高中解三角形与数列求和训练题目及答案

合集下载

必修5解三角形和数列测试题及答案

必修5解三角形和数列测试题及答案

必修五解三角形和数列综合练习解三角形一、选择题1.在△ ABC 中,三个内角A ,B ,C 的对边分别是 a , b , c ,若 b 2+ c 2- a 2= bc ,则角 A 等于 ()π π 2π 5π(A)(B)(C)(D)63362.在△ ABC 中,给出下列关系式:① sin(A + B)= sinC②cos(A + B)= cosC ③ sinA BcosC22其中正确的个数是 ( )(A)0(B)1(C)2(D)33.在△ ABC 中,三个内角A ,B ,C 的对边分别是 a , b , c. 若 a = 3, sinA =2, sin(A + C)= 3,则 b 等于 ()34(A)48 (C)627(B)(D)384.在△ ABC 中,三个内角 A ,B ,C 的对边分别是a ,b ,c ,若 a = 3,b =4, sinC =2,则此三角形的面积是 ()3(A)8(B)6 (C)4(D)35.在△ ABC 中,三个内角A ,B ,C 的对边分别是 a , b , c ,若 (a + b + c)(b + c - a)= 3bc ,且 sinA = 2sinBcosC ,则此三角形的形状是 ( )(A) 直角三角形(B) 正三角形(C) 腰和底边不等的等腰三角形 (D) 等腰直角三角形二、填空题6.在△ ABC 中,三个内角 A , B , C 的对边分别是 a , b , c ,若 a = 2 , b = 2,B = 45°,则角 A = ________.7.在△ ABC 中,三个内角A ,B ,C 的对边分别是 a , b , c ,若 a = 2, b = 3, c = 19 ,则角 C = ________.8.在△ ABC 中,三个内角 A ,B ,C 的对边分别是 a ,b ,c ,若 b = 3,c = 4,cosA = 3,则此三角形的面积为 ________.59.已知△ ABC 的顶点 A(1, 0), B(0 ,2), C(4, 4),则 cosA = ________.10.已知△ ABC 的三个内角 A ,B ,C 满足 2B =A + C ,且 AB = 1,BC = 4,那么边 BC 上的中线 AD 的长为 ________. 三、解答题11.在△ ABC 中, a , b ,c 分别是角 A , B , C 的对边,且 a = 3, b = 4, C = 60° .(1)求 c ; (2)求 sinB.12.设向量 a , b 满足 a · b = 3,|a |= 3, |b |= 2.(1)求〈 a , b 〉; (2)求 |a - b |.13.设△ OAB 的顶点为O(0,0) ,A(5, 2)和 B(- 9, 8),若 BD ⊥ OA 于 D.(1)求高线 BD 的长;(2)求△ OAB 的面积 .14.在△ ABC 中,若 sin2A+sin2B> sin2C,求证: C 为锐角 .(提示:利用正弦定理a b c,其中 R 为△ ABC 外接圆半径 ) sin A sin B2Rsin C15.如图,两条直路OX 与 OY 相交于 O 点,且两条路所在直线夹角为60°,甲、乙两人分别在OX、OY 上的 A、B 两点, | OA |= 3km , | OB |= 1km ,两人同时都以4km/h 的速度行走,甲沿XO 方向,乙沿 OY 方向.问: (1)经过 t 小时后,两人距离是多少(表示为 t 的函数 )?(2)何时两人距离最近?cos B b16.在△ ABC 中, a,b, c 分别是角 A,B, C 的对边,且.cosC2a c(1)求角 B 的值;(2)若 b=13, a+ c= 4,求△ ABC 的面积 .数列一、选择题1.在等差数列 { a n} 中,已知 a1+ a2= 4, a3+ a4=12,那么 a5+ a6等于 ()(A)16(B)20(C)24(D)362.在 50 和 350间所有末位数是 1 的整数和 ()(A)5880(B)5539(C)5208(D)48773.若 a, b, c 成等比数列,则函数 y= ax2+bx+ c 的图象与x 轴的交点个数为 ()(A)0(B)1(C)2(D) 不能确定4.在等差数列 { a n} 中,如果前 5 项的和为 S5= 20,那么 a3等于 ()(A) - 2(B)2(C) - 4(D)45.若 { a n} 是等差数列,首项 a1> 0,a2007+ a2008> 0,a2007·a2008<0,则使前 n 项和 S n> 0 成立的最大自然数n 是 ( )(A)4012(B)4013(C)4014(D)4015二、填空题6.已知等比数列 { a n} 中, a3=3, a10= 384,则该数列的通项a n= ________.7.等差数列 { a n} 中, a1+ a2+ a3=- 24, a18+ a19+ a20= 78,则此数列前20 项和 S20= ________.8.数列 { a n} 的前 n 项和记为 S n,若 S n= n2- 3n+ 1,则 a n= ________., a , a 成等比数列,则a3a6a9= ________.9.等差数列 { a n} 中,公差 d≠ 0,且 a1 39a4 a7a1010.设数列 { a n} 是首项为 1 的正数数列,且 (n+1)a n21- na n2+ a n+1a n= 0(n∈N* ) ,则它的通项公式a n= ________.三、解答题11.设等差数列 { a n} 的前 n 项和为 S n,且 a3+a7-a10=8, a11- a4= 4,求 S13.12.已知数列 { a n} 中, a1= 1,点 (a n, a n+1+ 1)(n∈N* )在函数 f(x)=2x+ 1 的图象上 .(1)求数列 { a n} 的通项公式;(2)求数列 { a n} 的前 n 项和 S n;(3)设 c n= S n,求数列 { c n} 的前 n 项和 T n.13.已知数列 { a n} 的前 n 项和 S n满足条件 S n= 3a n+2.(1)求证:数列 { a n} 成等比数列;(2)求通项公式a n.14.某渔业公司今年初用 98 万元购进一艘渔船,用于捕捞,第一年需各种费用12 万元,从第二年开始包括维修费在内,每年所需费用均比上一年增加 4 万元,该船每年捕捞的总收入为 50 万元 .(1)写出该渔船前四年每年所需的费用 (不包括购买费用 );(2)该渔船捕捞几年开始盈利(即总收入减去成本及所有费用为正值)?(3)若当盈利总额达到最大值时,渔船以8 万元卖出,那么该船为渔业公司带来的收益是多少万元?15.已知函数 f(x)=1 (x <- 2),数列 { a n } 满足 a 1= 1,a n =f(- 1 )( n ∈N *).x 24a n1(1)求 a n ;(2)设 b n = a n 21 + a n22 +⋯+ a 22n 1 ,是否存在最小正整数m ,使对任意 n ∈ N *有 b n <m成立?若存在,求出 m25的值,若不存在,请说明理由.16.已知 f 是直角坐标系平面 xOy 到自身的一个映射,点P 在映射 f 下的象为点 Q ,记作 Q = f( P) .设 P 1(x 1,y 1 ),P 2= f(P 1),P 3= f( P 2 ),⋯, P n = f(P n -1 ),⋯ . 如果存在一个圆,使所有的点P n ( x n , y n )(n ∈ N *)都在这个圆内或圆上,那么称这个圆为点 P n (x n , y n )的一个收敛圆 . 特别地,当 P 1= f(P 1)时,则称点 P 1 为映射 f下的不动点 .若点 P(x , y)在映射 f 下的象为点 Q(-x + 1,1y).2(1)求映射 f 下不动点的坐标;(2)若 P 1 的坐标为 (2, 2),求证:点 P n (x n ,y n )(n ∈ N *) 存在一个半径为2 的收敛圆 .解三角形1. B 2. C 3. D 4. C5. B提示:5.化简 (a + b +c)( b +c - a)= 3bc ,得 b 2+ c 2- a 2= bc ,由余弦定理,得 cosA =b 2c 2 a 21,所以∠ A = 60° .2bc 2 因为 sinA =2sinBcosC ,A + B + C = 180°,所以 sin(B + C)= 2sinBcosC ,即 sinBcosC + cosBsinC =2sinBcosC. 所以 sin(B - C)= 0,故 B = C. 故△ ABC 是正三角形 .二、填空题6. 30°7. 120° 8. 249.510. 355三、解答题11. (1)由余弦定理,得 c =13 ;(2)由正弦定理,得sinB =2 39.1312. (1)由 a · b = |a |· |b |· cos 〈 a , b 〉,得〈 a , b 〉= 60°;(2)由向量减法几何意义,知 |a |, |b |, |a - b |可以组成三角形,所以 |a - b |2= |a |2+ |b |2-2|a |· |b |· cos 〈 a , b 〉= 7,故 |a - b |= 7 .13. (1) 如右图,由两点间距离公式,得 OA(50)2(2 0)229 ,同理得 OB145 , AB232 .由余弦定理,得OA2AB2OB22 cos A2 OA AB,2所以 A = 45°.故 BD =AB ×sinA = 2 29 .(2)S △ OAB =1·OA · BD =1·29 · 2 29 = 29.22a b c得asin A, bsin B, csin C .2R2R2R 因为 sin 2A + sin 2B > sin 2C , 所以 ( a ) 2( b )2( c ) 2,2R 2R2R即 a 2+ b 2> c 2.所以 cosC = a2b 2c 2>0,2ab由 C ∈ (0, π ),得角 C 为锐角 .15. (1)设 t 小时后甲、乙分别到达P 、Q 点,如图,则 |AP|= 4t , |BQ|= 4t ,因为 |OA |=3,所以 t = h 时, P 与 O 重合 .4故当 t ∈ [0,]时,4|PQ|2= (3- 4t)2+ (1+ 4t)2- 2× (3-4t)× (1+ 4t)× cos60°;当 t >2- 3) 2 + (1+ 4t) 2- 2× (4t - 3)× (1+ 4t)× cos120°.h 时, |PQ| = (4t4故得 |PQ|= 48t224t 7 (t ≥ 0).(2)当 t =2 24 1h 时,两人距离最近,最近距离为2km .48416. (1) 由正弦定理abcsin A sin B2 R ,sin C得 a =2RsinA , b = 2RsinB ,c = 2RsinC. 所以等式cos Bb 可化为 cos B2R sin B,cos C2a ccosC2 2Rsin A 2 R sin C即 cos B sin B, cosC 2 sin A sin C2sinAcosB + sinCcosB =- cosC · sinB ,故 2sinAcosB =- cosCsinB - sinCcosB =- sin(B + C) ,因为 A + B + C =π ,所以 sinA = sin(B + C),故 cosB =- 1,2所以 B = 120° . (2)由余弦定理,得b 2= 13= a 2+c 2- 2ac ×cos120°,即 a 2+ c 2+ ac = 13 又 a +c = 4,a 1 a 3解得3,或.cc1所以 S = 11× 1× 3× 3 = 3 3 .数列一、选择题1. B 2. A3. A4. D5. C二、填空题n -31, (n 1) 610. a n =1 * )6. 3· 27. 1808. a n =4, (n 2)9.n (n ∈ N2n 7提示:10.由 (n + 1)a 2n 1 - na 2n + a n + 1a n = 0,得 [(n + 1)a n +1- na n ]( a n + 1+ a n )= 0,因为 a n >0,所以 (n + 1)a n + 1- na n = 0,即 a n 1n a nn,1所以 a na 2 a 3 a n1 2 n 1 1 .a 1 a 2an 12 3nn三、解答题11. S 13= 156.12. (1) ∵点 (a n , a n + 1+ 1)在函数 f(x)=2x + 1 的图象上,∴ a n + 1+ 1= 2a n +1,即 a n +1= 2a n .∵ a 1= 1,∴ a n ≠ 0,∴a n 1= 2,a n∴ { a n } 是公比 q = 2 的等比数列,∴ a n = 2n - 1.(2)S n =1 (12n ) 2n1 .12(3)∵ c n = S n = 2n- 1,∴ T n = c 1+c 2+ c 3+⋯+ c n = (2- 1)+ (22- 1)+⋯+ (2n- 1)2n2 (1 2n)n +1-n - 2.= (2+ 2 +⋯+ 2 )- n =1 2n = 213.当 n =1 时,由题意得 S 1= 3a 1 +2,所以 a 1=- 1;当 n ≥2 时,因为 S n = 3a n + 2,所以 S n - 1= 3a n -1 +2;两式相减得 a n = 3a n - 3a n - 1, 即 2a n = 3a n - 1.由 a 1=- 1≠ 0,得 a n ≠0. 所以 a n 3(n ≥ 2, n ∈ N *) .a n 12由等比数列定义知数列{ a n } 是首项 a 1=- 1,公比 q = 3的等比数列 .23 n - 1所以 a n =- ().14. (1) 设第 n 年所需费用为 a n (单位万元 ),则a 1= 12, a 2= 16, a 3= 20, a 4= 24.(2)设捕捞 n 年后,总利润为 y 万元,则 n(n 1)由题意得 y > 0,∴ 2n 2- 40n + 98< 0,∴ 10- 51 < n < 10+ 51 . ∵ n ∈N *,∴ 3≤ n ≤ 17,即捕捞 3 年后开始盈利 . (3)∵ y =- 2n 2+40n - 98=- 2(n - 10)2+ 102,∴当 n = 10 时, y 最大 =102.即经过 10 年捕捞盈利额最大,共盈利102+ 8= 110(万元 ).15. (1)由 a n = f(-1),得114 (a n + 1> 0),a n2a n2an 11 1 } 为等差数列,∴1 1 + (n -1) ·4.∴ { 22 = 2a na na 1∵ a 1= 1,∴ a n =1 3 (n ∈ N *).4n(2)由 b na n 2 1 a n22a 22n 11 11 5 1 ,4n 4n8n 1得 b n - b n +1= 111 1 1 ) (11) 1 8n5 8n 9(28n2 8n4n 8n 5 8n937(8n 2)(8n 5) (8n2)(8n 9)∵ n ∈N *,∴ b n - b n + 1> 0,∴ b n > b n + 1( n ∈ N *),∴ { b n } 是递减数列 .∴ b n 的最大值为 b 1a 22a 3214.45若存在最小正整数m ,使对任意 n ∈ N *有 b n <m成立,25只要使 b 1=14m即可,∴ m >70.45259∴对任意 n ∈N *使 b n <m成立的最小正整数m = 8.2516. (1) 解:设不动点的坐标为P 0(x 0, y 0) ,x 0x 0 11, y 0= 0,由题意,得1,解得 x 0 y 0y 022所以此映射 f 下不动点为 P 0(1,0) .2xn 1x n 1(2)证明:由 P n + 1= f(P n ),得,yn 11y n2所以 x n +1- 1 =- ( x n - 1), y n +1= 1y n .22 2因为 x 1 =2, y 1= 2,所以 x n - 1≠ 0, y n ≠ 0,2x n 11 y n 11 .2所以11, y n2x n2由等比数列定义,得数列{ x n -1}( n ∈N*)是公比为- 1,2首项为 x 1- 1= 3的等比数列,22所以 x -1=3× (- 1)n - 1,则 x =1+ (- 1)n - 1× 3.n2n222同理 y n =2× ( 1)n - 1.2所以 P n ( 1+ (-1)n -1× 3, 2× ( 1) n - 1) .22 2设 A(1, 1),则 |AP n |= ( 3) 2[1 2 ( 1 )n 1] 2.222因为 0< 2× ( 1)n - 1≤ 2,2所以- 1≤ 1- 2× (1)n - 1< 1,2所以 |AP n |≤ (3)21 < 2.2故所有的点 P n (n ∈N *)都在以 A(1,1)为圆心, 2 为半径的圆内, 即点 P n (x n ,y n )存在一个半径为2 的收敛圆 .2。

