人教版初中数学第十七章勾股定理知识点

合集下载

人教版初中数学第十七章勾股定理知识点.doc

人教版初中数学第十七章勾股定理知识点.doc

第十七章勾股定理17. 1勾股定理1、勾股定理:如果直角三角形两直角边长分别为4、b,斜边长为C,那么a2+b2=c2勾股定理的证明:方法一:+ S正方形EFGH = S正方形ABCD, ^^-ab + (b-a)2 =c~»化间可证•方法二四个直角三角形的而积与小止方形而积的和等于大止方形的面积.四个直角三角形的面积与小正方形面积的和为S = 4x丄"+圧=2" +圧2大正方形面积为S = (a + b)2 =a2 + 2ab + b2a2 + b2 = c2方法三:S梯形=*(a + Z?).(a + Z?) ‘ S m=2S MDE+S MBE=2-^ab+^c2,化简得证17. 2勾股定理的逆定理2、勾股定理的逆定理:如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形.3、互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.4、勾股数:能够构成直角三角形的三边长的三个正整数称为勾股数,即+ b2 = c2中,a, b, c为正整数吋,称a , b, c为一组勾股数常见的勾股数有:3、4、5; 6、8、10; 5、12、13; 7、24、25 等例、在RtAABC 中,a=3, b=4,求c・错解由勾股定理,得C=V^2+/?2=A/42+32 =5诊断这里默认了ZC为直角.其实,题目中没有明确哪个角为直角,当b>a时,ZB可以为直角,故本题解答遗漏了这一种情况.当ZB 为直角时,c=y/h2—a2 = V42—32 =>/7例、己知RtAABC 中,ZB=RTZ, H=A/2, C=2A/2 ,求 b.错解由勾股定理,得B = \{c2— a2 - \l(2y/2)2—(>/2)2 = y/6诊断这里错在盲目地套用勾股定理“a2 + b2=c2n .殊不知,只有当ZC=RtZ时,a2+b2=c2才能成立,而当ZB=RtZ时,则勾股定理的表达式应为a2+c2=b2.正确解答VZB=RtZ,由勾股定理知a2+c2=b2.b= Jc2 +O1 = J(2>/^)2 +(血)2 = V10例、若直角三角形的两条边长为6cm、8cm,则第三边长为 ________ .错解设第三边长为xcm.由勾股定理,得X2=62+82.x= A/62+82 =736 + 64=10即第三边长为10cm.诊断这里在利用勾股定理计算吋,误认为第三边为斜边,其实题设中并没有说明已知的两边为直角边,・・・第三边可能是斜边,也可能是直角边.正确解法设第三边长为xcm.若第三边长为斜边,由勾股定理,得X=A/624-82^ = \/36 + 64 = 10(cm)若第三边长为直角边,则8cm 长的边必为斜边,由勾股定理,得x= Vs 2 — 62 = \/28 = 2护(cm)因此,第三边的长度是10cm 或者2^7 cm.12^/3 例、如图,已知RtAABC 屮,ZBAC=90° , AD 是高,AM 是屮线,月.AM 二一BC=」一AD •又RTAABC2 3 的周长是(6+2>/3 )cm.求AD.错解 V A ABC 是直角三角形,•••AC:AB:BC 二 3:4:5「•AC : AB : BC=3 : 4 : 5.・・・AC 看6+2外呼,AB 令6+2於呻L BC 培(6+2济匕护又・・・"gE3 + >/3 6 + 2>/3 -------------- X ------------------- 2 315 + 5 巧=(3 +孙•爷+舲)二(3+的)(沏5(3 + 73) 5诊断我们知道,“勾三股四弦五”是直角三角形中三边关系的一种特殊情形,并不能代表一般的直角三角 形的三边关系.上述解法犯了以特殊代替一般的错误.正确解法••皿琴血 ・・・MD 二 J(| 屈 D)2 — AZ)2又VMC=MA, 「.CD 二MD.AD= AC •AB BC•••点C 与点M 关于AD 成轴对称.AAC=AM, A ZAMD=60° =ZC.0 1 73 AZB=30° , AC=-BC, AB= —BC 2 2A BCM.例、在ZSABC 中,a : b : c=9 : 15 : 12,试判定AABC 是不是直角三角形.错解 依题意,设 a=9k, b=15k, c=12k(k>0).•・• a 2+b 2=(9k)2+(15k)2=306k 2, c2=(l 2k)2= 144k 2,Aa 2+b 2^c 2. AAABC 不是直角三角形.诊断 我们知道“如果一个三角形最长边的平方等于另外两边的平方和,那么这个三角形是直角三角形” •而上面解答错在没有分辨清楚最长边的情况下,就盲目套用勾股定理的逆定理.正确解法 由题意知b 是最长边.设a=9k, b=15k, c=12k(k>0).•・・ a 2+c 2=(9k)2 + (12k)2=8 lk 2+l 44k 2=225k 2.b2=(15k)2=225k 2, Aa 2+c 2=b 2.•••△ABC 是直角三角形.例、已知在AABC 中,AB>AC, AD 是中线,AE 是高.求证:AB 2-AC 2=2BC -DE错证如图.VAE 丄BC 于 E,.\AB 2=BE 2+AE 2, 1BC =^AD , 2 3 ••• AD= =V3 (cm)AC2=EC2+AE2. AAB2-AC2=BE2-EC2 =(BE+EC)・(BE—EC)=BC ・(BE —EC ).・.・ BD=DC,・•・ BE=BC 一 EC=2DC 一 EC.・*.AB 2-AC 2=BC ・(2DC-EC-EC )=2BC ・ DE.诊断 题设中既没明确指出AABC 的形状,又没给出图形,因此,这个三角形有可能是锐角三角形,也可能 是直角三角形或钝角三角形.・••高AE 既可以在形内,也可以与一边重合,还可以在形外,这三种情况都符合题意.而 这里仅只证明了其中的一种情况,这就犯了以偏概全的错误.剩下的两种情况如图所示.正确证明由读者自己完成.例、已知在AABC 中,三条边长分别为a, b, c, a=n,n 2 n 2 +4b= —-1, c=-——(n 是大于2的偶数).求证:Z\ABC 是直角三角形. 4 4错证1 Tn 是大于2的偶数,•:収n=4,这时a=4, b=3, c=5.V a 2+b 2=42+32=25=52=c 2,•••△ABC 是直角三角形(勾股定理的逆定理).由勾股定理知AABC 是直角三角形.由勾股定理的逆定理知,AABC 是直角三角形. 诊断证明1错在以特殊取代一般. c 2=( n 2 + 4 4 n 2 ? IT ■ ?兀 )=(T + 1)=^+2 4 9 4 少 n / n + — - — + 1 = — + — +1 16 2 16 2。

第17章 勾股定理 核心素养整合与提升-2022-2023学年八年级下册初二数学(人教版)

第17章 勾股定理 核心素养整合与提升-2022-2023学年八年级下册初二数学(人教版)

