聚类分析
聚类分析

聚类分析聚类分析又称群分析,它是研究(样品或指标)分类问题的一种多元统计方法,所谓类,通俗地说,就是指相似元素的集合。
聚类分析内容非常丰富,按照分类对象的不同可分为样品分类(Q-型聚类分析)和指标或变量分类(R-型聚类分析);按照分类方法可分为系统聚类法和快速聚类法。
1. 系统聚类分析先将n 个样品各自看成一类,然后规定样品之间的“距离”和类与类之间的距离。
选择距离最近的两类合并成一个新类,计算新类和其它类(各当前类)的距离,再将距离最近的两类合并。
这样,每次合并减少一类,直至所有的样品都归成一类为止。
系统聚类法直观易懂。
1.1系统聚类法的基本步骤:第一,计算n 个样品两两间的距离 ,记作D= 。
第二,构造n 个类,每个类只包含一个样品。
第三,合并距离最近的两类为一新类。
第四,计算新类与各当前类的距离。
第五,重复步骤3、4,合并距离最近的两类为新类,直到所有的类并为一类为止。
第六,画聚类谱系图。
第七,确定类的个数和类。
1.2 系统聚类方法:1.2.1最短距离法1.2.2最长距离法1.2.3中间距离法1.2.4重心法1.2.5类平均法1.2.6离差平方和法(Ward 法)上述6种方法归类的基本步骤一致,只是类与类之间的距离有不同的定义。
最常用的就是最短距离法。
1.3 最短距离法以下用ij d 表示样品i X 与j X 之间距离,用ij D 表示类i G 与j G 之间的距离。
定义类i G 与j G 之间的距离为两类最近样品的距离,即ij G G G G ij d D j J i i ∈∈=,min设类p G 与q G 合并成一个新类记为r G ,则任一类k G 与r G 的距离是:ij G X G X kr d D j j i i ∈∈=,min ⎭⎬⎫⎩⎨⎧=∈∈∈∈ij G X G X ij G X G X d d q j k i p j k i ,,min ,min min {}kq kp D D ,min = 最短距离法聚类的步骤如下:ij d {}ij d(1)定义样品之间距离,计算样品两两距离,得一距离阵记为)0(D ,开始每个样品自成一类,显然这时ij ij d D =。
聚类分析的类型与选择

聚类分析的类型与选择聚类分析是一种常用的数据挖掘技术,可以将数据按照某种相似性进行分组。
通过聚类分析,我们可以发现数据中的潜在规律和结构,帮助我们更好地理解数据,并做出相应的决策。
本文将介绍聚类分析的常见类型,并讨论如何选择适合的聚类方法。
1.聚类分析的类型聚类分析有多种类型,常见的包括层次聚类分析和k均值聚类分析。
下面将分别介绍这两种聚类方法。
1.1层次聚类分析层次聚类分析是一种自下而上的聚类方法,它通过计算数据之间的相似度或距离,将相似的数据逐步合并成簇。
这种方法对数据的层次结构有较好的表示,能够发现不同层次的聚类结构。
层次聚类分析的优点之一是不需要预先指定聚类的个数,但计算复杂度较高,对大规模数据处理存在困难。
另外,它对异常值敏感,若存在异常值可能影响聚类结果。
1.2k均值聚类分析k均值聚类分析是一种基于划分的聚类方法,它将数据划分成k个互不重叠的簇,使得簇内的数据相似度较高,簇间的数据相似度较低。
该方法通过迭代计算簇的中心和重新分配数据来实现聚类。
k均值聚类分析的优点在于计算简单、效果较好,适用于大规模数据集。
但该方法对初始簇中心的选择较为敏感,容易收敛于局部最优解。
2.选择合适的聚类方法在选择聚类方法时,应根据数据的特点和目标进行判断。
下面列举几个常见的选择因素,供参考:2.1数据特点需要考虑数据的特点,如数据的维度、规模、密度等。
对于高维度数据,层次聚类分析可能更适用;而对于大规模数据,k均值聚类分析常常更为合适。
2.2聚类目标需要考虑聚类的目标。
如果希望发现层次结构、发现数据的内在关联性,层次聚类分析是一个不错的选择。
而如果目标是将数据划分成互不重叠的簇,并且希望聚类结果能较好地解释数据的差异性,k均值聚类分析更为合适。
2.3数据质量数据质量也是选择聚类方法的重要因素。
层次聚类分析对异常值比较敏感,如果数据中存在异常值,使用k均值聚类分析可能更好。
选择合适的聚类方法需要综合考虑数据特点、聚类目标和数据质量等因素。
聚类分析方法

聚类分析方法聚类分析是一种常用的数据分析方法,它可以将数据集中的对象按照其相似性进行分组,形成若干个簇。
通过聚类分析,我们可以发现数据中的内在结构,帮助我们更好地理解数据集的特点和规律。
在实际应用中,聚类分析被广泛应用于市场分割、社交网络分析、图像处理等领域。
本文将介绍聚类分析的基本原理、常用方法和应用场景,希望能够帮助读者更好地理解和应用聚类分析。
聚类分析的基本原理是将数据集中的对象划分为若干个簇,使得同一簇内的对象相似度较高,不同簇之间的对象相似度较低。
在进行聚类分析时,我们需要选择合适的相似性度量方法和聚类算法。
常用的相似性度量方法包括欧氏距离、曼哈顿距离、余弦相似度等,而常用的聚类算法包括K均值聚类、层次聚类、DBSCAN等。
不同的相似性度量方法和聚类算法适用于不同的数据类型和应用场景,选择合适的方法对于聚类分析的效果至关重要。
K均值聚类是一种常用的聚类算法,它通过不断迭代更新簇中心的方式,将数据集中的对象划分为K个簇。
K均值聚类的优点是简单、易于理解和实现,但是它对初始簇中心的选择较为敏感,容易收敛到局部最优解。
层次聚类是另一种常用的聚类算法,它通过逐步合并或分裂簇的方式,构建一棵层次化的聚类树。
层次聚类的优点是不需要事先确定簇的个数,但是它对大数据集的处理效率较低。
DBSCAN是一种基于密度的聚类算法,它能够发现任意形状的簇,并且对噪声数据具有较强的鲁棒性。
不同的聚类算法适用于不同的数据特点和应用场景,我们需要根据具体情况选择合适的算法进行聚类分析。
聚类分析在实际应用中有着广泛的应用场景。
在市场分割中,我们可以利用聚类分析将顾客分为不同的群体,从而制定针对性的营销策略。
在社交网络分析中,我们可以利用聚类分析发现社交网络中的社区结构,从而发现潜在的影响力人物。
在图像处理中,我们可以利用聚类分析对图像进行分割和特征提取,从而实现图像内容的理解和识别。
聚类分析在各个领域都有着重要的应用,它为我们理解和利用数据提供了有力的工具。
第九章聚类分析