高二数学数列求和试题答案及解析

高二数学数列求和试题答案及解析

高二数学数列求和试题答案及解析1.数列的通项,其前项和为,则为()A.B.C.D.【答案】A【解析】,注意到数列的周期为3,并且【考点】1.三角恒等变换;2.数列求和2.设等比数列都在函数的图象上。

(1)求r的值;(2)当;(3)若对一切的正整数n,总有的取值范围。

【答案】(1)(2)(3)【解析】(1)由已知可得,当时,是等比数列, 4分(2)由(1)可知,8分(3)递增,当时,取最小值为所以一切的 12分【考点】数列求通项求和点评:数列求和采用的错位相减法,此法适用于通项公式为关于n的一次式与指数式的乘积形式的数列,第三问不等式恒成立转化为求数列前n项和的最值,期间借助了数列的单调性}中,,试猜想这个数列的通项公式。

3.在数列{an【答案】【解析】因为,,所以,。

【考点】本题主要考查数列的递推公式,等差数列的通项公式。

点评:简单题,考察数列要从多方面入手,如本题中,通过研究的特征,利用等差数列的知识,使问题得解。

4.对正整数,设曲线在处的切线与轴交点的纵坐标为,则数列的前项和的公式是【答案】=-2n-1(n+2),所以,切线方程为:y+2n=-2n-1(n+2)(x-2),【解析】因为y'|x=2=(n+1)2n,令x=0,求出切线与y轴交点的纵坐标为y=。

所以,则数列{}的前n项和Sn【考点】本题主要考查导数的几何意义,直线方程,等比数列的求和公式。

点评:中档题,切线的斜率等于函数在切点的导函数值。

最终转化成等比数列的求和问题。

5.在数列中,=1,,其中实数.(I)求;(Ⅱ)猜想的通项公式, 并证明你的猜想.【答案】(Ⅰ)(Ⅱ)猜想:应用数学归纳法证明。

【解析】(Ⅰ)由6分(Ⅱ)猜想:①当时,,猜想成立;②假设时,猜想成立,即:,则时,=猜想成立.综合①②可得对,成立. 12分【考点】本题主要考查归纳法及数学归纳法。

点评:中档题,“归纳,猜想,证明”是创造发明的良好方法。

利用数学归纳法证明命题的正确性,要注意遵循“两步一结”。

周试2:(答案)解三角形及等差数列的通项和求和、不等式

周试2:(答案)解三角形及等差数列的通项和求和、不等式

郑州树人中学2017-2018学年(上)第二次周考高二数学(文)命题范围:解三角形、数列(通项、求和)、不等式命题人:刘中阳一、选择题:(本大题共12小题,每小题5分,共60分,每小题只有一个选项符合题目要求)1.若1a <1b<0(a ,b ∈R ),则下列不等式恒成立的是(D) A .a <b B .a +b >ab C .|a |>|b |D .ab <b 2 2.在平面直角坐标系中,若点(-2,t )在直线x -2y +4=0的上方,则t 的取值范围是( B ) A .(-∞,1) B .(1,+∞)C .(-1,+∞)D .(0,1) 3.设等比数列{a n }中,前n 项之和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9=( B )A .-18B.18C.578 D.558 4.在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c ,若c -a cos B =(2a -b )cos A ,则△ABC 的形状为(D )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形5.不等式组⎩⎪⎨⎪⎧ x ≥0,x +y ≤3,y ≥x +1表示的平面区域为Ω,直线y =kx -1与区域Ω有公共点,则实数k 的取值范围为( D )A .(0,3]B .[-1,1]C .(-∞,3]D .[3,+∞)6.已知a >1,则不等式x 2-(a +1)x +a <0的解集为( C )A .(a ,+∞)B .(-∞,1)C .(1,a )D .(-∞,1)∪(a ,+∞)7.等差数列{a n }的前n 项和为S n ,已知a 5+a 7=4,a 6+a 8=-2,则当S n 取最大值时,n 的值是( B )A .5B .6C .7D .8 8.已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧ x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a 的值为( A ).A .12B .1C .2D .139.已知不等式ax 2-5x +b >0的解集为{x |-3<x <2},则不等式bx 2-5x +a >0的解集为( B )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ -13<x <12B.⎩⎨⎧⎭⎬⎫x ⎪⎪ x <-13或x >12C .{x |-3<x <2}D.⎩⎨⎧⎭⎬⎫x ⎪⎪x <-12或x >13 10.设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6等于( C )A .31B .32C .63D .6411.数列1,(1+2),(1+2+22),…,(1+2+22+…+2n -1)…的前n 项和为( D ) A .2n -1 B .n ·2n -n C .2n +1-n D .2n +1-2-n12.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( C ) A .3B.932 C.332 D .3 3二、填空题(本题共4个小题,每题5分,共20分)13.若x ,y 满足⎩⎪⎨⎪⎧ x -y ≤0,x +y ≤1,x ≥0,则z =x +2y 的最大值为_____2___.14.在等差数列{a n }中,S 10=100,S 100=10,则S 110=___-110_____.15.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b cos C +3b sin C -a -c =0,则角B =___π3_____. 16.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为____1941____. 三、解答题(本题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知f (x )=x 2-⎝⎛⎭⎫a +1a x +1. (1)当a =12时,解不等式f (x )≤0;(2)若a >0,解关于x 的不等式f (x )≤0. 解 (1)当a =12时,有不等式f (x )=x 2-52x +1≤0,所以⎝⎛⎭⎫x -12(x -2)≤0,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ 12≤x ≤2. (2)因为不等式f (x )=⎝⎛⎭⎫x -1a (x -a )≤0,当0<a <1时,有1a >a ,所以不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ a ≤x ≤1a ; 当a >1时,有1a <a ,所以不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a ≤x ≤a ; 当a =1时,不等式的解集为{x |x =1}.18.(本小题满分12分)在等差数列{a n }中,a 1=1,a 3=-3.(1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值.解 (1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d .由a 1=1,a 3=-3,得1+2d =-3,解得d =-2. 从而a n =1+(n -1)×(-2)=3-2n .(2)由(1)可知a n =3-2n ,所以S n =n [1+(3-2n )]2=2n -n 2.由S k =-35,可得2k -k 2=-35, 即k 2-2k -35=0,解得k =7或k =-5.又k ∈N *,故k =7.19.(本小题满分12分)某客运公司用A 、B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A 、B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2 400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆.若每天运送人数不少于900,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?解 设A 型、B 型车辆分别为x 、y 辆,相应营运成本为z 元,则z =1600x +2400y .由题意,得x ,y 满足约束条件⎩⎪⎨⎪⎧ x +y ≤21,y ≤x +7,36x +60y ≥900,x ,y ≥0,x ,y ∈N .作可行域如图所示,可行域的三个顶点坐标分别为P (5,12),Q (7,14),R (15,6).由图可知,当直线z =1600x +2400y 经过可行域的点P 时,直线z =1600x +2400y 在y 轴上的截距z 2400最小,即z 取得最小值.故应配备A 型车5辆、B 型车12辆,可以满足公司从甲地去乙地的营运成本最小.20.(本小题满分12分)如图,在△ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍.(1)求sin B sin C; (2)若AD =1,DC =22,求BD 和AC 的长. 解 (1)S △ABD =12AB ·AD sin ∠BAD ,S △ADC =12AC ·AD sin ∠CAD .因为S △ABD =2S △ADC ,∠BAD =∠CAD , 所以AB =2AC .由正弦定理可得sin B sin C =AC AB =12. (2)因为S △ABD ∶S △ADC =BD ∶DC ,所以BD = 2.在△ABD 和△ADC 中,由余弦定理,知AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB ,AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC .故AB 2+2AC 2=3AD 2+BD 2+2DC 2=6,由(1)知AB =2AC ,所以AC =1.21.(本小题满分12分)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =3b sin A -a cos B .(1)求角B ;(2)若b =2,△ABC 的面积为3,求a ,c .解 (1)由a =3b sin A -a cos B 及正弦定理,得sin A =3sin B ·sin A -sin A ·cos B ,∵0<A <π,∴sin A >0,∴3sin B -cos B =1,即sin ⎝⎛⎭⎫B -π6=12.又∵0<B <π,∴-π6<B -π6<5π6,∴B =π3. (2)∵S =12ac sin B =3,∴ac =4,①又∵b 2=a 2+c 2-2ac cos B ,即a 2+c 2=8.②由①②联立解得a =c =2.22.(本小题满分12分)已知数列{a n }的首项a 1=23,a n +1=2a n a n +1,n =1,2,3,…. (1)证明:数列⎩⎨⎧⎭⎬⎫1a n -1是等比数列;(2)求数列⎩⎨⎧⎭⎬⎫n a n 的前n 项和S n . 解 (1)证明:因为a n +1=2a n a n +1,所以1a n +1=a n +12a n =12+12·1a n ,所以1a n +1-1=12⎝⎛⎭⎫1a n -1. 又a 1=23,所以1a 1-1=12,所以数列⎩⎨⎧⎭⎬⎫1a n -1是以12为首项,12为公比的等比数列. (2)由(1)知1a n -1=12·12n -1=12n ,即1a n =12n +1,所以n a n =n 2n +n . 设T n =12+222+323+…+n 2n ,①则12T n =122+223+…+n -12n +n 2n +1,② 由①-②得12T n =12+122+…+12n -n 2n +1=12⎝⎛⎭⎫1-12n 1-12-n 2n +1=1-12n -n 2n +1,所以T n =2-12n -1-n 2n , 又1+2+3+…+n =n (n +1)2.所以数列⎩⎨⎧⎭⎬⎫n a n 的前n 项和S n =2-2+n 2n +n (n +1)2=n 2+n +42-n +22n .要将两种大小不同的钢板截成A 、B 、C 三种规格,每张钢板可同时截成三种规格小钢板的块数如下表:每张钢板的面积,第一种1平方单位,第二种2平方单位,今需要A 、B 、C 三种规格的成品各12、15、27块,问各截这两种钢板多少张,可得到所需三种规格成品,且使所用钢板面积最小?解 设需截第一种钢板x 张,第二种钢板y 张,所用钢板面积为z 平方单位,则⎩⎪⎨⎪⎧ x +y ≥12,2x +y ≥15,x+3y ≥27,x ≥0,x ∈N ,y ≥0,y ∈N ,目标函数z =x +2y ,作出一组平行线x +2y =z ,作出不等式组表示的可行域.由⎩⎪⎨⎪⎧x +3y =27,x +y =12.解得x =92,y =152,点A ⎝⎛⎭⎫92,152不是可行区域内整点,在可行区域内的整点中,点(4,8)和(6,7)使目标函数取最小值20.答:符合题意要求的钢板截法有两种,第一种截法是截第一种钢板4张,第二种钢板8张.第二种截法是截第一种钢板6张,第二种钢板7张,两种方法都最少要截两种钢板20平方单位.设数列{a n }的前n 项和为S n ,已知a 1=1,S n =na n -2n (n -1)(n ∈N *).(1)求证:数列{a n }为等差数列,并分别写出a n 和S n 关于n 的表达式;(2)设数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和为T n .求证:15≤T n <14. 证明 (1)当n ≥2时,a n =S n -S n -1=na n -(n -1)a n -1-4(n -1),∴a n -a n -1=4,∴数列{a n }是以1为首项,4为公差的等差数列.∴a n =4n -3,S n =12n (a 1+a n )=2n 2-n . (2)T n =1a 1a 2+1a 2a 3+…+1a n a n +1=11×5+15×9+19×13+…+1(4n -3)(4n +1)=14⎣⎢⎡ ⎝⎛⎭⎫1-15+⎝⎛⎭⎫15-19+⎝⎛⎭⎫19-113+…+⎝⎛ 14n -3⎦⎥⎤ ⎭⎫-14n +1=14⎝⎛⎭⎫1-14n +1<14. 又T n 为单调递增的,故T n ≥T 1=15, ∴15≤T n <14. 10.[2016·徐州高二检测](本小题满分10分)。