第17章勾股定理核心素养整合与提升-2022-2023学年八年级下册初二数学(人教版)1. 引言勾股定理是初中数学中的重要概念,它是数学中的一个基本定理。

在本章中,我们将学习勾股定理的概念、性质以及应用。

通过学习勾股定理,我们能够更好地理解和解决与直角三角形相关的问题,提高我们的数学思维能力和解题能力。

2. 勾股定理的概念与证明勾股定理是指在一个直角三角形中,直角边的平方之和等于斜边的平方。

假设直角三角形的直角边分别为a、b,斜边为c,根据勾股定理的表达方式可得到以下关系:a2+b2=c2要证明勾股定理,我们可以利用几何推理和代数运算。

首先,我们可以通过画图来帮助我们理解和证明勾股定理。

具体的证明过程比较复杂,这里省略。

3. 勾股定理的性质勾股定理具有以下性质:•对于给定的直角三角形,只有一组满足勾股定理的边长比例。

•勾股定理适用于任意直角三角形,不仅限于特殊角度(例如45°)的三角形。

•勾股定理可以用来判断一个三角形是否为直角三角形,只需要验证边长是否满足勾股定理即可。

这些性质使勾股定理成为数学中非常重要的定理,它为我们解决与直角三角形相关的问题提供了依据和方法。

4. 勾股定理的应用勾股定理在实际问题中具有广泛的应用。

以下是一些常见的勾股定理的应用场景:4.1 测量直角三角形的边长勾股定理可以用来测量直角三角形的边长。

通过已知两个边长求解第三个边长的问题,我们可以利用勾股定理来解决。

例如,已知一个直角三角形的一条直角边的长度为3,斜边的长度为5,我们可以利用勾股定理求解另一条直角边的长度。

4.2 判断三角形的形状勾股定理可以用来判断一个三角形是否为直角三角形。

如果一个三角形的边长满足勾股定理,那么该三角形就是一个直角三角形。

通过利用勾股定理,我们可以判断一个三角形的形状,从而解决与三角形相关的问题。

4.3 解决实际问题勾股定理在解决实际问题中也有广泛的应用。

例如,在建筑、测量和导航等领域,勾股定理被广泛应用于测量和计算。

新人教版初二数学下册第十七章勾股定理知识点总结

新人教版初二数学下册第十七章勾股定理知识点总结

勾股定理1. 勾股定理:如果直角三角形的两直角边长分别为a, b,斜边长为c,那么a2+ b2=c2。

2. 勾股定理逆定理:如果三角形三边长a,b,c满足a2+ b2=c2。

,那么这个三角形是直角三角形。

a. 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法b. 若a2 b2 c2,时,以a , b , c为三边的三角形是钝角三角形;若a2 b2 c2,时,以a , b ,c为三边的三角形是锐角三角形;c. 定理中a, b , c及a2b2c2只是一种表现形式,不可认为是唯一的,如若三角形三边长 a ,2 2 2b, c满足a c b ,那么以a, b, c为三边的三角形是直角三角形,但是b为斜边勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即a2b2c2中,a , b , c为正整数时,称a , b , c为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5 ;6,8,10 ;5,12,13;7,24,25等③用含字母的代数式表示n组勾股数:2 2 2 2n 1,2n,n 1 (n 2, n 为正整数);2n 1,2n 2n,2 n 2n 1 (n 为正整数)2 2 2 2m n ,2mn,m n (m n, m , n为正整数)3. 经过证明被确认正确的命题叫做定理。

我们把题设、结论正好相反的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

(例:勾股定理与勾股定理逆定理)4. 直角三角形的性质(1)、直角三角形的两个锐角互余。

可表示如下:/ C=90°/ A+Z B=90°(2)、在直角三角形中,30°角所对的直角边等于斜边的一半。

(3)、直角三角形斜边上的中线等于斜边的一半7、直角三角形的判定1 、有一个角是直角的三角形是直角三角形。

2 、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

人教初中数学第十七章勾股定理知识点

人教初中数学第十七章勾股定理知识点

人教版初中数学第十七章勾股定理知识点————————————————————————————————作者:————————————————————————————————日期:第十七章 勾股定理17.1 勾股定理1、勾股定理:如果直角三角形两直角边长分别为a 、b ,斜边长为c ,那么222a b c +=勾股定理的证明: 方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ ∴222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证17.2 勾股定理的逆定理2、勾股定理的逆定理:如果三角形的三边长a 、b 、c 满足222a b c +=,那么这个三角形是直角三角形.3、互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.4、勾股数:能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数常见的勾股数有:3、4、5;6、8、10;5、12、13;7、24、25等bacbac cabcabcbaHG F EDCBAa bccbaED CBA例、在Rt △ABC 中,a=3,b=4,求c .错解由勾股定理,得c=22a b +=2243+=5诊断 这里默认了∠C 为直角.其实,题目中没有明确哪个角为直角,当b >a 时,∠B 可以为直角,故本题解答遗漏了这一种情况.当∠B 为直角时,c=22b a -=2243-=7例、已知Rt △ABC 中,∠B=RT ∠,a=2,c=22,求b. 错解 由勾股定理,得B=22c a -=22(22)(2)-=6诊断 这里错在盲目地套用勾股定理“a 2+b 2=c 2”.殊不知,只有当∠C=Rt ∠时,a 2+b 2=c 2才能成立,而当∠B=Rt ∠时,则勾股定理的表达式应为a 2+c 2=b 2.正确解答 ∵∠B=Rt ∠, 由勾股定理知a 2+c 2=b 2.∴b=22c a +=22(22)(2)+=10例、若直角三角形的两条边长为6cm 、8cm ,则第三边长为________. 错解 设第三边长为xcm .由勾股定理,得x 2=62+82.x=2268+=3664+=10即第三边长为10cm .诊断 这里在利用勾股定理计算时,误认为第三边为斜边,其实题设中并没有说明已知的两边为直角边,∴第三边可能是斜边,也可能是直角边.正确解法 设第三边长为xcm . 若第三边长为斜边,由勾股定理,得x=2268+=3664+=10(cm)若第三边长为直角边,则8cm 长的边必为斜边,由勾股定理,得x=2286-=28=27(cm)因此,第三边的长度是10cm 或者27cm.例、如图,已知Rt △ABC 中,∠BAC=90°,AD 是高,AM 是中线,且AM=12BC=233AD.又RT △ABC 的周长是(6+23)cm.求AD .错解 ∵△ABC 是直角三角形, ∴AC:AB:BC=3:4:5 ∴AC ∶AB ∶BC=3∶4∶5.∴AC=312(6+23)=332+,AB=412(6+23)=6233+,BC=512(6+23)=15536+又∵12AC AB •=12BC AD • ∴AD=AC AB BC •=336232315536++⨯+ =(33)2(33)5(33)+•++=25(3+3)(cm) 诊断 我们知道,“勾三股四弦五”是直角三角形中三边关系的一种特殊情形,并不能代表一般的直角三角形的三边关系.上述解法犯了以特殊代替一般的错误.正确解法∵AM=233AD∴MD=222(3)3AD AD =33AD 又∵MC=MA ,∴CD=MD . ∵点C 与点M 关于AD 成轴对称. ∴AC=AM ,∴∠AMD=60°=∠C .∴∠B=30°,AC=12BC ,AB=32BC∴AC+AB+BC=12BC+32BC+BC=6+23.∴BC=4.∵12BC=233AD , ∴AD=12233BC=3(cm)例、在△ABC 中,a ∶b ∶c=9∶15∶12, 试判定△ABC 是不是直角三角形.错解 依题意,设a=9k ,b=15k ,c=12k(k >0). ∵a 2+b 2=(9k)2+(15k)2=306k 2,c2=(12k)2=144k 2, ∴a 2+b 2≠c 2.∴△ABC 不是直角三角形.诊断 我们知道“如果一个三角形最长边的平方等于另外两边的平方和,那么这个三角形是直角三角形”.而上面解答错在没有分辨清楚最长边的情况下,就盲目套用勾股定理的逆定理.正确解法 由题意知b 是最长边.设a=9k ,b=15k ,c=12k(k >0). ∵a 2+c 2=(9k)2+(12k)2=81k 2+144k 2=225k 2. b2=(15k)2=225k 2,∴a 2+c 2=b 2. ∴△ABC 是直角三角形.例、已知在△ABC 中,AB >AC ,AD 是中线,AE 是高.求证:AB 2-AC 2=2BC·DE 错证 如图.∵AE⊥BC于E,∴AB2=BE2+AE2,AC2=EC2+AE2.∴AB2-AC2=BE2-EC2=(BE+EC)·(BE-EC)=BC·(BE-EC).∵BD=DC,∴BE=BC-EC=2DC-EC.∴AB2-AC2=BC·(2DC-EC-EC)=2BC·DE.诊断题设中既没明确指出△ABC的形状,又没给出图形,因此,这个三角形有可能是锐角三角形,也可能是直角三角形或钝角三角形.∴高AE既可以在形内,也可以与一边重合,还可以在形外,这三种情况都符合题意.而这里仅只证明了其中的一种情况,这就犯了以偏概全的错误.剩下的两种情况如图所示.,正确证明由读者自己完成.例、已知在△ABC中,三条边长分别为a,b,c,a=n,b=24n-1,c=244n(n是大于2的偶数).求证:△ABC是直角三角形.错证1∵n是大于2的偶数,∴取n=4,这时a=4,b=3,c=5.∵a2+b2=42+32=25=52=c2,∴△ABC是直角三角形(勾股定理的逆定理).由勾股定理知△ABC是直角三角形.正解∵a2+b2=n2+(24n-1)2=n2+416n-22n+1=416n+22n+1c2=(244n+)2=(214n+)2=416n+22n+1由勾股定理的逆定理知,△ABC是直角三角形. 诊断证明1错在以特殊取代一般.。

最新人教版数学八年级下册第十七章 -勾股定理

最新人教版数学八年级下册第十七章 -勾股定理

第十七章—勾股定理一、勾股定理1. 概念:如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么a2+b 2=c 2.2. 公式变形: ①:a2=c 2-b 2,b 2=c 2-a 2②:c=22b a + ,a=22b c - ,b=22a c -勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下: 方法一:4EFGH S S S ∆+=正方形正方形ABCD,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCBA方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c,b,a =②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题.b acbac cabcab a bccbaED CBA5.勾股定理的常见类型:(1)勾股定理在实际问题中的应用一般情况下,遇到高度、长度、距离、面积等实际问题时,可以构造直角三角形、运用勾股定理求解。