• 例:下表是同一批客户对经常光顾的五座商场在购物环境和
服务质量两方面的平均得分,现希望根据这批数据将五座商
7、如果参与聚类分析的变量存在数量级上的差异, 应在Transform Values框中的Standardize选项 中选择消除数量级差的方法。并指定处理是针对变 量的还是针对样本的。By variable表示针对变量, 适于 Q 型聚类分析;By case 表示针对样本,适 于R型聚类分析。
8、单击Statistics按钮指定输出哪些统计量
R型聚类:对变量进行聚类,使具有相似性的变量聚集在 一起,差异性大的变量分离开来,可在相似变量中选择 少数具有代表性的变量参与其他分析,实现减少变量个 数,达到变量降维的目的。
凝聚方式聚类:其过程是,首先,每个个体自成一类; 然后,按照某种方法度量所有个体间的亲疏程度,并将 其中最“亲密”的个体聚成一小类,形成n-1个类;接下 来,再次度量剩余个体和小类间的亲疏程度,并将当前 最亲密的个体或小类再聚到一类;重复上述过程,直到 所有个体聚成一个大类为止。可见,这种聚类方式对n个 个体通过n-1步可凝聚成一大类。
平方欧式距离(Squared Euclidean distance ) 切比雪夫(Chebychev)距离
max xi yi max( 7366 , 6864 )
Block距离
k
xi yi 73 66 68 64 i1
2、计数变量个体间距离的计算方式
卡方(Chi-Square measure)距离 Phi方(Phi-Square measure)距离
什么是聚类分析,它有哪些应用?

什么是聚类分析,它有哪些应用?
一、聚类分析的实现方式
聚类分析的实现方式有很多种,如下面几种:
1. 基于距离的聚类:
这种方法将数据点之间的距离作为相似性的度量,然后将距离最近的数据点聚在一起,并逐渐地将距离较远的数据点加入到不同的簇中。
2. 基于密度的聚类:
这种方法通过计算数据点的密度来确定簇边界,而不是使用距离来度量相似性。
将密度较高的数据点聚集在一起,而将密度较低的数据点单独作为一个簇。
3. 基于层次的聚类:
这种方法将数据点逐层进行聚合,每一层都是由多个子层组成的。
聚类过程一直持续到所有数据点都被分配到一个簇中,或者簇的数量达到预设的值。
二、聚类分析的应用领域
聚类分析作为一种重要的数据挖掘技术,在多个领域中都有着广泛的应用,下面介绍一些主要应用领域:
1. 市场细分:
聚类分析可以帮助企业将市场分割成不同的细分市场,然后根据每个细分市场的特点定制相应的市场策略。
2. 生物分类:
聚类分析在生物学领域中应用非常广泛,例如,可以用于分类分子或组分、成本分析以及微生物学等方面。
3. 网络流量分析:
聚类分析可以帮助网络管理员对网络流量进行分类,以便更好地了解网络中流动的数据类型,从而更好地优化网络性能。
4. 风险评估:
聚类分析可以用于对风险进行分类和评估,例如,可以将客户分类成高风险、中风险和低风险客户,以快速响应某些意外事件。
结论
聚类分析是一种非常有用的技术,可以用于许多不同的领域。
以上只是聚类分析的一些基本理解和应用,随着技术的不断发展,聚类分析在未来也将有着更广泛的应用。
聚类分析应用

聚类分析简介
▪ 聚类分析的算法选择
1.根据数据集的特点和聚类目的选择合适的聚类算法,例如对于大规模数据集可以采用高效的 划分聚类算法,对于形状复杂的簇可以采用密度聚类算法。 2.对于不同的聚类算法,需要了解它们的优缺点和适用场景,以便在实际应用中选择最合适的 算法。 3.聚类算法的选择需要考虑数据的维度、规模、分布等因素,以及聚类结果的解释性和可用性 。 以上是关于聚类分析简介的三个主题内容,希望能够帮助到您。
聚类分析应用
目录页
Contents Page
1. 聚类分析简介 2. 聚类分析方法 3. 数据预处理 4. 距离度量方法 5. 聚类质量评估 6. 常见聚类算法 7. 聚类应用案例 8. 总结与展望
聚类分析应用
聚类分析简介
聚类分析简介
▪ 聚类分析简介
1.聚类分析是一种无监督学习方法,用于将数据集中的对象根据相似性进行分组,使得同一组 (即簇)内的对象尽可能相似,而不同组的对象尽可能不同。 2.聚类分析可以应用于各种领域,如数据挖掘、模式识别、图像处理、生物信息学等,帮助研 究者发现数据中的内在结构和规律。 3.常见的聚类算法包括划分聚类、层次聚类、密度聚类、网格聚类等,不同的算法有着不同的 优缺点和适用场景。
▪ 共享最近邻聚类
1.共享最近邻聚类是一种基于数据点之间共享最近邻信息的聚 类方法,通过计算数据点之间的相似度,实现簇的划分。 2.共享最近邻聚类算法对噪声和异常点有较好的鲁棒性,可以 处理形状复杂的簇和高维数据,但计算复杂度较高。 3.通过改进相似度计算方式、引入近似算法或结合其他技术, 可以优化共享最近邻聚类的性能和可扩展性。
常见聚类算法
▪ 密度峰值聚类
1.密度峰值聚类是一种基于密度的聚类方法,通过寻找具有最 高局部密度的数据点作为聚类中心,实现簇的划分。 2.密度峰值聚类算法不需要预先设定簇的数量,对形状复杂的 簇和噪声有较好的鲁棒性,但计算复杂度较高。 3.通过优化密度峰值定义方式、引入核函数或结合其他算法, 可以提高密度峰值聚类的性能和效率。
聚类分析