三角函数数列大题

三角函数数列大题

高中数学学校:___________姓名:___________班级:___________考号:___________一、解答题1.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知2cos 2cos 0c B b C ab +-=. (1)求b ;(2)若AD AB ⊥交BC 于点D ,6ACB π∠=,ABCS,求CD 边长.2.如图,某景区拟开辟一个平面示意图为五边形ABCDE 的观光步行道,BE 为电瓶车专用道,120BCD BAE CDE ∠=∠=∠=︒,11km DE =,5km BC CD ==.(1)求BE 的长;(2)若sin ABE ∠=ABCDE 的周长. 3.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,ccos b B =+. (1)求A ; (2)若31,cos 5a C ==,求ABC 的面积.4.在锐角△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知2sin a C . (1)求角A 的大小;(2)若2b =,a =△ABC 的面积.5.已知函数()sin 2cos 22sin cos .36f x x x x x ππ⎛⎫⎛⎫=+++- ⎪ ⎪⎝⎭⎝⎭(1)求函数()f x 的最小正周期及对称轴方程; (2)将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的纵坐标不变、横坐标伸长为原来的2倍,得到函数()y g x =的图象,求()y g x =在[0,2π]上的单调递减区间.6.已知函数()sin 22f x x x =,R x ∈. (1)求函数()f x 的最小正周期;(2)求函数()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的单调区间.7.已知函数()2sin 22sin 6x f x x π⎛⎫=++ ⎪⎝⎭.(1)求函数()f x 的最小正周期和单调递减区间;(2)若将()f x 的图象向左平移6π个单位,得到函数()g x 的图象,求函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值; (3)在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,若322A f ⎛⎫= ⎪⎝⎭,7b c +=,ABC ∆的面积为a 的长.8.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到应用.假定在水流稳定的情况下,简车上的每一个盛水筒都做匀速圆周运动.如图,将简车抽象为一个几何图形(圆),筒车半径为4m ,筒车转轮的中心O 到水面的距离为2m ,筒车每分钟沿逆时针方向转动4圈.规定:盛水筒M 对应的点P 从水中浮现(即P 0时的位置)时开始计算时间,且以水轮的圆心O 为坐标原点,过点O 的水平直线为x 轴建立平面直角坐标系xOy .设盛水筒M 从点P 0运动到点P 时所经过的时间为t (单位:s ),且此时点P 距离水面的高度为h (单位:m )(在水面下则h 为负数).(1)求点P 距离水面的高度为h 关于时间为t 的函数解析式; (2)求点P 第一次到达最高点需要的时间(单位:s ).9.记n S 是正项数列{}n a 的前n 项和,1n a +是4和n S 的等比中项. (1)求数列{}n a 的通项公式; (2)记11(1)(1)n n n b a a +=++,求数列{}n b 的前n 项和n T .10.已知等差数列{an }的前n 项和为Sn =n 2+r ,其中r 为常数. (1)求r 的值; (2)设()112n n b a =+,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和Tn .11.某公司2021年年初花费25万元引进一种新的设备,设备投入后每年的收益均为21万元.若2021年为第1年,且该公司第()n n *∈N 年需要支付的设备维修和工人工资等费用总和n a (单位:万元)的情况如图所示.(1)求n a ;(2)引进这种设备后,第几年该公司开始获利?12.已知数列{an }的前n 项和为Sn ,且Sn =n -5an -85,n △N *. (1)证明:{an -1}是等比数列; (2)求数列{an }的通项公式.13.已知数列{}n a 满足12a =,132n n a a +=+.(1)证明{}1n a +是等比数列,并求{}n a 的通项公式;(2)若数列{}n b 满足()3log 1n nb a =+,n T 为数列1n n b a ⎧⎫⎨⎬+⎩⎭的前n 项和,求n T . 14.已知等比数列{}n a 的前n 项和为n S ,且51430a a S -==. (1)求数列{}n a 的通项公式n a ; (2)若______,求数列{}n b 的前n 项和n T .在△21log n n n b a a +=+,△()()2211log 1log 1n n n b a a +=+⋅+,△n n b n a =⋅这三个条件中任选一个补充在第(2)问中,并求解.注:如果选择多个条件分别解答,按第一个解答计分.15.某企业2021年第一季度的营业额为1.1亿,以后每个季度的营业额比上个季度增加0.05亿;该企业第一季度的利润为0.16亿,以后每季度比前一季度增长4%. (1)求2021年起前20季度营业额的总和;(2)请问哪一季度的利润首次超过该季度营业额的18%.16.在△q d =△4q d ⋅=△4q d +=这三个条件中选择一个补充在下面的问题中,并求解.设等差数列{}n a 的公差为d (*d N ∈),前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,___________,10100S =.(1)请写出你的选择,并求数列{}n a 和{}n b 的通项公式; (2)若数列{}n c 满足nn na cb =,求数列{}n c 的前n 项和n T . 17.如图,正四棱柱1111ABCD A B C D -中,124AA AB ==,点E 在1CC 上且13C E EC =.(1)证明:1A C ⊥平面BED ;(2)求异面直线BE 与1A C 所成角的大小; (3)求二面角1A DE B --的余弦值.18.已知E ,F 分别是正方形ABCD 边AD ,AB 的中点,EF 交AC 于P ,GC 垂直于ABCD 所在平面.(1)求证:EF ⊥平面GPC .(2)若4AB =,2GC =,求点B 到平面EFG 的距离.19.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,且侧棱P A △底面ABCD ,P A =2AD .E ,F ,H 分别是P A ,PD ,AB 的中点,G 为DF 的中点.(1)证明://GH 平面BEF ;(2)求PC 与平面BEF 所成角的正弦值.20.如图在三棱锥O ABC -中,OA OC ==2AB OB BC ===且OA OC ⊥.(1)求证:平面OAC ⊥平面ABC(2)若E 为OC 中点,求平面ABC 与平面EAB 所成锐二面角的余弦值.21.直四棱柱1111ABCD A B C D -中,底面ABCD 为正方形,边长为2,侧棱13A A =,M N 、分别为1111A B A D 、的中点,E F 、分别是1111B C C D 、的中点.(1)求证:平面AMN //平面EFDB ; (2)求平面AMN 与平面EFDB 的距离.22.如图,在正四棱柱ABCD ﹣A 1B 1C 1D 1中,AB =1,AA 1=2,点E 为CC 1中点,点F 为BD 1中点.(1)求异面直线BD 1与CC 1的距离;(2)求直线BD 1与平面BDE 所成角的正弦值; (3)求点F 到平面BDE 的距离.23.以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.曲线1C 的极坐标方程为:1ρ=.在平面直角坐标系中,曲线2C 的参数方程为3cos 33sin x y θθ=⎧⎨=+⎩(θ为参数,02θπ≤<).(1)求曲线1C 和曲线2C 的直角坐标方程; (2)在极坐标系中,射线()03πθρ=>与曲线1C ,2C 分别交于A ,B 两点,求AB .24.已知直线 l的参数方程为1,x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的非负半轴为极轴,建立极坐标系,曲线C 的极坐标方程为2223sin 4ρρθ+=.(1)求直线 l 的普通方程和曲线C 的直角坐标方程;(2)已知直线 l 与曲线C 相交于P ,Q 两点,点M 的直角坐标为(1,0)-,求||||MP MQ +.25.在直角坐标系xOy 中,直线l的参数方程为132x t y ⎧=+⎪⎪⎨⎪⎪⎩(t 为参数).以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4cos ρθ=.(1)写出C 的直角坐标方程;(2)设点Q 的坐标为()3,0,直线l 与C 交于A ,B ,求QA QB ⋅的值.26.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为()2213sin 4ρθ+=.在直角坐标系xOy 中,直线l 的方程为240x y +-=.(1)若点M 为曲线1C 上的动点,求点M 到直线l 的距离的最小值; (2)倾斜角为3π的曲线2C 过点()1,0P -,交曲线1C 于A ,B 两点,求11PA PB +. 27.在直角坐标系xOy 中,直线l 的参数方程为4,5315x t y t⎧=⎪⎪⎨⎪=-⎪⎩(t 为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4sin 0ρθ-=. (1)求曲线C 的直角坐标方程和直线l 的普通方程; (2)设曲线C 与直线l 交于A ,B 两点,求AB .28.在平面直角坐标系xOy 中,直线l 的参数方程为241x t y t =+⎧⎨=-⎩(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为222124sin 3cos ρθθ=+.(1)求直线l 和曲线C 的直角坐标方程;(2)若点P 为曲线C 上任意一点,求点P 到直线l 的距离的最大值.29.在平面直角坐标系xOy 中,直线l的参数方程为1,x t y =+⎧⎪⎨=⎪⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为()2213sin 4ρθ+=.(1)求直线l 的一般式方程和曲线C 的标准方程;(2)若直线l 与曲线C 交于A ,B 两点,点()1,0P ,求PA PB ⋅的值. 30.直线l 过点()2,0A ,倾斜角为4π. (1)以平面直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系.过O 作l 的垂线,垂足为B ,求点B 的极坐标()0,02ρθπ≥≤<;(2)直线l 与曲线22:2x t C y t⎧=⎨=⎩(t 为参数)交于M 、N 两点,求MN .31.在平面直角坐标系xOy 中,倾斜角为α(α为常数)的直线l 过点()2,4M --,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 2cos ρθθ=.(1)写出直线l 的一个参数方程和曲线C 的直角坐标方程; (2)当3πα=时,直线l 与曲线C 能否交于两点?若能,记两交点为A ,B ,求出11MA MB+的值;若不能,说明理由. 32.若a ,b ,c △R +,且满足a +b +c =2. (1)求abc 的最大值; (2)证明:11192a b c ++≥.33.已知函数()21f x x x =+--. (1)求max ()f x 及当()(0)f x f ≥时的解集;(2)若关于x 的不等式()12f x m ≥-有解,求正数m 的取值范围.34.已知函数()()223f x x a x a =-+-+.(1)当2a =时,求不等式()6f x ≥的解集 (2)若()6f x ≥恒成立,求实数a 的取值范围.35.已知0m >,函数()2f x x x m =++-的最小值为3,()25g x x m =+. (1)求m 的值;(2)求不等式()()f x g x ≤的解集. 36.已知函数()112f x x x =-+-的值域为M . (1)求M ;(2)证明:当,a b M ∈时,214a b ab -≤-. 37.已知,,a b c 均为正数,且满足 1.abc =证明: (1)3ab bc ca ++;(2)333a b c ab bc ac ++++.38.设a ,b ,c 均为正数,且a b +=1. (1)求12a b+的最小值;(2)≤39.已知函数()||2||(0,0)f x x a x b a b =+-->>. (1)当1a b ==时,解不等式()0f x >;(2)若函数()()||g x f x x b =+-的最大值为2,求14a b+的最小值.40.如图,在四棱锥P-ABCD 中,平面PAD ⊥ 平面ABCD ,PA ⊥PD ,PA=PD,AB ⊥,(I )求证:PD ⊥平面PAB;(II )求直线PB 与平面PCD 所成角的正弦值;(II I )在棱PA 上是否存在点M ,使得BMll 平面PCD?若存在,求AMAP的值;若不存在,说明理由。

