+∠=︒BAM CMN ∴∠=∠()ABM MCN ASA ∴≌BM CN ∴=(2)解:①设BM 的长为,x CN 的长为y 则3MC x =- 由(1)得 ,,90BAM CMN AB CD B C ∠=∠=∠=∠=︒ ABM MCN ∴∽AB BM MC CN∴= 23x x y∴=- 213(03)22y x x x ∴=-+<< 故答案为:213(03)22y x x x =-+<< ①当32x =时 y 有最大值 最大值为98. 即线段CN 的最大值为98. 故答案为:98. 18.(1)解:①正方形ABCD 和正方形QMNP①90AMD EMF ∠=∠=︒ ,45DM AM ADM FAM =∠=∠=︒ DME AMF ∴∠=∠()ASA MDE MAF ∴≌ME MF ∴=.故答案为:相等.(2)解:过点M 作MH AD ⊥于H MG AB ⊥于G .①M 是菱形ABCD 的对称中心 ①M 是菱形ABCD 对角线的交点 ①AM 平分BAD ∠①MH MG =.①QMN B ∠=∠①180EMF BAD ∠+∠=︒. 又90MHA MGF ∠=∠=︒ ①180HMG BAD ∠+∠=︒ ①EMF HMG ∠=∠①EMH FMG ∠=∠. ①MHE MGF ∠=∠①()ASA MHE MGF ≌ ①ME MF =.(3)解:过点M 作MH AD ⊥于HMG AB ⊥于G .①QMN ABC ∠=∠①90BAD EMF ∠=∠=︒. 又①90MHA MGA ∠=∠=︒ ①90HMG ∠=︒.①EMF HMG ∠=∠①EMH FMG ∠=∠.①MHE MGF ∠=∠①MHE MGF △△∽①ME MH MF MG=.又①M是矩形ABCD的对称中心①M是矩形ABCD对角线的交点.又①MG AB⊥①MG BC∥且12MG BC=.同理可得12 MH AB=①2ME MF=.。
第一章 特殊平行四边形 单元测试(含答案)
![第一章 特殊平行四边形 单元测试(含答案)](https://img.taocdn.com/s3/m/99518f8d77eeaeaad1f34693daef5ef7bb0d125b.png)
第一章特殊平行四边形一、选择题1. 下列四边形对角线相等但不一定垂直的是( )A.平行四边形B.矩形C.菱形D.正方形2. 平行四边形ABCD中,AC,BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是( )A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD3. 如图,菱形ABCD的两条对角线AC,BD相交于点O,若AC=4,BD=6,则菱形ABCD的周长为( )A.16B.24C.413D.8134. 如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=10,则OB的长为( )D.34 A.5B.4C.3425. 如图,菱形ABCD的对角线AC,BD的长分别为6 cm,8 cm,则这个菱形的周长为( )A.5 cm B.10 cm C.14 cm D.20 cm6. 如图,点P是矩形ABCD的边上的一动点,矩形的两条边AB,BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是( )A.4.8B.5C.6D.7.27. 如图,点E是正方形ABCD中CD上的一点,把△ADE绕点A顺时针旋转90∘到△ABF的位置,若四边形AECF的面积为16,DE=1,则EF的长是( )A.4B.5C.217D.348. 如图,在矩形ABCD中,EG垂直平分BD于点G,若AB=4,BC=3,则线段EG的长度是( )A.32B.158C.52D.39. 如图,正方形ABCD的边长为2,点E,F分别为边AD,BC上的点,且EF=5,点G,H 分别边AB,CD上的点,连接GH交EF于点P.若∠EPH=45∘,则线段GH的长为( )A.5B.2103C.253D.710. 如图,在矩形ABCD中,AB=3,AD=4,以BC为斜边在矩形的外部作直角三角形BEC,点F是CD的中点,则EF的最大值为( )A.732B.4C.5D.92二、填空题11. 菱形的对角线长为6和8,则菱形的高为.12. 如图,连接四边形ABCD各边中点,得到四边形EFGH,只要添加条件,就能保证四边形EFGH是矩形.13. 在菱形ABCD中,对角线AC,BD交于点O,点F为BC中点,过点F作FE⊥BC于点F交BD于点E,连接CE,若∠BDC=34∘,则∠ECA=.14. 如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为.15. 在矩形ABCD中,AB=4,BC=3,折叠矩形ABCD,使点B与点D重合,则BF的长为.16. 如图,菱形ABCD中,AB=2,∠BAD=60∘,点E是边AB的中点,点P在对角线AC上移动.则PB+PE的最小值是.三、解答题17. 已知如图,在菱形ABCD中,对角线AC,BD相交于点O,DE∥AC,AE∥BD.(1) 求证:四边形AODE是矩形.(2) 若AB=6,∠BCD=120∘,求四边形AODE的面积.18. 如图,在正方形ABCD中,点F是BC延长线上一点,过点B作BE⊥DF于点E,交CD于点G,连接CE.(1) 若正方形ABCD边长为3,DF=4,求CG的长.(2) 求证:EF+EG=2CE.19. 在平行四边形ABCD中,对角线AC,BD相交于点O.EF过点O且与ABCD分别相交于点E,F.(1) 如图①,求证:OE=OF;(2) 如图②,若EF⊥DB,垂足为O,求证:四边形BEDF是菱形.20. 回答下列问题.(1) 提出问题:如图1,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH于点O,求证:AE=DH.(2) 类比探究:如图2,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG 于点O,探究线段EF与HG的数量关系,并说明理由.21. 如图,矩形ABCD中,点E,F分别在边AB,CD上,点G,H在对角线AC上,EF与AC相交于点O,AG=CH,BE=DF.(1) 求证:四边形EGFH是平行四边形.(2) 当EG=EH时,连接AF.①求证:AF=FC.②若DC=8,AD=4,求AE的长.答案一、选择题1. B2. B3. C4. D5. D6. A7. D8. B9. B10. D二、填空题11. 24512. AC⊥BD13. 2214. 615. 25816. 3三、解答题17.(1) 因为DE∥AC,AE∥BD,所以四边形AODE是平行四边形,因为在菱形ABCD中,AC⊥BD,所以∠AOD=90∘,所以四边形AODE是矩形.(2) 因为∠BCD=120∘,AB∥CD,所以∠ABC=180∘−120∘=60∘,因为AB=BC,所以△ABC是等边三角形,所以OA=12×6=3,OB=32×6=33,因为四边形ABCD是菱形,所以OD=OB=33,所以四边形AODE的面积=OA⋅OD=3×33=93.18.(1) ∵四边形ABCD是正方形,∴∠BCG=∠DCB=∠DCF=90∘,BC=DC,∵BE⊥DF,∴∠CBG+∠F=∠CDF+∠F,∴∠CBG=∠CDF,在△CBG和△CDF中,{∠BCG=∠DCF=90∘,BC=CD,∠CBG=∠CDF,∴△CBG≌△CDF(ASA),∴BG=DF=4,∴在Rt△BCG中,CG2+BC2=BG2,∴CG=42−32=7.(2) 过点C作CM⊥CE交BE于点M,∵△CBG≌△CDF,∴CG=CF,∠F=∠CGB,∵∠MCG+∠DCE=∠ECF+∠DCE=90∘,∴∠MCG=∠ECF,在 △MCG 和 △ECF 中,{∠MCG =∠ECF,CG =CF,∠F =∠CGB,∴△MCG ≌△ECF (ASA),∴MG =EF ,CM =CE ,∴△CME 是等腰直角三角形,∴ME =2CE ,又 ∵ME =MG +EG =EF +EG , ∴EF +EG =2CE .19.(1) ∵ 四边形 ABCD 是平行四边形, ∴OB =OD ,AB ∥CD ,∴∠EBO =∠FDO ,在 △OBE 与 △ODF 中,{∠EBO =∠FDO,OB =OD,∠BOE =∠DOF, ∴△OBE ≌△ODF (ASA),∴OE =OF ;(2) ∵OB =OD ,OE =OF , ∴ 四边形 BEDF 是平行四边形, ∵EF ⊥BD ,∴ 四边形 BEDF 是菱形.20.(1) ∵ 四边形 ABCD 是正方形, ∴AB =DA ,∠ABE =90∘=∠DAH , ∴∠HAO +∠OAD =90∘,∵AE⊥DH,∴∠ADO+∠OAD=90∘,∴∠HAO=∠ADO,在△ABE和△DAH中,{∠BAE=∠HDA,AB=AD,∠B=∠HAD,∴△ABE≌△DAH(ASA),∴AE=DH.(2) EF=GH,理由:将PE平移到AM处,则AM∥EF,AM=EF,将GH平移到DN处,则DN∥GH,DN=GH,∵EF⊥GH,∴AM⊥DN,根据(1)的结论得AM=DN,∴EF=GH.21.(1) ∵矩形ABCD中,AB∥CD,∴∠FCH=∠EAG,又∵CD=AB,BE=DF,∴CF=AE,且CH=AG,∠FCH=∠EAG,∴△AEG≌△CFH(SAS),∴GE=FH,∠CHF=∠AGE,∴∠FHG=∠EGH,∴FH∥GE,∴四边形EGFH是平行四边形.(2) ①连接AF,∵EG=EH,四边形EGFH是平行四边形,∴四边形GFHE为菱形,∴EF垂直平分GH,又∵AG=CH,∴EF垂直平分AC,∴AF=CF=AE.②设AE=x,则FC=AF=x,DF=8−x,在Rt△ADF中,AD2+DF2=AF2,∴42+(8−x)2=x2,解得x=5,∴AE=5.。
第六章 特殊平行四边形与梯形复习测试(含答案)
![第六章 特殊平行四边形与梯形复习测试(含答案)](https://img.taocdn.com/s3/m/4c8043f67c1cfad6195fa76c.png)
一、选择题1.矩形具有而一般的平行四边形不具有的特点是()A、对角线相等B、对边相等C、对角相等D、对角线互相平分2.依次连结矩形各边中点所得的四边形是( )A、矩形B、菱形C、正方形D、一般平行四边形3.下列叙述错误的是()A、平行四边形的对角线互相平分;B、菱形的对角线互相平分;C、对角线互相平分的四边形是平行四边形;D、对角线相等的四边形是矩形。
4.下列结论:(1)正方形具有平行四边形的一切性质;(2)正方形具有矩形的一切性质;(3)正方形具有菱形的一切性质;(4)正方形具有四边形的一切性质,其中正确结论有()A、1个B、2个C、3个D、4个5.如图,在菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为()A、16a B、12a C、8a D、4a6.如图所示,正方形ABCD中,点E是CD边上一点,连接AE,交对角线BD于点F,连接CF,则图中全等三角形共有()A、1对B、2对C、3对D、4对7.若等腰梯形两底之差等于一腰的长,•那么这个梯形一内角是()A.90°B.60°C.45°D.30°8.如图所示,把一个正方形三次对折后沿虚线剪下,则所得图形是( )(第9题图)(第10题图)9.如图,在等腰梯形ABCD中,AD∥BC,AD=5,AB=6,BC=8,且AB∥DE,则△DEC周长为( ) A.3 B.12 C.15 D.1910.如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,将腰CD以D为中心逆时针旋转90°至ED,连AE、CE,则△ADE的面积是()A、1B、2C、3D、不能确定二、填空题12.如图,点E、F是菱形ABCD的边BC、CD上的点,请你添加一个条件(•不得另外添加辅助线和字母),使AE=AF,你添加的条件是________.)13.如图,P是正方形ABCD内一点,且△PBC是等边三角形,则∠PAD=_______。
九年级数学上册《第一章 特殊平行四边形》单元测试卷-附带答案(北师大版)
![九年级数学上册《第一章 特殊平行四边形》单元测试卷-附带答案(北师大版)](https://img.taocdn.com/s3/m/32bcc04af342336c1eb91a37f111f18583d00c9c.png)
九年级数学上册《第一章特殊平行四边形》单元测试卷-附带答案(北师大版)一、选择题(12小题,每小题3分,共36分)1.下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形2.菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补3.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形满足条件的是()①平行四边形②菱形③对角线相等的四边形④对角线互相垂直的四边形.A.①③ B.②③ C.③④ D.②④4.既是中心对称图形又是轴对称图形,且只有两条对称轴的四边形是()A.正方形B.矩形 C.菱形 D.矩形或菱形5.(2018•大连)如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8 B.7 C.4 D.36.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.16 B.17 C.18 D.197.在Rt△ABC中,∠ACB=90°,∠B=30°,AC=cm,则AB边上的中线为()A.1cm B.2cm C.1.5cm D.cm8.如图,在正方形ABCD外侧作等边三角形CDE,AE、BD交于点F,则∠AFB的度数为()A.45°B.55°C.60°D.75°9.如图,▱ABCD中,DE⊥AB,DF⊥BC,垂足分别为E、F,∠EDF=60°,AE=2cm,则AD=()A.4cm B.5cm C.6cm D.7cm10.如图:长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合.折痕为EF,则DE长为()A.4.8 cm B.5 cm C.5.8 cm D.6 cm11.如图,将一个长为10cm,宽为8cm的矩形纸片先按照从左向右对折,再按照从下向上的方向对折,沿所得矩形两邻边中点的连线(虚线)剪下(如图(1)),再打开,得到如图(2)所示的小菱形的面积为()A.10cm2B.20cm2C.40cm2D.80cm212.(2018•威海)矩形ABCD与CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF 的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.C.D.二、填空题(每小题3分,共12分)13.(2018•锦州)如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH,若OB=4,S菱形ABCD=24,则OH的长为.14.(2018•本溪)如图,矩形OABC的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P是边AB 或边BC上的一点,连接OP,DP,当△ODP为等腰三角形时,点P的坐标为.15.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为.16.如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB上的一点,AF=2,P为AC上一个动点,则PF+PE的最小值为.三、解答题(共52分)17.(6分)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.18.(7分)如图,矩形ABCD的对角线AC、BD交于点O,∠AOD=60°,AB=,AE⊥BD于点E,求OE的长.19.(7分)如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.20.(8分)如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.(1)求证:AE=DF;(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.21.(8分)如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=2,求AB的长.22.(8分)正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D 逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(2)当AE=1时,求EF的长.23.(8分)已知,如图1,BD是边长为1的正方形ABCD的对角线,BE平分∠DBC交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G.(1)求证:△BCE≌△DCF;(2)求CF的长;(3)如图2,在AB上取一点H,且BH=CF,若以BC为x轴,AB为y轴建立直角坐标系,问在直线BD 上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的P点坐标;若不存在,说明理由.参考答案一、选择题(12小题,每小题3分,共36分)1.下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形【分析】本题要求熟练掌握平行四边形、菱形、矩形、正方形的性质以及之间的相互联系.【解答】解:A、两条对角线垂直并且相互平分的四边形是菱形,故选项A错误;B、对角线垂直且相等的平行四边形是正方形,故选项B错误;C、两条对角线相等的平行四边形是矩形,故选项C错误;D、根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项D正确;故选D.【点评】本题考查的是普通概念,熟练掌握基础的东西是深入研究的必要准备.2.菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补【考点】矩形的性质;菱形的性质.【专题】推理填空题.【分析】根据菱形对角线垂直平分的性质及矩形对交线相等平分的性质对各个选项进行分析,从而得到最后的答案.【解答】解:A、菱形对角线相互垂直,而矩形的对角线则不垂直;故本选项符合要求;B、矩形的对角线相等,而菱形的不具备这一性质;故本选项不符合要求;C、菱形和矩形的对角线都互相平分;故本选项不符合要求;D、菱形对角相等;但菱形不具备对角互补,故本选项不符合要求;故选A.【点评】此题主要考查了学生对菱形及矩形的性质的理解及运用.菱形和矩形都具有平行四边形的性质,但是菱形的特性是:对角线互相垂直、平分,四条边都相等.3.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形满足条件的是()①平行四边形②菱形③对角线相等的四边形④对角线互相垂直的四边形.A.①③ B.②③ C.③④ D.②④【考点】矩形的定义及性质.【分析】已知梯形四边中点得到的四边形是矩形,则根据矩形的性质及三角形的中位线的性质进行分析,从而不难求解.【解答】解:如图点E,F,G,H分别是梯形各边的中点,且四边形EFGH是矩形.∵点E,F,G,H分别是梯形各边的中点,且四边形EFGH是矩形.∴∠FEH=90°,EF∥BD∥HG,FG∥AC∥EH,EF≠GH.∴AC⊥BD.①平行四边形的对角线不一定互相垂直,故①错误;②菱形的对角线互相垂直,故②正确;③对角线相等的四边形,故③错误;④对角线互相垂直的四边形,故④正确.综上所述,正确的结论是:②④.故选:D.【点评】此题主要考查矩形的性质及三角形中位线定理的综合运用,正确掌握矩形的判定方法是解题关键.4.既是中心对称图形又是轴对称图形,且只有两条对称轴的四边形是()A.正方形B.矩形 C.菱形 D.矩形或菱形【考点】菱形的性质,矩形的定义及性质,正方形的定义及性质.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:正方形是轴对称图形,也是中心对称图形,有4条对称轴;矩形是轴对称图形,也是中心对称图形,有2条对称轴;菱形是轴对称图形,也是中心对称图形,有2条对称轴.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.(2018•大连)如图,菱形ABCD中,对角线AC,BD相交于点O,若AB=5,AC=6,则BD的长是()A.8 B.7 C.4 D.3【考点】L8:菱形的性质.【分析】根据菱形的对角线互相垂直,利用勾股定理列式求出OB即可;【解答】解:∵四边形ABCD是菱形∴OA=OC=3,OB=OD,AC⊥BD在Rt△AOB中,∠AOB=90°根据勾股定理,得:OB===4∴BD=2OB=8故选:A.