步骤:
• • • • • • • 1、对数据进行变换处理,消除量纲 2、构造n个类,每个类只包含一个样本计算 3、n个样本两两间的距离{dij} 4、合并距离最近的两类为一新类 5、计算新类与当前各类的距离,重复(4) 6、画聚类图 7、决定类的个数和类
12
类与类间距离的确定
一、最短距离法 二、最长距离法 三、中间距离法 四、重心距离法 五、类平均法 六、离差平方和
聚类分析
(Cluster Analysis)
1
聚类分析(Cluster Analysis)
• 一、聚类分析基本原理 • 二、层次聚类法(Hierarchical Cluster) • 三、K-均值聚类法(K-means cluster)
2
一、聚类分析(Cluster analysis)基本原理 • 聚类分析又称群分析或点群分析,它是研
G8={G1,G2}
17
d78=min{d71,d72}=12.80 7 D4= 7 8 河南3 甘肃4 青海5 辽宁1 浙江2 0 12.8 0 8
18
最长距离法(furthest neighbor)
• 用两类之间最远点 的距离代表两类之 间的距离。
例2:对例1的数据以最长距离法聚类。
19
d13=13.80 d14=13.12 d15=12.80 d23=24.63 d24=24.06 d25=23.54 d34=2.2 d35=3.51 d45=2.21 1 D1= 1 2 3 4 5 0 11.67 0 13.80 24.63 0 13.12 24.06 2.20 0 0 12.80 23.54 3.51 2.21 2 3 4 5 河南与甘肃的距离最近, 先将二者(3和4)合 为一类G6={G3,G4}
聚类分析详解ppt课件

以上我们对例6.3.1采用了多种系统聚类法进行聚类,其结果 都是相同的,原因是该例只有很少几个样品,此时聚类的过 程不易有什么变化。一般来说,只要聚类的样品数目不是太 少,各种聚类方法所产生的聚类结果一般是不同的,甚至会 有大的差异。从下面例子中可以看到这一点。
动态聚类法(快速聚类)
(4) 对D1 重复上述对D0 的两步得 D2,如此下去 直至所有元素合并成一类为止。
如果某一步Dm中最小的元素不止一个,则称此现 象为结(tie),对应这些最小元素的类可以任选一对 合并或同时合并。
27
二、最长距离法
类与类之间的距离定义为两类最远样品间的距离, 即
DKL
max
iGK , jGL
聚类分析应注意的问题
(1)所选择的变量应符合聚类的要求
如果希望依照学校的科研情况对高校进行分类,那么可以 选择参加科研的人数、年投入经费、立项课题数、支出经 费、科研成果数、获奖数等变量,而不应选择诸如在校学 生人数、校园面积、年用水量等变量。因为它们不符合聚 类的要求,分类的结果也就无法真实地反映科研分类的情 况。
主要内容
引言 聚类分析原理 聚类分析的种类 聚类分析应注意的问题 聚类分析应用 聚类分析工具及案例分析
聚类分析的种类
(1)系统聚类法(也叫分层聚类或层次聚类) (2)动态聚类法(也叫快速聚类) (3)模糊聚类法 (4)图论聚类法
系统聚类法
对比
常用的系统聚类方法
一、最短距离法 二、最长距离法 三、中间距离法 四、类平均法 五、重心法 六、离差平方和法(Ward方法)
对比
k均值法的基本步骤
(1)选择k个样品作为初始凝聚点,或者将所有样品分成k 个初始类,然后将这k个类的重心(均值)作为初始凝聚点。
聚类分析实用

或变量时,两类间的相似系数即是两样品或
变量间的相d似ij 系ri数j 或
,按第一节的定
义计算。
第13页/共46页
当类内含有两个或两个以上样品或变量时,计算类 间相似系数有多种方法可供选择,下面列出5种计算 方法。用 G p,Gq 分别表示两类,各自含有np, nq个样品或变量。
37
13
第14页/共46页
第16页/共46页
3176
5.离差平方和法 又称Ward法,仅用于样 品聚类。 此法效仿方差分析的基本思想, 即合理的分类使得类内离差平方和较小,而 类间离差平方和较大。
第17页/共46页
317
例19-1 测量了3454名成年女子身高(X1)、下肢长 (X2)、腰围(X3)和胸围(X4),计算得相关矩阵:
绝对值越大表明两变量间相似程度越高。
(19-1)
同样也可考虑用Spearman秩相关系数定义非正
态变量之间的相似系数。当变量均为定性变量时,最好
用列联系数定义类间的相似系数。
第7页/共46页
样品聚类(Q型聚类)的聚类统计量(相似 系数):2个样品间距离,越短越接近, 短则同类,长则异类。 样品聚类的基本原则:把距离短的样品归在 相同类,距离长的样品归在不同类。
以上定义的4种距离适用于定量变量,对于定性变量和 有序变量必须在数量化后方能应用。
第10页/共46页
说明:当样品各指标的单位不同时,或各指标单 位
虽相同(包括各指标都无单位),但数量级相差
大
时
,
应
先
将
各
指
xi'
标
xi xi
标准si化
,
在
计
算
距
聚类分析法ppt课件全