不等式解三角形数列高考试题精选

不等式解三角形数列高考试题精选

不等式解三角形数列高考试题精选一.选择题(共6小题)1.设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z2.若a>b>0,且ab=1,则下列不等式成立的是()A.a+<<log2(a+b))B.<log2(a+b)<a+C.a+<log2(a+b)<D.log2(a+b))<a+<3.已知x,y∈R,且x>y>0,则()A.﹣>0 B.sinx﹣siny>0 C.()x﹣()y<0 D.lnx+lny>0 4.已知a,b>0且a≠1,b≠1,若log a b>1,则()A.(a﹣1)(b﹣1)<0 B.(a﹣1)(a﹣b)>0 C.(b﹣1)(b﹣a)<0 D.(b ﹣1)(b﹣a)>05.若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c6.设f(x)=lnx,0<a<b,若p=f(),q=f(),r=(f(a)+f(b)),则下列关系式中正确的是()A.q=r<p B.p=r<q C.q=r>p D.p=r>q二.选择题(共1小题)7.2﹣3,,log25三个数中最大数的是.三.填空题(共9小题)8.若直线=1(a>0,b>0)过点(1,2),则2a+b的最小值为.9.若a,b∈R,ab>0,则的最小值为.10.设x,y满足约束条件,则z=3x﹣2y的最小值为.11.已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2﹣4x,则不等式f(x)>x 的解集用区间表示为.12.在数列{a n}中,a1=2,a n+1=2a n,S n为{a n}的前n项和,若S n=126,则n=.13.设数列{a n}的前n项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n=.14.△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=.15.△ABC的内角A,B,C的对边分别为a,b,c,已知C=60°,b=,c=3,则A=.16.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知△ABC的面积为3,b﹣c=2,cosA=﹣,则a的值为.四.解答题(共24小题)17.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC的面积为2,求b.18.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.19.在△ABC中,∠A=60°,c=a.(1)求sinC的值;(2)若a=7,求△ABC的面积.20.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(1)证明:A=2B;(2)若cosB=,求cosC的值.21.已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.22.△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.23.设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值范围.24.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC(Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.25.设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA.(Ⅰ)证明:sinB=cosA;(Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C.26.在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD 的长.27.已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px﹣p+1=0(p ∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.28.△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.29.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos(2A﹣)的值.30.在△ABC中,角A,B,C所对应的边分别为a,b,c,已知bcosC+ccosB=2b,则=.31.记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=﹣6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.32.设数列{a n }满足a 1+3a 2+…+(2n ﹣1)a n =2n .(1)求{a n }的通项公式;(2)求数列{}的前n 项和.33.已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (Ⅰ)求{a n }的通项公式;(Ⅱ)求和:b 1+b 3+b 5+…+b 2n ﹣1.34.已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3.(1)求数列{a n }通项公式;(2){b n } 为各项非零的等差数列,其前n 项和为S n ,已知S 2n +1=b n b n +1,求数列的前n 项和T n .35.已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.36.已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b n}的前n项和(n∈N*).37.已知{a n}为等差数列,前n项和为S n(n∈N+),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b2n﹣1}的前n项和(n∈N+).38.已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a n b n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.39.设数列{a n}的前n项和为S n,已知S2=4,a n+1=2S n+1,n∈N*.(Ⅰ)求通项公式a n;(Ⅱ)求数列{|a n﹣n﹣2|}的前n项和.40.已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.不等式解三角形数列高考试题精选参考答案与试题解析一.选择题(共6小题)1.设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg>>0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴==>1,可得2x>3y,==>1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.2.若a>b>0,且ab=1,则下列不等式成立的是()A.a+<<log2(a+b))B.<log2(a+b)<a+C.a+<log2(a+b)<D.log2(a+b))<a+<【解答】解:∵a>b>0,且ab=1,∴可取a=2,b=.则=4,==,log2(a+b)==∈(1,2),∴<log2(a+b)<a+.故选:B.3.已知x,y∈R,且x>y>0,则()A.﹣>0 B.sinx﹣siny>0 C.()x﹣()y<0 D.lnx+lny>0【解答】解:∵x,y∈R,且x>y>0,则,sinx与siny的大小关系不确定,<,即﹣<0,lnx+lny与0的大小关系不确定.故选:C.4.已知a,b>0且a≠1,b≠1,若log a b>1,则()A.(a﹣1)(b﹣1)<0 B.(a﹣1)(a﹣b)>0 C.(b﹣1)(b﹣a)<0 D.(b ﹣1)(b﹣a)>0【解答】解:若a>1,则由log a b>1得log a b>log a a,即b>a>1,此时b﹣a>0,b>1,即(b﹣1)(b﹣a)>0,若0<a<1,则由log a b>1得log a b>log a a,即b<a<1,此时b﹣a<0,b<1,即(b﹣1)(b﹣a)>0,综上(b﹣1)(b﹣a)>0,故选:D.5.若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c【解答】解:∵a>b>1,0<c<1,∴函数f(x)=x c在(0,+∞)上为增函数,故a c>b c,故A错误;函数f(x)=x c﹣1在(0,+∞)上为减函数,故a c﹣1<b c﹣1,故ba c<ab c,即ab c >ba c;故B错误;log a c<0,且log b c<0,log a b<1,即=<1,即log a c>log b c.故D错误;0<﹣log a c<﹣log b c,故﹣blog a c<﹣alog b c,即blog a c>alog b c,即alog b c<blog a c,故C正确;故选:C6.设f(x)=lnx,0<a<b,若p=f(),q=f(),r=(f(a)+f(b)),则下列关系式中正确的是()A.q=r<p B.p=r<q C.q=r>p D.p=r>q【解答】解:由题意可得若p=f()=ln()=lnab=(lna+lnb),q=f()=ln()≥ln()=p,r=(f(a)+f(b))=(lna+lnb),∴p=r<q,故选:B二.选择题(共1小题)7.2﹣3,,log25三个数中最大数的是log25.【解答】解:由于0<2﹣3<1,1<<2,log25>log24=2,则三个数中最大的数为log25.故答案为:log25.三.填空题(共9小题)8.若直线=1(a>0,b>0)过点(1,2),则2a+b的最小值为8.【解答】解:直线=1(a>0,b>0)过点(1,2),则+=1,由2a+b=(2a+b)×(+)=2+++2=4++≥4+2=4+4=8,当且仅当=,即a=,b=1时,取等号,∴2a+b的最小值为8,故答案为:8.9.若a,b∈R,ab>0,则的最小值为4.【解答】解:【解法一】a,b∈R,ab>0,∴≥==4ab+≥2=4,当且仅当,即,即a=,b=或a=﹣,b=﹣时取“=”;∴上式的最小值为4.【解法二】a,b∈R,ab>0,∴=+++≥4=4,当且仅当,即,即a=,b=或a=﹣,b=﹣时取“=”;∴上式的最小值为4.故答案为:4.10.设x,y满足约束条件,则z=3x﹣2y的最小值为﹣5.【解答】解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣5.故答案为:﹣5.11.已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2﹣4x,则不等式f(x)>x 的解集用区间表示为(﹣5,0)∪(5,﹢∞).【解答】解:作出f(x)=x2﹣4x(x>0)的图象,如图所示,∵f(x)是定义在R上的奇函数,∴利用奇函数图象关于原点对称作出x<0的图象,不等式f(x)>x表示函数y=f(x)图象在y=x上方,∵f(x)图象与y=x图象交于P(5,5),Q(﹣5,﹣5),则由图象可得不等式f(x)>x的解集为(﹣5,0)∪(5,+∞).故答案为:(﹣5,0)∪(5,+∞)12.在数列{a n}中,a1=2,a n+1=2a n,S n为{a n}的前n项和,若S n=126,则n=6.=2a n,【解答】解:∵a n+1∴,∵a1=2,∴数列{a n}是a1=2为首项,以2为公比的等比数列,∴S n===2n+1﹣2=126,∴2n+1=128,∴n+1=7,∴n=6.故答案为:613.设数列{a n}的前n项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n=﹣.【解答】解:∵a n=S n+1S n,+1﹣S n=S n+1S n,∴S n+1∴﹣=1,又∵a1=﹣1,即=﹣1,∴数列{}是以首项是﹣1、公差为﹣1的等差数列,∴=﹣n,∴S n=﹣,故答案为:﹣.14.△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=.【解答】解:∵2bcosB=acosC+ccosA,由正弦定理可得,2cosBsinB=sinAcosC+sinCcosA=sin(A+C)=sinB,∵sinB≠0,∴cosB=,∵0<B<π,∴B=,故答案为:15.△ABC的内角A,B,C的对边分别为a,b,c,已知C=60°,b=,c=3,则A=75°.【解答】解:根据正弦定理可得=,C=60°,b=,c=3,∴sinB==,∵b<c,∴B=45°,∴A=180°﹣B﹣C=180°﹣45°﹣60°=75°,故答案为:75°.16.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知△ABC的面积为3,b﹣c=2,cosA=﹣,则a的值为8.【解答】解:∵A∈(0,π),∴sinA==.==bc=,化为bc=24,∵S△ABC又b﹣c=2,解得b=6,c=4.由余弦定理可得:a2=b2+c2﹣2bccosA=36+16﹣48×=64.解得a=8.故答案为:8.四.解答题(共24小题)17.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC的面积为2,求b.【解答】解:(1)sin(A+C)=8sin2,∴sinB=4(1﹣cosB),∵sin2B+cos2B=1,∴16(1﹣cosB)2+cos2B=1,∴(17cosB﹣15)(cosB﹣1)=0,∴cosB=;(2)由(1)可知sinB=,=ac•sinB=2,∵S△ABC∴ac=,∴b2=a2+c2﹣2accosB=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.18.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.=acsinB=,【解答】解:(1)由三角形的面积公式可得S△ABC∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC﹣sinBsinC=﹣=﹣,∴cos(B+C)=﹣,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=•===,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.19.在△ABC中,∠A=60°,c=a.(1)求sinC的值;(2)若a=7,求△ABC的面积.【解答】解:(1)∠A=60°,c=a,由正弦定理可得sinC=sinA=×=,(2)a=7,则c=3,∴C<A,由(1)可得cosC=,∴sinB=sin(A+C)=sinAcosC+cosAsinC=×+×=,=acsinB=×7×3×=6.∴S△ABC20.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(1)证明:A=2B;(2)若cosB=,求cosC的值.【解答】(1)证明:∵b+c=2acosB,∴sinB+sinC=2sinAcosB,∵sinC=sin(A+B)=sinAcosB+cosAsinB,∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B),由A,B∈(0,π),∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).∴A=2B.(II)解:cosB=,∴sinB==.cosA=cos2B=2cos2B﹣1=,sinA==.∴cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB=+×=.21.已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.【解答】解:(I)∵sin2B=2sinAsinC,由正弦定理可得:>0,代入可得(bk)2=2ak•ck,∴b2=2ac,∵a=b,∴a=2c,由余弦定理可得:cosB===.(II)由(I)可得:b2=2ac,∵B=90°,且a=,∴a2+c2=b2=2ac,解得a=c=.∴S==1.△ABC22.△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.【解答】解:(1)如图,过A作AE⊥BC于E,∵==2∴BD=2DC,∵AD平分∠BAC∴∠BAD=∠DAC在△ABD中,=,∴sin∠B=在△ADC中,=,∴sin∠C=;∴==.…6分(2)由(1)知,BD=2DC=2×=.过D作DM⊥AB于M,作DN⊥AC于N,∵AD平分∠BAC,∴DM=DN,∴==2,∴AB=2AC,令AC=x,则AB=2x,∵∠BAD=∠DAC,∴cos∠BAD=cos∠DAC,∴由余弦定理可得:=,∴x=1,∴AC=1,∴BD的长为,AC的长为1.23.设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值范围.【解答】解:(Ⅰ)由a=btanA和正弦定理可得==,∴sinB=cosA,即sinB=sin(+A)又B为钝角,∴+A∈(,π),∴B=+A,∴B﹣A=;(Ⅱ)由(Ⅰ)知C=π﹣(A+B)=π﹣(A++A)=﹣2A>0,∴A∈(0,),∴sinA+sinC=sinA+sin(﹣2A)=sinA+cos2A=sinA+1﹣2sin2A=﹣2(sinA﹣)2+,∵A∈(0,),∴0<sinA<,∴由二次函数可知<﹣2(sinA﹣)2+≤∴sinA+sinC的取值范围为(,]24.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC(Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.【解答】解:(Ⅰ)如图,由正弦定理得:,∵AD平分∠BAC,BD=2DC,∴;(Ⅱ)∵∠C=180°﹣(∠BAC+∠B),∠BAC=60°,∴,由(Ⅰ)知2sin∠B=sin∠C,∴tan∠B=,即∠B=30°.25.设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA.(Ⅰ)证明:sinB=cosA;(Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C.【解答】解:(Ⅰ)证明:∵a=btanA.∴=tanA,∵由正弦定理:,又tanA=,∴=,∵sinA≠0,∴sinB=cosA.得证.(Ⅱ)∵sinC=sin[π﹣(A+B)]=sin(A+B)=sinAcosB+cosAsinB,∴sinC﹣sinAcosB=cosAsinB=,由(1)sinB=cosA,∴sin2B=,∵0<B<π,∴sinB=,∵B为钝角,∴B=,又∵cosA=sinB=,∴A=,∴C=π﹣A﹣B=,综上,A=C=,B=.26.在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD 的长.【解答】解:∵∠A=,AB=6,AC=3,∴在△ABC中,由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcos∠BAC=90.∴BC=3…4分∵在△ABC中,由正弦定理可得:,∴sinB=,∴cosB=…8分∵过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,∴Rt△ADE中,AD===…12分27.已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px﹣p+1=0(p ∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.【解答】解:(Ⅰ)由已知,方程x2+px﹣p+1=0的判别式:△=(p)2﹣4(﹣p+1)=3p2+4p﹣4≥0,所以p≤﹣2,或p≥.由韦达定理,有tanA+tanB=﹣p,tanAtanB=1﹣p.所以,1﹣tanAtanB=1﹣(1﹣p)=p≠0,从而tan(A+B)==﹣=﹣.所以tanC=﹣tan(A+B)=,所以C=60°.(Ⅱ)由正弦定理,可得sinB===,解得B=45°,或B=135°(舍去).于是,A=180°﹣B﹣C=75°.则tanA=tan75°=tan(45°+30°)===2+.所以p=﹣(tanA+tanB)=﹣(2+)=﹣1﹣.28.△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.【解答】解:(Ⅰ)∵cosA=,∴sinA==,∵B=A+.∴sinB=sin(A+)=cosA=,由正弦定理知=,∴b=•sinB=×=3.(Ⅱ)∵sinB=,B=A+>∴cosB=﹣=﹣,sinC=sin(π﹣A﹣B)=sin(A+B)=sinAcosB+cosAsinB=×(﹣)+×=,∴S=a•b•sinC=×3×3×=.29.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos (2A ﹣)的值.【解答】解:(Ⅰ)将sinB=sinC ,利用正弦定理化简得:b=c ,代入a ﹣c=b ,得:a ﹣c=c ,即a=2c ,∴cosA===;(Ⅱ)∵cosA=,A 为三角形内角, ∴sinA==,∴cos2A=2cos 2A ﹣1=﹣,sin2A=2sinAcosA=,则cos (2A ﹣)=cos2Acos+sin2Asin=﹣×+×=.30.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,已知bcosC +ccosB=2b ,则= 2 .【解答】解:将bcosC +ccosB=2b ,利用正弦定理化简得:sinBcosC +sinCcosB=2sinB , 即sin (B +C )=2sinB , ∵sin (B +C )=sinA , ∴sinA=2sinB ,利用正弦定理化简得:a=2b , 则=2. 故答案为:231.记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=﹣6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 【解答】解:(1)设等比数列{a n }首项为a 1,公比为q , 则a 3=S 3﹣S 2=﹣6﹣2=﹣8,则a 1==,a 2==,由a1+a2=2,+=2,整理得:q2+4q+4=0,解得:q=﹣2,则a1=﹣2,a n=(﹣2)(﹣2)n﹣1=(﹣2)n,∴{a n}的通项公式a n=(﹣2)n;(2)由(1)可知:S n===﹣(2+(﹣2)n+1),则S n+1=﹣(2+(﹣2)n+2),S n+2=﹣(2+(﹣2)n+3),由S n+1+S n+2=﹣(2+(﹣2)n+2)﹣(2+(﹣2)n+3)=﹣[4+(﹣2)×(﹣2)n+1+(﹣2)2×+(﹣2)n+1],=﹣[4+2(﹣2)n+1]=2×[﹣(2+(﹣2)n+1)],=2S n,即S n+1+S n+2=2S n,∴S n+1,S n,S n+2成等差数列.32.设数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.(1)求{a n}的通项公式;(2)求数列{}的前n项和.【解答】解:(1)数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.n≥2时,a1+3a2+…+(2n﹣3)a n﹣1=2(n﹣1).∴(2n﹣1)a n=2.∴a n=.当n=1时,a1=2,上式也成立.∴a n=.(2)==﹣.∴数列{}的前n项和=++…+=1﹣=.33.已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n.﹣1【解答】解:(Ⅰ)等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}的通项公式:a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).∴q2=3,}是等比数列,公比为3,首项为1.{b2n﹣1b1+b3+b5+…+b2n﹣1==.34.已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{a n}通项公式;=b n b n+1,求数列(2){b n}为各项非零的等差数列,其前n项和为S n,已知S2n+1的前n项和T n.【解答】解:(1)记正项等比数列{a n}的公比为q,因为a1+a2=6,a1a2=a3,所以(1+q)a1=6,q=q2a1,解得:a1=q=2,所以a n=2n;(2)因为{b n}为各项非零的等差数列,所以S2n=(2n+1)b n+1,+1=b n b n+1,又因为S2n+1所以b n=2n+1,=,所以T n=3•+5•+…+(2n+1)•,T n=3•+5•+…+(2n﹣1)•+(2n+1)•,两式相减得:T n=3•+2(++…+)﹣(2n+1)•,即T n=3•+(+++…+)﹣(2n+1)•,即T n=3+1++++…+)﹣(2n+1)•=3+﹣(2n+1)•=5﹣.35.已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.【解答】解:(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q,a1=﹣1,b1=1,a2+b2=2,a3+b3=5,可得﹣1+d+q=2,﹣1+2d+q2=5,解得d=1,q=2或d=3,q=0(舍去),则{b n}的通项公式为b n=2n﹣1,n∈N*;(2)b1=1,T3=21,可得1+q+q2=21,解得q=4或﹣5,当q=4时,b2=4,a2=2﹣4=﹣2,d=﹣2﹣(﹣1)=﹣1,S3=﹣1﹣2﹣3=﹣6;当q=﹣5时,b2=﹣5,a2=2﹣(﹣5)=7,d=7﹣(﹣1)=8,S3=﹣1+7+15=21.36.已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b n}的前n项和(n∈N*).【解答】(Ⅰ)解:设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得,而b1=2,所以q2+q﹣6=0.又因为q>0,解得q=2.所以,.由b3=a4﹣2a1,可得3d﹣a1=8.由S11=11b4,可得a1+5d=16,联立①②,解得a1=1,d=3,由此可得a n=3n﹣2.所以,{a n}的通项公式为a n=3n﹣2,{b n}的通项公式为.(Ⅱ)解:设数列{a2n b n}的前n项和为T n,由a2n=6n﹣2,有,,上述两式相减,得=.得.所以,数列{a2n b n}的前n项和为(3n﹣4)2n+2+16.37.已知{a n}为等差数列,前n项和为S n(n∈N+),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b2n﹣1}的前n项和(n∈N+).【解答】解:(I)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得b1(q+q2)=12,而b1=2,所以q+q2﹣6=0.又因为q>0,解得q=2.所以,b n=2n.由b3=a4﹣2a1,可得3d﹣a1=8①.由S11=11b4,可得a1+5d=16②,联立①②,解得a1=1,d=3,由此可得a n=3n﹣2.所以,数列{a n}的通项公式为a n=3n﹣2,数列{b n}的通项公式为b n=2n.(II)设数列{a2n b2n﹣1}的前n项和为T n,由a2n=6n﹣2,b2n﹣1=4n,有a2n b2n﹣1=(3n﹣1)4n,故T n=2×4+5×42+8×43+…+(3n﹣1)4n,4T n=2×42+5×43+8×44+…+(3n﹣1)4n+1,上述两式相减,得﹣3T n=2×4+3×42+3×43+…+3×4n﹣(3n﹣1)4n+1==﹣(3n﹣2)4n+1﹣8得T n=.所以,数列{a2n b2n﹣1}的前n项和为.38.已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a n b n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.【解答】解:(Ⅰ)∵a n b n+1+b n+1=nb n.当n=1时,a1b2+b2=b1.∵b1=1,b2=,∴a1=2,又∵{a n}是公差为3的等差数列,∴a n=3n﹣1,(Ⅱ)由(I)知:(3n﹣1)b n+1+b n+1=nb n.即3b n+1=b n.即数列{b n}是以1为首项,以为公比的等比数列,∴{b n}的前n项和S n==(1﹣3﹣n)=﹣.39.设数列{a n}的前n项和为S n,已知S2=4,a n+1=2S n+1,n∈N*.(Ⅰ)求通项公式a n;(Ⅱ)求数列{|a n﹣n﹣2|}的前n项和.【解答】解:(Ⅰ)∵S2=4,a n+1=2S n+1,n∈N*.∴a1+a2=4,a2=2S1+1=2a1+1,解得a1=1,a2=3,=2S n+1,a n=2S n﹣1+1,当n≥2时,a n+1两式相减得a n﹣a n=2(S n﹣S n﹣1)=2a n,+1=3a n,当n=1时,a1=1,a2=3,即a n+1=3a n,满足a n+1∴=3,则数列{a n}是公比q=3的等比数列,则通项公式a n=3n﹣1.(Ⅱ)a n﹣n﹣2=3n﹣1﹣n﹣2,设b n=|a n﹣n﹣2|=|3n﹣1﹣n﹣2|,则b1=|30﹣1﹣2|=2,b2=|3﹣2﹣2|=1,当n≥3时,3n﹣1﹣n﹣2>0,则b n=|a n﹣n﹣2|=3n﹣1﹣n﹣2,此时数列{|a n﹣n﹣2|}的前n项和T n=3+﹣=,则T n==.40.已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.【解答】证明:∵a2+b2=4,c2+d2=16,令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.∴ac+bd=8(cosαcosβ+sinαsinβ)=8cos(α﹣β)≤8.当且仅当cos(α﹣β)=1时取等号.因此ac+bd≤8.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2)=4×16=64,当且仅当时取等号.∴﹣8≤ac+bd≤8.。