【点评】本题考查了菱形性质,勾股定理的应用等知识,比较简单,熟记性质是解题的关键.6.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.16 B.17 C.18 D.19【考点】正方形的性质.【分析】由图可得,S2的边长为3,由AC=BC,BC=CE=CD,可得AC=2CD,CD=2,EC=2;然后,分别算出S1、S2的面积,即可解答.【解答】解:如图设正方形S1的边长为x∵△ABC和△CDE都为等腰直角三角形∴AB=BC,DE=DC,∠ABC=∠D=90°∴sin∠CAB=sin45°==,即AC=BC,同理可得:BC=CE=CD∴AC=BC=2CD又∵AD=AC+CD=6∴CD==2∴EC2=22+22,即EC=2;∴S1的面积为EC2=2×2=8;∵∠MAO=∠MOA=45°∴AM=MO∵MO=MN∴AM=MN∴M为AN的中点∴S2的边长为3∴S2的面积为3×3=9∴S1+S2=8+9=17.故选B.【点评】本题考查了正方形的性质,找到相等的量,再结合三角函数进行解答.7.在Rt△ABC中,∠ACB=90°,∠B=30°,AC=cm,则AB边上的中线为()A.1cm B.2cm C.1.5cm D.cm【考点】直角三角形斜边上的中线.【专题】计算题.【分析】由直角三角形的性质知:斜边上的中线等于斜边的一半;已知了直角三角形的两条直角边,由勾股定理可求得斜边的长,由此得解【解答】解:∵Rt△ABC中,AC=cm,且∠ACB=90°,∠B=30°∴AB=2∴AB边上的中线CD=AB=cm.故选D.【点评】此题主要考查直角三角形斜边上的中线等于斜边的一半等知识点的理解和掌握,难度不大,属于基础题.8.如图,在正方形ABCD外侧作等边三角形CDE,AE、BD交于点F,则∠AFB的度数为()A.45°B.55°C.60°D.75°【考点】正方形的性质.【分析】根据正方形以及等边三角形的性质可得出AD=DE,∠ADF=45°,∠ADC=90°,∠CDE=60°,根据等腰三角形的性质即可得出∠DAE=∠DEA=15°,再结合三角形外角性质即可算出∠AFB的值.【解答】解:∵四边形ABCD为正方形,△CDE为等边三角形∴AD=CD=DE,∠ADF=∠ABF=45°,∠ADC=90°,∠CDE=60°∴∠ADE=150°.∵AD=DE∴∠DAE=∠DEA=15°∴∠AFB=∠ADF+∠DAF=45°+15°=60°.故选C.【点评】本题考查了正方形的性质、等边三角形的性质以及三角形外角的性质,解题的关键是求出∠ADF=45°、∠DAF=15°.本题属于基础题,解决该题型题目时,通过正方形、等边三角形以及等腰三角形的性质计算出角的度数是关键.9.如图,▱ABCD中,DE⊥AB,DF⊥BC,垂足分别为E、F,∠EDF=60°,AE=2cm,则AD=()A.4cm B.5cm C.6cm D.7cm【考点】含30度角的直角三角形;多边形内角与外角;平行四边形的性质.【分析】根据四边形ABCD是平行四边形,得出AB∥CD,∠A=∠C,∠CDE=∠AED,根据DE⊥AB,得出∠AED和∠CDE是直角,求出∠CDF的度数,最后根据DF⊥BC,求出∠C、∠A的度数,最后根据∠ADE=30°,AE=2cm,即可求出答案.【解答】解:∵四边形ABCD是平行四边形∴AB∥CD,∠A=∠C∴∠CDE=∠AED∵DE⊥AB∴∠AED=90°∴∠CDE=90°∵∠EDF=60°∴∠CDF=30°∵DF⊥BC∴∠DFC=90°∴∠C=60°∴∠A=60°∴∠ADE=30°∴AD=2DE∵AE=2∴AD=2×2=4(cm);故选A.【点评】此题考查了平行四边形的性质和含30°角的直角三角形,用到的知识点是平行四边形的性质和垂直的定义30°角的直角三角形的性质,关键是求出∠ADE=30°.10.如图:长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合.折痕为EF,则DE长为()A.4.8 cm B.5 cm C.5.8 cm D.6 cm【考点】矩形的定义及性质.【分析】在折叠的过程中,BE=DE,从而设BE=DE=x,即可表示AE,在直角三角形ADE中,根据勾股定理列方程即可求解.【解答】解:设DE=xcm,则BE=DE=x,AE=AB﹣BE=10﹣x在Rt△ADE中,DE2=AE2+AD2即x2=(10﹣x)2+16.解得:x=5.8.故选C.【点评】此题主要考查了翻折变换的问题,解答本题的关键是掌握翻折前后对应线段相等,另外要熟练运用勾股定理解直角三角形.11.如图,将一个长为10cm,宽为8cm的矩形纸片先按照从左向右对折,再按照从下向上的方向对折,沿所得矩形两邻边中点的连线(虚线)剪下(如图(1)),再打开,得到如图(2)所示的小菱形的面积为()A.10cm2B.20cm2C.40cm2D.80cm2【考点】菱形的性质.【分析】利用折叠的方式得出AC,BD的长,再利用菱形面积公式求出面积即可.【解答】解:由题意可得:图1中矩形的长为5cm,宽为4cm∵虚线的端点为矩形两邻边中点∴AC=4cm,BD=5cm∴如图(2)所示的小菱形的面积为:×4×5=10(cm2).故选:A.【点评】此题主要考查了菱形的性质以及剪纸问题,得出菱形对角线的长是解题关键.翻折变换(折叠问题)实质上就是轴对称变换.12.(2018•威海)矩形ABCD与CEFG如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF 的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.C.D.【考点】KQ:勾股定理;LB:矩形的性质.【分析】延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,从而得出答案.【解答】解:如图,延长GH交AD于点P∵四边形ABCD和四边形CEFG都是矩形∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1∴AD∥GF∴∠GFH=∠P AH又∵H是AF的中点∴AH=FH在△APH和△FGH中∵∴△APH≌△FGH(ASA)∴AP=GF=1,GH=PH=PG∴PD=AD﹣AP=1∵CG=2、CD=1∴DG=1则GH=PG=×=故选:C.【点评】本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.二、填空题(每小题3分,共12分)13.(2018•锦州)如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH,若OB=4,S菱形ABCD=24,则OH的长为3.【考点】L8:菱形的性质.【分析】根据菱形面积=对角线积的一半可求AC,再根据直角三角形斜边上的中线等于斜边的一半.【解答】解:∵ABCD是菱形∴BO=DO=4,AO=CO,S菱形ABCD==24∴AC=6∵AH⊥BC,AO=CO=3∴OH=AC=3.【点评】本题考查了菱形的性质,直角三角形斜边上的中线等于斜边的一半,关键是灵活运用这些性质解决问题.14.(2018•本溪)如图,矩形OABC的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P是边AB 或边BC上的一点,连接OP,DP,当△ODP为等腰三角形时,点P的坐标为(8,4)或(,7).【分析】分两种情形分别讨论即可解决问题;【解答】解:∵四边形OABC是矩形,B(8,7)∴OA=BC=8,OC=AB=7∵D(5,0)∴OD=5∵点P是边AB或边BC上的一点∴当点P在AB边时,OD=DP=5∵AD=3∴P A==4∴P(8,4).当点P在边BC上时,只有PO=PD,此时P(,7).综上所述,满足条件的点P坐标为(8,4)或(,7).故答案为(8,4)或(,7).【点评】本题考查矩形的性质、坐标与图形性质、等腰三角形的判定等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.15.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为()n﹣1.【分析】首先求出AC、AE、HE的长度,然后猜测命题中隐含的数学规律,即可解决问题.【解答】解:∵四边形ABCD为正方形∴AB=BC=1,∠B=90°∴AC2=12+12,AC=;同理可求:AE=()2,HE=()3…∴第n个正方形的边长a n=()n﹣1.故答案为()n﹣1.【点评】该题主要考查了正方形的性质、勾股定理及其应用问题;应牢固掌握正方形有关定理并能灵活运用.16.如图,正方形ABCD的边长为4,E为BC上的一点,BE=1,F为AB上的一点,AF=2,P为AC上一个动点,则PF+PE的最小值为.【考点】正方形的性质.【分析】作E关于直线AC的对称点E′,连接E′F,则E′F即为所求,过F作FG⊥CD于G,在Rt△E′FG 中,利用勾股定理即可求出E′F的长.【解答】解:作E关于直线AC的对称点E′,连接E′F,则E′F即为所求过F作FG⊥CD于G在Rt△E′FG中GE′=CD﹣BE﹣BF=4﹣1﹣2=1,GF=4所以E′F==.故答案为:.【点评】本题考查的是最短线路问题,熟知两点之间线段最短是解答此题的关键.三、解答题(共52分)17.(6分)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.【考点】菱形的性质.【专题】证明题.【分析】在菱形中,由SAS求得△ABE≌△ADF,再由等边对等角得到∠AEF=∠AFE.【解答】证明:∵ABCD是菱形∴AB=AD,∠B=∠D.又∵EB=DF∴△ABE≌△ADF∴AE=AF∴∠AEF=∠AFE.【点评】本题利用了菱形的性质和全等三角形的判定和性质,等边对等角求解.18.(7分)如图,矩形ABCD的对角线AC、BD交于点O,∠AOD=60°,AB=,AE⊥BD于点E,求OE的长.【考点】矩形的性质.【专题】计算题.【分析】矩形对角线相等且互相平分,即OA=OD,根据∠AOD=60°可得△AOD为等边三角形,即OA=AD,∵AE⊥BD,∴E为OD的中点,即可求OE的值.【解答】解:∵对角线相等且互相平分∴OA=OD∵∠AOD=60°∴△AOD为等边三角形,则OA=ADBD=2DO,AB=AD∴AD=2∵AE⊥BD,∴E为OD的中点∴OE=OD=AD=1答:OE的长度为1.【点评】本题考查了勾股定理在直角三角形中的运用,考查了等边三角形的判定和等腰三角形三线合一的性质,本题中求得E为OD的中点是解题的关键.19.(7分)如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.【考点】矩形的判定.【专题】证明题.【分析】根据已知条件易推知四边形BECD是平行四边形.结合等腰△ABC“三线合一”的性质证得BD⊥AC,即∠BDC=90°,所以由“有一内角为直角的平行四边形是矩形”得到▱BECD是矩形.【解答】证明:∵AB=BC,BD平分∠ABC∴BD⊥AC,AD=CD.∵四边形ABED是平行四边形∴BE∥AD,BE=AD∴BE=CD∴四边形BECD是平行四边形.∵BD⊥AC∴∠BDC=90°∴▱BECD是矩形.【点评】本题考查了矩形的判定.矩形的定义:有一个角是直角的平行四边形是矩形.20.(8分)如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.(1)求证:AE=DF;(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.【考点】菱形的判定.【专题】证明题.【分析】(1)利用AAS推出△ADE≌△DAF,再根据全等三角形的对应边相等得出AE=DF;(2)先根据已知中的两组平行线,可证四边形DEFA是▱,再利用AD是角平分线,结合AE∥DF,易证∠DAF=∠FDA,利用等角对等边,可得AE=DF,从而可证▱AEDF实菱形.【解答】证明:(1)∵DE∥AC,∠ADE=∠DAF同理∠DAE=∠FDA∵AD=DA∴△ADE≌△DAF∴AE=DF;(2)若AD平分∠BAC,四边形AEDF是菱形∵DE∥AC,DF∥AB∴四边形AEDF是平行四边形∴∠DAF=∠FDA.∴AF=DF.∴平行四边形AEDF为菱形.【点评】考查了全等三角形的判定方法及菱形的判定的掌握情况.21.(8分)如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=2,求AB的长.【考点】矩形的性质.【分析】(1)根据矩形的对边平行可得AB∥CD,再根据两直线平行,内错角相等求出∠BAC=∠FCO,然后利用“角角边”证明△AOE和△COF全等,再根据全等三角形的即可得证;(2)连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.【解答】(1)证明:在矩形ABCD中,AB∥CD∴∠BAC=∠FCO在△AOE和△COF中∴△AOE≌△COF(AAS)∴OE=OF;(2)解:如图,连接OB∵BE=BF,OE=OF∴BO⊥EF∴在Rt△BEO中,∠BEF+∠ABO=90°由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC∴∠BAC=∠ABO又∵∠BEF=2∠BAC即2∠BAC+∠BAC=90°解得∠BAC=30°∵BC=2∴AC=2BC=4∴AB===6.【点评】本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键.22.(8分)正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D 逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(2)当AE=1时,求EF的长.【考点】正方形的性质.【专题】计算题.【分析】(1)由旋转可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=45°,得到∠MDF为45°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;(2)由第一问的全等得到AE=CM=1,正方形的边长为3,用AB﹣AE求出EB的长,再由BC+CM求出BM的长,设EF=MF=x,可得出BF=BM﹣FM=BM﹣EF=4﹣x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为EF的长.【解答】解:(1)证明:∵△DAE逆时针旋转90°得到△DCM∴∠FCM=∠FCD+∠DCM=180°∴F、C、M三点共线∴DE=DM,∠EDM=90°∴∠EDF+∠FDM=90°∵∠EDF=45°∴∠FDM=∠EDF=45°在△DEF和△DMF中∴△DEF≌△DMF(SAS)∴EF=MF;(2)设EF=MF=x∵AE=CM=1,且BC=3∴BM=BC+CM=3+1=4∴BF=BM﹣MF=BM﹣EF=4﹣x∵EB=AB﹣AE=3﹣1=2在Rt△EBF中,由勾股定理得EB2+BF2=EF2即22+(4﹣x)2=x2解得:x=则EF=.【点评】此题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,以及勾股定理,利用了转化及方程的思想,熟练掌握性质及定理是解本题的关键.23.(8分)已知,如图1,BD是边长为1的正方形ABCD的对角线,BE平分∠DBC交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G.(1)求证:△BCE≌△DCF;(2)求CF的长;(3)如图2,在AB上取一点H,且BH=CF,若以BC为x轴,AB为y轴建立直角坐标系,问在直线BD 上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的P点坐标;若不存在,说明理由.【考点】正方形的性质.【分析】(1)利用正方形的性质,由全等三角形的判定定理SAS即可证得△BCE≌△DCF;(2)通过△DBG≌△FBG的对应边相等知BD=BF=;然后由CF=BF﹣BC=即可求得;(3)分三种情况分别讨论即可求得.【解答】(1)证明:如图1在△BCE和△DCF中∴△BCE≌△DCF(SAS);(2)证明:如图1∵BE平分∠DBC,OD是正方形ABCD的对角线∴∠EBC=∠DBC=22.5°由(1)知△BCE≌△DCF∴∠EBC=∠FDC=22.5°(全等三角形的对应角相等);∴∠BGD=90°(三角形内角和定理)∴∠BGF=90°;在△DBG和△FBG中∴△DBG≌△FBG(ASA)∴BD=BF,DG=FG(全等三角形的对应边相等)∵BD==∴BF=∴CF=BF﹣BC=﹣1;(3)解:如图2,∵CF=﹣1,BH=CF∴BH=﹣1①当BH=BP时,则BP=﹣1∵∠PBC=45°设P(x,x)∴2x2=(﹣1)2解得x=1﹣或﹣1+∴P(1﹣,1﹣)或(﹣1+,﹣1+);②当BH=HP时,则HP=PB=﹣1∵∠ABD=45°∴△PBH是等腰直角三角形∴P(﹣1,﹣1);③当PH=PB时,∵∠ABD=45°∴△PBH是等腰直角三角形∴P(,)综上,在直线BD上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形,所有符合条件的P点坐标为(1﹣,1﹣)、(﹣1+,﹣1+)、(﹣1,﹣1)、(,).【点评】本题是四边形的综合题,考查了正方形的性质,三角形全等的判定和性质,等腰三角形的判定,熟练掌握性质定理是解题的关键.。
特殊平行四边形与梯形测试题(含答案)
![特殊平行四边形与梯形测试题(含答案)](https://img.taocdn.com/s3/m/f046a587a45177232e60a259.png)
特殊平行四边形测试题一、选择题(每小题3分,共30分)1.下列说法中,不正确的是( ).(A )有三个角是直角的四边形是矩形;(B )对角线相等的四边形是矩形(C )对角线互相垂直的矩形是正方形;(D )对角线互相垂直的平行四边形是菱形2.已知一个四边形的对角线互相垂直,•那么顺次连接这个四边形的四边中点所得的四边形是( ).(A )矩形 (B )菱形 (C )等腰梯形 (D )正方形(1) (2) (3)3.如图1,矩形ABCD 沿AE 折叠,使点D 落在BC 边上的F 点处,如果∠BAF=60°,那么∠DAE 等于( ).(A )15° (B )30° (C )45° (D )60°4.如图2,在菱形ABCD 中,∠ADC=120°,则BD :AC 等于( ).(A )3:2 (B )3:3 (C )1:2 (D )3:15.如图3,四边形ABCD 是正方形,延长BC 至点E ,使CE=CA ,连结AE 交CD•于点F ,•则∠AFC 的度数是( ).(A )150° (B )125° (C )135° (D )112.5°6.如图所示,把一个正方形三次对折后沿虚线剪下,则所得图形是 ( )7.如图,EF 过矩形ABCD 对角线交点O ,且分别交AB 、CD 于点E 、F ,那么阴影部分的面积是矩形ABCD 面积的 ( )A .15B .14C .13D .3108.一张矩形纸片按如图甲或乙所示对折,然后沿着图丙中的虚线剪下,得到①,•②两部分,将①展开后得到的平面图形是( ).(A)三角形(B)矩形(C)菱形(D)梯形9.小许拿了一张正方形的纸片如图甲,沿虚线对折一次得图乙.•再对折一次得图丙.然后用剪刀沿图丙中的虚线(虚线与底边平行)剪去一个角.打开后的形状是(• ).10.四边形的四条边长分别为a、b、c、d,其中a、c为对边,且满足a2+b2+c2+d2=2ab+2cd,则这个四边形一定是( )A.两组角分别相等的四边形 B.平行四边形C.对角线互相垂直的四边形 D.对角线相等的四边形二、填空题(每小题3分,共30分)11.既是轴对称图形,又是中心对称图形的四边形是_________.12.把“直角三角形、等腰三角形、•等腰直角三角形”填入下列相应的空格上:(1)正方形可以由两个能够完全重合的_________拼合而成;(2)菱形可以由两个能够完全重合的_________拼合而成;(3)矩形可以由两个能够完全重合的________拼合而成.13.在ABCD中,若添加一个条件________,则四边形ABCD是矩形;若添加一个条件_______,则四边形ABCD是菱形.14.已知正方形的面积为4,则正方形的边长为________,对角线长为________.15.已知矩形的对角线长为4cm,一条边长为23cm,则面积为________.16.菱形的两条对角线分别是6cm,8cm,则菱形的边长为_____,面积为______.17.如图6,在四边形ABCD是正方形,△CDE是等边三角形,则∠AED=______,∠AEB=______.(6) (7)18.现有一张长53cm,宽28cm的矩形纸片,要从中剪出长15cm,宽12cm的矩形小纸片,则最多能剪出______张.19.如图7,在菱形ABCD 中,∠BAD=80°,AB 的垂直平分线交对角线AC 于点F ,E•为垂足,连结DF ,则∠CDF 的度数=________.15.如图,P 是正方形ABCD 内一点,且△PBC 是等边三角形,则∠PAD =_______。