8/21/2024
25
1.2.2 动态聚类分析法
1.2 聚类分析的种类
(3)分类函数
按照修改原则不同,动态聚类方法有按批修改法、逐个修改法、混合法等。 这里主要介绍逐步聚类法中按批修改法。按批修改法分类的原则是,每一步修 改都将使对应的分类函数缩小,趋于合理,并且分类函数最终趋于定值,即计 算过程是收敛的。
8/21/2024
23
1.2.2 动态聚类分析法
1.2 聚类分析的种类
(2)初始分类 有了凝聚点以后接下来就要进行初始分类,同样获得初始分类也有不同的
方法。需要说明的是,初始分类不一定非通过凝聚点确定不可,也可以依据其 他原则分类。
以下是其他几种初始分类方法: ①人为分类,凭经验进行初始分类。 ②选择一批凝聚点后,每个样品按与其距离最近的凝聚点归类。 ③选择一批凝聚点后,每个凝聚点自成一类,将样品依次归入与其距离
8/21/2024
14
1.2 聚类分析的种类
(2)系统聚类分析的一般步骤 ①对数据进行变换处理; ②计算各样品之间的距离,并将距离最近的两个样品合并成一类; ③选择并计算类与类之间的距离,并将距离最ቤተ መጻሕፍቲ ባይዱ的两类合并,如果累的个
数大于1,则继续并类,直至所有样品归为一类为止; ④最后绘制系统聚类谱系图,按不同的分类标准,得出不同的分类结果。
8/21/2024
18
1.2 聚类分析的种类
(7)可变法
1 2 D kr
2 (8)离差平方和法
(D k 2 pD k 2 q)D p 2q
D k 2 rn n ir n n p i D i2 pn n ir n n q iD i2 qn rn in iD p 2 q
8/21/2024
聚类分析(孤立点分析)

例如,如果离平均值偏差3或更大的对象被认为是孤立点,假设一 个正态分布,那么这个定义能够被一个DB(0.9988,0.13σ)孤立点所 概括
17
基于距离的异常检测
指定参数pct和dmin,如果数据集合D中的 对象至少有pct部分与对象o的距离大于 dmin,则称对象o是以pct和dmin为参数的 基于距离的异常,记为DB(pct,dmin)。
15
基于统计学的孤立点检测
缺点 绝大多数检验是针对单个属性的, 而许多数据挖掘问题要 求在多维空间中发现孤立点
统计学方法要求关于数据集合参数的知识(如, 数据分布), 但是在许多情况下, 数据分布可能是未知的
当没有特定的检验时, 统计学方法不能确保所有的孤立点 被发现; 或者观察到的分布不能恰当地被任何标准的分布 来模拟
19
基于偏离的孤立点检测
通过检查一组对象的主要特征来确定孤立点 与给出的描述偏离的对象被认为是孤立点 序列异常技术(sequential exception technique)
模仿人类从一系列推测类似的对象中识别异常对象的方式
术语 异常集(exception set): 它是偏离或孤立点的集合, 被定义 为某类对象的最小子集, 这些对象的去除会导致剩余集 合的相异度的最大减少 相异度函数(dissimilarity function):是满足如下条件的 任意函数:当给定一组对象时,如果对象间相似,返值 就较小。对象间的相异度越大,函数返回的值就越大
13
基于统计学的孤立点检测
结果非常依赖于模型F的选择
Oi可能在一个模型下是孤立点, 在另一个模型下是非常有 效的值
聚类分析

简要回答题:
1. 什么是聚类分析?聚类的依据是什么?
答案:
(1)聚类分析就是把“对象”分成不同的类别,这些类不是事先给定的,而是直接根据数据的特征确定的。
这里的“对象”可以是所观察的多个样本,也可以是针对每个样本测得的多个变量。
如果是根据变量对所观察的样本进行分类,称为Q 型聚类;如果是根据样本对多个变量进行分类,则称为R型聚类。
(2)分类的依据是“对象”之间的相似性,相似是指对象之间关系或距离的远近。
根据样本观测数据测度变量之间的相似性使用的测量工具是“相似系数”。
变量间的相似系数越大,说明它们越相近;根据变量来测度样本之间的相似程度则使用“距离(distance)”,分类时把离得比较近的归为一类,而离得比较远的放在不同的类。
知识点:主成分分析和因子分析
难易度:2
2. 聚类分析时对变量或数据有哪些基本要求?
答案:
(1)参与分类的变量应符合与分类目标有关。
(2)各变量的取值不应该有数量级上的过大差异,否则会对分类结果产生较大影响。
这时需要对变量进行标准化处理
(3)各变量之间不应该有较强的相关关系。
如果两个强相关的变量同时参与聚类分析,在测度距离时,就加大了它们的贡献,而其他变量则相对被削弱。
知识点:主成分分析和因子分析
难易度:1。
聚类分析