高中数学数列求和练习题及参考答案2023

高中数学数列求和练习题及参考答案2023

高中数学数列求和练习题及参考答案2023数列求和是高中数学中的重要知识点,也是学生们经常需要练习和巩固的内容。

掌握数列求和的方法和技巧,对于解决各种数学问题具有重要的作用。

本文将为大家提供一些高中数学数列求和的练习题,并给出参考答案。

一、简单求和练习1. 求等差数列1,4,7,10,...的前20项和。

解析:这是一个等差数列,我们知道等差数列的通项公式为an = a1 + (n - 1)d,其中a1为首项,d为公差,n为项数。

根据等差数列的求和公式Sn = (n/2)(a1 + an),我们可以求得前20项和为:S20 = (20/2)(1 + 1 + 19 * 3) = 20 * 10 = 200所以,等差数列1,4,7,10,...的前20项和为200。

2. 求等比数列3,6,12,24,...的前10项和。

解析:这是一个等比数列,我们知道等比数列的通项公式为an = a1 * r^(n - 1),其中a1为首项,r为公比,n为项数。

根据等比数列的求和公式Sn = a1 * (1 - r^n) / (1 - r),我们可以求得前10项和为:S10 = 3 * (1 - 2^10) / (1 - 2) = 3 * (1 - 1024) / (-1) = 3 * (1023) = 3069所以,等比数列3,6,12,24,...的前10项和为3069。

二、综合应用题1. 若等差数列的首项为3,公差为2,且和为139,求该等差数列的项数。

解析:设等差数列的项数为n,根据等差数列的求和公式Sn =(n/2)(a1 + an),将已知条件代入,得到:139 = (n/2)(3 + a1 + (n - 1)2)化简得:139 = (n/2)(2n + 4)278 = n(2n + 4)2n^2 + 4n - 278 = 0解这个一元二次方程,得到n ≈ 11所以,该等差数列的项数为11。

2. 已知等差数列的首项为5,公差为3,前n项和为Sn = 105 - 2n,求该等差数列的项数n。

(完整word版)高一下学期解三角形数列综合测试题.docx

(完整word版)高一下学期解三角形数列综合测试题.docx

一、选择题1.在ABC中,已知 a 6,b 4, C120 ,则 c的值为A.76B. 76C.28 D . 282.观察数列 1,1,2,3,5,8,x,21,34,55的规律, x应等于A.11B.12C.13D.143.在 ABC 中,已知 a6, C60 , c 3,则 A的值为A.45B.135C.45 或135D.60 或1204..已知等差数列{ a n }中, a5a11 16, a41,则 a12的值为A.15B.30C.31D.645.某船开始看见灯塔在南偏东 30 方向,后来船沿南偏东 60 的方向航行 90海里后,看见灯塔在正西方向,这时船与灯塔的距离为A.302海里B.30 3海里C.453海里D.452海里已知等差数列{ a n }中,a1a3,a8,则的值为6.. 4 a420a15A.26B.30C.28D.367..已知 { a n } 为等差数列, S n是其前 n项和 , 且S1122,则 tan a6的值为3A. 3B.3 C .3 D .33在 ABC中,已知 a, B2,当 ABC的面积等于 23时,sin C等于8.43A.7B.14C.14 D .2114147149.在ABC 中,若a7, b3, c8, 则面积为()A 12B 21 C.28 D .6 32等差数列 an }的前n项和为 S ,若 a5,a a14,则使S 取最小值的 n为10..{n1410nA.3B.4C.5D.6在ABC中,已知a,,13,则最大角正弦值等于11.7 b8 cosC14A.3B. 2 3C .3 3D .4 37777112.等比数列{ a n}前n项乘积记为M n,若M1020, M 2010,则 M 30()A. 1000B. 40251 C.D.4813.某人朝正方向走x km 后,向右 150°,然后朝新方向走3km ,果他离出点恰好 3 km,那么x的()A .3B . 2 3 C. 2 3或3 D. 314.在等差数列{ a n}中,前 n 和 S n,若 S16— S5 =165,a8a9 a16的是()A.90B.90C. 45D.4515.数列{ a n}的前 n 和S n,令T n S1S2 L S n,称 T n数列 a1, a2,⋯⋯,na n的“理想数” ,已知数列 a1, a2,⋯⋯, a500的“理想数” 2004 ,那么数列2,a1, a2,⋯⋯, a500的“理想数” ()A. 2002B.2004C. 2006D. 2008二、填空设为等差数列a n 的前n项和若S33, S624,则S916. S n.在等比数列中,是方程2的两个根,则17.a n a5 , a97 x18x7 0a7 ___在ABC 中,B60,=,ABC外接圆半径R73 ,则18.S ABC1033ABC 的周长为19 已知ABC 的三边分别为 a, b, c; 且 3a 23b 2 - 3c22ab0,则 sin C20.已知△ ABC的三分是a, b, c ,且面 S =a2b2 c 2,角 C =_____4a c21.若 a、 b、 c 成等比数列, a、x、 b 成等差数列, b、y、c 成等差数列,x y 三. 解答在ABC 中,若sin22B sin2,b2, c求及a.22. A sin C sinBsinC 4. A23.在 ABC 中,若tan A2c b ,求A的值. tan B b224.( 12 分)有四个数:前三个成等差数列,后三个成等比数列。

三角函数向量解三角形数列综合测试含答案

三角函数向量解三角形数列综合测试含答案

三角函数、向量、解三角形、数列综合测试含答案大冶一中 孙雷一、选择题每题只有一个正确选项,共60分1.若向量===BAC CB AB ∠),0,1-(),23,21(则 A.30° B.60° C. 120° D. 150°2.已知34,4,8===AC BC AB ABC Rt 中,△,则对于ABC △所在平面内的一点P ,)(PC PB PA +•的最小值是A.-8B. -14C.-26D.-303.已知在正方形ABCD 中,点E 为CD 的中点,点F 为CB 上靠近点B 的三等分点,O 为AC 与BD 的交点,则=DB A.OF AE 51858-+ B.OF AE 74718-+ C.OF AE 58518-+ D. OF AE 71874-+ 4.已知)2π-απ-(523-αsin -αcos <<=,则=+αααtan -1)tan 1(2sin A.7528- B.7528 C.7556- D. 7556 5.若函数m x x x f -2cos 2-sin 4)(=在R 上的最小值是3,则实数=mA.6-B.5-C.3-D.2-6.已知α为锐角,且2)8π-α(tan =,则=α2sin A.102 B.1023 C.1027 D. 4237.已知向量)sin 41-(α,=a ,)4πα0)(1-α(cos <<=,b ,且b a //,则=)4π-αcos( A.21- B.21 C.23- D.23 8.在ABC △中,3:2:1::=A B C ,则=a b c ::A.1:2:3B.3:2:1C.1:3:2D. 2: 3:19.在ABC △中,c b a ,,分别为内角C B A ,,的对边,若B A C sin sin sin 3+=,53cos =C ,且4=ABC S △,则=c A.364 B.4 C.362 D.5 10.在ABC △中,°=60C ,322==AC BC ,点D 在边BC 上,且772sin =∠BAD ,则CD =A. 334B.43 C.33 D.332 11.我国古代数学巨著九章算术中,有如下问题:“今有女善织,日自倍,五日织五尺,问日织几何”这个问题用今天的白话叙述为:“有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少”根据上述问题的已知条件,若该女子共织布3135尺,则这位女子织布的天数是 A.2 B.3 C.4 D.112.数列}{n a 中,01=a ,且)2(2-1-1-≥+=+n a a n a a n n n n ,则数列})1-(1{2n a 前2019项和为A.20194036B.10102019C.20194037D.20204039 二、填空题共20分13.已知等差数列}{n a 的前n 项和n S 有最大值,且1-20192020<a a ,则当0<n S 时n 的最小值为_____________. 14.已知数列}{n a 满足2321)2(+=n a a a a n ,则该数列的通项公式为______________.15.已知数列}{n a 满足),2(1)13()1-(*1-1N n n a a n n n ∈≥++=+,且121==a a ,则数列}{n a 的前2020项的和为_______________.16.ABC △中,Ab B a B Ac C B A cos cos sin sin sin -sin sin 222+=+,若1=+b a ,则c 的取值范围是___________.三、解答题共70分17.已知n S 为等差数列}{n a 的前n 项和,81=a ,10-10=S1求n a ,n S ;2设||||||21n n a a a T +++= ,求n T .18.在ABC △中,c b a ,,分别为内角C B A ,,的对边,且552sin =B ,6=•BC BA 1求ABC △的面积;2若8=+c a ,求b 的值.19.已知函数)(|2||-|)(R a x a x x f ∈++=1当1=a 时,求不等式5≥)(x f 的解集;2当]1,0[∈x 时,不等式|4|≤)(+x x f 恒成立,求实数a 的取值范围.20.已知函数)0(23-sin 3cos sin )(2>+=ωωωωx x x x f 的最小正周期为π,将函数)(x f 的图象向左平移6π个单位长度,再向下平移21个单位长度,得到函数=y )(x g 的图象 1求函数)(x f 的单调递减区间;2在锐角ABC △中,角C B A ,,的对边为c b a ,,,若2,0)2(==a A g ,求ABC △面积的最大值.21.已知关于x 的函数1-2-2π3cos(cos 2)(2)x x x f += 1求不等式0)(>x f 的解集;2若关于x 的不等式x a x x f sin ≥|2sin )(|+在区间]4π3,3π[上有解,求实数a 的取值范围.22.已知数列}{n a 的前n 项和为n S ,且31-34n n a S =,等差数列}{n b 各项均为正数,223b a =,4246b b a += 1求数列}{n a ,}{n b 的通项公式;2设数列}{n c 的前n 项和为n T ,对一切*N n ∈有n n n b na c a c a c =++ 22112成立,求n T .。

高中数学解三角形及数列综合练习题

高中数学解三角形及数列综合练习题

综合练习2一、选择题1.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若222a b bc -=,sin 3sin C B =,则A = ( )A .6πB .3πC .23πD .56π2.在ABC∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=,a b B >∠=且则A .6π B .3π C .23π D .56π 3.在△ABC 中,一定成立的等式是( )A. a A b B sin sin =B. a A b B cos cos =C. a B b A sin sin =D. a B b A cos cos =4.若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C =,则△ABC A .一定是锐角三角形 B .一定是直角三角形 C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形 5.设△ABC 的内角A,B,C 的对边分别为,,a b c 若()cos a b c C =+,则△ABC 的形状是( ) A.等腰三角形 B.等边三角形 C.直角三角形 D.锐角三角形6.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若22245b c b c +=+-且222a b c bc =+-,则△ABC 的面积为( ) A. 3 B.32 C. 22D. 2 7.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为( ) A .185B .43 C .23 D .878.已知三角形的两边长分别为4,5,它们夹角的余弦是方程2x 2+3x -2=0的根,则第三边长是( ) A .20B .21C .22D .619.在ABC ∆中,角,,A B C 所对的边分,,a b c .若c o s s i n a A b B =,2sin cos cos A A B +=A .-12 B .12C .-1D .110.在ABC ∆中,若边长和内角满足2,1,45b c B ===,则角C 的值是( )A .60B .60或120 C .30D . 30或15011.设△ABC 中角A 、B 、C 所对的边分别为,,a b c ,且s in c o s s in c o s s in2A B B A C ⋅+⋅=,若,,a b c 成等差数列且18CA CB ⋅=,则 c 边长为( ) A .5 B .6 C .7 D .8 12.数列1,-3,5,-7,9,……的一个通项公式为A .21n a n =-B .(1)(12)nn a n =-- C .(1)(21)n n a n =-- D .(1)(21)nn a n =-+13.把正整数按下图所示的规律排序,则从2003到2005的箭头方向依次为14.已知{}n a 为等差数列,若π8951=++a a a ,则)cos(73a a +的值为( )A .32 B .32- C .12 D .12- 15.已知{}n a 为等差数列,其前n 项和为n S ,若36a =,312S =,则公差d 等于( ) (A ) 1 (B ) 53(C ) 2 (D ) 3 16.在等差数列{}n a 中,2a 4+a 7=3,则数列{}n a 的前9项和等于( )(A )9(B )6(C )3(D )1217.公差不为0的等差数列{n a }的前21项的和等于前8项的和.若80k a a +=,则k =( ) A .20 B .21 C .22 D .23 18.已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B ,且7453n n A n B n +=+,则使得n na b 为整数的正整数n 的个数是( )A .2B .3C .4D .519.等差数列{}n a 的前n 项和为n S ,若14611,6,a a a =-+=-则当n S 取最小值时,n =( )A.6B.7C.8D.920.已知公差不为零的等差数列{}n a 的前n 项和为nS ,若104a S =,则89S a = 。

高二数学数列求和试题答案及解析

高二数学数列求和试题答案及解析

高二数学数列求和试题答案及解析1.已知数列的前项和为,且,;数列中,点在直线上.(1)求数列和的通项公式;(2)设数列的前和为,求;【答案】(1),(2)【解析】(1)求数列的通项公式用公式法即可推导数列为等比数列,根据等比数列通项公式可求。

求的通项公式也用公式法,根据已知条件可知数列为等差数列,根据等差数列的通项公式可直接求得。

(2)用列项相消法求和。

试题解析:解:(1)∵,∴当时,…2分所以,即∴数列是等比数列.∵,∴∴. 5分∵点在直线上,∴,即数列是等差数列,又,∴.…7分(2)由题意可得,∴, 9分∴,…10分∴. 14分【考点】1求数列的通向公式;2数列求和。

2.数列的通项公式,则该数列的前()项之和等于.A.B.C.D.【答案】B【解析】,令,解得.故选B.【考点】数列求和的其他方法(倒序相加,错位相减,裂项相加等)3.设数列中,,则通项 ___________.【答案】.【解析】由已知得,即数列后项与前项的差,求它的通项公式的方法是的累加法,,=.【考点】数列的求和.4.已知数列的前n项和,则()A.20B.19C.18D.17【答案】C【解析】当时,有【考点】数列求通项点评:由数列前n项和求通项5.观察下列三角形数表:第一行第二行第三行第四行第五行………………………………………….假设第行的第二个数为.(1)依次写出第八行的所有8个数字;(2)归纳出的关系式,并求出的通项公式.【答案】(1)根据已知条件可知每一个数字等于肩上两个数之和,那么可知第八行中的8个数字为8,29,63,91,91,63,29,8(2)【解析】(1)8,29,63,91,91,63,29,8(规律:每行除首末数字外,每个数等于其肩上两数字之和)(2)由已知:,所以有:,, ,……,,将以上各式相加的:所以的通项公式为:。