第一章 特殊平行四边形 单元测试(含答案解析)
![第一章 特殊平行四边形 单元测试(含答案解析)](https://img.taocdn.com/s3/m/3977b9d6ba4cf7ec4afe04a1b0717fd5360cb206.png)
初中数学北师大版九年级上学期第一章单元测试一、单选题1.已知四边形是平行四边形,,相交于点O,下列结论错误的是()A. ,B. 当时,四边形是菱形C. 当时,四边形是矩形D. 当且时,四边形是正方形2.如图,四边形是菱形,对角线,相交于点O,,,点E是上一点,连接,若,则的长是()A. 2B.C. 3D. 43.如图,面积为S的菱形ABCD中,点O为对角线的交点,点E是线段BC单位中点,过点E作EF⊥BD于F,EG⊥AC与G,则四边形EFOG的面积为()A. B. C. D.4.如图,菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点.若菱形ABCD的周长为32,则OE的长为()A. 3B. 4C. 5D. 65.如图,正方形的面积为1,是的中点,则图中阴影部分的面积是()A. B. C. D.6.如图,正方形ABCD的边长AB=8,E为平面内一动点,且AE=4,F为CD上一点,CF=2,连接EF,ED,则2EF+ED的最小值为( )A. 12B. 12C. 12D. 10二、填空题7.如图,在菱形中,,点E在上,若,则________.8.如图,在矩形中,分别为边,的中点,与,分别交于点M,N.已知,,则的长为________.9.如图,在矩形ABCD中,AB=9,,点P是边BC上的动点(点P不与点B,点C重合),过点P作直线PQ∥BD,交CD边于Q点,再把△PQC沿着动直线PQ对折,点C 的对应点是R点,则∠CQP=________.10.如图,正方形ABCD中,点E为对角线AC上一点,且AE=AB,则∠BEA的度数是________度.三、作图题11.在正方形ABCD中,E是CD边上的点,过点E作EF⊥BD于F.(1)尺规作图:在图中求作点E,使得EF=EC;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接FC,求∠BCF的度数.四、综合题12.如图,的对角线AC,BD相交于点O,过点O作,分别交AB,DC于点E、F,连接AF、CE.(1)若,求EF的长;(2)判断四边形AECF的形状,并说明理由.13.如图,在△ABC中,AB=AC,点D、E分别是线段BC、AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:△BDE≌△F AE;(2)求证:四边形ADCF为矩形.14.如图,的对角线,交于点O,过点D作于E,延长到点F,使,连接,.(1)求证:四边形是矩形;(2)若,,,试求的长.15.如图,点是正方形外一点,点是线段上一点,且是等腰直角三角形,其中,连接、.(1)求证:;(2)判断与的位置关系,并说明理由.16.如图,菱形的三个顶点、、分别在正方形的边、、上,连接.(1)求证:;(2)当时,求证:菱形为正方形.答案解析部分一、单选题1. B解析:四边形是平行四边形,,故A正确,四边形是平行四边形,,不能推出四边形是菱形,故错误,四边形是平行四边形,,四边形是矩形,故C正确,四边形是平行四边形,,,四边形是正方形.故D正确.故答案为:B.【分析】(1)根据平行四边形的对角线互相平分可得OA=OC,OB=OD;(2)根据菱形的判定“一组邻边相等的平行四边形是菱形”可知当AB=CD时,四边形ABCD是菱形错误;(3)根据一个角是直角的平行四边形是矩形可知当∠ABC=90°时,四边形是矩形;(4)根据对角线相等且互相垂直的平行四边形是正方形可知,当且时,四边形是正方形.2. B解析:∵四边形ABCD是菱形,AC=8,BD=6,∴CO=AC=4,OD=BD=3,AC⊥BD,∴DC==5,∠EOC+∠DOE=90°,∠DCO+∠ODC=90°,∵OE=CE,∴∠EOC=∠ECO,∴∠DOE=∠ODC,∴DE=OE,∴OE=CD=.故答案为:B.【分析】根据菱形的性质,可得CO=AC=4,OD=BD=3,AC⊥BD,利用勾股定理及等角的余角相等,可得DC=5,∠DOE=∠ODC,可得DE=OE,从而可得DE=OE=CE,继而得出OE=CD,据此即可求出结论.3. B解析:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,S=AC×BD,∵EF⊥BD于F,EG⊥AC于G,∴四边形EFOG是矩形,EF∥OC,EG∥OB,∵点E是线段BC的中点,∴EF、EG都是△OBC的中位线,∴EF=OC=AC,EG=OB=BD,∴矩形EFOG的面积=EF×EG=AC×BD== S;故答案为:B.【分析】由菱形的性质得出OA=OC,OB=OD,AC⊥BD,S=AC×BD,证出四边形EFOG 是矩形,EF∥OC,EG∥OB,得出EF、EG都是△OBC的中位线,则EF=OC=AC,EG=OB=BD,由矩形面积即可得出答案.4. B解析:∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=AD,∴∠AOB=90°,又∵AB+BC+CD+AD=32.∴AB=8,在Rt△AOB中,OE是斜边上的中线,∴OE= AB=4.故答案为:B.【分析】利用菱形的对边相等以及对角线互相垂直,进而利用直角三角形斜边上的中线等于斜边的一半得出答案.5. B解析:如图,过点E作HF⊥AB,∵AM//CD,∴∠DCE=∠EAM,∠CDE=∠EMA,∴△AME∽△CDE,∴AM:DC=EH:EF=1:2,FH=AD=1,∴EH= ,EF= .∴阴影部分的面积=S正方形ABCD-S△AME-S△CDE-S△MBC=1- - - = .故答案为:B.【分析】根据正方形的性质可得到△AME∽△CDE,根据相似三角形的边对应边成比例,求得EH,EF的长,从而即可求得阴影部分的面积.6. B解析:如图,在AD上取点k,使AK=2,连接EK,在△AEK和△ADE中,∠EAK=∠DAE,∴△AEK∽△ADE,∴,即EK= ED,∴EF+ ED=EF+EK,当F、E、K三点共线时,EF+ ED=FK=6 ,∴(2EF+ED)最小=2(EF+ ED)=12 ,故答案为:B。
第一章《特殊平行四边形》单元测试卷(含答案解析)
![第一章《特殊平行四边形》单元测试卷(含答案解析)](https://img.taocdn.com/s3/m/d0723fc77c1cfad6195fa7c9.png)
第一章《特殊平行四边形》单元测试卷班级:___________ 姓名:___________ 得分:___________一.选择题:(每小题3分,共36分)1.菱形具有而矩形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补2.矩形具有而菱形不一定具有的性质是()A.内角和等于3600B.对角互补C.对边平行且相等D.对角线互相平分3.已知四边形ABCD是平行四边形,下列结论不正确的是()A.当AC=BD时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AB=BC时,它是菱形4.如图所示,四边形ABCD的对角线互相平分,要使四边形ABCD成为矩形,需要添加的条件是()A.AB=CD B.AD=BD C.AB=BC D.AC=BD(第4题) (第5题) (第6题)5.如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为()A.cm B.2cm C.2cm D.4cm6.如图,四边形ABCD是平行四边形,下列说法不正确的是()A.当AC=BD时,四边形ABCD是矩形;B.当AB=BC时,四边形ABCD是菱形;C.当AC⊥BD时,四边形ABCD是菱形;D.当∠DAB=90°时,四边形ABCD是正方形7.正方形具有而菱形不具有的性质是()A.对角线平分一组对角B.对角线相等C.对角线互相垂直平分D.四条边相等N分别是边AB、BC的中点,则PM+PN的最小值是()A.5 B.10 C.14 D.不确定(第8题) (第9题) (第10题)9.如图所示,在菱形ABCD中,AC、BD相交于点O,E为AB的中点,若OE=4,则菱形ABCD的周长是()A.8 B.16 C.24 D.3210.如图,AC、BD是矩形ABCD的对角线,过点D作DE∥AC,交BC的延长线于E,则图中与△ABC全等的三角形共有()A.1个B.2个C.3个D.4个11.如图,在菱形ABCD中,∠BAD=82°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.67°B.57°C.60°D.87°(第11题) (第12题)12.如图,将n个边长都为1cm的正方形按如图所示摆放,点A1、A2、…、A n分别是正方形的中心,则n个这样的正方形重叠部分的面积和为()A2B 2 C 2 D cm2二.填空题:(每小题3分,共12分13.如图,四边形ABCD中,点E、F、G、H分别为边AB、BC、CD、DA的中点,请你(第13题) (第14题) (第15题)14.如图,l∥m,矩形ABCD的顶点B在直线m上,则∠α= 度.15.如图,E是边长为1的正方形ABCD对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BD于点R,则PQ+PR的值为。
(必考题)初中数学九年级数学上册第一单元《特殊平行四边形》测试卷(有答案解析)
![(必考题)初中数学九年级数学上册第一单元《特殊平行四边形》测试卷(有答案解析)](https://img.taocdn.com/s3/m/d7d7f6fc5901020207409cf6.png)
一、选择题1.正方形具有而矩形没有的性质是( )A .对角线互相平分B .每条对角线平分一组对角C .对角线相等D .对边相等2.如图,在长方形ABCD 中,AF BD ⊥,垂足为E ,AF 交BC 于点F ,连接DF ,且DF 平分BDC ∠.下列结论中:①ABD CDB ≅;②ADE BDF S S =△△;③90ABD CDF ∠+∠=︒;④AD DF =.其中正确的个数有( )A .4个B .3个C .2个D .1个3.给出下列命题,其中错误命题的个数是( )①四条边相等的四边形是正方形;②四边形具有不稳定性;③有两个锐角对应相等的两个直角三角形全等;④一组对边平行的四边形是平行四边形.A .1B .2C .3D .44.如图,小红在作线段AB 的垂直平分线时,是这样操作的:分别以点A ,B 为圆心,大于线段AB 长度一半的长为半径画弧,相交于点C ,D ,则直线CD 即为所求.连结AC ,BC ,AD ,BD ,根据她的作图方法可知,四边形ADBC 定是..( )A .梯形B .矩形C .菱形D .正方形 5.如图,在正方形ABCD 的边AB 上取一点E ,连接CE ,将BCE 沿CE 翻折,点B 恰好与对角线AC 上的点F 重合,连接DF ,若1BE =,则CDF 的面积是( )A.3214+B.628+C.324+D.3226.如图,Rt△ABC中,∠ACB=90°,AC=6,BC=8,D是AB的中点,E是BC的中点,EF⊥CD于点F,则EF的长是()A.3 B.4 C.5 D.12 57.如图,正方形ABCD中,6AB=,G是BC的中点.将ABG沿AG对折至AFG,延长GF交DC于点E,则DE的长是()A.2 B.2.5 C.3.5 D.48.下列四个命题中真命题是()A.对角线互相垂直平分的四边形是正方形B.对角线垂直且相等的四边形是菱形C.对角线相等且互相平分的四边形是矩形D.四边都相等的四边形是正方形9.如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A .nB .n -1C .(14)n -1D .14n 10.如图所示,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C '处,折痕为EF ,若122EFC '∠=︒,那么ABE ∠的度数为( )A .24︒B .32︒C .30D .26︒11.如图所示,正方形ABCD 中,E ,F 是对角线AC 上两点,连接BE ,BF ,DE ,DF ,则添加下列哪一个条件可以判定四边形BEDF 是菱形( )A .∠1=∠2B .BE =DFC .∠EDF =60°D .AB =AF 12.如图,菱形ABCD 的边长是5,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影部分和空白部分,若菱形的一条对角线的长为4,则阴影部分的面积为( )A .21B .21C .12D .24二、填空题13.已知,在△ABC 中,∠BAC =45°,AB =1,AC 8AC 为一边作等腰直角△ACD ,使∠CAD =90°,连接BD ,则线段BD 的长度为________.14.如图,把一张长方形的纸沿对角线折叠,若118ABC ∠=︒,则BAC ∠=_______.15.如图,Rt△ABC中,∠ACB=90°,点D是斜边AB的中点,连接CD.若BC=5,CD=3,则AC=______.16.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,若∠DHO=20°,则∠HDB的度数是________.17.如图,在平面直角坐标系中,长方形OABC的边OA 在x轴上,OC在y轴上,OA=1,OC=2,对角线 AC的垂直平分线交AB 于点E,交AC于点D.若y轴上有一点P(不与点C 重合),能使△AEP是以为 AE 为腰的等腰三角形,则点 P的坐标为____.18.如图,正方形ABCD的边长为8,点E为边BC的中点,点P在对角线BD上移动,则PE+PC的最小值是_____.19.如图,正方形ABCD的边长为6,点E,F分别是边AB,CD上的点,且'',点C'恰好落在AD边上,∠=︒.将四边形BCFE沿EF翻折,得到B C FECFE60B C''交AB于点G,则GE的长是_______.20.矩形的一条边长为2cm,且两条对角线夹角为60︒,则矩形的周长为____.三、解答题21.在正方形ABCD中,点E、F分别在BC边和CD上,且满足AEF是等边三角形,连接AC交EF于点G.;(1)求证:CE CF(2)若等边AEF边长为2,求AC的长.22.如图一,在平行四边形ABCD中,AB⊥AC,AB=1,BC=5,对角线AC,BD相交于O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.(所需图形须在备用图中画出)(1)试说明在旋转过程中,线段AF与EC总保持相等;(2)求证:当旋转角为90°时,四边形ABEF是平行四边形;(3)在旋转过程中,当EF⊥BD,旋转的角度小于180°时,求出此时绕点O顺时针旋转的度数.23.(1)如图1,点E,F分别在正方形ABCD的边上,且∠EAF=45°,求证:EF=BE+DF;(2)如图2,四边形ABCD中,AD//BC,∠D=90°,AD=DC=10,BC=6,点E在CD上,∠BAE=45°,在(1)的基础上求DE长.24.如图,点E是正方形ABCD的边DC上一点,把ADE顺时针旋转ABF的位置.(1)旋转中心是点 ,旋转角度是 度:(2)若连结EF ,则AEF 是 三角形,并证明你的结论.25.如图,在ABC 中,90ACB ∠=︒,30A ∠=︒,2BC =,点P 是AB 上的动点,联结CP ,并以CP 为边作等边CPE △(点E 在线段CP 上方),M 是线段AB 的中点,联结EM .(1)请猜想:线段EM 与PB 的数量关系?线段EM 与CB 的位置关系?(2)请证明上题中你的猜想;(3)请猜想:点P 在BM 上移动时,四边形ECPM 的面积是否发生变化?并加以说明.26.如图1、图2都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.已知点O ,M ,N ,A ,B 均在格点上,请按要求完成下列问题:(1)在图①中,仅用无刻度直尺在网格中画出∠MON 的平分线OP ,并简要说明画图的依据;(2)在图②中,仅用无刻度直尺在网格中画一个Rt △ABC ,使点C 在格点上,并简要说明画图的依据.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】首先要知道正方形和矩形的性质,正方形是四边相等的矩形,正方形对角线平分对角,且对角线互相垂直.【详解】解:A 、正方形和矩形对角线都互相平分,故A 不符合题意,B 、正方形对角线平分对角,而矩形对角线不平分对角,故B 符合题意,C 、正方形和矩形对角线都相等,故C 不符合题意,D 、正方形和矩形的对边都相等,故D 不符合题意.故选:B .【点睛】本题主要考查正方形对角线相互垂直平分相等的性质和长方形对角线平分相等性质的比较.2.C解析:C【分析】由长方形的性质可得:,,90,AB CD AD BC BAD BCD ==∠=∠=︒从而可判断①;由面积公式可得,ADF BDC S S =再利用角平分线的性质证明,Rt DFE Rt DFC ≌再利用面积差可判断②;由90ABD DBC ∠+∠=︒,结合90ABD CDF ∠+∠=︒,证明,DBC CDF ∠=∠ 再证明30,DBC EDF CDF ∠=∠=∠=︒ 可得AF 是BD 的垂直平分线,可得,AB AD = 则四边形ABCD 为正方形,与已知互相矛盾,可判断③;由,AF BD ⊥ 结合AD DF =,可证明BD 是AF 的垂直平分线,可得,BA BF = 从而可证明45ABE ADB ∠=∠=︒,可得,AB AD = 则四边形ABCD 为正方形,与已知互相矛盾,可判断④.【详解】 解: 长方形ABCD ,,,90,AB CD AD BC BAD BCD ∴==∠=∠=︒(),ABD CDB SAS ∴≌ 故①符合题意; 11,,22ADF BDC SAD CD S BC CD == ,ADF BDC SS ∴= ,,ADE ADF DEF BDF BCD DCFS S S S S S =-=- DF 平分BDC ∠,,90,AF BD BCD ⊥∠=︒,FE FC ∴=,DF DF =(),Rt DFE Rt DFC HL ∴≌,DEF DCF SS ∴= ,ADE BDF S S ∴= 故②符合题意;长方形ABCD ,90ABD DBC ∴∠+∠=︒,若90ABD CDF ∠+∠=︒,,DBC CDF ∴∠=∠,Rt DFE Rt DFC ≌,EDF CDF ∴∠=∠ ,DE DC =30,DBC EDF CDF ∴∠=∠=∠=︒2,BD DC ∴=E ∴是BD 的中点,AF ∴是BD 的垂直平分线,,AB AD ∴=则四边形ABCD 为正方形,与已知互相矛盾,故③不符合题意;,AF BD ⊥若AD DF =,,AE EF ∴=BD ∴是AF 的垂直平分线,,BA BF ∴=90ABC ∠=°,45BAF BFA ∴∠=∠=︒,45ABE ADB ∴∠=∠=︒,,AB AD ∴=则四边形ABCD 为正方形,与已知互相矛盾,故④不符合题意;故选:.C【点睛】本题考查全等三角形的判定与性质,矩形的性质,正方形的判定,角平分线的性质,垂直平分线的定义与判定,等腰三角形的判定与性质,含30的直角三角形的性质,掌握以上知识是解题的关键.3.C解析:C【分析】利用正方形的判定、直角三角形全等的判定、平行四边形的判定定理对每个选项依次判定解答.【详解】①四条边相等的四边形是菱形,故①错误;②四边形具有不稳定性,故②正确;③两直角三角形隐含一个条件是两直角相等,两个锐角对应相等,因此构成了AAA ,不能判定全等,故③错误;④一组对边平行且相等的四边形是平行四边形,故④错误;综上,错误的命题有①③④共3个.故选:C .【点睛】本题考查了命题与定理的知识,解题的关键是了解正方形的判定、平行四边形的判定及直角三角形全等的判定.4.C解析:C【分析】根据垂直平分线的画法得出四边形ADBC 四边的关系进而得出四边形一定是菱形.【详解】∵分别以A 和B 为圆心,大于12AB 的长为半径画弧,两弧相交于C 、D , ∴AC=AD=BD=BC ,∴四边形ADBC 一定是菱形,故选C .【点睛】考查了线段垂直平分线的性质以及菱形的判定,得出四边形四边关系是解决问题的关键. 5.A解析:A【分析】由折叠可得1EF BE ==,90CFE ABC ∠=∠=︒,且 45FAE ∠=︒,可得1AF =, 2AE =,即可求对角线BD 的长,则可求 CDF 的面积.【详解】如图连结BD 交AC 于点O ,∵ABCD 为正方形,∴90ABC ∠=︒,AB=BC ,AC BD ⊥, DO BO =,45BAC ∠=︒,∵BCE 沿CE 翻折, ∴1BE EF ==,BC CF =, 90EFC ∠=︒, ∵45BAC ∠=︒,90EFC ∠=︒, ∴45EAF AEF ∠=∠=︒, ∴1AF EF ==, ∴AE = ∴1AB BC CF ===, ∴2BD ==∴22OD +=, ∴12CDF SCF DO =⨯⨯,∴)(1241444CDF S ++===+.