第三节 系统聚类分析方法
系统聚类分析的涵义及步骤 系统聚类方法 系统聚类分析方法的统一公式 剩余信息的剔除 谱系分类的确定 系统聚类分析方法的性质
系统聚类分析的涵义及步骤
涵义:是在样品距离的基础上,定义类与 类之间的距离,首先将几个样品自成一类, 然后每次将具有最小距离的两类合并,合 并后重新计算类与类之间的距离,这个过 程一直继续到所有样品归为一类为止。把 这个过程作成一个聚类谱系图。这种方法 即系统聚类。
实际意义原则 数据性质原则
实际意义原则
即所选择的距离或者相似系数应该具有明 确的实际意义。比如经济指标之间的相关 应该是具有现实的经济联系的。
数据性质原则
根据原始数据的各自特点,选择不同的数据变换,再根据不同的数据 变换选择不同的距离或者相似系数。 1、若数据进行了标准化,则相关系数与夹角余弦是一致。 2、若聚类分析前已经对变量的相关性作了处理,则通常采用欧 氏距离,而不必选用斜交空间距离。 3、所选距离应与所选聚类分析方法一致 (1)若聚类方法为离差平方和法时,距离只能选用欧氏距离; (2)工作量大小原则。斜交空间距离的计算量一般很大。 总之,在一般情况下,有以下的经验可以借鉴。相关系数的稳定 性要强于相似系数,而分辨力却弱于相似系数;使用距离和使用 相似系数进行聚类的结果对比,相似系数的计算数值由大到小单 调地减少,所以聚类谱系图能够比较明显地反映分群的情况,而 使用距离的数据有时呈现非单调性增加,聚类谱系图反映的分群 情况就不够明显。
系统聚类分析的涵义及步骤
具体步骤:
数据变换处理;
计算各样品之间的距离,并将距离最近的两个
样品并成一类; 选择并计算类与类之间的距离,并将距离最近 的两类合并,如果类的个数大于1,则继续并 类直到所有样品归为一类; 绘制系统聚类谱系图,按不同的分类标准或不 同的分类原则得出不同的分类结果。
聚类分析数据

聚类分析数据引言概述:聚类分析是一种常用的数据分析方法,通过对数据进行分组,将相似的数据归为一类,不相似的数据归为不同的类别。
聚类分析可以帮助我们发现数据中的隐藏模式和结构,从而更好地理解数据。
本文将介绍聚类分析的基本概念和步骤,并详细阐述聚类分析数据的四个方面。
一、数据预处理1.1 数据清洗:在进行聚类分析之前,需要对数据进行清洗,包括处理缺失值、异常值和重复值等。
缺失值可以通过插值方法进行填充,异常值可以通过统计方法或者专业知识进行识别和处理,重复值可以通过数据去重操作进行处理。
1.2 数据标准化:为了消除数据之间的量纲差异,需要对数据进行标准化处理。
常用的标准化方法包括Z-score标准化和Min-Max标准化。
Z-score标准化将数据转化为均值为0,标准差为1的分布,Min-Max标准化将数据转化为0到1之间的范围。
1.3 特征选择:在聚类分析中,选择合适的特征对于结果的准确性和可解释性至关重要。
可以通过相关性分析、主成分分析等方法进行特征选择,选取与聚类目标相关性较高的特征进行分析。
二、聚类算法选择2.1 K-means聚类算法:K-means是最常用的聚类算法之一,它将数据分为K个簇,每个簇的中心代表该簇的平均值。
K-means算法通过最小化数据点与所属簇中心的距离来确定最佳的簇划分。
2.2 层次聚类算法:层次聚类将数据点逐步合并成簇,形成一个层次结构。
层次聚类算法可以通过自底向上的凝聚聚类或者自顶向下的分裂聚类来实现。
凝聚聚类将每个数据点作为一个初始簇,然后逐步合并相似的簇,直到达到预设的簇数目。
分裂聚类则从一个包含所有数据点的簇开始,逐步将簇分裂成更小的簇,直到达到预设的簇数目。
2.3 密度聚类算法:密度聚类算法通过计算数据点周围的密度来确定簇的边界。
常用的密度聚类算法包括DBSCAN和OPTICS。
DBSCAN算法通过定义邻域半径和最小邻居数目来确定核心对象和边界对象,从而划分簇。
统计学中的聚类分析方法

统计学中的聚类分析方法聚类分析是一种常用的统计学方法,用于将相似的观测值归为一类。
它在数据分析、模式识别和机器学习等领域有着广泛的应用。
本文将介绍统计学中的聚类分析方法,包括层次聚类分析和K均值聚类分析。
一、层次聚类分析层次聚类分析是一种基于树状结构的聚类方法。
它将观测值逐步合并,形成层次化的聚类结果。
层次聚类分析的步骤如下:1. 确定相似度度量方法:在层次聚类分析中,需要选择一种相似度度量方法,用于衡量不同观测值之间的相似程度。
常用的相似度度量方法包括欧式距离、曼哈顿距离和相关系数等。
2. 计算相似度矩阵:根据选择的相似度度量方法,计算出观测值两两之间的相似度,并构建相似度矩阵。
3. 构建聚类树:从相似度矩阵出发,可以使用不同的聚类算法构建聚类树。
常用的聚类算法包括单链接、完全链接和平均链接等。
单链接聚类算法将每个观测值视为一个单独的聚类,然后逐步合并最近的两个聚类;完全链接聚类算法则是选择最远的两个聚类进行合并;平均链接聚类算法则是计算两个聚类之间所有观测值之间的平均距离,并选择平均距离最近的两个聚类进行合并。
4. 切割聚类树:将聚类树切割成不同的簇,得到最终的聚类结果。
切割聚类树的方法有多种,可以根据需求选择最合适的切割方式。
层次聚类分析方法的优点是可解释性强,可以直观地展示聚类结果的层次结构。
然而,它的计算复杂度较高,对大规模数据的处理效率较低。
二、K均值聚类分析K均值聚类分析是一种基于中心点的聚类方法。
它将观测值划分为K个簇,每个簇的中心点代表该簇的特征。
K均值聚类分析的步骤如下:1. 初始化K个中心点:随机选择K个观测值作为初始中心点。
2. 计算每个观测值到各个中心点的距离,并将其归属到最近的中心点所代表的簇。
3. 更新中心点:计算每个簇内观测值的均值作为新的中心点。
4. 重复步骤2和3,直到中心点不再发生变化或达到预定的迭代次数。
K均值聚类分析方法的优点是计算简单、效率高,适合处理大规模数据。
《多元统计分析》第三章聚类分析