【考点】累加法求解数列的通项公式点评:主要是考查了递推关系式的运用,结合累加法来求解数列的通项公式,属于基础题。

解三角形专题高考题练习【附答案】

解三角形专题高考题练习【附答案】

解三角形专题(高考题)练习【附答案】1、在ABC ∆中,已知内角3A π=,边23BC =.设内角B x =,面积为y .(1)求函数()y f x =的解析式和定义域;(2)求y 的最大值. 2、已知ABC ∆中,1||=AC ,0120=∠ABC ,θ=∠BAC , 记→→∙=BC AB f )(θ,(1)求)(θf 关于θ的表达式; (2)(2)求)(θf 的值域;3、在△ABC 中,角A 、B 、C 所对的边分别是a ,b ,c ,且.21222ac b c a =-+ (1)求B CA 2cos 2sin 2++的值;(2)若b =2,求△ABC 面积的最大值. 4、在ABC ∆中,已知内角A 、B 、C 所对的边分别为a 、b 、c ,向量()2sin ,3m B =-,2cos 2,2cos 12B n B ⎛⎫=- ⎪⎝⎭,且//m n 。

(I )求锐角B 的大小;(II )如果2b =,求ABC ∆的面积ABC S ∆的最大值。

5、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且.cos cos 3cos B c B a C b -= (I )求cos B 的值;(II )若2=⋅BC BA ,且22=b ,求c a 和b 的值. 6、在ABC ∆中,5cos 5A =,10cos 10B =. (Ⅰ)求角C ;(Ⅱ)设2AB =,求ABC ∆的面积.7、在△ABC 中,A 、B 、C 所对边的长分别为a 、b 、c ,已知向量(1,2sin )m A =,(sin ,1cos ),//,3.n A A m n b c a =++=满足(I )求A 的大小;(II )求)sin(6π+B 的值.8、△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且有sin2C+3cos (A+B )=0,.当13,4==c a ,求△ABC 的面积。

AB C1209、在△ABC 中,角A 、B 、C 所对边分别为a ,b ,c ,已知11tan ,tan 23A B ==,且最长边的边长为l.求:(I )角C 的大小;(II )△ABC 最短边的长.10、在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c.已知a+b=5,c=7,且.272cos 2sin 42=-+C B A (1)求角C 的大小;(2)求△ABC 的面积. 11、已知△ABC 中,AB=4,AC=2,23ABC S ∆=. (1)求△ABC 外接圆面积.(2)求cos(2B+3π)的值. 12、在ABC ∆中,角A B C 、、的对边分别为a b c 、、,(2,)b c a =-m ,(cos ,cos )A C =-n ,且⊥m n 。

数列 解三角(含详细答案)

数列 解三角(含详细答案)

数列解三角形1.△ABC AB=,ABC 的面积等于() A .B .C .D .2.在ABC ∆中,若 A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形3.在△ABC 中,如果lga ﹣lgc=lgsinB=﹣lg ,并且B 为锐角,则△ABC 的形状是() A .等边三角形B .直角三角形 C .等腰三角形D .等腰直角三角形4.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若bcosC+ccosB=asinA ,则△ABC 的形状为() A .直角三角形B .锐角三角形C .钝角三角形D .不确定 5.已知等差数列}{n a 中,那么=+)cos(53a a . 6.设等差数列{}n a 的前n 项和为n S ,若832S =,则2562a a a ++=. 7.在等差数列{a n }中,a 1=﹣9,S 3=S 7,则当前n 项和S n 最小时,n=. 8.各项均为正数的等差数列中,,则前12项和的最小值为.9.等比数列{a n }的前4项和为4,前12项和为28,则它的前8项和是() A .﹣8 B .12 C .﹣8或12 D .810.等比数列{}n a 的前n 项和22n n S a a =⋅+-,则a =________.11.已知数列{}n a 满足1331(*,2)n n n a a n N n -=+-∈≥,且15a =,则n a =.12.设数列{}n a 的各项都是正数,且对任意n *∈N ,都有242n n n S a a =+,其中n S 为数列{}n a 的前n 项和,则数列{}n a 的通项公式为n a =.13.已知数列{n a }的前n 项和为n S ,且,若<t n S 对任意*n N ∈都成立,则t 的取值范围为.14.(2013•新课标Ⅱ)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为.15.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2﹣b 2=bc ,sinC=2sinB ,则A=.{}n a 3694=a a 12S16.等差数列{a n }的前n 项和为S n ,且满足a 1+a 7=﹣9,S 9=﹣.(Ⅰ)求数列{a n }的通项公式; (Ⅱ)设b n =,数列{b n }的前n 项和为T n ,求证:T n >﹣.17.锐角ABC ∆中,角C B A 、、的对边分别是c b a 、、,已知 (Ⅰ)求C sin 的值;(Ⅱ)当2=a ,C A sin sin 2=时,求b 的长及ABC ∆的面积. 18.在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且,(1)求角B 的大小; (2)若,求△ABC 的面积.参考答案1.D 【解析】试题分析:由AB ,AC 及cosB 的值,利用余弦定理即可列出关于BC 的方程,求出方程的解即可得到BC 的长,然后利用三角形的面积公式,由AB ,BC 以及sinB 的值即可求出△ABC 的面积. 解:由AB=,AC=1,cosB=cos30°=,根据余弦定理得:AC 2=AB 2+BC 2﹣2AB ×BCcosB ,即1=3+BC 2﹣3BC , 即(BC ﹣1)(BC ﹣2)=0,解得:BC=1或BC=2, 当BC=1时,△ABC 的面积S=AB ×BCsinB=××1×=; 当BC=2时,△ABC 的面积S=AB ×BCsinB=××2×=,所以△ABC 的面积等于或.故选D考点:解三角形. 2.B 【解析】试题分析:由三角恒等变换得,又C B A --=π,所以)cos(cos C B A +-=,即io o s s ,也即1C)-cos(B sinBsinC cos cos ==+C B ,所以C B =,三角形C AB 为等腰三角形.正确选项为B.考点:三角恒等变换.是三角形C AB 的内角,所以满足转换为A ,即利用二倍角公式将A cos 利用转化为求角了,在转化时一定要注意符号. 3.D 【解析】试题分析:由已知的条件可得=,sinB=,从而有 cosB==,故 C=,A=,故△ABC 的形状等腰直角三角形.解:在△ABC 中,如果lga ﹣lgc=lgsinB=﹣lg ,并且B 为锐角,∴=,sinB=,∴B=,c=a ,∴cosB==,∴C=,A=,故△ABC 的形状等腰直角三角形, 故选D .考点:三角形的形状判断;对数的运算性质. 4.A 【解析】 试题分析:根据正弦定理把已知等式中的边转化为角的正弦,利用两角和公式化简求得sinA 的值进而求得A ,判断出三角形的形状. 解:∵bcosC+ccosB=asinA ,∴sinBcosC+sinCcosB=sin (B+C )=sinA=sin 2A , ∵sinA≠0, ∴sinA=1,A=,故三角形为直角三角形, 故选:A .考点:三角形的形状判断.5【解析】试题分析:,故,,故考点:等差数列的性质.6.16 【解析】 试题分析:由328=S 有32)(454=+a a ,得854=+a a ,故16)(2254652=+=++a a a a a .考点:等差数列 7.5 【解析】试题分析:利用等差数列的前n 项和公式与数列的单调性即可得出. 解:设等差数列{a n }的公差为d ,∵a 1=﹣9,S 3=S 7, ∴3×(﹣9)+d=7×(﹣9)+d ,解得d=2.∴a n =﹣9+2(n ﹣1)=2n ﹣11, 由a n ≤0,解得n≤5.∴当前n 项和S n 最小时,n=5. 故答案为:5.考点:等差数列的前n 项和.8.78 【解析】试题分析: 考点:等差数列求和及等差数列的性质;基本不等式的应用. 9.B 【解析】试题分析:设等比数列{a n }的公比为q ,则q≠1.由于前4项和为4,前12项和为28,可得=4,=28.解得q 4,即可得出.解:设等比数列{a n }的公比为q ,则q≠1. ∵前4项和为4,前12项和为28, ∴=4,=28.则q 8+q 4+1=7,解得q 4=2. 则它的前8项和S 8===4×3=12.故选:B .考点:等比数列的前n 项和. 10.1 【解析】 试题分析:由题意,得112232a S a a a ==+-=-.因为111222n n n n n n a S S a a a ---=-=⋅-⋅=⋅,又数列{}n a 为等比数列,所以1a 满足12n n a a -=⋅,所以11322a a --=⋅,解得1a =.考点:递推数列.【一题多解】由等比数列的前n (2)0a a +-=,解得1a =.11【解析】试题分析:)2(1331≥-+=-n a a n n n ①,13311-+=∴++n n n a a ②,则112332⨯⨯=-a a ,223342⨯⨯=-a a , 334352⨯⨯=-a a ,⋅⋅⋅,113)1(2--⋅+=-n n n n a a ,上述式子相加,得]3)1(2353433[21321-⋅++⋅⋅⋅+⨯+⨯+⨯=-n n n a a ,则=-)(31aa n ]3)1(232353433[21432n n n n ⋅++⋅+⋅⋅⋅+⨯+⨯+⨯-,两式相减除以2,得n n n n a a 2)1()3333(914321⋅+-+⋅⋅⋅++++=--,即考点:1.由数列的递推式求通项;2.累加法;3.错位相减法.12.2n 【解析】试题分析:当1n =时,由21111420S a a a =+>,,得12a =,当2n ≥时,由()()2211144422n n n n n n n a S S a a a a ---=-=+-+,得()()1120n n n n a a a a --+--=,因为10n n a a -+>,所以12n n a a --=,故()2122n a n n =+-⨯=.考点:数列递推式.【思路点睛】本题考查数列的通项公式及前n 项和的求法,注意解题方法的积累;在解答过程中采用数列的递推式11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,当1n =时,得12a =;当2n ≥时,由1444n n n a S S -=-,得12n n a a --=,从而可得结论.13【解析】以n t S >可得考点:1.数列求和;2.不等式恒成立 14.﹣49 【解析】试题分析:由等差数列的前n 项和公式化简已知两等式,联立求出首项a 1与公差d 的值,结合导数求出nS n 的最小值.解:设等差数列{a n }的首项为a 1,公差为d , ∵S 10=10a 1+45d=0,S 15=15a 1+105d=25, ∴a 1=﹣3,d=, ∴S n =na 1+d=n 2﹣n ,∴nS n =n 3﹣n 2,令nS n =f (n ),∴f′(n )=n 2﹣n ,∴当n=时,f (n )取得极值,当n <时,f (n )递减;当n >时,f (n )递增;因此只需比较f (6)和f (7)的大小即可.f (6)=﹣48,f (7)=﹣49, 故nS n 的最小值为﹣49. 故答案为:﹣49.考点:利用导数研究函数的极值;等差数列的前n 项和;等差数列的性质. 15.30° 【解析】试题分析:已知sinC=2sinB 利用正弦定理化简,代入第一个等式用b 表示出a ,再利用余弦定理列出关系式,将表示出的c 与a 代入求出cosA 的值,即可确定出A 的度数. 解:将sinC=2sinB 利用正弦定理化简得:c=2b ,代入得a 2﹣b 2=bc=6b 2,即a 2=7b 2, ∴由余弦定理得:cosA===,∵A 为三角形的内角, ∴A=30°.故答案为:30°考点:正弦定理.16.(Ⅰ)﹣(Ⅱ)证明见解析【解析】试题分析:(I)设数列{a n}的公差为d,由于a1+a7=﹣9,S9=﹣,利用等差数列的通项公式及前n项和公式可得,解出即可;(Ⅱ)利用等差数列的前n项和公式可得S n=,于是b n=﹣=﹣,利用“裂项求和”及“放缩法”即可证明.(Ⅰ)解:设数列{a n}的公差为d,∵a1+a7=﹣9,S9=﹣,∴,解得,∴=﹣.(Ⅱ)证明:∵S n==,∴b n==﹣=﹣,∴数列{b n}的前n项和为T n=﹣+…+==.∴T n>﹣.考点:数列的求和;等差数列的性质.17. 【解析】试题分析:(I)根据二倍角公式得2cos 212sin C C =-,即可求得C sin 的值;(II )先由正4c =,再根据余弦定理求出,从而求得ABC 的面积.,解得c 4=. 由余弦定理222c a b 2abcosC =+-,得考点:利用正、余弦定理解三角形.18.(1)(2【解析】 试题分析:(1)根据正弦定理表示出a ,b 及c ,代入已知的等式,利用两角和的正弦函数公式及诱导公式变形后,根据sinA 不为0,得到cosB 的值,由B 的范围,利用特殊角的三角函数值即可求出角B 的度数;(2)由(1)中得到角B 的度数求出sinB 和cosB 的值,根据余弦定理表示出b2,利用完全平方公式变形后,将b ,a+c 及cosB 的值代入求出ac 的值,然后利用三角形的面积公式表示出△ABC 的面积,把ac 与sinB 的值代入即可求出值. 解:(1)由正弦定理得:a=2RsinA ,b=2RsinB ,c=2RsinC , 将上式代入已知,即2sinAcosB+sinCcosB+cosCsinB=0, 即2sinAcosB+sin (B+C )=0, ∵A+B+C=π,∴sin (B+C )=sinA ,∴2sinAcosB+sinA=0,即sinA (2cosB+1)=0, ∵sinA≠0,∴,∵B为三角形的内角,∴;(II)将代入余弦定理b2=a2+c2﹣2accosB得:b2=(a+c)2﹣2ac﹣2accosB,即,∴ac=3,∴.考点:解三角形.。

解三角形数列练习题含答案

解三角形数列练习题含答案

解三角形数列练习题1.△ABC中,若1,b c ==23C π=,则a = 。

2.设△ABC 的内角A ,B ,C 所对的边长分别为,,a b c ,且3cos cos 5a B b A c -=,则tan tan A B的值为 。

3.在△ABC中,已知sin :sin A B =1,22c b =,则三个内角A ,B ,C 的度数依次为 。

4.已知数列{n a }的前n 项和29n S n n =-,第k 项满足58k a <<,则k 等于( )A .6B .7C .8D .95.已知等差数列{n a }的公差为(0)d d ≠,且36101332a a a a +++=,若8m a =,则m =( )A .12B .8C .6D .46.若n S 是等差数列{n a }的前n 项和,且8320S S -=,则11S 的值为( )A .44B .22C .2203D .887.数列{n a }的前n 项和记为n S ,11a =,121(1)n n a S n +=+≥。

(1)求{n a }的通项公式;(2)等差数列{n b }的各项为正,其前n 项和为T ,且315T =,又11a b +,22a b +,33a b +成等比数列,求n T 。

8.在83和272之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为 。

9.设n S 为等比数列{n a }的前n 项和,已知3432S a =-,2332S a =-,则公比q = 。

10.在△ABC 中,已知2()()a c a c b bc +-=+,则A 等于( )A .30°B .60°C .120°D .150°11.在等差数列{n a }中,设公差为d ,若前n 项和为2n S n =-,则通项和公差分别为( )A .21n a n =-,2d =-B .21n a n =-,2d =C .21n a n =-+,2d =-D .21n a n =-+,2d =12.数列{n a }的前n 项和为n S ,若11a =,13(1)n n a S n +=≥,则6a =( )A .434⨯B .4341⨯+C .34D .341+13.设等比数列{n a }的前n 项和为n S ,若633S S =,则96SS =( ) A .2B .73C .83D .314.若数列{n a }的通项公式是(1)(32)n n a n =--,则1210a a a +++= ( )A .15B .12C .-12D .-1515.数列2211,12,122,,1222n -++++++ ,…的前n 项和等于( )A .12n n +- B .122n n +-- C .2nn -D .2n16.等差数列{n a }中,10110,0a a <>,且1110a a >,n S 为数列{n a }的前n 项和,则使0n S >的n 的最小值为( )A .21B .20C .10D .1117.在△ABC 中,3sin 4A =,10a =,则边长c 的取值范围是( ) A .15(,)2+∞B .(10,)+∞C .(0,10)D .40(0,]318.已知锐角△ABC的面积为4,3BC CA ==,则角C 的大小为( )A .75°B .60°C .45°D .30°19.在△ABC 中,已知cos cos sin sin A B A B >,则△ABC 是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形20.在△ABC 中,角A 、B 、C 的对边分别为a b c 、、,若222()tan a c b B +-=,则角B 的值为( )A .6πB .3π C .6π或56πD .3π或23π21.在△ABC 中,AB=7,AC=6,M 是BC 的中点,AM=4,则BC 等于( )ABCD22.在△ABC 中,若2,3sin 5sin b c a A B +==,则角C= 。