故选:A .【点睛】本题考查翻折变换、正方形的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是熟练应用所学知识解决问题.6.D解析:D【分析】根据勾股定理得出AB ,进而利用直角三角形的性质得出:BD=DC=AD=5,利用三角形面积公式解答即可.【详解】∵在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,∴10AB =,∵D 是AB 的中点,∴BD=DC=AD=5,1116812222BDC BAC SS ==⨯⨯⨯=, 连接DE ,∵E 是BC 的中点,∴162DEC BDC SS ==, ∵115622DEC S DC EF EF ==⨯⨯=∴125EF=故选:D.【点睛】本题主要考查的是勾股定理,直角三角形斜边上的中线,关键是根据勾股定理解出AB,进而利用直角三角形的性质解答.7.A解析:A【分析】连接AE,根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE,在直角△ECG中,根据勾股定理求出DE的长.【详解】解:连接AE,∵正方形ABCD中,6AB=∴AB=AD=BC=CD6=,∠B=∠D=90°,由折叠的性质得:AB =AF6=,∠B=∠AFG=90°,BG=GF∴AD=AF,∠AFE=180°-∠AFG=90°=∠D在Rt△AFE和Rt△ADE中,∵AE AE AF AD=⎧⎨=⎩∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,EC=6−x.∵G是BC的中点∴BG=CG=12BC=3,∴GF=BG=3在Rt△ECG中,根据勾股定理,得:(6−x)2+9=(x+3)2,解得x=2.则DE=2故选A.【点睛】本题考查了正方形的性质,折叠的性质,全等三角形的判定与性质,勾股定理的应用.证明Rt△AFE≌Rt△ADE是解答本题的关键.8.C解析:C【分析】根据正方形、菱形、矩形的判定分别判断得出即可.【详解】A、对角线互相垂直平分且相等的四边形是正方形,故原命题是假命题;B、对角线垂直平分的四边形是菱形,故原命题是假命题;C、对角线相等且互相平分的四边形是矩形,故原命题是真命题;D、四边都相等的四边形是菱形,故原命题是假命题;故选:C.【点睛】本题考查了命题与定理的知识,解题的关键是了解正方形的判定定理、矩形的判定定理、菱形的判定定理.9.B解析:B【分析】过中心作阴影另外两边的垂线可构建两个全等三角形(ASA),由此可知阴影部分的面积是正方形的面积的14,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为(n-1)个阴影部分的和,即可求解.【详解】如图作正方形边的垂线,由ASA可知同正方形中两三角形全等,利用割补法可知一个阴影部分面积等于正方形面积的14,即是12214⨯⨯=, n 个这样的正方形重叠部分(阴影部分)的面积和为:()111n n ⨯-=-.故选:B .【点睛】本题考查了正方形的性质、全等三角形的判定与性质.解题的关键是得到n 个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积. 10.D解析:D【分析】由折叠的性质知:∠EBC′、∠BC′F 都是直角,∠BEF=∠DEF ,因此BE ∥C′F ,那么∠EFC′和∠BEF 互补,这样可得出∠BEF 的度数,进而可求得∠AEB 的度数,则∠ABE 可在Rt △ABE 中求得.【详解】解:由折叠的性质知,∠BEF=∠DEF ,∠EBC′、∠BC′F 都是直角,∴BE ∥C′F ,∴∠EFC′+∠BEF=180°,又∵∠EFC′=122°,∴∠BEF=∠DEF=58°,∴∠AEB=180°-∠BEF-∠DEF=64°,在Rt △ABE 中,∠ABE=90°-∠AEB=26°.故选D .【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.11.B解析:B【分析】由正方形的性质,可判定△CDF ≌△CBF ,则BF=FD=BE=ED ,故四边形BEDF 是菱形.【详解】由正方形的性质知,∠ACD=∠ACB=45°,BC=CD ,CF=CF ,∴△CDF ≌△CBF ,∴BF=FD ,同理,BE=ED ,∴当BE=DF ,有BF=FD=BE=ED ,四边形BEDF 是菱形.故选B .【点睛】考查了菱形的判定,解题关键是灵活运用全等三角形的判定和性质,及菱形的判定. 12.A解析:A【分析】连接AC 、BD ,由菱形的性质得出5AB =,122OB OD BD ===,OA OC =,AC BD ⊥,由勾股定理求出OA ,得出221AC =,求出菱形的面积,再由中心对称的性质判断出阴影部分的面积等于菱形的面积的一半解答.【详解】解:连接AC 、BD ,如图所示:菱形ABCD 的边长是5,O 是两条对角线的交点,4BD =,5AB ∴=,122OB OD BD ===,OA OC =,AC BD ⊥,22225221OA AB OB ∴=--2221AC OA ∴== ∴菱形ABCD 的面积11221442122AC BD =⨯=⨯= O 是菱形两条对角线的交点,∴阴影部分的面积12=菱形ABCD 的面积221;故选:A .【点睛】本题考查了菱形的性质,中心对称,熟记性质并判断出阴影部分的面积等于菱形的面积的一半是解题的关键. 二、填空题13.或【分析】AC 作为直角边有两种情况需要分情况讨论画出图后进行计算【详解】解:情况一:延长AB 交CD 于E ∠BAC =45°∠CAD =90°所以AE 是等腰直角△ACD 的高线中线所以CE=DE 因为∠BAC =513【分析】AC 作为直角边,有两种情况,需要分情况讨论,画出图后进行计算.【详解】解:情况一:延长AB 交CD 于E∠BAC =45°,∠CAD =90°所以AE 是等腰直角△ACD 的高线,中线所以,AE CD ⊥,CE=DE 因为8AC =,AE CD ⊥,∠BAC =45°所以△ACE 也是等腰直角三角形,根据勾股定理,AE=CE=2所以BE=AE-AB=2-1=1又因为DE=CE=2,AE CD ⊥所以,BD=22145BE DE +=+=情况二:延长直线AB ,分别过C 、D 作垂线,交直线AB 于F 、E .与情况一类似,可以证出CF=AF=2,BF=AF-AB=2-1=1所以,BE=EF-BF ;因为∠BAC =45°,CF AB ⊥所以,∠ACF =180°-∠BAC-∠F=45°因为△ACD 是等腰直角三角形,∠CAD =90°所以∠ACD =45°所以 ,∠FCD =∠ACD+∠ACF=45°+45°=90°又因为,DE AB CF AB ⊥⊥所以四边形DEFC 是矩形所以DE=CF=2,EF=DC ;因为在等腰直角△ACD 中,∠CAD =90°,8AC =所以,根据勾股定理,CD=4所以,BE=EF-BF=DC-BF=4-1=3因此,BD ===【点睛】这道题考察的是等腰直角三角形的性质,勾股定理,矩形的判定和性质.熟练掌握这些知识点,画出辅助线,是解题的关键.14.【分析】根据折叠的性质可以判断出三角形ABC 是等腰三角形继而根据三角形内角和为180°求解即可;【详解】将翻折后的图形如图所示:∵四边形ADCF 是矩形三角形ACE 是由三角形ACF 翻折得到的∴∠D=∠解析:31︒【分析】根据折叠的性质可以判断出三角形ABC 是等腰三角形,继而根据三角形内角和为180°求解即可;【详解】将翻折后的图形如图所示:∵ 四边形ADCF 是矩形,三角形ACE 是由三角形ACF 翻折得到的,∴ ∠D=∠E=90°,AD=CE在△ABD 和△BCE 中:AD CE D EABD CBE =⎧⎪⎨⎪=⎩∠=∠∠∠ ∴△ABD ≌△BCE (AAS )∴AB=BC∵∠ABC=118°,∴∠BAC=∠BCA=()11180118=62=3122︒-︒⨯︒︒ , 故答案为:31°.【点睛】本题考查了矩形的性质,全等三角形的判定,以及等腰三角形的性质,正确理解知识点是解题的关键;15.【分析】先根据直角三角形斜边上的中线等于斜边的一半求得AB然后运用勾股定理解答即可【详解】解:∵在Rt△ABC中∠ACB=90°点D是斜边AB 的中点∴CD==3即AB=6∴AC=故答案为【点睛】本题11【分析】先根据直角三角形斜边上的中线等于斜边的一半求得AB,然后运用勾股定理解答即可.【详解】解:∵在Rt△ABC中,∠ACB=90°,点D是斜边AB的中点∴CD=1AB=3,即AB=62∴2222-=-=.AB BC651111【点睛】本题主要考查了直角三角形的性质和勾股定理,掌握直角三角形斜边上的中线等于斜边的一半成为解答本题的关键.16.20°【分析】根据菱形的性质得出OB=OD根据直角三角形斜边的一半等于斜边的一半得出OH=OD即可得出∠HDB=∠DHO=20°【详解】解:∵四边形ABCD是菱形∴OB=OD∵DH⊥AB于点H∴OH解析:20°【分析】根据菱形的性质得出OB=OD,根据直角三角形斜边的一半等于斜边的一半,得出OH=OD,即可得出∠HDB=∠DHO=20°.【详解】解:∵四边形ABCD是菱形,∵ DH⊥AB于点H,∴OH=12BD=OD,∴∠HDB=∠DHO=20°.故答案为:20°.【分析】此题考查了菱形的性质、直角三角形的性质以及等腰三角形的判定与性质.注意证得△OBH是等腰三角形是关键.17.或【分析】设AE=m根据勾股定理求出m的值得到点E(1)设点P坐标为(0y)根据勾股定理列出方程即可得到答案【详解】∵对角线AC的垂直平分线交AB于点E∴AE=CE∵OA=1OC=2∴AB=OC=2解析:3(0,)4,3(0,)4-或1(0,)2【分析】设AE=m,根据勾股定理求出m的值,得到点E(1,54),设点P坐标为(0,y),根据勾股定理列出方程,即可得到答案.【详解】∵对角线 AC的垂直平分线交AB 于点E,∴AE=CE,∵OA=1,OC=2,∴AB=OC=2,BC=OA=1,∴设AE=m,则BE=2-m,CE=m,∴在Rt∆BCE中,BE2+ BC2=CE2,即:(2-m)2+12=m2,解得:m=54,∴E(1,54),设点P坐标为(0,y),∵△AEP是以为 AE 为腰的等腰三角形,当AP=AE,则(1-0)2+(0-y)2= (1-1)2+(0-54)2,解得:y=34±,当EP=AE,则(1-0)2+(54-y)2= (1-1)2+(0-54)2,解得:y=12,∴点 P的坐标为3(0,)4,3(0,)4-,1(0,)2,故答案是:3(0,)4,3(0,)4-,1(0,)2.本题主要考查等腰三角形的定义,勾股定理,矩形的性质,垂直平分线的性质,掌握勾股定理,列出方程,是解题的关键.18.4【分析】要求PE+PC的最小值PEPC不能直接求可考虑通过作辅助线转化PEPC的值从而找出其最小值求解【详解】解:如图连接AE∵点C关于BD的对称点为点A∴PE+PC=PE+AP根据两点之间线段最解析:45【分析】要求PE+PC的最小值,PE,PC不能直接求,可考虑通过作辅助线转化PE,PC的值,从而找出其最小值求解.【详解】解:如图,连接AE,∵点C关于BD的对称点为点A,∴PE+PC=PE+AP,根据两点之间线段最短可得AE就是AP+PE的最小值,∵正方形ABCD的边长为8,E是BC边的中点,∴BE=4,∴AE224845=+=,故答案为:45.【点睛】此题主要考查了正方形的性质和轴对称及勾股定理等知识的综合应用.根据已知得出两点之间线段最短可得AE就是AP+PE的最小值是解题关键.19.【分析】由正方形的性质得出∠A=∠B=∠C=∠D=90°AB=AD=3由折叠的性质得出FC′=FC∠C′FE=∠CFE=60°∠FC′B′=∠C=90°B′E=BE∠B′=∠B=90°求出∠DC′F解析:843-【分析】由正方形的性质得出∠A=∠B=∠C=∠D=90°,AB=AD=3,由折叠的性质得出FC′=FC,∠C′FE=∠CFE=60°,∠FC′B′=∠C=90°,B′E=BE,∠B′=∠B=90°,求出∠DC′F=30°,得出FC′=FC=2DF,求出DF=2,33,则C′A=3,AG=3 6,设EB=x,则GE=2x,得出方程,解方程即可.【详解】∵四边形ABCD 是正方形,∴∠A =∠B =∠C =∠D =90°,AB =AD =3,由折叠的性质得:FC′=FC ,∠C′FE =∠CFE =60°,∠FC′B′=∠C =90°,B′E =BE ,∠B′=∠B =90°,∴∠DFC′=180°-60°-60°=60°,∴∠DC′F =30°,∴FC′=FC =2DF ,∵DF +CF =CD =6,∴DF +2DF =6,解得:DF =2,∴∴C′A =∵∠AC′G=180°-30°-90°=60°,∠AGC′=90°-60°=30°,∴-6,设EB =E′B=x ,∵∠B′GE =∠AGC′=30°,∴GE =2x ,则+3x =6,解得:x =∴GE =故答案是:【点睛】本题考查了翻折变换的性质、正方形的性质、勾股定理、含30°角的直角三角形的性质等知识;熟练掌握翻折变换和正方形的性质,根据题意得出方程是解决问题的关键. 20.或【分析】由矩形的性质得出证明是等边三角形然后分AB=2cm 和AD=2cm 分别计算相应边长可得周长【详解】解:如图所示:四边形是矩形是等边三角形当AB=2cm 时OA=OB=2cm 则AC=BD=4cm解析:4)cm +或4)cm 【分析】由矩形的性质得出OA OB =,证明AOB ∆是等边三角形,然后分AB=2cm 和AD=2cm 分别计算相应边长,可得周长.【详解】解:如图所示:四边形ABCD 是矩形,AB CD ∴=,AD BC =,90ABC ∠=︒,12OA AC =,12OB BD =,AC BD =, OA OB ∴=,60AOB ∠=︒,AOB ∴∆是等边三角形,∴当AB=2cm 时,OA=OB=2cm ,则AC=BD=4cm ,∴AD=2242-=23cm , 则矩形ABCD 的周长2()443()AB BC cm =+=+,当AD 2cm =时,设AB=CD=x ,∵∠CAD=90°-60°=30°,∴AC=BD=2x ,则()22222x x =+,解得:x=23, ∴AB=CD=233, 则矩形ABCD 的周长434()cm =+, 故答案为:443()cm +或434()cm +.【点睛】本题考查了矩形的性质、等边三角形的判定与性质、勾股定理;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.三、解答题21.(1)见解析 (231【分析】(1)根据正方形和等边三角形的性质,证Rt ABE Rt ADF △≌△即可;(2)由(1)可知,AC 垂直平分EF ,根据勾股定理和斜边中线等于斜边的一半求AG 、CG 即可.【详解】(1)证明:正方形ABCD ,∴AB AD =,B D ∠=∠=90°,BC CD =.AEF 是等边三角形,AE AF ∴=.(HL)Rt ABE Rt ADF ∴△≌△.BE DF ∴=.CE CF ∴=.(2)由(1)得,CE=CF ,AE=AF=2,AC ∴垂直平分EF .1EG FG ∴==. 2222213AG AE EG ∴=-=-=,∵∠ECF=90°,EG=GF ,∴112CG EF ==, 31AC AG CG ∴=+=+.【点睛】本题考查了正方形、等边三角形、全等三角形的判定与性质、勾股定理等知识,解题关键是准确把握已知,熟练运用全等三角形、勾股定理等知识进行证明和计算.22.(1)答案见解析;(2)证明见解析;(3)45°.【分析】(1)根据平行四边形的对边平行可得AD ∥BC ,对角线互相平分可得OA=OC ,再根据两直线平行,内错角相等求出∠FAO=∠ECO ,然后利用“角边角”证明△AOF 和△COE 全等,根据全等三角形对应边相等即可得到AF=CE ;(2)根据垂直的定义可得∠BAO=90°,然后求出∠BAO=∠AOF ,再根据内错角相等,两直线平行可得AB ∥EF ,然后根据平行四边形的对边平行求出AF ∥BE ,再根据两组对边分别平行的四边形是平行四边形证明;(3)根据(1)的结论可得AF=CE ,再求出DF ∥BE ,DF=BE ,然后根据一组对边平行且相等的四边形是平行四边形求出四边形BEDF 平行四边形,再求出对角线互相垂直的平行四边形是菱形可得EF ⊥BD 时,四边形BEDF 是菱形;根据勾股定理列式求出AC=2,再根据平行四边形的对角线互相平分求出AO=1,然后求出∠AOB=45°,再根据旋转的定义求出旋转角即可.【详解】解:(1)如图一∵四边形ABCD 是平行四边形,∴AO =CO ,AD ∥BC ,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE(ASA),∴AF=EC,∴在旋转过程中,线段AF与EC总保持相等.(2)如备用图一:证明:∵AB⊥AC,∴∠BAC=90°.∵∠AOF=90°,∴∠BAC=∠AOF,∴AB∥EF.∵四边形ABCD是平行四边形,∴AD∥BC,∴四边形ABEF是平行四边形.(3)如备用图二:在Rt△ABC中,AC22.BC AB∵AO=OC,∴AO=1=AB.∵∠BAO=90°,∴∠AOB=45°∵EF⊥BD,∴∠BOF=90°,∴∠AOF=45°,即AC绕点O顺时针旋转45°.【点睛】本题考查了平行四边形的性质和判定,菱形的性质和判定,旋转的性质,勾股定理的应用,能综合运用知识点进行推理是解此题的关键.23.(1)见解析;(2)307【分析】 (1)延长EB 至点G ,使BG =DF ,连接AG ,根据题意易证△ADF ≌△ABG (SAS ),即可得到AG =AF ,∠GAB =∠FAD .即可证明△GAE ≌△FAE (SAS ),即得到EF =BE +DF .(2)作AM ⊥BC 点M ,连接BE ,易证四边形AMCD 是正方形,即可得到AD =CD =MC =10,MB =4.再由(1)的结论得BE =MB +DE ,设DE =x ,则EC =10x -,BE =4x +.在Rt △BCE 中,结合勾股定理即可列出关于x 的方程,求出x 即可.【详解】(1)如图,延长EB 至点G ,使BG =DF ,连接AG .在△ADF 和△ABG 中,90AD AB ADF ABG DF BG =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ADF ≌△ABG (SAS ).∴AG =AF ,∠GAB =∠FAD ,∵45EAF ∠=︒,∴45FAD BAE ∠+∠=︒,∴45GAB BAE ∠+∠=︒,即45GAE EAF ∠=∠=︒.在△GAE 和△FAE 中,45AG AF GAE EAF AE AE =⎧⎪∠=∠=︒⎨⎪=⎩,∴△GAE ≌△FAE (SAS ),∴EG=EF ,即EF=BE+BG=BE+DF .(2)如图,作AM ⊥BC 点M ,连接BE ,由题意可知四边形AMCD 是正方形,∴AD =CD =MC =10,MB =4.由(1)知BE =MB +DE .设DE =x ,则EC =10x -,BE =4x +.在Rt △BCE 中,222BC EC BE +=,即()222610=(4)x x +-+,解得:307x =,即DE = 307【点睛】本题考查三角形全等的判定和性质,正方形的判定和性质以及勾股定理.作出常用的辅助线是解答本题的关键.24.(1)A ,90;(2)等腰直角,证明过程见解析.【分析】(1)根据旋转中心及旋转角的定义,即可得出结论;(2)利用旋转的性质与正方形的性质,并结合等腰直角三角形的判定方法,即可判断出△AEF 的形状.【详解】(1)解:∵四边形ABCD 是正方形,∴∠BAD =90°,∵△ADE 顺时针旋转到△ABF 的位置,∴旋转中心是点A ,旋转角是∠BAD =90°.故答案为A ,90.(2)△AEF 等腰直角三角形.证明:∵△ADE 顺时针旋转到△ABF 的位置,∴AF =AE ,∠FAE =∠BAD ,∵四边形ABCD 是正方形∴∠FAE =∠BAD =90°∴△AEF 是等腰直角三角形故答案为:等腰直角.【点睛】本题主要考查了旋转变换的性质、正方形的性质等知识,解题的关键是掌握旋转变换及正方形的性质.25.(1)EM PB =;//EM CB ;(2)见解析;(3)面积不变;见解析【分析】(1)连接CM ,利用直角三角形斜边中线等于斜边一半的性质可得CM=CB ,然后根据题意运用SAS 定理证明△ECM ≌△PCB ,从而求得EM 与PB 的数量及位置关系;(2)利用(1)中的思路进行推理证明;(3)结合全等三角形的的性质可得△ECM 与△PCB 面积相等,从而四边形ECPM 的面积即△MCB 的面积,根据题意可求其面积为定值,从而得出结论【详解】解:(1)EM PB =;//EM CB(2)连接CM∵在ABC 中,90ACB ∠=︒,30A ∠=︒,M 是线段AB 的中点∴CM=12AB BM =,∠B=60° ∴△CBM 是等边三角形∴CM=CB ,∠MCB=60° 又∵以CP 为边作等边CPE △∴CE=CP ,∠ECP=60°∴∠ECM+∠MCP=∠PCB+∠MCP∴∠ECM =∠PCB在△ECM 和△PCB 中EC PC ECM PCB MC BC =⎧⎪∠=∠⎨⎪=⎩∴△ECM ≌△PCB∴EM=PB ,∠EMC=∠B=60°又∵∠MCB=60°∴∠EMC=∠MCB∴//EM CB(3)过点M 作MN ⊥BC由(2)已证△MCB 为等边三角形∴MB=BC=2∵MN ⊥BC∴∠BMN=1302BMC ∠=∴BN=112BM = ∴在Rt △MCB 中,223MN BM BN =-= ∴1123322BCM S BC MN ==⨯=△ 又∵△ECM ≌△PCB∴点P 在BM 上移动时,3ECM MCP PCB MCP BCM ECPM S S S S S S =+=+==△△△△△四边形即四边形ECPM 的面积不会发生变化.【点睛】本题考查全等三角形的判定和性质,直角三角形斜边中线及含30°的直角三角形的性质,题目难度不大有一定的综合性,掌握相关性质定理正确推理论证是解题关键. 26.(1)见解析;(2)见解析【分析】(1)构造全等三角形,利用全等三角形的性质即可解决问题;(2)利用菱形以及平行线的性质即可解决问题.【详解】解:(1)如图1,射线OP 即为所求的∠MON 的平分线.作图依据是:可判定△MOP ≌△NOP ,于是有∠MOP =∠NOP .(2)如图2,△ABC 即为所求作的直角三角形,其中∠ACB =90°.作图依据是:①菱形的对角线互相垂直,即BC ⊥EF ;②可判定AC ∥EF ,则AC ⊥BC ,所以∠ACB =90°.【点睛】本题考查作图−应用与设计、菱形的性质等知识,解题的关键是掌握菱形的性质并灵活运用所学知识解决问题.。