图像处理
聚类分析可用于图像分割、目 标检测等任务,提高图像处理 的效率和准确性。
社交网络
通过聚类分析,可以发现社交 网络中的社区结构,揭示用户 之间的关联和互动模式。
聚类分析的常用方法
K-均值聚类
一种迭代算法,通过最小化每个簇内对象与簇质 心的距离之和来实现聚类。需要预先指定簇的数 量K。
DBSCAN
感谢聆听
聚类结果的优化方法
层次聚类法
通过不断合并或分裂簇来优化聚类结果,可以灵活处理不同形状 和大小的簇,但计算复杂度较高。
基于密度的聚类法
通过寻找被低密度区域分隔的高密度区域来形成簇,可以发现任意 形状的簇,但对参数敏感。
基于网格的聚类法
将数据空间划分为网格单元,然后在网格单元上进行聚类,处理速 度较快,但聚类精度受网格粒度影响。
一种基于密度的聚类方法,通过寻找被低密度区 域分隔的高密度区域来实现聚类。可以识别任意 形状的簇,且对噪声数据具有较强的鲁棒性。
层次聚类
通过计算对象之间的距离,逐步将数据集构建成 一个层次结构的聚类树。可以分为凝聚法和分裂 法两种。
谱聚类
利用图论中的谱理论进行聚类分析,将数据集中 的对象表示为图中的节点,节点之间的相似度表 示为边的权重。通过求解图的拉普拉斯矩阵的特 征向量来实现聚类。
药物发现
通过对化合物库进行聚类分析,研究人员可以发现具有相 似化学结构和生物活性的化合物,从而加速新药的发现和 开发过程。
生物信息学
在基因表达谱、蛋白质互作网络等生物信息学研究中,聚 类分析可以帮助研究人员发现基因或蛋白质之间的功能模 块和调控网络。
在社交网络中的应用案例
社区发现
聚类分析可用于识别社交网络中的社区结构,即具有相似兴趣、行为或属性的用户群体。 这有助于社交网络运营商为用户提供更加个性化的推荐和服务。
聚类分析

聚类分析:是将样品置入聚类空间,通 过比较样品间的类似程度,即样品间的 距离进行聚类的。 聚类分析是基于多变量数据,对n个样品 进行分类的一种方法。这种方法是将那 些相似的样品归为一类,不同的样品分 别归到各自不同的类别中。聚类分析是 以样品的分类为基本目的的。
聚类分析的分类
1、基于相同率的聚类分析 2、基于相关系数的聚类分析 3、基于主因子的聚类分析 4、基于主成分的聚类分析 5、基于距离的聚类分析
ຫໍສະໝຸດ 小组实验步骤
一:讨论选定实验题目 二:选定问卷调查法; 三:进行问卷设计; 四:发放问卷; 五:录入数据; 六:数据分析; 七:得出结论; 八:小结。
聚类分析的实验
首先我们确定需要的调查的相关内容: 调查对象:瑞京公寓周边餐厅 调查目的:对瑞京公寓周边餐厅进行聚类 分类得出同学们选择餐厅的情况,对其 进行分类。帮助同学们更有效的选择餐 厅。 调查方式:问卷调查
基于相关系数的聚类分析
课本所讲的例子是对某教育局对所属六所中学 根据七项指标A~G进行教学评估,每项指标评 分范围为1~10分。
通过公式:y= ∑(yi -y)(xi-x) (∑σ:西格玛 Sigma ) √ ∑ (yi -y)2 ∑(xi-x)2 计算出六所学校每两所间的相关系数。 再将相关的系数进行聚类分析。 最后根据相关系数及其有关的平均数可作出聚 类分析的树状图。
我们的问卷
我们发放问卷总数40份,废卷4份,有效 问卷36份。
我们将36份问卷的数据一一录入到电脑 中,再利用spss软件对数据进行相关的 聚类分析。 利用公式: 计算出瑞京周边的6间餐厅的相关系数, 对其进行聚类分析。
树状图
聚类分析ppt课件