人教版初中数学勾股定理高频考点知识梳理

人教版初中数学勾股定理高频考点知识梳理

(每日一练)人教版初中数学勾股定理高频考点知识梳理单选题1、勾股定理是历史上第一个把数与形联系起来的定理,其证明是论证几何的发端.下面四幅图中不能证明勾股定理的是()A.B.C.D.答案:D解析:利用两个以a和b为直角边三角形面积与一个直角边为c的等腰直角三角形面积和等于上底为a,下第为b,高为(a+b)的梯形面积推导勾股定理可判断A,利用以a与b为两直角边四个全等三角形面积与边长为c的小正方形面积和等于以a+b的和为边正方形面积推导勾股定理可判断B,利用以a与(a+b)为两直角边四个全等三角形面积与边长为b的小正方形面积和等于以c为边正方形面积推导勾股定理可判断C,利用四个小图形面积和等于大正方形面积推导完全平方公式可判断D.解: A、两个以a和b为直角边三角形面积与一个直角边为c的等腰直角三角形面积和等于上底为a,下第为b,高为(a+b)的梯形面积,故12ab+12ab+12c2=12(a+b)2,整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、以a与b为两直角边四个全等三角形面积与边长为c的小正方形面积和等于以a+b的和为边正方形面积,ab+c2=(a+b)2,整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;故4×12C、以a与(a+b)为两直角边四个全等三角形面积与边长为b的小正方形面积和等于以c为边正方形面积,a(a+b)+b2=c2,整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;4×12D、四个小图形面积和等于大正方形面积,2ab+a2+b2=(a+b)2,根据图形证明完全平方公式,不能证明勾股定理,故本选项符合题意;故选:D.小提示:本题考查利用面积推导勾股定理与完全平方公式,掌握利用面积推导勾股定理与完全平方公公式是关键.2、如图,点A表示的实数是()A.√3B.−√3C.√5D.−√5答案:D解析:根据勾股定理可求得OA的长为√5,再根据点A在原点的左侧,从而得出点A所表示的数.解:如图,∵OB=√22+12=√5,OA=OB,∴OA=√5,∵点A在原点的左侧,∴点A在数轴上表示的实数是-√5.故选:D.小提示:本题考查了实数和数轴,以及勾股定理,注意原点左边的数是负数.3、以下列各组数为三角形的边长,能构成直角三角形的是()A.2、3、4B.5、5、6C.2、√3、√5D.√2、√3、√5答案:D解析:根据勾股定理的逆定理得出选项A、B、C不能构成直角三角形,D选项能构成直角三角形,即可得出结论.解:A、22+32≠42,不符合勾股定理的逆定理,故不正确;B、52+52≠62,不符合勾股定理的逆定理,故不正确;C、22+(√3)2≠(√5)2,不符合勾股定理的逆定理,故不正确;D、(√2)2+(√3)2=(√5)2,符合勾股定理的逆定理,能构成直角三角形,故正确.故选D.小提示:本题考查了勾股定理的逆定理;在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4、已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm2答案:A解析:根据∠C=90°确定直角边为a、b,对式子a+b=14两边平方,再根据勾股定理得到ab的值,即可求解.解:根据∠C=90°确定直角边为a、b,∴a2+b2=c2=100∵a+b=14∴(a+b)2=142,即a2+2ab+b2=196∴2ab=96∴S△ABC=1ab=24cm22故选A小提示:此题考查了勾股定理的应用,涉及了完全平方公式,解题的关键是根据所给式子确定ab的值.5、如图,将矩形纸片ABCD沿直线EF折叠,使点C落在AD边的中点C′处,点B落在点B′处,其中AB= 9,BC=6,则FC′的长为()A.3B.4C.4.5D.5答案:D解析:设FC′=x,则FD=9−x,根据矩形的性质和勾股定理列式即可求出答案.设FC′=x,则FD=9−x.∵BC=6,四边形ABCD为矩形,点C′为AD的中点.∴AD=BC=6,C′D=3,在Rt△PC′D中,由勾股定理得FC′2=FD2+C′D2,即x2=(9−x)2+32,解得x=5.故选D.小提示:本题考查的是矩形的性质和勾股定理,能够熟练运用所学知识是解题的关键.6、有一个直角三角形的两边长分别为3和4,则第三边的长为()A.5B.√7C.√5D.5或√7答案:D解析:分4是直角边、4是斜边两种情况考虑,再根据勾股定理计算即可.解:当4是直角边时,斜边=√32+42=5;当4是斜边时,另一条直角边=√42−32=√7;故选:D.小提示:本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.7、已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm2答案:A解析:根据∠C=90°确定直角边为a、b,对式子a+b=14两边平方,再根据勾股定理得到ab的值,即可求解.解:根据∠C=90°确定直角边为a、b,∴a2+b2=c2=100∵a+b=14∴(a+b)2=142,即a2+2ab+b2=196∴2ab=96∴S△ABC=1ab=24cm22故选A小提示:此题考查了勾股定理的应用,涉及了完全平方公式,解题的关键是根据所给式子确定ab的值.8、勾股定理是历史上第一个把数与形联系起来的定理,其证明是论证几何的发端.下面四幅图中不能证明勾股定理的是()A.B.C.D.答案:D解析:利用两个以a和b为直角边三角形面积与一个直角边为c的等腰直角三角形面积和等于上底为a,下第为b,高为(a+b)的梯形面积推导勾股定理可判断A,利用以a与b为两直角边四个全等三角形面积与边长为c的小正方形面积和等于以a+b的和为边正方形面积推导勾股定理可判断B,利用以a与(a+b)为两直角边四个全等三角形面积与边长为b的小正方形面积和等于以c为边正方形面积推导勾股定理可判断C,利用四个小图形面积和等于大正方形面积推导完全平方公式可判断D.解: A、两个以a和b为直角边三角形面积与一个直角边为c的等腰直角三角形面积和等于上底为a,下第为b,高为(a+b)的梯形面积,故12ab+12ab+12c2=12(a+b)2,整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、以a与b为两直角边四个全等三角形面积与边长为c的小正方形面积和等于以a+b的和为边正方形面积,故4×12ab+c2=(a+b)2,整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、以a与(a+b)为两直角边四个全等三角形面积与边长为b的小正方形面积和等于以c为边正方形面积,4×12a(a+b)+b2=c2,整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、四个小图形面积和等于大正方形面积,2ab+a2+b2=(a+b)2,根据图形证明完全平方公式,不能证明勾股定理,故本选项符合题意;故选:D.小提示:本题考查利用面积推导勾股定理与完全平方公式,掌握利用面积推导勾股定理与完全平方公公式是关键.填空题9、(2011贵州安顺,16,4分)如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是.答案:6cm2解析:先根据勾股定理得到AB=10cm,再根据折叠的性质得到DC=DC′,BC=BC′=6cm,则AC′=4cm,设DC=xcm,在Rt△ADC′中根据勾股定理列方程求得x的值,然后根据三角形的面积公式计算即可.∵∠C=90°,BC=6cm,AC=8cm,∴AB=10cm,∵将△BCD 沿BD 折叠,使点C 落在AB 边的C′点,∴△BCD ≌△BC′D ,∴∠C=∠BC′D=90°,DC=DC′,BC=BC′=6cm ,∴AC′=AB -BC′=4cm ,设DC=xcm ,则AD=(8-x )cm ,在Rt △ADC′中,AD 2=AC′2+C′D 2,即(8-x )2=x 2+42,解得x=3,∵∠AC′D=90°,∴△ADC′的面积═12×AC′×C′D=12×4×3=6(cm 2). 考点:折叠的性质,勾股定理点评:折叠的性质:折叠前后两图形全等,即对应角相等,对应线段相等,对应点的连线段被折痕垂直平分.10、如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为____.答案:45°解析:利用勾股定理可求出AB 2,AC 2,BC 2的长,进而可得出AB 2=AC 2+BC 2,AC =BC ,利用勾股定理的逆定理可得出△ABC 为等腰直角三角形,再利用等腰直角三角形的性质,可得出∠ABC =45°.解:连接AC ,根据题意,可知:BC2=12+22=5,AC2=12+22=5,AB2=12+32=10.∴AB2=AC2+BC2,AC=BC,∴△ABC为等腰直角三角形,∴∠ABC=45°.所以答案是:45°.小提示:本题考查了勾股定理的逆定理、勾股定理以及等腰直角三角形的性质,利用勾股定理的逆定理及AC=BC,找出△ABC为等腰直角三角形是解题的关键.11、如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑________米.答案:0.5解析:结合题意可知AB=DE=2.5米,BC=1.5米,BD=0.5米,∠C=90°,∴AC=√AB2−BC2=√2.52−1.52=2(米).∵BD=0.5米,∴CD=2米,∴CE=√DE2−CD2=√2.52−22=1.5(米),∴AE=AC-EC=0.5(米).故答案为0.5.点睛:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.12、我国古代的数学名著《九章算术》中有这样一道题目“今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽.问索长几何?”译文为“今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵索沿地面退行,在离木柱根部8尺处时,绳索用尽问绳索长是多少?”示意图如下图所示,设绳索AC的长为x尺,根据题意,可列方程为__________.答案:x2−(x−3)2=82解析:设绳索长为x尺,根据勾股定理列出方程解答即可.解:设绳索长为x尺,根据题意得:x2−(x−3)2=82,所以答案是:x2−(x−3)2=82.小提示:本题考查了勾股定理的应用,找准等量关系,正确列出相应方程是解题的关键.13、我国古代的数学名著《九章算术》中有这样一道题目“今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽.问索长几何?”译文为“今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵索沿地面退行,在离木柱根部8尺处时,绳索用尽问绳索长是多少?”示意图如下图所示,设绳索AC的长为x尺,根据题意,可列方程为__________.答案:x2−(x−3)2=82解析:设绳索长为x尺,根据勾股定理列出方程解答即可.解:设绳索长为x尺,根据题意得:x2−(x−3)2=82,所以答案是:x2−(x−3)2=82.小提示:本题考查了勾股定理的应用,找准等量关系,正确列出相应方程是解题的关键.解答题14、如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若DC=4,∠DAC=30°,求AD的长.答案:(1)证明见解析;(2)4√3解析:(1)根据角平分线的性质得到DE=DF,证明Rt△BDE≌Rt△CDF,根据全等三角形的性质得到∠B=∠C,根据等腰三角形的判定定理证明;(2)根据直角三角形的性质求出AC,根据勾股定理计算即可.解:(1)证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF.∵BD=CD,∴Rt△BDE≌Rt△CDF(HL).∴∠B=∠C.∴AB=AC.(2)∵AB=AC,AD平分∠BAC,∴AD⊥BC.在Rt△ADC中,∠DAC=30°,∴AC=2DC=8,AD=√AC2−DC2=√82−42=4√3小提示:本题考查的是全等三角形的判定和性质、角平分线的性质,用勾股定理解三角形,掌握全等三角形的判定定理和性质定理是解题的关键.15、已知△ABC中,∠BAC=60°,以AB和BC为边向外作等边△ABD和等边△BCE.(1)连接AE、CD,如图1,求证:AE=CD;(2)若N为CD中点,连接AN,如图2,求证:CE=2AN;(3)若AB⊥BC,延长AB交DE于M,DB=√2,如图3,则BM=.(直接写出结果).答案:(1)见解析;(2)见解析;(3)√22解析:(1)由等边△ABD和等边△BCE.AB=DB,BC=BE,可推得∠ABE=∠DBC,可证△ABE≌△DBC(SAS),由性质证出AE=CD即可;(2)延长AN使NF=AN,连接FC,由N为CD中点,可得CN=DN,可证△ADN≌△FCN(SAS),可得CF=AD=AB,∠NCF=∠NDA,可求∠DAC=120°,可推出∠ACF=60°,可证△ABC≌△CFA(SAS),由性质得CE= BC=AF=2AN即可;(3)过E作EG⊥BE,交AM延长线于G由AB⊥BC,∠BAC=60°,DB=√2,求出AC=2√2,由勾股定理得:BC=√AC2−AB2=√6,可求出∠EBM =30°,求得∠G= =60°=∠CAB,可证△CAB≌△BGE(AAS)由性质得GE=AB=DB=√2,利用30°角的直角边与斜边关系得BG=2GE=2√2,再证△AD≌△GME(AAS),得AM=GM可求得BG= 2BM+AB=2√2即可.(1)证明:∵等边△ABD和等边△BCE.AB=DB,BC=BE,∠ABD=∠CBE=60°,∴∠ABD+∠ABC=∠CBE+∠ABC,∴∠ABE=∠DBC,△ABE≌△DBC(SAS),∴AE=CD;(2)延长AN使NF=AN,连接FC,∵N为CD中点,∴CN=DN,又∠AND=∠FNC,△ADN≌△FCN(SAS),∴CF=AD=AB,∠NCF=∠NDA,∵∠BAC=60°,∠DAB=60°,∴∠DAC=120°,∴∠ACF=∠ACD+∠NCF=∠ACD+∠ADN=60°,∴∠BAC=∠ACF,∵AC=CA,△ABC≌△CFA(SAS),∴CE=BC=AF=2AN;(3)过E作EG⊥BE,交AM延长线于G,∴AB⊥BC,∠BAC=60°,DB=√2,∴AC=2√2,由勾股定理得:BC=√AC2−AB2=√6,∴∠EBM=180°-∠ABC-∠CBE=30°,∴∠G=180°-∠GBE-∠BEG=60°=∠CAB,∵BC=EB,∴△CAB≌△BGE(AAS),∴GE=AB=DB=√2,∴BG=2GE=2√2,∵∠DAM=60°=∠G,又∵∠AMD=∠GME,∴△AD≌△GME(AAS),∴AM=GM,∴GM=AB+BM,∴BG=BM+GM=2BM+AB=2√2,∴2BM+√2=2√2,∴BM=√2.2.所以答案是:√22小提示:本题考查等边三角形的性质,三角形全等判定与性质,直角三角形的性质,勾股定理,线段中点,线段和差,掌握等边三角形的性质,三角形全等判定与性质,直角三角形的性质,勾股定理应用,线段中点,线段和差计算是解题关键.。