2022-2023学年北师大版九年级数学上册第1章《特殊的平行四边形》单元测试卷含答案
![2022-2023学年北师大版九年级数学上册第1章《特殊的平行四边形》单元测试卷含答案](https://img.taocdn.com/s3/m/fe20ea210812a21614791711cc7931b765ce7b32.png)
第1章特殊的平行四边形一.选择题(共8小题,满分32分)1.如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,动点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC 沿BC翻折,点P的对应点为点P′.设Q点运动的时间为t秒,若四边形QP′CP为菱形,则t的值为()A.B.2C.D.32.如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD3.如图,Rt△ABC中,DC是斜边AB上的中线,EF过点C且平行于AB.若∠BCF=35°,则∠ACD的度数是()A.35°B.45°C.55°D.65°4.如图,在矩形ABCD中,AB=3,AD=4,点P在AB上,PE⊥AC于E,PF⊥BD于F,则PE+PF等于()A.B.C.D.5.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为()A.2B.2.2C.2.4D.2.56.四边形ABCD的对角线AC,BD相交于点O,能判定它为正方形的条件是()A.AO=CD B.AO=CO=BO=DOC.AO=CO,BO=DO,AC⊥BD D.AO=BO=CO=DO,AC⊥BD7.顺次连接等腰梯形四边中点得到一个四边形,再顺次连接所得四边形四边中点得到的图形是()A.等腰梯形B.正方形C.菱形D.矩形8.如图,在边长为2的等边三角形ABC的外侧作正方形ABED,过点D作DF⊥BC,垂足为F,则DF的长为()A.2+2B.5﹣C.3﹣D.+1二.填空题(共10小题,满分30分)9.如图,以边长为1的正方形的四边中点为顶点作四边形,再以所得四边形四边中点为顶点作四边形,…依次作下去,图中所作的第三个四边形的周长为;所作的第n个四边形的周长为.10.如图,菱形ABCD的对角线相交于点O,请你添加一个条件:,使得该菱形为正方形.11.如图,△ABC是以AB为斜边的直角三角形,AC=4,BC=3,P为AB上一动点,且PE⊥AC于E,PF⊥BC于F,则线段EF长度的最小值是.12.如图是一个矩形桌子,一小球从P撞击到Q,反射到R,又从R反射到S,从S反射回原处P,入射角与反射角相等(例如∠PQA=∠RQB等),已知AB=8,BC=15,DP=3.则小球所走的路径的长为.13.如图,在Rt△ABC中,∠C=90°,AB=10,若以点C为圆心,CB长为半径的圆恰好经过AB的中点D,则AC的长等于.14.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB 的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD其中正确结论的为(请将所有正确的序号都填上).15.如图,在菱形ABCD中,对角线AC、BD相交于点O.AC=8cm,BD=6cm,点P为AC上一动点,点P以1cm/s的速度从点A出发沿AC向点C运动.设运动时间为ts,当t=s时,△PAB为等腰三角形.16.如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE =AP =1,PB =.下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为;③EB ⊥ED ;④S △APD +S △APB =1+;⑤S 正方形ABCD =4+.其中正确结论的序号是 .17.如图,在3×4的矩形方格图中,不包含阴影部分的矩形个数是 个.18.如图,在四边形ABCD 中,AC =BD =6,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,则EG 2+FH 2= .三.解答题(共7小题,满分88分)19.在等腰△ABC 中,AB =AC =8,∠BAC =100°,AD 是∠BAC 的平分线,交BC 于D ,点E 是AB 的中点,连接DE .(1)求∠BAD 的度数;(2)求∠B 的度数;(3)求线段DE 的长.20.如图,在▱ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.21.如图,△ABC中,∠BAC=90°,点D是BC的中点,AE∥DC,EC∥AD,连接DE交AC于点O,(1)求证:四边形ADCE是菱形;(2)若AB=AO,求tan∠OCE的值.22.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACD的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.23.已知▱ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4cm,求这个平行四边形的面积.24.如图,四边形ABCD是矩形,E是BD上的一点,∠BAE=∠BCE,∠AED=∠CED.求证:四边形ABCD 是正方形.25.已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连接CF.(1)若DG=2,求证四边形EFGH为正方形;(2)若DG=6,求△FCG的面积;(3)当DG为何值时,△FCG的面积最小.参考答案与试题解析一.选择题(共8小题,满分32分)1.解:连接PP′交BC于O,∵若四边形QPCP′为菱形,∴PP′⊥QC,∴∠POQ=90°,∵∠ACB=90°,∴PO∥AC,∴=,∵设点Q运动的时间为t秒,∴AP=t,QB=t,∴QC=6﹣t,∴CO=3﹣,∵AC=CB=6,∠ACB=90°,∴AB=6,∴=,解得:t=2,故选:B.2.解:因为一组邻边相等的平行四边形是菱形,对角线互相垂直平分的四边形是菱形,那么可添加的条件是:AB=BC.故选:C.3.解:∵EF∥AB,∴∠BCF=∠B,∵∠BCF=35°,∴∠B=35°,∵DC是斜边AB上的中线,∴AD=BD=CD,∴∠B=∠BCD,∠ACD=∠CAD,∵∠ADC =∠B +∠BCD ,∴∠ADC =70°,∴∠ACD =(180°﹣70°)=55°,故选:C .4.解:方法一:设AP =x ,PB =3﹣x .∵∠EAP =∠EAP ,∠AEP =∠ABC ;∴△AEP ∽△ABC ,故=①; 同理可得△BFP ∽△DAB ,故=②.①+②得=, ∴PE +PF =. 方法二:(面积法)如图,作BM ⊥AC 于M ,则BM ==,∵S △AOB =S △AOP +S △POB ,∴•AO •BM =•AO •PE +•OB •PF ,∵OA =OB ,∴PE +PF =BM =.故选:B .5.解:∵在△ABC 中,AB =3,AC =4,BC =5,∴AB 2+AC 2=BC 2,即∠BAC =90°.又∵PE ⊥AB 于E ,PF ⊥AC 于F ,∴四边形AEPF 是矩形,∴EF =AP .因为AP 的最小值即为直角三角形ABC 斜边上的高,即2.4,∴EF 的最小值为2.4,故选:C.6.解:A、不能判定为特殊的四边形;B、只能判定为矩形;C、只能判定为菱形;D、能判定为正方形;故选:D.7.解:∵等腰梯形的两条对角线相等,∴顺次连接等腰梯形四边中点得到的四边形是菱形,∵菱形的对角线互相垂直,∴再顺次连接所得四边形四边的中点得到的图形是矩形.故选:D.8.解:方法一:如图,延长DA、BC交于点G,∵四边形ABED是正方形,∴∠BAD=90°,AD=AB,∴∠BAG=180°﹣90°=90°,∵△ABC是边长为2的等边三角形,∴AB=2,∠ABC=60°,∴AG=AB•tan∠ABC=2×tan60°=2,∴DG=AD+AG=2+2,∵∠G=90°﹣60°=30°,DF⊥BC,∴DF=DG=×(2+2)=1+,故选D.方法二:如图,过点E作EG⊥DF于点G,作EH⊥BC于点H,则∠BHE=∠DGE=90°,∵△ABC是边长为2的等边三角形,∴AB=2,∠ABC=60°,∵四边形ABED是正方形,∴BE=DE=2,∠ABE=∠BED=90°,∴∠EBH=180°﹣∠ABC﹣∠ABE=180°﹣60°﹣90°=30°,∴EH=BE•sin∠EBH=2•sin30°=2×=1,BH=BE•cos∠EBH=2cos30°=,∵EG⊥DF,EH⊥BC,DF⊥BC,∴∠EGF=∠EHB=∠DFH=90°,∴四边形EGFH是矩形,∴FG=EH=1,∠BEH+∠BEG=∠GEH=90°,∵∠DEG+∠BEG=90°,∴∠BEH=∠DEG,在△BEH和△DEG中,,∴△BEH≌△DEG(AAS),∴DG=BH=,∴DF=DG+FG=+1,故选:D.二.填空题(共10小题,满分30分)9.解:根据三角形中位线定理得,第一个四边形的边长为=,周长为2,第二个四边形的周长为=4,第三个四边形的周长是:4()3=,第n个四边形的周长为4()n,故答案为,4()n.10.解:根据对角线相等的菱形是正方形,可添加:AC=BD;根据有一个角是直角的菱形是正方形,可添加的:AB⊥BC;故添加的条件为:AC=BD或AB⊥BC.11.解:连接PC.∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°;又∵∠ACB=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=4,BC=3,∴AB=5,∴AC•BC=AB•PC,∴PC=.∴线段EF长的最小值为;故答案是:.12.解:∵入射角与反射角相等,∴∠BQR=∠AQP,∠APQ=∠SPD,∠CSR=∠DSP,∠CRS=∠BRQ,∵四边形ABCD是矩形,∴∠A=∠B=∠C=∠D=90°,∴∠DPS+∠DSP=90°,∠AQP+∠APQ=90°,∴∠DSP=∠AQP=∠CSR=∠BQR,∴∠RSP=∠RQP,同理∠SRQ=∠SPQ,∴四边形SPQR是平行四边形,∴SR=PQ,PS=QR,在△DSP和△BQR中∴△DSP≌△BQR,∴BR=DP=3,BQ=DS,∵四边形ABCD是矩形,∴AB=CD=8,BC=AD=15,∴AQ=8﹣DS,AP=15﹣3=12,∵∠SPD=∠APQ,∴△SDP∽△QAP,∴=∴=,DS=,在Rt△DSP中,由勾股定理得:PS=QR==,同理PQ=RS=,∴QP+PS+SR+QR=2×+2×=34,故答案为:34.13.解:如图,∵∠C=90°,点D为AB的中点,∴AB=2CD=10,∴CD=5,∴BC=CD=5,在Rt△ABC中,AC===5.故答案为:5.14.解:∵△ACE是等边三角形,∴∠EAC=60°,AE=AC,∵∠BAC=30°,∴∠FAE=∠ACB=90°,AB=2BC,∵F为AB的中点,∴AB=2AF,∴BC=AF,∴△ABC≌△EFA,∴FE=AB,∴∠AEF=∠BAC=30°,∴EF⊥AC,故①正确,∵EF⊥AC,∠ACB=90°,∴HF∥BC,∵F是AB的中点,∴HF=BC,∵BC=AB,AB=BD,∴HF=BD,故④说法正确;∵AD=BD,BF=AF,∴∠DFB=90°,∠BDF=30°,∵∠FAE=∠BAC+∠CAE=90°,∴∠DFB=∠EAF,∵EF⊥AC,∴∠AEF=30°,∴∠BDF=∠AEF,∴△DBF≌△EFA(AAS),∴AE=DF,∵FE=AB,∴四边形ADFE为平行四边形,∵AE≠EF,∴四边形ADFE不是菱形;故②说法不正确;∴AG=AF,∴AG=AB,∵AD=AB,则AD=4AG,故③说法正确,故答案为:①③④.15.解:∵四边形ABCD是菱形,AC=8cm,BD=6cm,∴AC⊥BD,AO=OC=4cm,BO=OD=3cm,由勾股定理得:BC=AB=AD=CD=5cm,分为三种情况:①如图1,当PA=AB=5cm时,t=5÷1=5;②如图2,当P和C重合时,PB=AB=5cm,t=8÷1=8;③如图3,作AB的垂直平分线交AC于P,此时PB=PA,连接PB,在Rt△BOP中,由勾股定理得:BP2=BO2+OP2,AP2=32+(4﹣AP)2,AP=;t=÷1=,故答案为:5或8或.16.解:①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠EAB=∠PAD,又∵AE=AP,AB=AD,∵在△APD和△AEB中,,∴△APD≌△AEB(SAS);故此选项成立;③∵△APD≌△AEB,∴∠APD=∠AEB,∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,∴∠BEP=∠PAE=90°,∴EB ⊥ED ;故此选项成立;②过B 作BF ⊥AE ,交AE 的延长线于F ,∵AE =AP ,∠EAP =90°,∴∠AEP =∠APE =45°,又∵③中EB ⊥ED ,BF ⊥AF ,∴∠FEB =∠FBE =45°,又∵BE ===,∴BF =EF =, 故此选项不正确;④如图,连接BD ,在Rt △AEP 中,∵AE =AP =1,∴EP =, 又∵PB =, ∴BE =,∵△APD ≌△AEB ,∴PD =BE =,∴S △ABP +S △ADP =S △ABD ﹣S △BDP =S正方形ABCD ﹣×DP ×BE =×(4+)﹣××=+.故此选项不正确.⑤∵EF =BF =,AE =1, ∴在Rt △ABF 中,AB 2=(AE +EF )2+BF 2=4+,∴S 正方形ABCD =AB 2=4+, 故此选项正确.故答案为:①③⑤.17.解:第一行有1个矩形,第二行有1个矩形,第三行有6个,第一列有3个,第二列有1个,第四列有3个,那么共有1+1+6+3+1+3=15个,图中还有11个正方形,因为正方形也是矩形的一种,因此共有26个矩形.故答案为26.18.解:如右图,连接EF,FG,GH,EH,∵E、H分别是AB、DA的中点,∴EH是△ABD的中位线,∴EH=BD=3,同理可得EF,FG,GH分别是△ABC,△BCD,△ACD的中位线,∴EF=GH=AC=3,FG=BD=3,∴EH=EF=GH=FG=3,∴四边形EFGH为菱形,∴EG⊥HF,且垂足为O,∴EG=2OE,FH=2OH,在Rt△OEH中,根据勾股定理得:OE2+OH2=EH2=9,等式两边同时乘以4得:4OE2+4OH2=9×4=36,∴(2OE)2+(2OH)2=36,即EG2+FH2=36.故答案为:36.三.解答题(共7小题,满分88分)19.解:(1)∵AD是∠BAC的平分线,∴∠BAD=∠CAD,∵∠BAC=100°,∴∠BAD=50°;(2)∵AB=AC,∴∠B=∠C,∴∠;(3)∵AB=AC,AD平分∠BAC,∴AD是等腰△ABC底边BC上的高,即∠ADB=90°在直角三角形ABD中,点E是AB的中点,∴DE为斜边AB边上的中线,∴DE=.20.(1)证明:∵在▱ABCD中,AB=CD,∴BC=AD,∠ABC=∠CDA.又∵BE=EC=BC,AF=DF=AD,∴BE=DF.∴△ABE≌△CDF.(2)解:∵四边形AECF为菱形,∴AE=EC.又∵点E是边BC的中点,∴BE=EC,即BE=AE.又∵BC=2AB=4,∴AB=BC=BE,∴AB=BE=AE,即△ABE为等边三角形,如图,过点A作AH⊥BC于H,∴BH=BE=1,根据勾股定理得,AH=∴菱形AECF的面积为2.21.(1)证明:∵AE∥DC,EC∥AD,∴四边形ADCE是平行四边形,∵∠BAC=90°,点D是BC的中点,∴AD=BD=CD,∴平行四边形ADCE是菱形;(2)解:∵四边形ADCE是菱形,∴∠EOC=90°,AO=CO,∠ACE=∠ACD,∴tan∠ACB==,∴tan∠OCE=.22.(1)证明:∵MN交∠ACB的平分线于点E,交∠ACD的外角平分线于点F,∴∠2=∠5,∠4=∠6,∵MN∥BC,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF;(2)解:∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°,∵CE=12,CF=5,∴EF==13,∴OC=EF=6.5;(3)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.证明:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.23.解:∵四边形ABCD是平行四边形,∴AO=OC=AC,BO=OD=BD,∵△AOB是等边三角形,∴AO=BO.∴AC=BD.∴平行四边形ABCD是矩形,在Rt△ABC中,∵AB=4cm,AC=2AO=8cm,∴BC==4cm,=AB×BC=4cm×4cm=16cm2.∴S平行四边形ABCD24.证明:∵∠CED是△BCE的外角,∠AED是△ABE的外角,∴∠CED=∠CBE+∠BCE,∠AED=∠BAE+∠ABE,∵∠BAE=∠BCE,∠AED=∠CED,∴∠CBE=∠ABE,∵四边形ABCD是矩形,∴∠ABC=∠BCD=∠BAD=90°,AB=CD,∴∠CBE=∠ABE=45°,∴△ABD与△BCD是等腰直角三角形,∴AB=AD=BC=CD,∴四边形ABCD是正方形.25.解:(1)∵四边形ABCD为矩形,四边形HEFG为菱形,∴∠D=∠A=90°,HG=HE,又AH=DG=2,∴Rt△AHE≌Rt△DGH(HL),∴∠DHG=∠HEA,∵∠AHE+∠HEA=90°,∴∠AHE+∠DHG=90°,∴∠EHG=90°,∴四边形HEFG为正方形;(2)过F作FM⊥DC,交DC延长线于M,连接GE,∵AB∥CD,∴∠AEG=∠MGE,∵HE∥GF,∴∠HEG=∠FGE,∴∠AEH=∠MGF,在△AHE和△MFG中,∠A=∠M=90°,HE=FG,∴△AHE≌△MFG,∴FM=HA=2,即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2,因此;(3)设DG=x,则由第(2)小题得,S=7﹣x,在△AHE中,AE≤AB=7,△FCG∴HE2≤53,∴x2+16≤53,∴x≤,∴S的最小值为,此时DG=,△FCG∴当DG=时,△FCG的面积最小为().。
第一章 特殊平行四边形 单元测试卷(含答案) 北师大版九年级上册数学
![第一章 特殊平行四边形 单元测试卷(含答案) 北师大版九年级上册数学](https://img.taocdn.com/s3/m/297e5d37f68a6529647d27284b73f242336c3190.png)
共有( )
A.1 对
B.2 对
C.3 对
D.4 对
3.如图,AC、BD 是四边形 ABCD 的两条对角线,顺次连接四边形 ABCD 各边中点得到四边形 EFGH,要使四边
形 EFGH 为矩形,应添加的条件是( )
A.AC⊥BD
B.AB=CD
C.AB∥CD
D.AC=BD
4.如图,在正方形 ABCD 中, CE MN , MCE 36 ,那么 ANM 等于( )
的最小值为
.