第一节 引言 第二节 相似性的量度 第三节 系统聚类分析法 第四节 K均值聚类分析 第五节 两步聚类分析
1
第一节 引言
什么是聚类分析? ❖ 聚类分析是根据“物以类聚”的道理,对样本或指
标进行分类的一种多元统计分析方法,它们讨论的 对象是大量的样本,要求能合理地按各自的特性进 行合理的分类,没有任何模式可供参考或依循,即 在没有先验知识的情况下进行的。
1.明考夫斯基距离
p
dij (q) (
X ik X jk )q 1/ q
k 1
明考夫斯基距离简称明氏距离。
(7.1)
13
按q的取值不同又可分成下面的几个式子
(1)绝对距离( q 1)
p
dij (1) X ik X jk k 1
பைடு நூலகம்
(7.2)
(2)欧氏距离( q 2)
p
dij (2) (
X ik X jk )2 1/ 2
22
第三节 系统聚类分析法
一 系统聚类的基本思想 二 类间距离与系统聚类法
23
一、系统聚类的基本思想
❖ 系统聚类的基本思想是:距离相近的样品(或变量)先聚成 类,距离相远的后聚成类,过程一直进行下去,每个样品( 或变量)总能聚到合适的类中。系统聚类过程是:假设总共 有n个样品(或变量),第一步将每个样品(或变量)独自 聚成一类,共有n类;第二步根据所确定的样品(或变量) “距离”公式,把距离较近的两个样品(或变量)聚合为一 类,其它的样品(或变量)仍各自聚为一类,共聚成n 1类 ;第三步将“距离”最近的两个类进一步聚成一类,共聚成 n 2类;……,以上步骤一直进行下去,最后将所有的样品 (或变量)全聚成一类。为了直观地反映以上的系统聚类过 程,可以把整个分类系统画成一张谱系图。所以有时系统聚 类也称为谱系分析。除系统聚类法外,还有有序聚类法、动 态聚类法、图论聚类法、模糊聚类法等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多元统计分析教学大纲(第二次修订)河北经贸大学数学与统计学学院信息与计算科学教研室编2003年10月编写说明多元统计分析是统计学的一个重要分支。
多元统计分析方法是处理多维数据不可缺少的重要工具,随着电子计算机的普及和发展,多元统计分析方法已愈来愈多地应用于社会经济各个方面的数据分析之中。
为了规范教学,使我校的信息与计算科学专业课教学质量再上一个台阶,信息与计算科学教研室多元统计分析教学小组,在参照兄弟院校的相关课程教学大纲的基础上,修订本大纲,作为我校信息与计算科学专业教学、题库建设和教学检查的依据。
本课程从应用的角度出发,重点讲解常用的六种多元统计分析方法:聚类分析﹑判别分析﹑主成分分析、因子分析、对应分析和典型相关分析,对每一种分析方法要清楚掌握它解决哪类问题、前提条件和局限性,以及它们相互之间的区别与联系;会用SAS与SPSS软件实现上述过程,对所研究的问题能做出合理推断和科学评价。
学习本课程要求学生具有初等数理统计知识、一定的线性代数知识和计算机应用能力。
本大纲执笔人是信息与计算科学教研室陈旭红.数学与统计学学院信息与计算科学教研室2003年10月课时分配表章目内容课时目录第一章绪论 (1)第一节什么是多元统计分析 (1)第二节多元分析能解决的实际问题‥ (1)第二章聚类分析 (1)第一节什么是聚类分析 (1)第二节距离与相似系数 (2)第三节系统聚类法 (2)第四节聚类分析的微机实现 (2)第三章判别分析 (3)什么是判别分析 (3)距离判别法 (3)费歇判别法 (4)贝叶斯判别法 (4)逐步判别法 (4)判别分析的微机实现 (5)第四章主成分分析 (5)主成分分析及基本思想 (5)主成分分析模型及几何解释 (6)第三节主成分的计算 (6)第四节主成分分析的微机实现 (7)第五章因子分析 (7)因子分析及基本思想 (7)因子分析的数学模型 (7)因子载荷矩阵的求解 (8)因子模型的旋转 (8)因子得分 (8)因子分析的微机实现 (8)第六章对应分析 (9)对应分析及其基本思想 (9)对应分析的基本原理 (9)对应分析的计算步骤 (9)第四节对应分析的微机实现 (10)第七章典型相关分析 (10)第一节典型相关分析及基本思想 (10)第二节典型相关分析的数学描述 (11)第三节总体的典型相关系数和典型变量 (11)样本的典型相关系数和典型变量 (11)典型相关系数的显著性检验 (11)典型相关分析的微机实现 (11)主要参考书目 (12)第一章绪论【教学目的与要求】通过本章的教学应使学生对多元统计分析课程有一个概括的认识。
【教学重点与难点】多元统计分析的概念及它能解决哪些类型的实际问题。
【教学方法】课堂讲授与学生自学相结合。
【教学内容】多元统计分析的概念﹑多元统计分析的起源和发展及举例说明多元统计分析能解决的实际问题。
什么是多元统计分析一﹑多元统计分析的概念多元统计分析就是利用统计学和数学方法,将隐没在大规模原始数据群体中的重要信息集中提炼出来,简明扼要的把握系统的本质特征,分析数据系统中的内在规律性。
利用多元分析中不同的方法还可以对研究对象进行分类和简化。
多元分析是实现做定量分析的有效工具。
二﹑多元分析的主要内容本课程重点介绍多元分析中常用的六种方法:聚类分析﹑判别分析﹑主成分分析及因子分析﹑对应分析和典型相关分析。
三﹑多元分析的起源和发展第二节多元分析能解决的实际问题多元分析在工业、农业、医学、经济学、教育学、体育科学、生态学、地质学、社会学、考古学、环境保护、军事科学、甚至文学中都有广泛应用,足见其应用的深度和广度。
【思考题】1﹑什么是多元统计分析?2﹑多元统计分析能解决哪些类型的实际问题?第二章聚类分析【教学目的与要求】通过本章的教学应使学生了解聚类分析的原理和作用,了解聚类分析中常用的距离和相似系数以及它们各自的特点及适用范围。
掌握系统聚类法,能够应用系统聚类法解决实际数据分析问题。
【教学重点与难点】本章的重点是系统聚类法。
【教学方法】讲授原理、多媒体演示例题和学生自学相结合。
【教学内容】聚类分析的原理和作用﹑用系统聚类法如何解决实际数据分析问题。
第一节什么是聚类分析一﹑聚类分析的概念聚类分析又称群分析、点群分析,是定量研究样品或指标分类问题的一种多元统计方法。
其中类指相似元素的集合。