高二数学数列求和试题答案及解析

高二数学数列求和试题答案及解析

高二数学数列求和试题答案及解析1.已知数列的前项和为,且2.(1)求数列的通项公式;(2)若求数列的前项和.【答案】(1);(2)。

【解析】(1)根据可求数列的通项公式,注意验证;(2)把(1)代入(2),然后先分组求和,一部分用裂项相消,一部分用等差数列求和公式。

试题解析:(1)由,得,2分两式相减得,, 4分又时,适合上式,。

6分8分10分12分【考点】(1)的应用;(2)数列求和:分组求和、裂项相消、公式法。

2.等差数列,该数列前n项和取最小值时,n= 。

【答案】15或16【解析】是递增数列,所以当或时取最小值【考点】数列求和与性质点评:结合数列性质:若则可得到数列中正负项分界的位置,利用单调性可得到所有负数项之和最小3.在数列{an}中,,试猜想这个数列的通项公式。

【答案】【解析】因为,,所以,。

【考点】本题主要考查数列的递推公式,等差数列的通项公式。

点评:简单题,考察数列要从多方面入手,如本题中,通过研究的特征,利用等差数列的知识,使问题得解。

4.若数列{},(n∈N)是等差数列,则有数列b=(n∈N)也是等差数列,类比上述性质,相应地:若数列{c}是等比数列,且c>0(n∈N),则有d=_____________________(n∈N)也是等比数列。

【答案】【解析】在类比等差数列的性质推理等比数列的性质时,我们一般的思路有:由加法类比推理为乘法,由减法类比推理为除法,由算术平均数类比推理为几何平均数等,故我们可以由数列{an}是等差数列,则当bn =时,数列{bn}也是等差数列.类比推断:若数列{cn}是各项均为正数的等比数列,则当dn =时,数列{bn}也是等比数列.故答案为:【考点】本题考查了类比推理的运用点评:类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).5.已知数列的首项为,且,则这个数列的通项公式为___________【答案】【解析】根据题意,由于数列的首项为,且,故可知数列当n=1时,也满足上式,因此故可知答案为【考点】数列的通项公式点评:解决的关键是根据递推式来采用累加法来求解数列的通项公式,属于基础题。

三角函数数列高考题专题训练答案

三角函数数列高考题专题训练答案

解:(Ⅰ)由1+cos 2A ―cos 2B ―cos 2C =2sinB ·sinC 得C B A C B sin sin sin sin sin 222=-+ (2分) 由正弦定理得bc a c b =-+222,(4分)∴2221cos 22b c a A bc +-==∵0<A <π ∴3π=A (6分)21解:(Ⅰ)证明:由2231++=+n n n a a a 得 22222321+-=-++=-+n n n n n a a a a a ① 2)1(4122311++=+++=++n n n n n a a a a a②(2分)∴12411211+-⋅=+-++n n n n a a a a 即n n b b 411=+,且4112111=+-=a a b ∴数列{}n b 是首项为41,公比为41的等比数列. (4分) 16.解:(Ⅰ)假设a ∥b ,则2cos (cos sin )sin (cos sin )0x x x x x x +--=,……… 2分∴221cos211cos22cos sin cos sin 0,2sin20222x xx x x x x +-++=⋅++=, 即sin 2cos 23x x +=-,∴2(sin 2)34x π+=-,…………………………………… 4分与|2(sin2)|24x π+≤矛盾,∴假设不成立,故向量a 与向量b 不可能平行.……………………………………… 6分 (Ⅱ)∵a ⋅b (cos sin )(cos sin )sin 2cos x x x x x x =+⋅-+⋅22cos sin 2sin cos x x x x =-+22cos 2sin 22(cos 2sin 2)2(sin 2)224x x x x x π=+=+=+,……… 8分 ∴2sin(2)42x π+=. ]2,0[π∈x ,∴52[,]444x πππ+∈,……………………………………………………10分442ππ=+∴x 或4342ππ=+x ,0=∴x 或4π=x .………………………………12分16.⑴∵x x x f 2c o s 3)22co s (1)(-+-=π 1分 =)32sin(21π-+x3分 又由⎥⎦⎤⎢⎣⎡∈2,4ππx 得⎥⎦⎤⎢⎣⎡∈-πππ32,632x ∴⎥⎦⎤⎢⎣⎡∈-1,21)32sin(πx5分故22121)(min =⨯+=x f ,f (x )max =1+2×1=3 6分⑵m x f -)(<2在⎥⎦⎤⎢⎣⎡∈2,4ππx 上恒成立⇔⎥⎦⎤⎢⎣⎡∈2,4ππx 时⎩⎨⎧+<->2)(2)(min max x f m x f m9分结合⑴知:⎩⎨⎧=+<=->422123m m 故m 的取值范围是(1,4)12分20.⑴由x x f =)(得ax 2+(2a -1)x =0(a ≠0)∴当且仅当21=a 时,x x f =)(有唯一解x =0,∴22)(+=x xx f 当1)(=n x f 得x 1=2,由211122)(11=-+==++n n n n n n x x x x x f x 得 ∴数列}1{nx 是首项为2111=x ,公差为21的等差数列∴nx nn x n n 22)1(21211==-+=故 7分16.解:(1)BA BA B A B A b a sin cos cos sin sin sin cot tan 2222=∴=由正弦定理得'6,22sin 2sin ,cos sin cos sin 或直角三角形为等腰或即于是∆∆∴=+=∴==πB A B A B A B B A A(2),,60B A c =∴︒='126120cos 22323432-=︒⨯⨯⨯=⋅+⋅+⋅=⇒==∴∆∆AB CA CA BC BC AB a a S ABC 故是正三角形即19.解:(1)212142212111=---=---=-++n n n n n n n a a a a a b b故数列{b n }是等差数列 ………………………………3分nn a n n n b b n n 22,2212121)1(1+=∴=++=-+=, ……………………7分 16.解:(1)x x x x x x b a x f cos 2sin )sin (cos )sin (cos )(⋅+-⋅+=⋅=分的最小正周期分分分6.)(5)42sin(2)2sin 4cos 2cos 4(sin23)2sin 222cos 22(22sin 2cos 2cos sin 2sin cos 22 ππππ=∴+=+=+=+=+-=T x f x x x x x x x x x x x (2).45424,20ππππ≤+≤∴≤≤x x …………8分 分有最小值时即当分有最大值时即当12.1)(,2,454210.2)(,8,242 -==+==+∴x f x x x f x x ππππππ18.解:(1)由题意知,*)()41(N n a nn ∈= ,……………2分又143log 2n n b a =-,故 32(*)n b n n N =-∈……………4分 (2)由(1)知,*)(23,)41(N n n b a n nn ∈-==*)(,)41()23(N n n c n n ∈⨯-=∴……………6分,)41()23()41)53()41(7)41(4411132n n n n n S ⨯-+(⨯-++⨯+⨯+⨯=∴- ……7分∴1432)41()23()41)53()41(7)41(4)41(141+⨯-+(⨯-++⨯+⨯+⨯=n n n n n S …9分 两式相减,得132)41()23(])41()41()41[(34143+⨯--++++=n n n n S .)41()23(211+⨯+-=n n …12分2321()(*)334nn n S n N +∴=-⨯∈……………12分解:(1)由已知条件及余弦定理得 3sin 3tan ,,2cos cos 2cos bc A A bc A A A=∴=∴3sin 2A =. ∵(0,)2A π∈,.3A π=故 ……………………6分(2))50cos 50sin 31(70sin )]10tan(31)[10sin(︒︒-︒=︒--︒+A A= sin7050cos 50sin 350cos - =2sin7050cos )5030sin(-==-40sin 20cos 20sin 2=-1 21. 解(1)由n+1n n 12a 3a a -=-变形得2a 1+n -2a n = a n -a 1-n (n 2≥),故2b 1+n =b n 故{}n b 是以a 2-a 1为首项,21为公比的等比数列。

高一解三角形和数列求和、通项公式(含答案)

高一解三角形和数列求和、通项公式(含答案)

解三角形1.在A B C ∆中,角A 、B 、C 的对边分别为a ,b ,c .角A ,B ,C 成等差数列.(Ⅰ)求cos B 的值;(Ⅱ)边a ,b ,c 成等比数列,求sin sin A C 的值.2.已知a ,b ,c 分别为A B C ∆三个内角A ,B ,C 的对边,sin sin c C c A =-.(Ⅰ)求A ;(Ⅱ)若a =2,A B C ∆求b ,c .数列的通项公式与求和112342421{},1(1,2,3,)3(1),,{}.(2)n n n n n na n S a a S n a a a a a a a +===+++L L 数列的前项为且,求的值及数列的通项公式求1112{},1(1,2,).:(1){};(2)4n n n n n n nn a n S a a S n nS nS a +++==== 数列的前项和记为已知,证明数列是等比数列L*121{}(1)()3(1),;(2):{}.n n n n n a n S S a n N a a a =-∈ 已知数列的前项为,求求证数列是等比数列11211{},,.2n n n n a a a a a n n+==++ 已知数列满足求练习1练习2练习3 练习4112{},,,.31n n n n n a a a a a n +==+ 已知数列满足求111511{},,().632n n n n n a a a a a ++==+ 已知数列中,求111{}:1,{}.31n n n n n a a a a a a --==⋅+ 已知数列满足,求数列的通项公式练习8 等比数列{}n a 的前n 项和21nn S =-,则2222123n a a a a ++++L练习9 求和:5,55,555,5555,…,5(101)9n-,…;练习10 求和:1111447(32)(31)n n +++⨯⨯-⨯+L练习11 求和:111112123123n+++++++++++L L练习12 设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=(Ⅰ)求{}n a ,{}n b 的通项公式;(Ⅱ)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n S .练习5练习6练习7答案练习1答案:练习2 证明:(1)注意到:a(n+1)=S(n+1)-S(n)代入已知第二条式子得: S(n+1)-S(n)=S(n)*(n+2)/n nS(n+1)-nS(n)=S(n)*(n+2) nS(n+1)=S(n)*(2n+2) S(n+1)/(n+1)=S(n)/n*2又S(1)/1=a(1)/1=1不等于0 所以{S(n)/n}是等比数列 (2)由(1)知,{S(n)/n}是以1为首项,2为公比的等比数列。

人教版必修五解三角形、数列综合题(含答案)

人教版必修五解三角形、数列综合题(含答案)

三角函数、数列综合题一、选择题1、在△ABC 中,若22tan tan ba B A =,则△ABC 的形状是( ) A .直角三角形 B .等腰或直角三角形 C .不能确定 D .等腰三角形2、△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b =( ) A .231+ B .31+C .232+D .32+3、已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是( )A.12B .1C .2D .3 4、设等比数列{a n }的前n 项和为S n ,若8a 2+a 5=0,则下列式子中数值不能确定的是( )A.a 5a 3B.S 5S 3 C.a n +1a n D.S n +1S n5、数列{a n }的通项公式为a n =2n -49,当该数列的前n 项和S n 达到最小时,n 等于( )A .24B .25C .26D .276、已知数列{a n }为等差数列,若a 11a 10<-1,且它们的前n 项和S n 有最大值,则使得S n >0的最大值n为( )A .11B .19C .20D .217、数列{a n }是等差数列,公差d ≠0,且a 2046+a 1978-a 22012=0,{b n }是等比数列,且b 2012=a 2012,则b 2010·b 2014=( )A .0B .1C .4D .88、在△ABC 中,若,tan lg tan lg tan lg 2C A B +=则B 的取值范围是_______________。

9、在ABC ∆中,内角A 、B 、C 的对边长分别为a 、b 、c ,已知222a c b -=,且sin cos 3cos sin ,A C A C = 则b=_______________。

高一数学解三角形试题答案及解析

高一数学解三角形试题答案及解析

高一数学解三角形试题答案及解析1.地面上有两座塔AB、CD,相距120米,一人分别在两塔底部测得一塔顶仰角为另一塔顶仰角的2倍,在两塔底连线的中点O测得两塔顶的仰角互为余角,求两座塔的高度。