三、解答题(共 6 小题,每题 8 分,满分 48 分) 19.如图,小亮将升旗的绳子拉到杆底端,绳子末刚好接触地面,然后将绳子末端拉到距离旗杆 8m 处,发现此时 绳子末端距离地面 2m .请你求出杆的高度(滑轮上方的高度忽略不计,解题时请在图中标注字母)
20.如图,将一张长方形纸片 ABCD 沿 CE 折叠,使点 B 与 AD 边上的点 B′重合.过点 B′作 B′F//EB 交 CE 于点 F, 连接 EB′与 BF.
24.(1)
y1
2t 0
16 2t
t 4 4 t
8
;
y2
t
0
t
8
(2)①当 0 t 4 时, y1 随时间 t 的增大而增大,当 4 t 8 时, y1 随时间 t 的增大而减小;② 0 t 16
3
周长多 4,则 AC 的长是(
A.2 3
B.4 3
C.2 7
D. 4 7
8.如图,边长为 4 和 10 的两个正方形 ABCD 与 CEFG 并排在一起,连接 BD 并延长交 EF 于 H,交 EG 于 I,则 GI 的长为( )
A.3
B.7
C.3 2
(好题)初中数学九年级数学上册第一单元《特殊平行四边形》测试卷(包含答案解析)
![(好题)初中数学九年级数学上册第一单元《特殊平行四边形》测试卷(包含答案解析)](https://img.taocdn.com/s3/m/4337681808a1284ac95043ba.png)
一、选择题1.如图,在正方形ABCD 中,点E 、F 分别在BC 、CD 上,△AEF 是等边三角形,连接AC 交EF 于点G ,给出下列结论:①BE=DF ;②∠DAF=15°;③AC 垂直平分EF ;④BE+DF=EF ;其中结论正确的共有( )A .4个B .3个C .2个D .1个2.如图,点P 是正方形ABCD 的对角线BD 上一点(点P 不与点B 、D 重合),PE BC ⊥于点E ,PF CD ⊥于点F ,连接EF ,给出下列几个结论:①AP EF =;②AP EF ⊥;③当APD ∆是等腰三角形时,67.5DAP ∠=︒;④PFE BAP ∠=∠.其中有正确有( )个.A .1B .2C .3D .43.如图,依据尺规作图的痕迹,则α∠是( )A .54°B .36°C .28°D .72°4.如图,矩形纸片ABCD ,3AB =,5AD =,折叠纸片,使点A 落在BC 边上的E 处,折痕为PQ ,当点E 在BC 边上移动时,折痕的端点P 、Q 也随之移动,若限定点P 、Q 分别在AB 、AD 边上移动,则点E 在BC 边上可移动的最大距离为( )A .1B .2C .4D .55.如图,已知△ABC 中,AB =AC ,AD 是∠BAC 的平分线,AE 是∠BAC 的外角平分线,ED ∥AB 交AC 于点G .下列结论:①AD ⊥BC ;②AE ∥BC ;③AE =AG ;④AD 2+AE 2=4AG 2,其中正确结论的个数是( )A .1B .2C .3D .46.如图,四边形ABCD 沿直线l 对折后重合,如果//AD BC ,则结论①AB //CD ;②AB =CD ;③AB BC ⊥;④AO OC =中正确的是( )A .1个B .2个C .3个D .4个7.如图,正方形ABCD 的边长为3,点P 为对角线AC 上任意一点,PE BC ⊥,PQ AB ⊥,垂足分别是E ,Q ,则PE PQ +的值是( )A .32B .3C .322D .328.已知菱形ABCD 的对角线AC ,BD 相交于点O ,8AC =,6BD =,则菱形ABCD 的周长为( )A .30B .20C .15D .129.如图,正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展开后折痕DE 分别交AB 、AC 于点E 、G ,连结GF ,给出下列结论:①∠ADG=22.5°;②AD=2AE ;③ACD OGD S S ∆∆=;④四边形AEFG 是菱形;⑤BE=2OG :⑥若1OGF S ∆=,则正方形ABCD 的面积是642+,其中正确的结论个数为( )A .2个B .3个C .4个D .5个10.如图,将n 个边长都为2的正方形按如图所示摆放,点A 1,A 2,…A n 分别是正方形的中心,则这n 个正方形重叠部分的面积之和是( )A .nB .n -1C .(14)n -1D .14n 11.如图,AB AF ⊥,EF AF ⊥,BE 与AF 交于点C ,点D 是BC 的中点,2AEB B ∠=∠.若8BC =,7EF =,则AF 的长是( )A .6B .7C .3D .5 12.将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF .若AB=6,则BC 的长为( ).A .3B .32C .23D .322二、填空题13.如图,在Rt ABC 中,90BAC ∠=︒,30ACB ∠=︒,8AB =,点P 为BC 上任意一点,连接PA ,以PA ,PC 为邻边作平行四边形PAQC ,连接PQ ,则PQ 的最小值为______.14.如图,正方形ABCD ,对角线AC ,BD 交于点O ,以OD ,OC 为一组邻边做正方形1DOCC ;CD ,1OC 交于点1O ,以1O D ,11O C 为一组邻边做正方形112DO C C ;1C D ,12O C 交于点2O ,以2O D ,22O C 为一组邻边做正方形223DO C C …….若1AB =,则1n n n DO C C S +正方形的值为_____.15.如图,有一张长方形纸片,8,6ABCD AB AD ==.先将长方形纸片ABCD 折叠,使边AD 落在边AB 上,点D 落在点E 处,折痕为AF ;再将AEF 沿EF 翻折,AF 与BC 相交于点G ,则AG 的长为_____.16.已知:如图,点P 是边长为2的菱形ABCD 对角线AC 上的一个动点,点M 是AB 边的中点,且60BAD ∠=︒,则MP PB +的最小值是_______.17.如图,点E 是矩形ABCD 内任一点,若4AB =,7BC =.则图中阴影部分的面积为__________.18.如图,平面直角坐标系中有一正方形OABC ,点C 的坐标为()2,1--点B 坐标为________.19.如图,在正方形ABCD 中,已知2AB =,点,E G 分别是边,AD CD 的中点,点F 是边BC 上的动点,连接EF ,将正方形ABCD 沿EF 折叠,,A B 的对应点分别为,A B '',则线段GB '的最小值是_____.20.如图,矩形OABC 的顶点B 的坐标为(3,2),则对角线AC =_____.三、解答题21.某数学活动小组在一次活动中,对一个数学问题作如下研究:(问题呈现)(1)如图1,ABC 中分别以,AB AC 为边向外作等腰ABE △和等腰ACD △,使AE AB =,AD AC =,BAE CAD ∠=∠,连结,BD CE ,试猜想BD 与CE 的大小关系,并说明理由.(问题再探)(2)如图2,ABC 中分别以,AB AC 为边向外作等腰Rt ABE △和等腰Rt ACD △,90EAB CAD ∠=∠=︒,连结,BD CE ,若4,2,45AB BC ABC ==∠=︒,求BD 的长.(问题拓展)(3)如图3,四边形ABCD 中,连结AC ,CD BC =,60BCD ∠=︒,30BAD ∠=︒,15AB =,25AC =,请直接写出AD 的长.BE=,连接22.如图,点E为边长为3的正方形ABCD的边CB延长线上一点,1△绕着正方形的顶点A旋转得到ADF.AE,将ABE(1)写出上述旋转的旋转方向和旋转角度数:(2)连接EF,求AEF的面积:(3)如图中,ADG可以看作由BAE△先绕着正方形的顶点B顺时针旋转90︒,再沿着BA方向平移3个单位的二次基本运动所成,那么ADG是否还可以看作由BAE△只通过一次旋转运动而成呢?如果可以,请写出(同时在图中画出)旋转中心、旋转方向和旋转角度数,如果不能,则说明理由.23.如图,点E是正方形ABCD的边DC上一点,把ADE顺时针旋转ABF的位置.(1)旋转中心是点,旋转角度是度:(2)若连结EF,则AEF是三角形,并证明你的结论.⊥,交AB于点E,过点A作24.如图,过ABC边AC的中点O,作OE ACAD BC,与BO的延长线交于点D,连接CD,CE,若CE平分ACB //⊥∠,CE BO 于点F.(1)求证:①OC BC =,②四边形ABCD 是矩形;(2)若3BC =,求DE 的长.25.若一个四边形的两条对角线互相垂直,则称这个四边形为垂美四边形.(1)概念理解:如图1,在四边形ABCD 中,AB AD CB CD ==,,判断四边形ABCD 是否为垂美四边形,并说明理由;(2)性质探究:如图2,试在垂美四边形ABCD 中探究2AB 、2BC 、2CD 、2AD 之间的数量关系;(3)解决问题:如图3,分别以Rt △ABC 的直角边AC 和斜边AB 为边向外作正方形ACFD 和正方形ABGE ,连接BD 、CE 、DE ,CE 分别交AB 、BD 于点M 、N ,若AB =2,AC =3,求线段DE 的长.26.综合与探究如图是一个正方形纸片ABCO ,如果将正方形纸片ABCO 绕点C 逆时针旋转角度α(0°<α<90°),得到正方形CDEF ,ED 交AB 于点G ,ED 的延长线交0A 于点H ,连接CH 、CG .(1)求证:CG 平分∠DCB ;(2)直接写出线段HG 、OH 、BG 之间的数量关系;(3)连接BD ,AD ,AE ,BE ,试探究在旋转过程中,四边形AEBD 能否成为矩形?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】通过条件可以得出△ABE ≌△ADF ,从而得出∠BAE=∠DAF ,BE=DF ,由正方形的性质就可以得出EC=FC ,就可以得出AC 垂直平分EF ,设EC=x ,由勾股定理就可以表示出BE 与EF ,再通过比较可以得出结论.【详解】解:∵四边形ABCD 是正方形,∴AB=BC=CD=AD ,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF 等边三角形,∴AE=EF=AF ,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt △ABE 和Rt △ADF 中,AE AF AB AD ⎧⎨⎩== ∴Rt △ABE ≌Rt △ADF (HL ),∴BE=DF .故①正确;∠BAE=∠DAF ,∴∠DAF+∠DAF=30°,即∠DAF=15°故②正确;∵BC=CD ,∴BC-BE=CD-DF ,即CE=CF ,∵AE=AF ,∴AC 垂直平分EF .故③正确;设EC=x ,由勾股定理,得 EF=2x ,CG=2x ,AG=6x ∴AC=622x + ∴AB=31x + ∴BE=3131x x x +--= ∴BE+DF=()31x -≠2x =EF 故④错误;故选:B【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,解答本题时运用勾股定理的性质解题时关键.2.C解析:C【分析】过P 作PG ⊥AB 于点G ,根据正方形对角线的性质及题中的已知条件,证明△AGP ≌△FPE 后即可证明①AP =EF ;④∠PFE =∠BAP ;延长AP 到EF ,交EF 于点H ,知∠PAG =∠PFH ,结合∠APG =∠FPH 得∠PHF =∠PGA =90°,据此知AP ⊥EF ,②正确;由点P 是正方形ABCD 的对角线BD 上不于点B 、D 重合的任意一点,∠ADP =45°知当∠PAD =45°或67.5°时,△APD 是等腰三角形,可判断③;【详解】过点P 作PG ⊥AB 于点G ,∵点P 是正方形ABCD 的对角线BD 上一点(点P 不与点B 、D 重合),∴GB =GP ,同理:PE =BE ,∵AB =BC =GF ,∴AG =AB−GB ,FP =GF−GP =AB−GB ,∴AG =PF ,在△AGP 和△FPE 中,AG PF AGP FPE GP PE =⎧⎪∠=∠⎨⎪=⎩, ∴△AGP ≌△FPE (SAS ),∴AP =EF ,①正确,∠PFE =∠GAP , ∴∠PFE =∠BAP ,④正确; 延长AP 到EF ,交EF 于一点H , ∴∠PAG =∠PFH , ∵∠APG =∠FPH , ∴∠PHF =∠PGA =90°, ∴AP ⊥EF ,②正确,∵点P 是正方形ABCD 的对角线BD 上不与点B 、D 重合的任意一点,∠ADP =45°, ∴当PA =PD 时,∠PAD =45°; 当DA =DP 时,∠PAD =67.5°,即当,△APD 是等腰三角形时,∠PAD =45°或67.5°时,故③错误. 因此,正确的结论是①②④,共3个, 故选:C . 【点睛】本题考查了正方形的性质,全等三角形的判定及性质,垂直的判定,等腰三角形的性质.本题难度较大,综合性较强,在解答时要认真审题.3.A解析:A 【分析】先根据矩形的性质得出AD ∥BC ,故可得出∠DAC 的度数,由角平分线的定义求出∠EAF 的度数,再由EF 是线段AC 的垂直平分线得出∠AEF 的度数,根据三角形内角和定理得出∠AFE 的度数,进而可得出结论. 【详解】 解:如图,∵四边形ABCD 是矩形, ∴AD ∥BC , ∴∠DAC=∠ACB=72°.∵由作法可知,AF是∠DAC的平分线,∠DAC=36°.∴∠EAF=12∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°-36°=54°,∴∠α=54°.故选:A.【点睛】本题考查的是作图-基本作图,熟知角平分线及线段垂直平分线的作法是解答此题的关键.4.B解析:B【分析】根据翻折变换,当点Q与点D重合时,点E到达最左边,当点P与点B重合时,点E到达最右边,所以点E就在这两个点之间移动,分别求出这两个位置时EB的长度,然后两数相减就是最大距离.【详解】解:如图1,当点D与点Q重合时,根据翻折对称性可得ED=AD=5,在Rt△ECD中,ED2=EC2+CD2,即52=(5-EB)2+32,解得EB=1,如图2,当点P与点B重合时,根据翻折对称性可得EB=AB=3,∵3-1=2,∴点E在BC边上可移动的最大距离为2.故选:B.【点睛】本题考查的是翻折变换及勾股定理,熟知图形翻折不变性的性质是解答此题的关键.5.C解析:C【分析】连接EC,根据等腰三角形的性质得出AD⊥BC,即可判断①;求出∠FAE=∠B,再根据平行线的性质得出AE∥BC,即可判断②;求出四边形ABDE是平行四边形,根据平行四边形的性质得出AE=BD,求出AE=CD,根据矩形的判定推出四边形ADCE是矩形,根据矩形的性质得出AC=DE,AG=CG,DG=EG,求出DG=AG=CG=EG,根据勾股定理判断④即可;根据AE=BD=12BC和AG=12AC判断③即可.【详解】解:连接EC,∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,故①正确;∵AB=AC,∴∠B=∠ACB,∵AE平分∠FAC,∴∠FAC=2∠FAE,∵∠FAC=∠B+∠ACB,∴∠FAE=∠B,∴AE∥BC,故②正确;∵AE∥BC,DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD,∵AB=AC,AD⊥BC,∴CD=BD,∴AE=CD,∵AE∥BC,∠ADC=90°,∴四边形ADCE是矩形,∴AC=DE,AG=CG,DG=EG,∴DG=AG=CG=EG,在Rt△AED中,AD2+AE2=DE2=AC2=(2AG)2=4AG2,故④正确;∵AE=BD=12BC,AG=12AC,∴AG=AE错误(已知没有条件AC=BC),故③错误;即正确的个数是3个,故选:C.【点睛】本题考查了勾股定理,等腰三角形的性质,平行线的性质和判定,平行四边形的性质和判定,矩形的性质和判定等知识点,能综合运用知识点进行推理是解此题的关键.6.C解析:C【分析】分析已知条件,根据轴对称图形的性质结合图形对题中小问题的条件进行分析,选出正确答案,其中③是无法证明是正确的.【详解】解:如图所示:∵直线l是四边形ABCD的对称轴,∴AB=AD,BC=DC,∠1=∠2,∠3=∠4,又∵AD∥BC,∴∠2=∠3,∴∠1=∠4,∴AB∥CD,故①正确;∴四边形ABCD是菱形;∴AB=CD,故②正确;∵四边形ABCD是菱形;∴AO=OC,故④正确.∵当四边形ABCD是菱形时,直线l是四边形ABCD的对称轴,但是AB与BC不一定垂直,故③错误;故选:C.【点睛】主要考查了轴对称的性质及菱形的性质与判定;证明四边形是菱形是正确解答本题的关键.7.B解析:B 【分析】证明四边形PQBE 是矩形得PE=QB , 证明△PEC 是等腰直角三角形得PQ=BE 便可求得结果 【详解】解:∵四边形ABCD 是正方形, ∴∠ABC=90°,∠ACB=12∠BCD=45° ∵PE ⊥BC ,PQ ⊥AB , ∴四边形PQBE 是矩形, ∴PQ=BE∵AC 是正方形ABCD 的对角线, ∴∠PCE=45°, 又∠PEC=90°∴△PEC 是等腰直角三角形 ∴PE=CE∴PE+PQ=CE+BE=BC=3. 故选:B . 【点睛】本题主要考查了正方形的性质,矩形的性质与判定,等腰直角三角形的判定,关键是证明PE=CE ,PQ=BE .8.B解析:B 【分析】由菱形的性质,得到AC ⊥BD ,4AO =,3BO =,然后利用勾股定理求出AB=5,即可求出周长. 【详解】解:∵四边形ABCD 是菱形,∴AC ⊥BD ,118422AO AC ==⨯=,116322BO BD ==⨯=; 在直角△ABO 中,由勾股定理,得22435AB,∴菱形的周长为:4520⨯=; 故选:B . 