初中数学-第十七章 勾股定理 - 副本

初中数学-第十七章 勾股定理 - 副本

初中数学勾股定理【学习目标】1. 掌握勾股定理的内容及证明方法,能够熟练地运用勾股定理由已知直角三角形中的两条边长求出第三条边长.2. 掌握勾股定理,能够运用勾股定理解决简单的实际问题,会运用方程思想解决问题.3. 熟练应用勾股定理解决直角三角形中的问题,进一步运用方程思想解决问题.【要点梳理】要点一、勾股定理直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为,斜边长为,那么.要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系.(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.(3)理解勾股定理的一些变式:,, .要点二、勾股定理的证明方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.图(1)中,所以.方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.图(2)中,所以.方法三:如图(3)所示,将两个直角三角形拼成直角梯形.,所以.要点三、勾股定理的作用1. 已知直角三角形的任意两条边长,求第三边; a b ,c 222a b c +=222a c b =−222b c a =−()222c a b ab =+−2. 用于解决带有平方关系的证明问题;3. 利用勾股定理,作出长为的线段. 【典型例题】类型一、勾股定理的应用1、如图所示,在多边形ABCD 中,AB =2,CD =1,∠A =45°,∠B =∠D =90°,求多边形ABCD 的面积. 举一反三:【变式】(2015•西城区模拟)已知:如图,在△ABC,BC=2,S △ABC =3,∠ABC=135°,求AC 、AB 的长.2、已知直角三角形斜边长为2,周长为,求此三角形的面积.3、(2015春•黔南州期末)长方形纸片ABCD 中,AD=4cm ,AB=10cm ,按如图方式折叠,使点B 与点D 重合,折痕为EF ,求DE 的长.类型二、利用勾股定理解决实际问题4、如图所示,在一棵树的10高的B 处有两只猴子,一只爬下树走到离树20处的池塘A 处,另外一只爬到树顶D 后直接跃到A 处,距离的直线计算,如果两只猴子所经过的距离相等,试问这棵树有多高?举一反三:【变式】如图①,有一个圆柱,它的高等于12,底面半径等于3,在圆柱的底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点的食物,需要爬行的最短路程是多少?(π取3)【巩固练习】一.选择题26+m m cm cm1.如图,数轴上点A 所表示的数为,则的值是( )AB . CD2.(2015•东莞模拟)如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S 1=4,S 2=9,S 3=8,S 4=10,则S=( )A .25B .31C .32D .403. 如图所示,折叠矩形ABCD 一边,点D 落在BC 边的点F 处,若AB =8,BC =10,EC 的长为( )cm .A .3B .4C .5D .64.如图,长方形AOBC 中,点A 的坐标为(0,8),点D 的纵坐标为3,若将矩形沿直线AD 折叠,则顶点C 恰好落在边OB 上E 处,那么图中阴影部分的面积为( )A. 30 B .32 C .34 D .165.如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线,,上,且,之间的距离为2 , ,之间的距离为3 ,则AC 的长是( )A .B .C .D .76.在△ABC 中,AB =15,AC =13,高AD =12则, △ABC 的周长为( )A.42B.32C.42或32D.37或33a a 111cm cm 1l 2l 3l 1l 2l 2l 3l 1725224二.填空题7.若一个直角三角形的两边长分别为12和5,则此三角形的第三边长为______.8. 如图,将长8,宽4的长方形纸片ABCD 折叠,使点A 与C 重合,则折痕EF 的长为__________.9.(2015•黄冈)在△ABC 中,AB=13cm ,AC=20cm ,BC 边上的高为12cm ,则△ABC 的面积为cm 2.10. 如图,在平面直角坐标系中,点A ,B 的坐标分别为(-6,0)、(0,8).以点A 为圆心,以AB 长为半径画弧,交x 正半轴于点C ,则点C 的坐标为________.11. 已知长方形ABCD ,AB =3,AD =4,过对角线BD 的中点O 做BD 的垂直平分线EF ,分别交AD 、BC 于点E 、F ,则AE 的长为_______________.12.在直线上依次摆着7个正方形(如图),已知倾斜放置的3个正方形的面积分别为1,2,3,水平放置的4个正方形的面积是则______.三.解答题13.(2015春•无棣县期中)如图所示,一架长为2.5米的梯子,斜靠在竖直的墙上,这时梯子的底端距离底0.7米,求梯子顶端离地多少米?如果梯子顶端沿墙下滑0.4m ,那么梯子底端将向左滑动多少m ?14. 现有10个边长为1的正方形,排列形式如左下图, 请把它们分割后拼接成一个新的正方形.要求: 在左下图中用实线画出分割线, 并在右下图的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的cm cmcm cmcm 1234S S S S ,,,,1234S S S S +++=新正方形.15. 将一副三角尺如图拼接:含30°角的三角尺(△ABC )的长直角边与含45°角的三角尺(△ACD )的斜边恰好重合.已知AB =2,P 是AC 上的一个动点.(1)当点P 在∠ABC 的平分线上时,求DP 的长;(2)当点PD =BC 时,求此时∠PDA 的度数.勾股定理的逆定理【学习目标】1. 理解勾股定理的逆定理,并能与勾股定理相区别;2. 能运用勾股定理的逆定理判断一个三角形是否是直角三角形;3. 理解勾股数的含义;4. 通过探索直角三角形的判定条件的过程,培养动手操作能力和逻辑推理能力.【要点梳理】要点一、勾股定理的逆定理如果三角形的三条边长,满足,那么这个三角形是直角三角形.要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形. 要点二、如何判定一个三角形是否是直角三角形(1) 首先确定最大边(如).(2) 验证与是否具有相等关系.若,则△ABC 是∠C =90°的直角三角形;若,则△ABC 不是直角三角形.要点诠释:当时,此三角形为钝角三角形;当时,此三角形为锐角三角形,其中为三角形的最大边.要点三、勾股数满足不定方程的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以为三边长的三角形一定是直角三角形.熟悉下列勾股数,对解题会很有帮助:① 3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41……如果是勾股数,当为正整数时,以为三角形的三边长,此三角形必为直角三角形.a b c ,,222a b c +=c 2c 22a b +222c a b =+222c a b ≠+222a b c +<222a b c +>c 222x y z +=x y z 、、a b c 、、t at bt ct 、、要点诠释:(1)(是自然数)是直角三角形的三条边长;(2)(是自然数)是直角三角形的三条边长;(3) (是自然数)是直角三角形的三条边长;【典型例题】类型一、勾股定理的逆定理1、(2014春•防城区期末)如图所示,在△ABC 中,AB :BC :CA=3:4:5,且周长为36cm ,点P 从点A 开始沿边向B 点以每秒1cm 的速度移动;点Q 从点B 沿BC 边向点C 以每秒2cm 的速度移动,如果同时出发,问过3秒时,△BPQ 的面积为多少?2、如图,点D 是△ABC 内一点,把△ABD 绕点B 顺时针方向旋转60°得到△CBE ,若AD=4,BD=3,CD=5.(1)判断△DEC 的形状,并说明理由;(2)求∠ADB 的度数.举一反三:【变式】如图所示,在△ABC 中,已知∠ACB =90°,AC =BC ,P 是△ABC 内一点,且PA =3,PB =1,PC =CD =2,CD ⊥CP ,求∠BPC 的度数.类型二、勾股定理逆定理的应用3、已知a 、b 、c 是△ABC 的三边,且满足,且a +b +c =12,请你探索△ABC 的形状. 22121n n n −+,,1,n n >2222,21,221n n n n n ++++n 2222,,2m n m n mn −+,m n m n >、438324a b c +++==举一反三:【变式】(2015春•渝中区校级月考)△ABC 的三边a 、b 、c 满足|a+b ﹣50|++(c ﹣40)2=0.试判断△ABC的形状是.4、如图所示,MN 以左为我国领海,以右为公海,上午9时50分我国缉私艇A 发现在其正东方向有一走私艇C 并以每小时13海里的速度偷偷向我国领海开来,便立即通知距其5海里,并在MN 线上巡逻的缉私艇B 密切注意,并告知A 和C 两艇的距离是13海里,缉私艇B 测得C 与其距离为12海里,若走私艇C 的速度不变,最早在什么时间进入我国海域?【巩固练习】一.选择题1.下列几组数中,为勾股数的一组是( )A .1.4,4.8,5B .15,36,39C .21,45,51D .8,15,172.(2015春•凉山州期末)△ABC 中,∠A ,∠B ,∠C 所对的边分别是a ,b ,c ,满足下列条件的△ABC ,不是直角三角形的是( )A.a :b :c=1:1B.∠A :∠B :∠C=3:4:5C.(a+b )(a ﹣b )=cD.∠A :∠B :∠C=1:2:3224. 有下面的判断:①△ABC 中,a 2+b 2≠c 2,则△ABC 不是直角三角形.②△ABC 是直角三角形,∠C=90°,则a 2+b 2=c 2.③若△ABC 中,a 2﹣b 2=c 2,则△ABC 是直角三角形.④若△ABC 是直角三角形,则(a +b )(a ﹣25.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )6. 为直角三角形的三边,且为斜边,为斜边上的高,下列说法:①能组成一个三角形 ②能组成直角三角形 2c b a ,,c h 222,,c b a 222111,,a b c③能组成直角三角形 ④三个内角的度数之比为3:4:5能组成一个三角形 其中正确结论的个数是( )A .1B .2C .3D .4二.填空题7.若△ABC 中,,则∠B =____________. 8.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC 是______三角形.9.若一个三角形的三边长分别为1、、8(其中为正整数),则以、、为边的三角形的面积为______.10.△ABC 的两边分别为5,12,另一边为奇数,且是3的倍数,则应为______,此三角形为______.11.(2014春•寿县期中)在某港口有甲乙两艘渔船,若甲沿北偏东60°方向以每小时8海里的速度前进,同时,乙船沿南偏东角度以每小时15海里速度前进,2小时后,甲乙两船相距34海里,那么,乙船航行的方向是南偏东___________度.12. 