【答案】40米,90米.【解析】绘出几何示意图,寻找角关系,并建关系式.其中,且,建立方程(1);又因为,且由题可知,建立方程(2)试题解析:连结BO、OD、 AD、 BC,设两塔AB、CD的高分别为x,y米,则在中,则在中,由得, ( 1 ) 5分又在中,在中,.而,所以,即(2) 10分由(1)(2)式解得: x = 40(米), y = 90(米)答:两座塔的高分别为40米、90米. 14分【考点】正切函数应用.2.设甲、乙两楼相距20m,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是()A.B.C.D.【答案】A【解析】试题分析:由图可知,在中,,则;在中,,则,;即甲、乙两楼的高分别是.【考点】解直角三角形.3.△ABC的内角、、的所对的边、、成等比数列,且公比为,则的取值范围为()A.B.C.D.【答案】B.【解析】∵,,成等比数列,∴,,再由正弦定理可得,又∵,根据二次函数的相关知识,可知的取值范围是.【考点】三角形与二次函数一元二次不等式综合.4.已知的三个内角满足:,则的形状为A.正三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形【答案】B【解析】由,,从而有:,再注意到,又,故知是以角C为直角的直角三角形,所以选B.【考点】三角公式.5.在中,内角、、所对的边分别为、、,给出下列命题:①若,则;②若,则;③若,则有两解;④必存在、、,使成立.其中,正确命题的编号为.(写出所有正确命题的编号)【答案】②③【解析】①根据大边对大角可知,如果是钝角,则此时,显然错误.②当三角形是锐角三角形时,根据正弦函数性质可知;当三角形是钝角三角形时,有,则,因为,所以,此时有,正弦函数性质可知,即.正确.③因为,即,所以必有两解.正确.④根据正切和角公式,可得.则有根据诱导公式有代入上式,则上式若是锐角,则;此时.若是钝角,则;此时.错误.【考点】三角形中边角关系;三角函数性质;三角函数和角,诱导公式的使用.6.△ABC中,a、b、c分别为∠A、∠B、∠C的对边,如果a、b、c成等差数列,∠B=30°,△ABC的面积为,那么b=A. B. C. D.【答案】B【解析】由题意知,,,解得.【考点】解三角形.7.在中,内角所对的边分别为,给出下列结论:①若,则;②若,则为等边三角形;③必存在,使成立;④若,则必有两解.其中,结论正确的编号为(写出所有正确结论的编号).【答案】①④【解析】对于①,在中,当时,有,又由正弦定理,则,,,由有>>,所以有成立,故①正确;对于②,由正弦定理,且因为,所以且,则,且角B,C为锐角,所以,故②不正确;对于③,=,故③不正确;对于④,如图:因为,且,所以必有两解,故④正确.【考点】正弦定理,三角形边角关系,化归与转化的数学思想.8.中,若,则的面积为().A.B.C.1D.【答案】A【解析】根据三角形面积公式可得面积为.【考点】三角形面积公式的选择和计算.9.如图,从高为的气球上测量铁桥的长,如果测得桥头的俯角是,桥头的俯角是,则该桥的长可表示为A.B.C.D.【答案】A【解析】过A作垂线AD交CB于D,则在Rt△ADB中,∠ABD=α,AB=.又在中,∠C=β,∠BAC=α-β,由正弦定理,得∴BC=即桥梁BC的长度为,故选A.【考点】解三角形的实际应用.10.两地相距,且地在地的正东方。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年07月18日-高中数学的高中数学组卷解三角与数列第Ⅰ卷(选择题)&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&a mp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp; nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbs p;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;& amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&am p;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;n bsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp ;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&a mp;nbsp;一.选择题(共9小题)1.如图,设A、B两点在河的两岸,一测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离为50m,∠ACB=45°,∠CAB=105°后,就可以计算出A、B两点的距离为()A.m B.m C.m D.m2.在△ABC中,角A,B,C的对边分别是a,b,c,已知,且,则△ABC的面积为()A.B.C.4 D.23.△ABC的内角A,B,C的对边分别为a,b,c,已知b=a(cosC﹣sinC),a=2,c=,则角C=()A. B.C.D.4.在△ABC中,角A、B、C的对边分别为a、b、c,若(a2+c2﹣b2)tanB=ac,则角B的值是()A.B.C.或D.或5.如图,《九章算术》中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?意思是:有一根竹子,原高一丈(1丈=10尺),现被风折断,尖端落在地上,竹尖与竹根的距离三尺,问折断处离地面的高为()尺.A.5.45 B.4.55 C.4.2 D.5.86.已知△ABC中,角A、B、C的对边分别为a、b、c,且a=4,b=4,B=,则角A的大小为()A. B.或C.D.7.在△ABC中,内角A,B,C所对应的边分别为a,b,c,若bsinA﹣acosB=0,且b2=ac,则的值为()A.B.C.2 D.48.在△ABC中,内角A,B,C的对边分别为a,b,c,且2c﹣2acosB=b,则角A的大小为()A.B.C.D.9.在△ABC中,a=3,b=,c=2,那么B等于()A.30°B.45°C.60°D.120°第Ⅱ卷(非选择题)二.解答题(共7小题)10.在△ABC中,角A,B,C所对的边分别为a,b,c,已知.(1)证明:;(2)若,求△ABC的面积.11.已知△ABC的内角A,B,C的对边分别是a,b,c,且bsin2A=asinB.(1)求A;(2)若a=2,△ABC的面积为,求△ABC的周长.12.△ABC的内角A,B,C的对边分别为a,b,c,已知,c﹣b=1,△ABC 的外接圆半径为.(1)求角A的值;(2)求△ABC的面积.13.已知数列{a n}满足a1=1,na n+1=2(n+1)a n,设b n=.(1)求b1,b2,b3;(2)判断数列{b n}是否为等比数列,并说明理由;(3)求{a n}的通项公式.14.设数列{a n}的前n项和为S n,a1=2,a n+1=2+S n,(n∈N*).(I)求数列{a n}的通项公式;(Ⅱ)设b n=log2(a n)2,求数列{}的前n项和T n15.已知数列{a n}是等比数列,数列{b n}满足.(1)求{a n}的通项公式;(2)求数列{b n}的前n项和S n.16.已知等差数列{a n}的前n项和为S n,且满足a3=6,S11=132(1)求{a n}的通项公式;(2)求数列{}的前n项和T n.2018年07月18日-高中数学的高中数学组卷参考答案与试题解析一.选择题(共9小题)1.如图,设A、B两点在河的两岸,一测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离为50m,∠ACB=45°,∠CAB=105°后,就可以计算出A、B两点的距离为()A.m B.m C.m D.m【分析】依题意在A,B,C三点构成的三角形中利用正弦定理,根据AC,∠ACB,B的值求得AB【解答】解:由正弦定理得,∴,故A,B两点的距离为50m,故选:A.【点评】本题主要考查了解三角形的实际应用.考查了学生对基础知识的综合应用.2.在△ABC中,角A,B,C的对边分别是a,b,c,已知,且,则△ABC的面积为()A.B.C.4 D.2【分析】由已知利用正弦定理可求sinB,结合B的范围可求B的值,进而可求A,利用三角形面积公式即可得解.【解答】解:由正弦定理,又c>b,且B∈(0,π),所以,所以,所以.故选:A.【点评】本题主要考查了正弦定理,三角形面积公式,三角形内角和定理在解三角形中的应用,考查了转化思想,属于基础题.3.△ABC的内角A,B,C的对边分别为a,b,c,已知b=a(cosC﹣sinC),a=2,c=,则角C=()A. B.C.D.【分析】由已知及正弦定理,三角形内角和定理,两角和的正弦函数公式,同角三角函数基本关系式可得tanA=﹣1,进而可求A,由正弦定理可得sinC的值,进而可求C的值.【解答】解:∵b=a(cosC﹣sinC),∴由正弦定理可得:sinB=sinAcosC﹣sinAsinC,可得:sin(A+C)=sinAcosC+cosAsinC=sinAcosC﹣sinAsinC,∴cosAsinC=﹣sinAsinC,由sinC≠0,可得:sinA+cosA=0,∴tanA=﹣1,由A为三角形内角,可得A=,∵a=2,c=,∴由正弦定理可得:sinC===,∴由c<a,可得C=.故选:B.【点评】本题主要考查了正弦定理,三角形内角和定理,两角和的正弦函数公式,同角三角函数基本关系式在解三角形中的综合应用,考查了转化思想,属于基础题.4.在△ABC中,角A、B、C的对边分别为a、b、c,若(a2+c2﹣b2)tanB=ac,则角B的值是()A.B.C.或D.或【分析】由余弦定理化简条件得2ac•cosB•tanB=ac,再根据同角三角函数的基本关系得sinB=,从而求得角B的值.【解答】解:∵在△ABC中,角A、B、C的对边分别为a、b、c,(a2+c2﹣b2)tanB=ac,∴2ac•cosB•tanB=ac,∴sinB=,B=或B=,故选:D.【点评】本题考查余弦定理的应用,同角三角函数的基本关系,以及根据三角函数值及角的范围求角的大小.5.如图,《九章算术》中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?意思是:有一根竹子,原高一丈(1丈=10尺),现被风折断,尖端落在地上,竹尖与竹根的距离三尺,问折断处离地面的高为()尺.A.5.45 B.4.55 C.4.2 D.5.8【分析】由题意可得AC+AB=10(尺),BC=3(尺),运用勾股定理和解方程可得AB,AC,即可得到所求值.【解答】解:如图,已知AC+AB=10(尺),BC=3(尺),AB2﹣AC2=BC2=9,所以(AB+AC)(AB﹣AC)=9,解得AB﹣AC=0.9,因此,解得,故折断后的竹干高为4.55尺,故选:B.【点评】本题考查三角形的勾股定理的运用,考查方程思想和运算能力,属于基础题.6.已知△ABC中,角A、B、C的对边分别为a、b、c,且a=4,b=4,B=,则角A的大小为()A. B.或C.D.【分析】直接利用正弦定理,转化求解即可.【解答】解:△ABC中,角A、B、C的对边分别为a、b、c,且a=4,b=4,B=,a<b则,A<B,A+B<π,,sinA==,所以:A=.故选:D.【点评】本题考查正弦定理的应用,三角形的解法,考查计算能力.7.在△ABC中,内角A,B,C所对应的边分别为a,b,c,若bsinA﹣acosB=0,且b2=ac,则的值为()A.B.C.2 D.4【分析】先由条件利用正弦定理求得角B,再由余弦定理列出关于a,c的关系式,然后进行合理的变形,求得的值.【解答】解:△ABC中,由bsinA﹣a•cosB=0,利用正弦定理得sinBsinA﹣sinAcosB=0,∴tanB=,故B=.由余弦定理得b2=a2+c2﹣2ac•cosB=a2+c2﹣ac,即b2=(a+c)2﹣3ac,又b2=ac,所以4b2=(a+c)2,求得=2,故选:C.【点评】本题考查正弦定理、余弦定理得应用.解题先由正弦定理求得角B,再由余弦定理列出关于a,c的关系式,然后进行合理的变形,求得的值,属于中档题.8.在△ABC中,内角A,B,C的对边分别为a,b,c,且2c﹣2acosB=b,则角A的大小为()A.B.C.D.【分析】直接利用两角和的正弦函数公式化简已知条件,结合sinB≠0,然后求角A的余弦函数值,即可求解;【解答】解:(1)在△ABC中,∵2c﹣2acosB=b,∴由正弦定理可得:2sinC﹣2sinAcosB=sinB,即:2sin(A+B)﹣2sinAcosB=sinB,∴2sinAcosB+2cosAsinB﹣2sinAcosB=sinB,可得:2cosAsinB=sinB,∵B为三角形内角,sinB≠0,∴cosA=,又∵A∈(0,π),∴A=.故选:C.【点评】本题考查了三角恒等变形,考查了转化思想,属于中档题.9.在△ABC中,a=3,b=,c=2,那么B等于()A.30°B.45°C.60°D.120°【分析】直接利用余弦定理以及特殊角的三角函数值就可得出答案.【解答】解:根据余弦定理得cosB===B∈(0,180°)∴B=60°故选:C.【点评】本题考查了余弦定理以及特殊角的三角函数值,解题过程中要注意角的范围,属于基础题.二.解答题(共7小题)10.在△ABC中,角A,B,C所对的边分别为a,b,c,已知.(1)证明:;(2)若,求△ABC的面积.【分析】(1)直接利用已知条件和余弦定理求出结论.(2)利用(1)的结论,进一步利用正弦定理求出结果.【解答】证明:(1)在△ABC中,角A,B,C所对的边分别为a,b,c,,则:,整理得:,由于:b2+c2﹣a2=2bccosA,则:2bccosA=,即:a=2cosA.解:(2)由于:A=,所以:.由正弦定理得:,解得:b=1.C=,所以:.【点评】本题考查的知识要点:余弦定理和正弦定理的应用.11.已知△ABC的内角A,B,C的对边分别是a,b,c,且bsin2A=asinB.(1)求A;(2)若a=2,△ABC的面积为,求△ABC的周长.【分析】(1)直接利用三角函数关系式的恒等变换求出A的值.(2)利用正弦定理和余弦定理及三角形的面积公式求出三角形的周长.【解答】解:(1)知△ABC的内角A,B,C的对边分别是a,b,c,且bsin2A=asinB.则:2bsinAcosA=asinB,由于:sinAsinB≠0,则:cosA=,由于:0<A<π,所以:A=.(2)利用余弦定理得:a2=b2+c2﹣2bccosA,由于:a=2,所以:4=b2+c2﹣bc,△ABC的面积为,则:,解得:bc=4.故:b2+c2=8,所以:(b+c)2=8+2•4=16,则:b+c=4.所以:三角形的周长为2+4=6.【点评】本题考查的知识要点:三角函数关系式的恒等变换,正弦定理和余弦定理的应用,三角形面积公式的应用.12.△ABC的内角A,B,C的对边分别为a,b,c,已知,c﹣b=1,△ABC 的外接圆半径为.(1)求角A的值;(2)求△ABC的面积.【分析】(1)由正弦定理可得:,即解得.(2)由余弦定理可得:a2=b2+c2﹣2bccosA,解得bc即可求面积【解答】解:(1)由正弦定理可得:,即,解得.cosA=,A=120°或600;(2)由余弦定理可得:a2=b2+c2﹣2bccosA,⇒21=b2+c2±bc,又c﹣b=1,解得bc=20或,∴△ABC的面积S==5或【点评】本题考查了三角形的内角和定理与正弦、余弦定理的应用问题,是中档题.13.已知数列{a n}满足a1=1,na n+1=2(n+1)a n,设b n=.(1)求b1,b2,b3;(2)判断数列{b n}是否为等比数列,并说明理由;(3)求{a n}的通项公式.【分析】(1)直接利用已知条件求出数列的各项.(2)利用定义说明数列为等比数列.(3)利用(1)(2)的结论,直接求出数列的通项公式.【解答】解:(1)数列{a n}满足a1=1,na n+1=2(n+1)a n,则:(常数),由于,故:,数列{b n}是以b1为首项,2为公比的等比数列.整理得:,所以:b1=1,b2=2,b3=4.(2)数列{b n}是为等比数列,由于(常数);(3)由(1)得:,根据,所以:.【点评】本题考查的知识要点:数列的通项公式的求法及应用.14.设数列{a n}的前n项和为S n,a1=2,a n+1=2+S n,(n∈N*).(I)求数列{a n}的通项公式;(Ⅱ)设b n=log2(a n)2,求数列{}的前n项和T n【分析】(Ⅰ)根据数列的递推公式即可求出数列的通项公式,(Ⅱ)根据对数的运算性质,以及裂项求和,即可求出T n.【解答】解:(Ⅰ)a n=2+S n,(n∈N*),①+1当n=1时,a2=2+S1,即a2=4,当n≥2时,a n=2+S n﹣1,②,﹣a n=S n﹣S n﹣1=a n,由①﹣②可得a n+1=2a n,即a n+1∴a n=a2×2n﹣2=2n,n≥2,当n=1时,a1=21=2,∴a n=2n,(n∈N*).(Ⅱ)由(Ⅰ)得b n=log2(a n)2=2n,∴==(﹣),∴T n=(1﹣+﹣+…+﹣)=(1﹣)=.【点评】本题考查了数列的递推公式和裂项求和,考查了运算能力,属于中档题.15.已知数列{a n}是等比数列,数列{b n}满足.(1)求{a n}的通项公式;(2)求数列{b n}的前n项和S n.【分析】(1)利用已知条件列出方程求出数列的首项与公差,然后求解数列的通项公式.(2)求出数列的通项公式,然后利用拆项法求解数列的和即可.+b n=n,则a2+b1=1,得a2=4,a3+b2=2,得a3=8,【解答】解:(1)因为a n+1因为数列{a n}是等比数列,所以,所以.(2)由(1)可得,所以=.【点评】本题考查数列的递推关系式的应用,数列求和,考查计算能力.16.已知等差数列{a n}的前n项和为S n,且满足a3=6,S11=132(1)求{a n}的通项公式;(2)求数列{}的前n项和T n.【分析】(1)设等差数列{a n}的公差为d,由a3=6,S11=132,利用等差数列的通项公式及其前n项和公式即可得出.(2)利用“裂项求和”即可得出.【解答】解:(1)由S11=132得11a6=132,即a6=12,∴,解得a1=2,d=2,∴a n=a1+(n﹣1)d=2n,即a n=2n,(2)由(1)知S n==n(n+1),∴==﹣∴T n=1﹣+﹣+﹣+…+﹣=1﹣=.【点评】本题考查了等差数列的通项公式及其前n项和公式、“裂项求和”,考查了计算能力,属于中档题.。

相关文档
最新文档