【点睛】本题考查了菱形的性质,勾股定理的应用,解题的关键是掌握菱形的性质进行解题.9.B解析:B 【分析】由题意易得AC ⊥BD ,OA=OC=OB=OD ,∠ADO=∠ABD=45°,AD=AB ,△ADE ≌△FDE ,则有BE =,进而可得四边形AEFG 是平行四边形,然后根据等腰直角三角形的性质及线段的等量关系可求解. 【详解】解:∵四边形ABCD 是正方形,∴AC ⊥BD ,OA=OC=OB=OD ,∠ADO=∠ABD=45°,AD=AB , ∵折叠正方形ABCD , ∴△ADE ≌△FDE ,∴∠ADE=∠FDE=22.5°,AD=DF ,AE=FE ,∠EFD=∠DAE=90°,故①正确; ∴△EFB 是等腰直角三角形, ∴BE =,∴AD AB AE ==+,故②错误;由图可直接判定③错误; ∵∠EFB=∠AOB=90°, ∴OA ∥EF ,由折叠的性质可得:∠GFO=∠DAO=45°, ∴∠GFO=∠ABO=45°, ∴GF ∥AE ,∴四边形AEFG 是平行四边形, ∵AE=AF ,∴四边形AEFG 是菱形,故④正确; ∵∠GFO=45°,∠AOB=90°, ∴△GOF 是等腰直角三角形, ∴EF GF ==,∴2BE OG =,故⑤正确; ∵2112OGF S OG ∆==, ∴OG =∴2BE EF AE ===, ∴2AB =,∴()22212ABCD S AB ===+正方形⑥错误;∴正确的有三个; 故选B . 【点睛】本题主要考查正方形的性质、菱形的判定及等腰直角三角形的性质与判定,熟练掌握正方形的性质、菱形的判定及等腰直角三角形的性质与判定是解题的关键.10.B解析:B【分析】过中心作阴影另外两边的垂线可构建两个全等三角形(ASA ),由此可知阴影部分的面积是正方形的面积的14,已知两个正方形可得到一个阴影部分,则n 个这样的正方形重叠部分即为(n -1)个阴影部分的和,即可求解. 【详解】如图作正方形边的垂线,由ASA 可知同正方形中两三角形全等,利用割补法可知一个阴影部分面积等于正方形面积的14, 即是12214⨯⨯=, n 个这样的正方形重叠部分(阴影部分)的面积和为:()111n n ⨯-=-. 故选:B . 【点睛】本题考查了正方形的性质、全等三角形的判定与性质.解题的关键是得到n 个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.11.C解析:C 【分析】根据直角三角形的性质和等腰三角形的判定和性质即可得到结论. 【详解】 ∵AB ⊥AF , ∴∠FAB=90°, ∵点D 是BC 的中点,∴AD=BD=12BC=4, ∴∠DAB=∠B ,∴∠ADE=∠B+∠BAD=2∠B , ∵∠AEB=2∠B , ∴∠AED=∠ADE , ∴AE=AD ,∴AE=AD=4,∵,EF⊥AF,∴==3,故选:C.【点睛】本题考查了直角三角形斜边中线的性质,三角形的外角性质,等腰三角形的判定和性质,勾股定理,正确的识别图形是解题的关键.12.C解析:C【分析】根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求解.【详解】解:∵菱形AECF,AB=6,设BE=x,则AE=CE=6-x,∵菱形AECF,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=FCO=30°,∴2BE=CE,即CE=2x,∴2x=6-x,解得:x=2,∴CE=4,又EB=2,则利用勾股定理得:BC=故选:C.【点睛】此题主要考查了折叠问题以及勾股定理等知识,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.二、填空题13.【分析】设PQ与AC交于点O作OP′⊥BC于P′首先求出OP′当P与P′重合时PQ的值最小PQ的最小值=2OP′【详解】解:设PQ与AC交于点O作OP′⊥BC于P′如图所示:在Rt△ABC中∠ACB解析:【分析】设PQ与AC交于点O,作OP′⊥BC于P′.首先求出OP′,当P与P′重合时,PQ的值最小,PQ的最小值=2OP′.【详解】解:设PQ 与AC 交于点O ,作OP ′⊥BC 于P ′.如图所示: 在Rt △ABC 中,∠ACB =30°, ∴BC =2AB =16,AC =3AB =83, ∵四边形PAQC 是平行四边形, ∴OA =OC =43, ∵OP ′⊥BC ,∠ACB =30°, ∴OP '=12OC =23, 当P 与P ′重合时,OP 的值最小,则PQ 的值最小, ∴PQ 的最小值=2OP ′=43, 故答案为:43.【点睛】本题考查了勾股定理的运用、平行四边形的性质以及垂线段最短的性质,判断出PQ 的值最小时的情况是解题的关键.14.【分析】依题意得由从而可得同理继而可得……依此规律作答【详解】解:在正方形中同理∵∴∵……故答案为:【点睛】本题考查了正方形的性质全等三角形的性质及求三角形的面积等知识正确理解正方形的对角线把正方形 解析:+112n【分析】依题意,得1ABCD S =正方形,由ABC DOC 142DOCDOCD C S SS S==正方形正方形,,从而可得11122DOCC ABCD S S ==正方形正方形,同理,111S 4DO C DOCC S =正方形,11112S 2DO C DO C C S=正方形,继而可得 112121111S 2222DO C C DOCC S ==⨯=正方形正方形 ,22112S 4DO C DO C C S =正方形,22223S 2DO C DO C C S=正方形,2231121S 2DO C C DO C C S ==正方形正方形23111222⨯=……,依此规律作答【详解】解:在正方形ABCD 中,,,AC BD AO BO CO DO AB BC CD DA ⊥======,AOB BOC COD DOA ∴≌≌≌,AOBBOCCODDOAS∴=S=S=SS 4DOCABCD S∴=正方形, 1S 2DOCDOCC S=正方形,11S 2DOCC ABCD S ∴=正方形正方形,同理∵111S 4DO C DOCC S =正方形,11112S 2DO C DO C C S=正方形∴112121111S 2222DO C C DOCC S ==⨯=正方形正方形 , ∵22112S 4DO C DO C C S =正方形,22223S 2DO C DO C C S=正方形223112231111S 2222DO C C DO C C S ==⨯=正方形正方形, ……111S 2n n n DO C C n ∴++=正方形, 故答案为:112n + 【点睛】本题考查了正方形的性质,全等三角形的性质及求三角形的面积等知识,正确理解正方形的对角线把正方形分成面积相等的四个全等三角形是解题的关键15.【分析】根据折叠的性质得到(图1)进而可得继而可得(图3中)△ABG 是等腰直角三角形再根据勾股定理求出AG 即可【详解】解:由折叠的性质可知图3中由操作可得由勾股定理得故答案为:【点睛】本题主要考查了解析:【分析】根据折叠的性质得到45DAF BAF ∠=∠=︒(图1),进而可得2EB =,继而可得(图3中)4AB =,△ABG 是等腰直角三角形,再根据勾股定理求出AG 即可. 【详解】解:由折叠的性质可知,45DAF BAF ∠=∠=︒, 6AE AD ∴==,2EB AB AE ∴=-=,图3中,由操作可得,624AB EA EB =-=-=,45A ∠=︒,90ABG ∠=︒, 4BG AB ∴==,由勾股定理得,AG ==故答案为: 【点睛】本题主要考查了翻折变换、矩形的性质和勾股定理.翻折对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解题关键是得出△ABG 是等腰直角三角形.16.【分析】根据菱形对角线互相垂直且平分的性质得到点B 的对称点为点D 再由两点之间线段最短解得的最小值再根据题意判定是等边三角形结合三线合一及勾股定理解题【详解】如图连接BD 交AC 于点O 连接DM 交点AC 于 解析:3 【分析】根据菱形对角线互相垂直且平分的性质,得到点B 的对称点为点D ,再由两点之间线段最短解得MP PB +的最小值,再根据题意判定ADM △是等边三角形,结合三线合一及勾股定理解题.【详解】如图,连接BD 交AC 于点O ,连接DM 交点AC 于点P ,连接BP ,在菱形ABCD 中,AC BD ⊥,且OB=OD 即点B 关于AC 的对称点是点D ,PD PB ∴=MP PB MP DP DM ∴+=+=此时MP PB +值的最小,AB=AD ,60BAD ∠=︒,ADB ∴是等边三角形,点M 是AB 边的中点,AB DM ∴⊥,1AM ∴=22213DM ∴=-=.【点睛】本题考查菱形的性质、两点之间线段最短、等边三角形的判定与性质、勾股定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.17.【分析】根据三角形面积公式可知图中阴影部分面积等于矩形面积的一半;即可得出结果【详解】解:∵四边形ABCD 是矩形∴AD=BC=7设两个阴影部分三角形的底为ADBC 高分别为h1h2则h1+h2=AB ∴解析:14【分析】根据三角形面积公式可知,图中阴影部分面积等于矩形面积的一半;即可得出结果.【详解】解:∵四边形ABCD 是矩形,∴AD=BC=7,设两个阴影部分三角形的底为AD ,BC ,高分别为h 1,h 2,则h 1+h 2=AB ,∴S △ADE +S △BCE =12AD•h 1+12BC•h 2=12AD (h 1+h 2)=12AD•AB , ∴147142S =⨯⨯=阴影; 故答案为:14.【点睛】本题考查了矩形的性质、三角形面积的计算;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.18.【分析】过点作轴于过点作轴过点作交CE 的延长线于先证明得到根据点的坐标定义即可求解【详解】解:如图过点作轴于过点作轴过点作交CE 的延长线于四边形是正方形易求又∴点的坐标为点到轴的距离为点的坐标为故答 解析:()3,1-【分析】过点A 作AD y ⊥轴于D ,过点C 作CE x ⊥轴,过点B 作BF CE ⊥交CE 的延长线于F .先证明AOD COE BCF ∆∆∆≌≌,得到1AD CE BF ===,2OD OE CF ===,根据点的坐标定义即可求解.【详解】解:如图,过点A 作AD y ⊥轴于D ,过点C 作CE x ⊥轴,过点B 作BF CE ⊥交CE 的延长线于F .()2,1C --,2OE ∴=,1CE =.四边形OABC 是正方形,OA OC BC ∴==.易求AOD COE BCF ∠=∠=∠.又90ODA OEC F ∠=∠=∠=︒∴AOD COE BCF ∆∆∆≌≌,1AD CE BF ∴===,2OD OE CF ===,∴点A 的坐标为()1,2-,211EF =-=,点B 到y 轴的距离为123+=,∴点B 的坐标为()3,1-.故答案为:()3,1-【点睛】本题考查了平面直角坐标系点的坐标,全等三角形的判定与性质,根据题意,添加辅助线构造全等三角形是解题关键.19.【分析】如图连接EGEB′求出EGEB′的长可以判定点B′在EG 的延长线上时GB′的值最小最小值=即可解决问题【详解】解:如图连接EGEB′∵四边形ABCD 是正方形∴∠A=∠D=90°AD=DC=A 解析:52- 【分析】如图,连接EG ,EB ′.求出EG ,EB ′的长,可以判定点B ′在EG 的延长线上时,GB ′的值最小,最小值=52-,即可解决问题.【详解】解:如图,连接EG ,EB ′,∵四边形ABCD 是正方形,∴∠A =∠D =90°,AD =DC =AB =2,∵AE =DE =1,DG =GC =1,∴EG 22DE DG +2211+2,由翻折的性质可知,∠A ′=∠A =90°,A ′E =AE =1,A ′B ′=AB =2,∴EB 22'''A E A B +2212+5∴当点B ′在EG 的延长线上时,GB ′的值最小,最小值52-52-.【点睛】本题考查正方形的性质,翻折变换,勾股定理等知识,解题的关键是学会用转化的思想思考问题,属于中考填空题中的压轴题.20.【分析】连接ACBO 依据点B 的坐标为(32)即可得到OB =再根据四边形ABCO 是矩形即可得出对角线AC 的长【详解】解:如图连接ACBO ∵点B 的坐标为(32)∴OB ==∵四边形ABCO 是矩形∴AC =B 解析:13 【分析】 连接AC ,BO ,依据点B 的坐标为(3,2),即可得到OB =13,再根据四边形ABCO 是矩形,即可得出对角线AC 的长.【详解】解:如图,连接AC ,BO ,∵点B 的坐标为(3,2),∴OB =2232+=13,∵四边形ABCO 是矩形,∴AC =BO =13,故答案为:13.【点睛】本题考查的是矩形的性质,勾股定理,熟知矩形的对角线相等是解答此题的关键.三、解答题21.(1)BD CE =,理由见解析;(2)6;(3)20【分析】(1)首先证明EAC BAD ∠=∠,再证明()AEC ABD SAS △≌△,然后根据全等三角形的性质即可证明;(2)根据等腰直角三角形的性质可得到AE AB =,AC AD =,BAE CAD ∠=∠,证明()EAC BAD SAS △≌△,得到CE BD =,再根据勾股定理计算即可;(3)连接BD ,把△ABD 绕点D 逆时针旋转60︒得到△ECD ,连接AE ,由旋转的性质得到EC=AB=15,△ADE 是等边三角形,由勾股定理可求得AE 的长,即可得解;【详解】解:(1)BD CE =,理由如下:∵BAE CAD ∠=∠,∴EAC BAD ∠=∠,又∵AB AE =,AD AC =,∴()AEC ABD SAS △≌△,∴BD CE =;(2)∵等腰Rt ABE 和等腰Rt ACD ,∴AE AB =,AC AD =,BAE CAD ∠=∠,∴EAC BAD ∠=∠,∴()EAC BAD SAS △≌△,∴CE BD =,∵45ABC EBA ∠=∠=︒,∴90EBC ∠=︒,∵4AB AE ==, ∴224432EB =+=在Rt EBC 中,22(32)26EC =+=,∴6BD =;(3)∵CD BC =,60BCD ∠=︒,∴△BCD 是等边三角形,连接BD ,把△ABD 绕点D 逆时针旋转60°得到△ECD ,连接AE ,则EC=AB=15,△ADE 是等边三角形,∴AE AD =,60DEA ∠=︒,∵30BAD ∠=︒,∴306090CEA ∠=︒+︒=︒,在Rt △AEC 中,2222251540020AE AC CE =--==,∴20AD AE ==.【点睛】本题主要考查了四边形综合,准确结合勾股定理和旋转的性质计算是解题的关键. 22.(1)旋转方向:逆时针旋转,旋转角:90°;(2)5;(3)可以,图见解析,BAE △绕点O 顺时针旋转90°得到ADG【分析】(1)根据图形和正方形的性质即可得出结论;(2)根据正方形的性质和旋转的性质可得AD=DC=BC=3,DF=BE=1,从而求出EC 和CF ,最后利用AEF S=S 梯形AECD -S △ADF -S △ECF 即可求出结论; (3)根据旋转中心、旋转方向和旋转角的定义即可得出结论. 【详解】解:(1)由图易知:由ABE △到ADF 的旋转方向为逆时针旋转,∵四边形ABCD 为正方形∴∠BAD=90°即旋转角为90°综上:旋转方向:逆时针旋转,旋转角:90°;(2)∵正方形ABCD 的边长为3,1BE =∴AD=DC=BC=3,DF=BE=1∴EC=BE +BC=4,CF=DC -DF=2∴AEF S =S 梯形AECD -S △ADF -S △ECF=12DC(AD+EC)-12AD·DF-12EC·CF=12×3×(3+4)-12×3×1-12×4×2=10.5 1.54--=5;(3)可以,∵在BAE△和ADG中,点A的对应点是点D,点B的对应点是点A,点E的对称点是点G∴作线段AD的对称轴和线段BA的对称轴交于点O,根据旋转中心的定义,由BAE△到ADG,点O即为旋转中心,由图易知旋转方向为顺时针旋转连接OA、OB,则∠BOA=90°即旋转角为90°综上:BAE△绕点O顺时针旋转90°得到ADG.【点睛】此题考查的是图形的旋转,掌握旋转的性质、旋转中心、旋转方向和旋转角的定义是解题关键.23.(1)A,90;(2)等腰直角,证明过程见解析.【分析】(1)根据旋转中心及旋转角的定义,即可得出结论;(2)利用旋转的性质与正方形的性质,并结合等腰直角三角形的判定方法,即可判断出△AEF的形状.【详解】(1)解:∵四边形ABCD是正方形,∴∠BAD=90°,∵△ADE顺时针旋转到△ABF的位置,∴旋转中心是点A,旋转角是∠BAD=90°.故答案为A,90.(2)△AEF等腰直角三角形.证明:∵△ADE顺时针旋转到△ABF的位置,∴AF =AE ,∠FAE =∠BAD ,∵四边形ABCD 是正方形∴∠FAE =∠BAD =90°∴△AEF 是等腰直角三角形故答案为:等腰直角.【点睛】本题主要考查了旋转变换的性质、正方形的性质等知识,解题的关键是掌握旋转变换及正方形的性质.24.(1)①证明见解析;②证明见解析;(2)DE =【分析】(1)①运用ASA 证明OCF BCF ≌△△即可得出结论;②先证明四边形ABCD 是平行四边形,再证明90EBC ∠=︒即可得出结论;(2)证明△OCB 是等边三角形,得∠ECB=30°,求出AE 的长,再运用勾股定理求出DE 的长即可.【详解】证明:(1)①∵CE 平分BCA ∠,∴OCE BCE ∠=∠.∵BO CE ⊥,∴90∠∠==︒CFO CFB .又∵CF CF =,∴()≌OCF BCF ASA △△∴OC BC =.②∵O 是AC 的中点,∴OA OC =.