如果线段能组成一个直角三角形,那么________组成直角三角形.(填“能”或“不能”).三.解答题13.(2014秋•广州校级期末)如图,已知某经济开发区有一块四边形空地ABCD ,现计划在该空地上种植草皮,经测量∠B=90°,AB=300m ,AD=400m ,CD=1300m ,BC=1200m .请计算种植草皮的面积.14.在Rt △ABC 中,∠C=90°,∠A 、∠B 、∠C 所对的边分别是a 、b 、c .三角形的面积与周长的比值 (2)若a +b ﹣c =m ,则猜想= (并证明此结论). hb a 1,1,1()()2b a b ac −+=a a 2a −a 2a +a b ,c a b c ++c a b c ,,2,2,2c b a s l15. 我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称正方形、长方形、直角梯形(任选两个均可);(2)如图1,已知格点(小正方形的顶点)O (0,0),A (3,0),B (0,4),请你画出以格点为顶点,OA ,OB 为勾股边且对角线相等的勾股四边形OAMB ;(3)如图2,将△ABC 绕顶点B 按顺时针方向旋转60°,得到△DBE,连接AD ,DC ,∠DCB=30度.求证:DC 2+BC 2=AC 2,即四边形ABCD 是勾股四边形.《勾股定理》全章复习与巩固【学习目标】1.了解勾股定理的历史,掌握勾股定理的证明方法;2.理解并掌握勾股定理及逆定理的内容;3.能应用勾股定理及逆定理解决有关的实际问题.【知识网络】【要点梳理】要点一、勾股定理1.勾股定理:直角三角形两直角边的平方和等于斜边的平方.(即:)2.勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是:(1)已知直角三角形的两边,求第三边;(2)利用勾股定理可以证明有关线段平方关系的问题;(3)解决与勾股定理有关的面积计算;(4)勾股定理在实际生活中的应用.要点二、勾股定理的逆定理1.勾股定理的逆定理如果三角形的三边长,满足,那么这个三角形是直角三角形.要点诠释:应用勾股定理的逆定理判定一个三角形是不是直角三角形的基本步骤:a b 、c 222a b c +=a b c 、、222a b c +=(1)首先确定最大边,不妨设最大边长为;(2)验证:与是否具有相等关系:若,则△ABC 是以∠C 为90°的直角三角形;若时,△ABC 是锐角三角形;若时,△ABC 是钝角三角形.2.勾股数满足不定方程的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以为三边长的三角形一定是直角三角形.要点诠释:常见的勾股数:①3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41.如果()是勾股数,当t 为正整数时,以为三角形的三边长,此三角形必为直角三角形. 观察上面的①、②、④、⑤四组勾股数,它们具有以下特征:1.较小的直角边为连续奇数;2.较长的直角边与对应斜边相差1.3.假设三个数分别为,且,那么存在成立.(例如④中存在=24+25、=40+41等)要点三、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关.【典型例题】类型一、勾股定理及逆定理的应用1、如图所示,等腰直角△ABC 中,∠ACB =90°,E 、F 为AB 上两点(E 左F 右),且∠ECF =45°,求证:.举一反三:【变式】已知凸四边形ABCD 中,∠ABC =30°,∠ADC =60°,AD =DC ,求证:.2、如图,在△ABC 中,∠ACB=90°,AC=BC ,P 是△ABC 内的一点,且PB=1,PC=2,PA=3,求∠BPC 的度数.c 22a b +2c 222a b c +=222a b c +>222a b c +<222x y z +=x y z 、、a b c 、、at bt ct 、、a b c 、、a b c <<2a b c =+2729222AE BF EF +=222BD AB BC =+类型二、勾股定理及逆定理的综合应用3、(2014•顺义区一模)在△ABC中,BC=a,AC=b,AB=c,设c为最长边.当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,可以判断△ABC的形状(按角分类).(1)请你通过画图探究并判断:当△ABC三边长分别为6,8,9时,△ABC为三角形;当△ABC三边长分别为6,8,11时,△ABC为三角形.(2)小明同学根据上述探究,有下面的猜想:“当a2+b2>c2时,△ABC为锐角三角形;当a2+b2<c2时,△ABC 为钝角三角形.”请你根据小明的猜想完成下面的问题:当a=2,b=4时,最长边c在什么范围内取值时,△ABC是直角三角形、锐角三角形、钝角三角形?4、如图:正方形ABCD中,E是DC中点,F是EC中点.求证:∠BAF=2∠EAD.举一反三:【变式】(2014春•防城区期末)如图所示,在△ABC中,AB:BC:CA=3:4:5,且周长为36cm,点P从点A 开始沿边向B点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,问过3秒时,△BPQ的面积为多少?类型三、勾股定理的实际应用5、如图所示,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC=400米,BD=200米,CD=800米,牧童从A处把牛牵到河边饮水后再回家.试问在何处饮水,所走路程最短?最短路程是多少?举一反三:【变式】如图所示,正方形ABCD 的AB 边上有一点E ,AE =3,EB =1,在AC 上有一点P ,使EP +BP 最短.求EP +BP 的最小值.6、台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.如图台风中心在我国台湾海峡的B 处,在沿海城市福州A 的正南方向240千米,其中心风力为12级,每远离台风中心25千米,台风就会减弱一级,如图所示,该台风中心正以20千米/时的速度沿北偏东30°方向向C 移动,且台风中心的风力不变,若城市所受风力达到或超过4级,则称受台风影响.试问:(1)该城市是否会受到台风影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?【巩固练习】一.选择题1. 在△中,若,则△ABC 是( )A. 锐角三角形B. 钝角三角形C. 等腰三角形D. 直角三角形2. 如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°3.(2015春•西华县期末)下列满足条件的三角形中,不是直角三角形的是( )A .三内角之比为1:2:3 B.三边长的平方之比为1:2:3C .三边长之比为3:4:5 D.三内角之比为3:4:54.如图,一牧童在A 处牧马,牧童家在B 处,A 、B 处距河岸的距离AC 、BD 的长分别为500m 和700m ,且C 、D 两地的距离为500m ,天黑前牧童从A 点将马牵引到河边去饮水后,再赶回家,那么牧童至少要走( )ABC 1,2,122+==−=n c n b n aA .2900mB . 1200mC . 1300mD . 1700m5. 直角三角形的两条直角边长为a ,b ,斜边上的高为h ,则下列各式中总能成立的是( )A .ab =h 2B .a 2+b 2=h 2C .D . 6.如图,Rt △ABC 中,∠C =90°,CD ⊥AB 于点D ,AB =13,CD =6,则(AC +BC)2等于( )A.25B.325C.2197D.4057. 已知三角形的三边长为,由下列条件能构成直角三角形的是( )A. B. C. D. 8. 勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为( )9. 如图,AB =5,AC =3,BC 边上的中线AD =2,则△ABC 的面积为______.111a b h +=222111a b h+=a b c 、、()()2222221,4,1amb mc m =−==+()()222221,4,1a m b m c m =−==+()()222221,2,1a m b m c m =−==+()()2222221,2,1a m b m c m =−==+10.如图所示,有一块直角三角形纸片,两直角边AB =6,BC =8,将直角边AB 折叠使它落在斜边AC 上,折痕为AD ,则BD =______.11.已知:△ABC 中,AB =15,AC =13,BC 边上的高AD =12,BC =_______.12.如图,E 是边长为4cm 的正方形ABCD 的边AB 上一点,且AE=1cm ,P 为对角线BD 上的任意一点,则AP+EP 的最小值是 cm .13.如图,长方体的底面边长分别为1cm 和2cm ,高为4cm ,点P 在边BC 上,且BP=BC .如果用一根细线从点A 开始经过3个侧面缠绕一圈到达点P ,那么所用细线最短需要 cm .14.(2014春•监利县期末)小明把一根70cm 长的木棒放到一个长宽高分别为30cm ,40cm ,50cm 的木箱中,他能放进去吗?答: (选填“能”或“不能”).15. 已知长方形OABC ,点A 、C 的坐标分别为OA=10,OC=4,点D 是OA 的中点,点P 在BC 边上运动,当△ODP 是腰长为5的等腰三角形时,CP 的长为________.16. 如图所示,在△ABC 中,AB =5,AC =13,BC 边上的中线AD =6,∠BAD =________.三.解答题17.如图所示,已知D 、E 、F 分别是△ABC 中BC 、AB 、AC 边上的点,且AE =AF ,BE =BD ,CF =CD ,AB=144,AC =3,,求:△ABC 的面积.18.如图等腰△ABC 的底边长为8cm ,腰长为5cm ,一个动点P 在底边上从B 向C 以0.25cm/s 的速度移动,请你探究,当P 运动几秒时,P 点与顶点A 的连线PA 与腰垂直.19.(2015•永州)如图,有两条公路OM 、ON 相交成30°角,沿公路OM 方向离O 点80米处有一所学校A .当重型运输卡车P 沿道路ON 方向行驶时,在以P 为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P 与学校A 的距离越近噪声影响越大.若一直重型运输卡车P 沿道路ON 方向行驶的速度为18千米/时.(1)求对学校A 的噪声影响最大时卡车P 与学校A 的距离;(2)求卡车P 沿道路ON 方向行驶一次给学校A 带来噪声影响的时间.20. 如图1,四根长度一定....的木条,其中AB =6,CD =15,将这四根木条用小钉绞合在一起,构成一个四边形ABCD (在A 、B 、C 、D 四点处是可以活动的).现固定AB 边不动,转动这个四边形,使它的形状改变,在转动的过程中有以下两个特殊位置.位置一:当点D 在BA 的延长线上时,点C 在线段AD 上(如图2);位置二:当点C 在AB 的延长线上时,∠C =90°.(1)在图2中,若设BC 的长为,请用的代数式表示AD 的长;(2)在图3中画出位置二的准确..图形;(各木条长度需符合题目要求) (3)利用图2、图3求图1的四边形ABCD 中,BC 、AD 边的长.32BD CD=cm cm xx。