二﹑聚类分析的基本思想认为所研究的样品或指标之间存在着程度不同的相似性,根据一批样品的多个观测指标,找出能够度量样品或变量之间相似程度的统计量,并以此为依据,采用某种聚类法,将所有的样品或变量分别聚合到不同的类中,使同一类中的个体有较大的相似性,不同类中的个体差异较大。
第二节距离与相似系数聚类分析的目的是将研究对象进行分类。
它是在事先不知类别的情况下对数据进行分类的分析方法。
分类的依据有两类:距离与相似系数。
常用的距离有以下几种:1﹑明考夫斯基距离2﹑绝对距离3﹑欧氏距离4﹑切比雪夫距离5﹑马氏距离6﹑兰氏距离常用的相似系数有以下几种:1﹑夹角余弦2﹑相关系数聚类分析根据所用方法不同可分为系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法等等;根据分类对象不同又分为对样品聚类(又称Q型聚类分析)以及对变量进行聚类(又称R型聚类分析)。
对前者聚类多用距离,而后者聚类时多用相似系数。
系统聚类法一﹑系统聚类法的基本思路首先,将n个样品看成n类,定义各样品之间的距离(此时其亦为类间距离);其次,按照某种原则将最接近的两类合并为一个新类,于是得到n-1类,定义并计算各类间距离,然后再从中找出最接近的两类合并成一个新类,重复以上步骤,直到全部样品合并成一类为止,将上述合并过程画成聚类谱系图,据此图可将全部样品分类。
二﹑八种系统聚类方法正如样品之间的距离可以有不同的定义方法一样,类与类之间的距离也有各种定义。
类与类之间用不同的方法定义距离,就产生了不同的系统聚类方法,系统聚类方法包括最短距离法﹑最长距离法﹑类平均法﹑重心法﹑WARD法等八种不同的方法,但这些方法聚类的步骤是完全一样的。
当采用欧氏距离时,八种并类方法可归结为统一的递推公式。
三﹑谱系图及利用谱系图进行分类第四节聚类分析的微机实现一﹑系统聚类分析在SPSS中的实现在SPSS主菜单中选择Analyze→Classify→Hierarchical Cluster,可实现系统聚类分析。
二﹑系统聚类分析在SAS中的实现在SAS/ASSIST模块中没有现成的菜单操作,须通过编程来实现聚类分析。
SAS/STAT模块中的Cluster过程可实现系统聚类分析,可调用Tree过程生成聚类谱系图。
【思考题】1﹑简述系统聚类法的基本思路。
2﹑写出样品间相关系数公式。
3﹑常用的距离及相似系数有哪些?它们各有什么特点?4﹑利用谱系图分类应注意哪些问题?5﹑在SAS和SPSS中如何实现系统聚类分析?第三章判别分析【教学目的与要求】通过本章的教学应使学生了解判别分析的基本思想和几种常用判别分析方法,能够用这些方法分析解决实际问题。
【教学重点与难点】判别分析的基本思想及几种判别分析方法的实现与应用。
【教学方法】讲授原理、多媒体演示例题和学生自学相结合。
【教学内容】判别分析的基本思路和作用﹑用不同的判别分析方法如何解决实际数据分析问题。
第一节什么是判别分析一﹑判别分析的基本思想判别分析是用于判断个体所属类别的一种统计方法。
根据已知观测对象的分类和若干表明观测对象特征的变量值,建立判别函数和判别准则,并使其错判率最小,对于一个未知分类的样本,将所测指标代入判别方程,从而判断它来自哪个总体。
当然,这种准则在某种意义上是最优的,如错判概率最小或错判损失最小等。
其前提是总体均值有显著差异,否则错分率大,判别分析无意义。
二﹑判别分析与聚类分析的关系区别:判别分析是在研究对象分类已知的情况下,根据样本数据推导出一个或一组判别函数,同时指定一种判别准则,用于确定待判样品的所属类别,使错判率最小。
聚类分析预先不知道分类,它要解决的问题,正是对给定的未知分类的样品进行分类,它是一种纯统计技术,只要有多指标存在,就能根据各观测的变量值近似程度排序,只是描述性的统计,而判别分析能对未知分类观测判别分类,带有预测性质。
联系:两者都是研究分类问题,两种方法往往联合起来使用。
样品聚类是进行判别分析之前的必要工作,根据样品聚类的结果进行判别分析。
第二节距离判别法一﹑距离判别法的基本思想如果事先已有m类的先验知识,将每一类视为一个总体,计算各样品与各总体之间的距离,将各样品分别归入与其距离最近的类。
二﹑两总体距离判别设有两个总体G1、G2,X为一样品,定义X到两总体的距离分别为d(X,G1)和d(X,G2),判别准则为:判别准则的直观表述即样品离哪个总体最近,则判该样品属于哪个总体。
与上述准则等价的想法,就是算出样品到各总体间距离的差,根据差值来判断样品的归属。
三﹑两总体距离判别的几何意义四﹑多总体距离判别分为协方差阵相同和协方差阵不同两种情况,它们的判别函数有差异,而判别准则无差异。
第三节费歇判别法一﹑费歇判别法的基本思想从两类总体中抽取具有p个指标的样品的观测数据,借助于方差分析的思想构造一个判别函数,即y=c1x1+c2x2+ … + CPXP,其中系数c1,c2,…,cp的确定原则是使两组间的区别达到最大,而使两组内部的离差达到最小。
二﹑判别函数费歇准则下的线性判别函数y(x)=cx的解应为方程|B—λE|=0的最大特征根λ1对应的特征向量ι1。
三﹑判别准则对于待判样品,将样品的P个变量值代入判别函数中求出K个判别分Y值,比较结果大小,将样品分入最大判别值对应的组中去。
贝叶斯判别法一﹑贝叶斯判别法的基本思想贝叶斯判别法是源于贝叶斯统计思想的一种判别分析法。
这种方法先假定对研究对象已有一定的认识,这种认识以先验概率来描述,然后取得一个样本,用样本来修正已有的认识,得到后验概率分布,利用后验概率分布进行统计推断。
二﹑判别规则1﹑后验概率最大2﹑错判的平均损失最小逐步判别法从模型中没有任何变量开始,每一步都对模型进行检验,将模型外对模型的判别贡献大的变量加入到模型中去,同时也检验在模型中是否存在由于新变量的引入而对判别贡献不太显著的变量,如果有,将其从模型中删除,直到模型中的所有变量都符合引入模型的条件,而模型外的变量都不符合引入模型的条件为止,整个过程结束。
整个筛选过程实质就是作假设检验,通过检验引入显著性变量,剔除不显著变量。
反映在输出结果上,通常可以用F值的大小作为变量引入模型的标准,即一个变量是否能进入模型主要取决于协方差分析的F检验的显著水平。
逐步判别过程本身并不建立判别函数,筛选出重要变量后,可用前面所讲的方法建立判别函数和判别准则,对新样品进行判别归类。