又∵//AD BC .∴DAO BCO ∠=∠,ADO CBO ∠=∠.∴()≌OAD OCB ASA △△.∴AD BC =.∵//AD BC ,∴四边形ABCD 是平行四边形.∵OE AC ⊥,∴90EOC ∠=︒∵OCE BCE ∠=∠,CE CE =,OC BC =,∴()≌OCE BCE ASA △△.∴90∠∠==︒EBC EOC .∴四边形ABCD 是矩形.(2)∵四边形ABCD 是矩形,∴3AD BC ==,90DAB ∠=︒,AC BD =.∴OB OC =.∵OC BC =,∴OB OC BC ==.∴OBC 是等边三角形.∴60OCB ∠=︒ ∴1302∠∠︒==ECB OCB . ∵90EBC ∠=︒, ∴12=EB EC . ∵222BE BC EC +=,3BC =. ∴3EB =,23EC =. ∵OE AC ⊥,OA OC =,∴23==EC EA .在Rt ADE △中,90DAB ∠=︒,∴22223(23)21=+=+=DE AD AE .【点睛】此题主要考查了全等三角形的判定与性质,矩形的判定与性质,勾股定理以及直角三角形的性质,熟练掌握矩形的判定与性质是解答此题的关键.25.(1)是,见解析;(2)2222AB CD BC AD +=+;(3)13DE =【分析】(1)证法一:证明△ABC ≌△ADC ,即可得解;证法二:根据垂直平分线的性质证明即可;(2)根据勾股定理解答即可;(3)根据垂美四边形的性质、勾股定理计算即可;【详解】解:(1)如图1,四边形ABCD 是垂美四边形.理由如下:证法一:∵AB AD CB CD ==,,AC =AC ,∴△ABC ≌△ADC .∴∠BAC =∠DAC .∴AC 是等腰三角形ABD 顶角∠BAD 的平分线.∴AC BD ⊥.∴四边形ABCD 是垂美四边形. 证法二:连结AC 、BD 交于点E .∵AB AD =,∴点A 在线段BD 的垂直平分线上. ∵CB CD =,∴点C 在线段BD 的垂直平分线上. ∴直线AC 是线段BD 的垂直平分线. ∴AC BD ⊥.∴四边形ABCD 是垂美四边形.(2)如图2,在垂美四边形ABCD 中, ∵AC BD ⊥于点O ,∴∠AOB =∠BOC =∠COD =∠AOD =90°. ∴222AB AO BO =+.222BC BO CO =+.222CD CO DO =+.222AD AO DO =+.∴222222AB CD AO BO CO DO +=+++. 222222BC AD BO CO AO DO +=+++. ∴2222AB CD BC AD +=+. (3)分别连结CD 、BE ,如图3,∵∠CAD =∠BAE =90°,∴CAD BAC BAE BAC ∠+∠=∠+∠. 即DAB CAE ∠=∠.在DAB ∆和CAE ∆中,AD AC DAB CAE AB AE =⎧⎪∠=∠⎨⎪=⎩,∴DAB CAE ∆≅∆.∴ABD AEC ∠=∠.∵∠BAE =90°,∴90AEC AME ∠+∠=︒.∴90ABD BMN ∠+∠=︒.∴90BNM ∠=︒,即BD CE ⊥.∴四边形CDEB 是垂美四边形.由(2)得:2222DE BC CD BE +=+.∵AB =AE =2,AC =AD,∴222226CD AC AD =+=+=.22222228BE AB AE =+=+=.2222221BC AB AC =-=-=.∴222268113DE CD BE BC =+-=+-=.∴DE =【点睛】本题主要考查了四边形综合,结合勾股定理、垂直平分线的性质计算是解题的关键. 26.(1)见解析;(2)HG=OH+BG ;(3)能,理由见解析【分析】(1)根据旋转和正方形的性质可得出CD=CB ,∠CDG=∠CBG=90,根据全等直角三角形的判定定理(HL )即可证出Rt △CDG ≌Rt △CBG ,即∠DCG=∠BCG ,由此即可得出CG 平分∠DCB ;(2)由(1)的Rt △CDG ≌Rt △CBG 可得出BG=DG ,根据全等直角三角形的判定定理(HL )即可证出Rt △CHO ≌Rt △CHD ,即OH=HD ,再根据线段间的关系即可得出HG=HD+DG=OH+BG ;(3)根据(2)的结论即可找出当G 点为AB 中点时,四边形AEBD 为矩形.【详解】证明:(1)正方形ABCO 绕点C 旋转得到正方形CDEF .,90CD CB CDG CBG ︒∴=∠=∠=,在直角三角形CDGC 和直角三角形CBG 中.CD CB CG CG =⎧⎨=⎩, CDG CBG ∴≅,DCG BCG ∴∠=∠,即CG 平分∠DCB .。
特殊的平行四边形测试题及答案
![特殊的平行四边形测试题及答案](https://img.taocdn.com/s3/m/f137582ebcd126fff7050bc1.png)
特殊的平行四边形测试题一一、填空题1.用一把刻度尺来判定一个零件是矩形的方法是 . 2.如果边长分别为4cm 和5cm 的矩形与一个正方形的面积相等,那么这个正方形的边长为______cm .3.(08贵阳市)如图,正方形ABCD 的边长为4cm ,则图中阴影部分的面积为 cm 2.4.如图1,DE ∥BC ,DF ∥AC ,EF ∥AB ,图中共有_______个平行四边形.5若四边形ABCD 是平行四边形,请补充条件 (写一个即可),使四边形ABCD 是菱形. 6.在平行四边形ABCD 中,已知对角线AC 和BD 相交于点O ,△ABO 的周长为17,AB =6,那么对角线AC +BD =⒎ 以正方形ABCD 的边BC 为边做等边△BCE ,则∠AED 的度数为 . 8.延长正方形ABCD 的边AB 到E ,使BE =AC ,则∠E = ° 9.已知菱形ABCD 的边长为6,∠A =60°,如果点P 是菱形内一点,且PB =PD =2那么AP 的长为 .10.在平面直角坐标系中,点A 、B 、C 的坐标分别是A(-2,5),B(-3,-1),C(1,-1),在第一象限内找一点D ,使四边形ABCD 是平行四边形,那么点D 的坐标是 .二、选择题11.如图4在平行四边形ABCD 中,∠B=110°,延长AD 至F ,延长CD至E ,连结EF ,则∠E +∠F =( ) A .110° B .30° C .50° D .70° 12.菱形具有而矩形不具有的性质是 ( )A .对角相等B .四边相等C .对角线互相平分D .四角相等 13.平行四边形ABCD 中,对角线AC 、BD 交于点O ,点E 是BC 的中点.若OE=3 cm ,则AB 的长为 ( )A .3 cmB .6 cmC .9 cmD .12 cm14.已知:如图,在矩形ABCD 中,E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点.若AB =2,AD =4,则图中阴影部分的面积为 ( )A .8B .6C .4D .315.将两块能完全重合的两张等腰直角三角形纸片拼成下列图形:①平行四边形(不包括菱形、矩形、正方形)②矩形③正方形④等边三角形⑤等腰直角三角形(6)E AF DC B H G( )A .①③⑤B .②③⑤C .①②③D .①③④⑤ 16.如图是一块电脑主板的示意图,每一转角处都是直角,数据如图所示(单位:mm),则该主板的周长是 ( )A .88 mmB .96 mmC .80 mmD .84 mm 17、(08甘肃省白银市)如图,把矩形ABCD 沿EF 对折后使两部分重合,若150∠= ,则AEF ∠=( )A .110°B .115°C .120°D .130°18、(08哈尔滨市)某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形。
特殊平行四边形单元过关测试题 (1)
![特殊平行四边形单元过关测试题 (1)](https://img.taocdn.com/s3/m/49442cd05022aaea988f0f05.png)
特殊平行四边形单元过关测试题一、精心选一选,想信你一定能选对!(每题5分,共60分)1.不能判定四边形ABCD 为平行四边形的题设是( ) (A )AB 平行且等于CD 。
(B )∠A=∠C ,∠B=∠D 。
(C )AB=AD ,BC=CD 。
(D )AB=CD ,AD=BC 。
2.下面性质中菱形有而矩形没有的是( )(A )邻角互补(B )内角和为360°(C )对角线相等 (D )对角线互相垂直 3.正方形具有而菱形不一定具有的性质是( ) (A )四条边相等 (B )对角线互相垂直平分 (C )对角线平分一组对角 (D )对角线相等 4、下列命题中,真命题是( ) A 、有两边相等的平行四边形是菱形 B 、有一个角是直角的四边形是矩形 C 、四个角相等的菱形是正方形D 、两条对角线互相垂直且相等的四边形是正方形5.如图,□ABCD 中,∠C=108°,BE 平分∠ABC,则∠ABE 等于( ) A.18° B.36° C.72° D.108° 6.下列命题中,真命题是( ) A 、有两边相等的平行四边形是菱形 B 、对角线垂直的四边形是菱形 C 、四个角相等的菱形是正方形 D 、两条对角线相等的四边形是矩形7、平行四边形各内角平分线若围成一个四边形,则这个四边形一定是( ) A 、矩形 B 、平行四边形 C 、菱形 D 、正方形8、关于四边形ABCD ①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC 和BD 相等;以上四个条件中可以判定四边形ABCDEDCBA是平行四边形的有()。
(A) 1个(B)2个(C)3个(D)4个9、下列四边形中,是中心对称而不是轴对称的是()A、平行四边形B、矩形C、菱形D、正方形10等腰梯形ABCD中,AD∥BC, ∠B=60°,AD=2,BC=8,则此等腰梯形的周长为()A.19 B.20 C.21 D.2211、下列命题中,真命题是()A、有两边相等的平行四边形是菱形B、有一个角是直角的四边形是矩形C、四个角相等的菱形是正方形D、两条对角线互相垂直且相等的四边形是正方形12、下列几组图形中,既是轴对称图形,又是中心对称图形,完全正确的一组是()A.正方形、菱形、矩形、平行四边形B.正三角形、正方形、菱形、矩形C.正方形、菱形、矩形D.平行四边形、正方形、等腰三角形二、细心填一填,相信你填得又快又准!(每题5分,共30分)13、□ABCD中,∠A=50°,则∠B=__________,∠C=__________。
特殊的平行四边形测试题十二
![特殊的平行四边形测试题十二](https://img.taocdn.com/s3/m/4b947e89b9d528ea81c779e8.png)
特殊的平行四边形 一、选择题:1.既是轴对称图形,又是中心对称图形的个数有( )(1)菱形 (2)矩形 (3)平行四边形 (4)正方形 A .1 B .2 C .3 D .42.如图,若平行四边形ABCD 与平行四边形EFCD 关于CD 所在直线对称, 80=∠ADE ,则F ∠的度数为 A. 100B. 80C. 50D.4003.平行四边形、矩形、菱形、正方形共有的性质是( )A 、对角线相等B 、对角线互相平分C 、对角线互相垂直D 、对角形互相垂直平分4.矩形ABCD 的两条对角线相交于点O ,∠AOD =120°,AB =5cm ,则矩形的对角线长是( )A 、5cmB 、10cmC 、cm 52D 、2.5cm5.菱形的两条对角线长分别为6㎝和5㎝,那么这个菱形的面积为( )A 、30㎝2B 、15㎝2C 、215㎝2 D 、415㎝26.矩形ABCD 中,CE ⊥BD ,E 为垂足,∠DCE ∶∠ECB =3∶1,那么∠ACE = 度。
A.45B.67.5C.22.5D.3007.顺次连结任意四边形各边中点所得的四边形是( )A 、平行四边形B 、矩形C 、菱形D 、正方形8.如图,四边形OABC 是平行四边形,点A 在反比例函数2y x=上,点B 在反比例函数4y x=上,点C 在x 轴的正半轴上,则四边形OABC的面积是A.4B.3C.2D.19.如图,Rt △ABC 中,∠BAC =90°,AD ⊥BC ,垂足为D ,E 、F 分别是AB 、AC 的中点,∠C =30°,BC =4㎝,则四边形AEDF 的周长是( )A 、4㎝B 、34㎝C 、)32(+㎝D 、)322(+㎝FE D CBA 第16题10.边长为15cm 、25cm 的一个矩形,如果一个内角的平分线分边长为两部分,则两部分的长为( )A 、12.5cm ,12.5cmB 、16cm ,9cmC 、15cm ,10cmD 、18 cm ,7cm11.下列命题中,真命题是 ( )(1)两条对角线相等且互相平分的四边形是矩形 (2)两条对角线互相垂直平分的四边形是菱形 (3)两条对角线互相平分的四边形是平行四边形 (4)两条对角线互相垂直且相等的四边形是正方形 A . 1 B . 2 C . 3 D .412.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF ,AE 、BF 相交于点D ,下列结论①AE=BF;②AE⊥BF ;③ AO=OE ; ④S △AOB=S 四边形DEOF 中,正确的有( )(A) ①②③④ (B) ②③④ (C) ①②④ (D) ①②③二、填空题:13.一个菱形的两条对角线分别为12cm 、16cm ,这个菱形的边长为______;面积S =_________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特殊平行四边形测试题
及答案
Document serial number【KK89K-LLS98YT-SS8CB-SSUT-
八年级数学下册特殊平行四边形与梯形测试题及答案
一、选择题(3分×10=30分)
1.正方形具有而菱形不一定具有的特征有()
A.对角线互相垂直平分 B.内角和为360°
C.对角线相等 D.对角线平分内角
2.平行四边形的一边长是10cm,那么它的两条对角线的长度可能是() A.8cm和12cm B.8cm和14cm C.6cm和10cm D.6cm和28cm
3.一个正方形的对角线长为2cm,则它的面积是()
A.2cm2 B.4cm2 C.6cm2 D.8cm2
4.若矩形的一条对角线与一边的夹角是40°,•则两条对角线所夹的锐角的度数为()
A.80° B.60° C.45° D.40°
5.已知菱形的周长为9.6cm,两个邻角的比是1:2,这个菱形较短的对角线的长是()
A.2.1cm B.2.2cm C.2.3cm D.2.4cm
6.正方形ABCD内有一点E,且△ABE为等边三角形,则∠DCE为()
A.15° B.18° C.22.5° D.30°
7.如图,在正方形ABCD中,CE=MN,∠BCE=40°,则∠ANM等于()A.70° B.60° C.50° D.40°
8.在Rt△ABC中,∠C=Rt∠,
,BC=1,则AB上的中线长为()
A.3 B.1.5 C
.9
9.下列四边形中既是轴对称图形,又是中心对称图形的是() A.梯形 B.等腰梯形 C.平行四边形 D.矩形
10.如图所示,矩形ABCD中,AB=1
2
AD,E为BC上的一点,且AE=AD,则∠
EDC的度数是(• )
A.30° B.75° C.45° D.15°
二、填空题(3分×10=30分)
11.已知ABCD的周长是28cm,CD-AD=2cm,那么AB=______cm,
BC=______cm.
12.若矩形的对角线交点到两邻边的距离差为4cm,周长56cm,则这个矩形的两邻边长分别为_______和_______cm.
13.矩形的周长是22cm,相邻两边的差是1cm,那么这个矩形的面积是
_______cm2.
14.矩形的两条对角线把矩形分成_______个等腰三角形.
15.菱形两对角线长分别为24cm和10cm,则菱形的高为________cm.16.已知正方形的边长为a,则正方形内任意一点到四边的距离之和为
_____.
17.在四边形ABCD中,已知∠A+∠B=180°,要使四边形ABCD是梯形,•还需添加一个条件,如果这个条件是与角有关的,
那么这个条件可以是_______(只需填写一种情
况).
18.梯形ABCD中,AD∥BC,∠B=60°,∠
C=75°,那么∠A=_______,∠D=_______.
19.等腰梯形ABCD的一个角是55°,则其他三
个角的度数分别为________.
20.如图,OBCD是边长为1的正方形,∠
BOx=60°,则点C的坐标为________.
三、简答题(共40分)
21.如图,P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,E,F分别是垂足,求证:
AP=EF.
22.(6分)如图所示,在正方形ABCD中,AP=AD,∠
PAD=40°,求∠PBC与∠BPD•的度数.
23.(6分)如图,△ABC,AB=AC,BD,CE分别为∠ABC,∠ACB
的平分线,则EBCD是等腰梯形吗?为什么?
24.(6分)如图所示,把一个面积为1的正方形等分成两个面积为1
2
的矩
形,•接着把一个面积为1
2
的矩形等分成两个面积为
1
4
的矩形,•再把一个面积
为1
4
的矩形等分成两个面积为
1
8
的矩形,如此进行下去,试利用图形揭示的规
律计算:1
2
+
1
4
+
1
8
+
1
16
+
1
32
+
1
64
+
1
128
+
1
256
.
25.(10分)如图,以△ABC的三边为边,在BC的同侧分别作三个等边三角形,•即△ABD,△BCE,△ACF.(1)求证:四边形ADEF是平行四边形.
(2)在△ABC满足什么条件时,ADEF是矩
形?
(3)对于任意△ABC,ADEF是否总存在?。