勾股定理知识点总结

勾股定理知识点总结

勾股定理知识点总结勾股定理是数学中一个著名的定理,也是初中数学学习的重点内容之一。

它描述了直角三角形中三条边的关系,并且可以应用于解决许多与三角形和几何有关的问题。

本文将对勾股定理的相关知识点进行总结和探讨。

一、勾股定理的表述和公式勾股定理的表述是:“直角三角形斜边上的正方形面积等于其他两边上的正方形面积之和。

”这就是我们通常所说的勾股定理。

勾股定理的公式可以表示为:a² + b² = c²其中,a、b代表直角三角形的两条直角边,c代表直角三角形的斜边。

二、勾股定理的证明勾股定理的证明有多种方法,在此我们以几何证明和代数证明为例进行说明。

几何证明:通过图形的构造和推理来证明勾股定理。

一种常见的几何证明方法是构造以a、b、c为边长的正方形,然后计算正方形的面积,从而证明等式成立。

代数证明:通过数学计算和变换来证明勾股定理。

一种常见的代数证明方法是将直角三角形的三条边的平方进行计算,然后将其相加和化简,最终得到等式成立的结果。

三、勾股定理的应用勾股定理不仅仅是一个数学定理,还有着广泛的应用。

1. 解决三角形的边长和角度问题:通过勾股定理,我们可以已知两条边长来求解第三条边长,或者已知两条边长和一个角度来求解其他角度。

2. 判断三角形的形状:我们可以利用勾股定理来判断一个三角形是直角三角形、锐角三角形还是钝角三角形,从而进一步研究和分析三角形的性质。

3. 解决几何问题:勾股定理还可以应用于解决一些几何问题,例如求解两条直线的交点坐标、求解平面图形的面积、判断是否存在重合图形等等。

四、勾股定理的推广除了直角三角形,勾股定理还可以推广到其他形状的图形。

1. 平方和定理:平方和定理是勾股定理的推广,它描述了非直角三角形中三条边平方的关系。

2. 多边形的对角线:在多边形中,通过某个顶点可以连接其他顶点,形成对角线。

对角线之间的关系也可以通过勾股定理进行研究和计算。

3. 空间中的勾股定理:在空间几何中,勾股定理可以推广到三维空间,描述直角棱柱、直角锥等图形的三条棱或边之间的关系。

人教版数学八年级下册17.1勾股定理课件(36张PPT) (1)

人教版数学八年级下册17.1勾股定理课件(36张PPT) (1)

图1
9
9 18
8
B 图1
C A
图2
A,B,C 面积关

44
SA+SB=SC
B 图2
(图中每个小方格代表一个单位面积)
直角三 角形三 边关系
两直角边的平方和 等于斜边的平方
即:两条直角边上的正方形面积之和等于
斜边上的正方形的面积
探究二:在一般 的直角三角形中, SA+SB=SC 还成立吗?
A
B C
A
B C
用了“补”的方法
用了“割”的方法
如图,小方格的边长为1.
(1)你能求出正方形C的面积吗?
观察所得到的各组数据,你有什么发现?
A
SA+SB=SC
a
Bb c
C
a2+b2=c2
猜想:两直角边a、b与斜边c 之间的关系?
观察所得到的各组数据,你有什么发现?
SA+SB=SC
a
bc
a2+b2=c2
猜想两直角边a、b与斜边c 之间的关系?
我们也来观察右图的地面, 你能发现A、B、C面积之间 有什么数量关系吗?
AB C
SA+SB=SC
每块砖都是等腰直角三角形哦
二、探究新知
探究一:你能发现图1中正方形A、B、C的面积之间有 什么数量关系吗?
C A
B 图1
(图中每个小方格是1个单位面积)
(1)观察图1-1
正方形A中含有 9 个
C
小方格,即A的面积是
A
9 个单位面积。
正方形B的面积是
B
C
9 个单位面积。
图1-1
A
正方形C的面积是

第十七章 勾股定理(单元解读)八年级数学下册(人教版)

第十七章 勾股定理(单元解读)八年级数学下册(人教版)

教材内容 ---教学目标定位
1.经历股定理及其逆定理的探索过程;知道这两个定理的联系与区别能运用 这两个定理解决一些简单的实际问题. 2.初步认识勾股定理及其逆定理的重要意义,会运用这两个定理解决一些几 何问题. 3.通过具体的例子,了解逆命题、逆定理的概念,会识别两个互逆的命题, 知道原命题成立时其逆命题不一定成立. 4.通过对我国古代研究勾股定理成就的介绍,培养民族自豪感:通过对勾股 定理的探索和交流,培养数学学习的信心.
知识结构
◆本章分为两节,第一节介绍勾股定理及其应用,第二节介绍勾股定理的 逆定理及其应用.在第二节中结合勾股定理逆定理的内容展开,穿插介绍了 逆命题、逆定理的概念,并举例说明原命题成立其逆命题不一定成立.
知识结构
勾股定理是直角三角形的一个性质定理,而其逆定理是直角三角形的一个 判定定理.教科书按照先性质后判定的顺序,第一节安排了对于勾股定理的 观察、计算、猜想、证明及简单应用的探究过程,第二节勾股定理逆定理 的安排也是设计了一个从特殊到一般的探索、发现和证明的完整过程.展现 了“从特殊到一般”的研究几何图形的基本思路和定理课观察→计算→猜 想→证明的基本流程.
教材内容 ---地位和作用
◆勾股定理既是对直角三角形性质的丰富与深化,又是学习锐角三角函数 的基础;是“以形求数、以数溯形”的重要工具;在解决面积问题、三角形 问题、四边形问题圆的问题中都有勾股定理的“倩影”. ◆勾股定理的证明和应用历来都是中考命题的重点.近年来各地中考中有关 勾股定理方面的命题主要有以下几个方面:利用股定理解决门框是否能通过 的问题、利用勾股定理解决梯子移动的问题、利用勾股定理解决芦苇倾斜 的问题、利用勾股定理在数轴上表示无理数、利用勾股定理建立方程、折 叠问题、最短路径问题等。尤其是“利用勾股定理建立方程解决问题”几 乎在每个省份的考查中都有体现.

初中勾股数知识点总结

初中勾股数知识点总结

初中勾股数知识点总结在直角三角形中,勾股数满足勾股定理,即a^2 + b^2 = c^2,其中a、b是直角三角形的两条短边,c是直角三角形的斜边。

最早的勾股数是3、4、5,满足3^2 + 4^2 = 5^2。

勾股数有许多性质和应用,我们来详细了解一下。

1. 勾股数的性质勾股数有一些基本的性质:a) 勾股数满足勾股定理,即a^2 + b^2 = c^2。

b) 勾股数中,至少有一个是偶数。

c) 如果a、b、c满足a^2 + b^2 = c^2,并且a、b、c互质,那么这个勾股数就是一个素勾股数。

2. 勾股数的分类勾股数可以分为两类:基本勾股数和非基本勾股数。

a) 基本勾股数是指勾股定理的三元组。

例如(3,4,5)(5,12,13)等。

b) 非基本勾股数是指不满足勾股定理的三元组。

例如(4,7,8)等。

3. 勾股数的应用勾股定理是数学中非常重要的定理,它在几何学、物理学、数学竞赛等领域都有广泛的应用。

a) 在几何学中,勾股定理可以用来求解直角三角形的边长。

b) 在物理学中,勾股定理可以用来求解物体的运动轨迹、速度和加速度等。

c) 在数学竞赛中,勾股定理是常见的题目类型,很多数学题目中都会用到勾股定理。

4. 勾股数的性质勾股数满足许多有趣的性质:a) 勾股数中,有些数还可以看作是素数的平方。

例如(3,4,5)中5是素数的平方。

b) 勾股数中,可以有许多奇特的特征,如(20,21,29)中,20和21都不是素数,但它们的平方和是29。

c) 勾股数中,可以存在很多特殊的组合。

例如(9,40,41)是一个特殊的组合,因为9和40都是勾股数的平方,它们的和等于41的平方。

5. 勾股数的性质勾股数还有很多其他有趣的性质,例如:a) 勾股数可以用来构造各种形状的直角三角形。

b) 勾股数可以用来解决一些数论问题。

c) 勾股数还可以用来构造一些特殊的图形和结构。

综上所述,勾股数是数学中非常重要的概念,它有许多有趣的性质和应用。

人教版初中数学八年级下册第十七章勾股定理17.1.1勾股定理说课稿

人教版初中数学八年级下册第十七章勾股定理17.1.1勾股定理说课稿
2.同伴互评:组织学生相互评价,提出建议,促进同学之间的相互学习和交流。
3.教师评价:针对学生的表现,给予积极的反馈和鼓励,指出学生的不足之处,并提出改进建议。
(五)作业布置
课后作业布置如下:
1.基础作业:布置一定数量的基础习题,让学生巩固勾股定理的计算方法。
2.提高作业:设计一些拓展性题目,让学生运用勾股定理解决实际问题,提高学生的应用能力。
1.主要内容:左侧包括勾股定理的定义、勾股数;中间部分展示勾股定理的证明过程、例题及解题步骤;右侧部分呈现本节课的总结和勾股定理应用时的注意事项。
2.风格:板书采用简洁明了的字体,用不同颜色粉笔区分重点、难点和关键步骤,以增强视觉效果。
3.作用:板书在教学过程中的作用是引导学生关注教学重点,帮助学生理清知识结构,便于复习和回顾。
3.技术工具:电子白板、几何画板等,方便学生直观地观察和操作几何图形,提高课堂互动性。
(三)互动方式
为实现师生互动和生生互动,我计划设计以下环节:
1.师生互动:在课堂提问环节,教师引导学生思考问题,学生回答问题,教师给予反馈和指导。
2.生生互动:将学生分成小组,进行合作探究、讨论。在小组内,学生共同分析问题、解决问题,相互交流想法,达成共识。
2.小组讨论:组织学生进行小组讨论,共同解决实际问题,培养学生的团队协作能力和解决问题的能力。
3.实践活动:让学生分组测量学校周围建筑物中的直角三角形,计算其边长,并验证勾股定理。
(四)总结反馈
在总结反馈阶段,我将采取以下措施:
1.自我评价:让学生回顾本节课的学习内容,进行自我评价,总结自己在学习过程中的收获和不足。
在课程体系中,勾股定理的学习是在学生已经掌握了直角三角形的基本概念、三角形面积计算以及相似三角形的基础上展开的。通过本节课的学习,学生将对直角三角形有更深入的理解,为后续学习平面几何中与直角三角形相关的内容奠定基础。

七年级勾股定理知识点

七年级勾股定理知识点

七年级勾股定理知识点勾股定理是初中数学中非常重要的一个定理,对于学习代数、几何等方面都有着非常深刻的影响。

在学习勾股定理时,我们首先需要熟悉其基本概念,然后再掌握其应用方法。

今天我们将介绍七年级勾股定理知识点。

让我们一起来了解吧!第一部分:勾股定理的基本概念勾股定理是用于计算直角三角形边长的定理,其基本概念非常简单,只需要记住两点即可。

首先,勾股定理指出:直角三角形斜边的平方等于两直角边平方和。

其次,斜边、直角边均为直线段,且直角边之间的夹角为九十度。

这两点是掌握勾股定理的基本要点,对于勾股定理的学习非常关键。

第二部分:勾股定理的运用方法熟悉勾股定理基本概念之后,接下来我们需要了解勾股定理的运用方法。

勾股定理在不同场合下有不同的应用方法,例如计算三角形的边长、判断三角形是否为直角三角形等等。

下面将详细介绍常用的勾股定理应用方法。

1、计算斜边当我们已知直角三角形的两条直角边长时,可以利用勾股定理来计算斜边长。

根据勾股定理公式,斜边平方等于两直角边平方和,即 c²=a²+b²。

其中,a 和 b 分别为直角三角形的两条直角边,c 为斜边长。

2、判断是否为直角三角形在学习几何知识时,我们常常需要判断一个三角形是否为直角三角形。

此时,我们可以利用勾股定理来判断。

如果一个三角形的三个边长符合勾股定理公式 c²=a²+b²,那么这个三角形就是一个直角三角形。

3、计算一条直角边的长度当我们已知直角三角形的一条直角边和斜边长时,可以利用勾股定理来计算另一条直角边长。

即 a²=c²-b²。

其中,a 为需要计算的直角边长,c 为斜边长,b 为已知直角边长。

第三部分:勾股定理的例题解析最后,我们来看几个关于勾股定理的例题,来加深对其应用的理解。

例1:已知直角三角形斜边长为5,一条直角边长为3,求另一条直角边长度。

解析:利用勾股定理公式 a²=c²-b²可得,直角边a = √(c²-b²) = √(5²-3²) = 4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十七章 勾股定理
17.1 勾股定理
1、勾股定理:如果直角三角形两直角边长分别为a 、b ,斜边长为c ,那么222a b c += 勾股定理的证明:
方法一:4EFGH S S S ∆+=正方形正方形ABCD ,221
4()2
ab b a c ⨯+-=,化简可证.
方法二:
四个直角三角形的面积与小正方形面积的和等于大正方形的面积.
四个直角三角形的面积与小正方形面积的和为221
422
S ab c ab c =⨯+=+
大正方形面积为222()2S a b a ab b =+=++ ∴222a b c +=
方法三:1()()2S a b a b =+⋅+梯形,211
2S 222
ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证
17.2 勾股定理的逆定理
2、勾股定理的逆定理:如果三角形的三边长a 、b 、c 满足222a b c +=,那么这个三角形是直角三角形.
3、互逆命题的概念
如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.
4、勾股数:能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数
常见的勾股数有:3、4、5;6、8、10;5、12、13;7、24、25等
b
a
c
b
a
c c
a
b
c
a
b c
b
a H
G F
E
D
C
B
A
a b
c c b
a
E
D C
B
A
例、在Rt△ABC中,a=3,b=4,求c.
错解由勾股定理,得
诊断这里默认了∠C为直角.其实,题目中没有明确哪个角为直角,当b>a时,∠B可以为直角,故本题解答遗漏了这一种情况.
当∠B为直角时,
例、已知Rt△ABC中,∠B=RT∠,,c= b.
错解由勾股定理,得
诊断这里错在盲目地套用勾股定理“a2+b2=c2”.殊不知,只有当∠C=Rt∠时,a2+b2=c2才能成立,而当∠B=Rt∠时,则勾股定理的表达式应为a2+c2=b2.
正确解答∵∠B=Rt∠,
由勾股定理知a2+c2=b2.

例、若直角三角形的两条边长为6cm、8cm,则第三边长为________.
错解设第三边长为xcm.由勾股定理,得x2=62+82.
=10
即第三边长为10cm.
诊断这里在利用勾股定理计算时,误认为第三边为斜边,其实题设中并没有说明已知的两边为直角边,∴第三边可能是斜边,也可能是直角边.
正确解法设第三边长为xcm.
若第三边长为斜边,由勾股定理,得
=10(cm)
若第三边长为直角边,则8cm长的边必为斜边,由勾股定理,得
x=22
86-=28=27(cm)
因此,第三边的长度是10cm 或者27cm.
例、如图,已知Rt △ABC 中,∠BAC=90°,AD 是高,AM 是中线,且AM=
12
BC=233AD.又RT △ABC
的周长是(6+23)cm.求AD .
错解 ∵△ABC 是直角三角形, ∴AC:AB:BC=3:4:5 ∴AC ∶AB ∶BC=3∶4∶5.
∴AC=
312(6+23)=332+,AB=412(6+23)=6233+,BC=5
12
(6+23)=15536+
又∵
12AC AB •=1
2
BC AD • ∴AD=AC AB BC •=33623
231553
6
++⨯
+ =
(33)2(33)5(33)
+•++=2
5(3+3)(cm) 诊断 我们知道,“勾三股四弦五”是直角三角形中三边关系的一种特殊情形,并不能代表一般的直角三角
形的三边关系.上述解法犯了以特殊代替一般的错误.
正确解法∵AM=
23
3
AD ∴MD=222(
3)3AD AD -=33
AD 又∵MC=MA ,∴CD=MD . ∵点C 与点M 关于AD 成轴对称.
∴AC=AM,∴∠AMD=60°=∠C.
∴∠B=30°,AC=1
2
BC,AB=
3
2
BC
∴AC+AB+BC=1
2
BC+
3
2
BC+BC=6+23.
∴BC=4.
∵1
2
BC=
23
3
AD,∴AD=
1
2
2
3
3
BC
=3(cm)
例、在△ABC中,a∶b∶c=9∶15∶12,试判定△ABC是不是直角三角形.
错解依题意,设a=9k,b=15k,c=12k(k>0).
∵a2+b2=(9k)2+(15k)2=306k2,c2=(12k)2=144k2,
∴a2+b2≠c2.∴△ABC不是直角三角形.
诊断我们知道“如果一个三角形最长边的平方等于另外两边的平方和,那么这个三角形是直角三角形”.而上面解答错在没有分辨清楚最长边的情况下,就盲目套用勾股定理的逆定理.
正确解法由题意知b是最长边.设a=9k,b=15k,c=12k(k>0).
∵a2+c2=(9k)2+(12k)2=81k2+144k2=225k2.
b2=(15k)2=225k2,∴a2+c2=b2.
∴△ABC是直角三角形.
例、已知在△ABC中,AB>AC,AD是中线,AE是高.求证:AB2-AC2=2BC·DE
错证如图.
∵AE⊥BC于E,
∴AB2=BE2+AE2,
AC2=EC2+AE2.
∴AB2-AC2=BE2-EC2
=(BE+EC)·(BE-EC)
=BC·(BE-EC).
∵BD=DC,∴BE=BC-EC=2DC-EC.
∴AB2-AC2=BC·(2DC-EC-EC)=2BC·DE.
诊断题设中既没明确指出△ABC的形状,又没给出图形,因此,这个三角形有可能是锐角三角形,也可能是直角三角形或钝角三角形.∴高AE既可以在形内,也可以与一边重合,还可以在形外,这三种情况都符合题意.而这里仅只证明了其中的一种情况,这就犯了以偏概全的错误.剩下的两种情况如图所示.

正确证明由读者自己完成.
例、已知在△ABC中,三条边长分别为a,b,c,a=n,
b=
2
4
n
-1,c=
24
4
n+
(n是大于2的偶数).求证:△ABC是直角三角形.
错证1∵n是大于2的偶数,∴取n=4,这时a=4,b=3,c=5.∵a2+b2=42+32=25=52=c2,
∴△ABC是直角三角形(勾股定理的逆定理).
由勾股定理知△ABC是直角三角形.
正解∵a2+b2=n2+(
2
4
n
-1)2=n2+
4
16
n
-
2
2
n
+1=
4
16
n
+
2
2
n
+1
c2=(
24
4
n+
)2=(
2
1
4
n
+)2=
4
16
n
+
2
2
n
+1
由勾股定理的逆定理知,△ABC是直角三角形. 诊断证明1错在以特殊取代一般.。

相关文档
最新文档