例析立体几何中的动点轨迹问题

合集下载

谈立体几何中动点轨迹问题的解题策略

谈立体几何中动点轨迹问题的解题策略

立体几何中的动点轨迹问题是一个常见的问题类型,它涉及到空间几何中的点、线、面等元素的运动和变化。

解决这类问题的关键在于理解运动和变化的过程,并能够通过数学模型进行描述。

解题策略主要包括以下几个方面:
1. **建立空间坐标系**:为了更好地描述空间几何元素的位置和运动,需要建立一个适当的空间坐标系。

坐标系的建立应依据问题的具体情境和需求,通常选择一个固定点作为原点,并确定三个互相垂直的轴。

2. **确定动点的坐标**:在确定了坐标系之后,需要确定动点的坐标。

这可以通过设定动点的坐标变量来实现,例如设动点的坐标为$(x, y, z)$。

3. **分析运动过程**:在确定了动点的坐标后,需要分析动点的运动过程。

这包括了解动点的运动方向、速度、加速度等参数,以及这些参数与坐标变量的关系。

4. **建立数学模型**:通过分析运动过程,可以建立描述动点运动的数学模型。

这通常涉及到物理、几何、代数等多个方面的知识,需要根据具体问题进行选择和应用。

5. **求解数学模型**:建立了数学模型后,需要求解该模型以得到动点的轨迹方程。

这可能涉及到微积分、线性代数、解析几何等多个数学领域的知识,需要根据问题的复杂程度和要求进行选择和应用。

6. **验证答案**:最后,需要对得到的答案进行验证,以确保其正确性和有效性。

这可以通过将答案代入原问题中进行检验,或者通过与其他已知的答案进行比较来进行验证。

综上所述,解决立体几何中的动点轨迹问题需要综合运用空间几何、物理、数学等多个领域的知识,并能够根据具体问题进行选择和应用。

同时,还需要有一定的逻辑思维和分析能力,以更好地理解和解决这类问题。

立体几何中的动点轨迹问题

立体几何中的动点轨迹问题
策略二:交轨法
思路分析:根据题意,画出图形,在空间 中,AM ⊥ MC ,取 AC 的中点 O ,则点 M 的 轨迹是以 AC 为直径的球面 O .点 M 是侧面 BCC1B1 内的动点,所以点 M 是球面 O 与平 面 BCC1B1 的公共点.则点 M 在平面 BCC1B1 内 的 轨 迹 是 以 BC 为 直 径 的 半 圆(不 包 含 B,C 点).以下同解法 1.
思路分析:根据题意,画出图形,对于平 面 BCC1B1 来说,AM 是斜线,点 M 是斜足, AB 是垂线,点 B 是垂足,所以 BM 是射影, 因为 AM ⊥ MC ,得到 MC ⊥ BM ,所以点 M 在平面 BCC1B1 内的轨迹是以 BC 为直径的 半 圆(不 包 含 B,C 点). 因 为 A1B1⊥ 平 面 BCC1B1 ,所以 ∠A1MB1 为 A1M 与平面 BCC1B1 所成角.结合 B1M 的取值范围,即可得正切 值的取值范围.
与 平 面 BCC1B1 所 成 角. 在 RTA1MB1 中 ,
tan
∠A1 MB1
=
A1 B1 B1 M
.取
BC
的中点
N
,由已知

B1N
-
1 2
BC
B1 M
<
B1C

2
B1 M
<
2
7,
又 A1B1 = 4 ,所以 tan ∠A1MB1 的取值范围为
(
2
7 7
,
2]
.
归纳:降维法,即空间问题平面化法,利
求较高.本文以福建省泉州市 2020 届普通中
学高中毕业班质量检查理科卷第 12 题为例,
对这类问题的解法进行剖析,希望对大家有

例谈立体几何中轨迹问题

例谈立体几何中轨迹问题

3根据截面图形求轨迹 . 例 3 正方体AB D— l E、 C A BCD ,
盼 别是A 、C的 中点 ,是 C 。 的 A, C P C上 动点 ( 括端点 )过E、 P 包 , D、 作正 方体
的截面 , 若截面 为四边形 , 点P 则 的轨
迹为( ) .
A直线 .
算题 , ) 略
2 3 5, × = . + = 2 3 6
解. 近年来 高考 中常见的题 型有 以下几类.
1利 用 圆锥 曲线 定 义 求轨 迹 . 点评 : 圆锥 曲 线 的 统 一 定 义 为 : 定 点 的距 离与 到 到
学思 想 与方法 , 综合性 强 , 能力 要求高 , 教师可集 中讲 定直线的距 离比为常数 的点的轨迹 , 该常数 叫做 圆锥 曲 线的 离心 率 , 表 示. < < 时 , 用e 当0 e l 为椭 圆; = 时, 当e l 为
点 评 : 面 图形确 定后 , 点 的轨 迹 也 是 确 定 的 , 截 动 此 4 立 函 数模 型 求 函数 解 析式 建
的轨迹是以c点 为焦点 , C 以B 为准线 的抛 物线 ( 在侧 面 线 与D 平 行 , E 由此 得 , 与c 当P 重合时 , 面过B 。 中 截 B的 点评 : 点在平 面 内运动的轨迹有 直线、 圆和 圆锥 曲 而 当截面过c时 , 。 截面也是四边形. 故选C .
抛 物 线 ; > 时 . 双 曲 线. 当e l 为
例 1 如 图 ,在 正 方 体A C B D— ABCD 中 , 侧 面 BB C 内一 动 1 P是 1C 点 ,若P 到直线B 与直线 CD的距离 C 。 相等 ,则动点J p 的轨迹所在 的曲线是
( ) . d

立体几何动点轨迹问题

立体几何动点轨迹问题

立体几何动点轨迹问题立体几何里的动点轨迹问题啊,就像一场在三维空间里的神秘舞蹈,那些动点就像舞者,它们的轨迹让人捉摸不透,可一旦搞清楚了,又觉得特别有趣。

我记得在高中上立体几何课的时候,老师在黑板上画了一个复杂的立体图形,然后说有个动点在这个图形里按照一定规则运动,让我们找出它的轨迹。

当时我就懵了,感觉像是在看一场没有头绪的魔术表演。

老师在讲台上滔滔不绝地讲着各种定理和方法,我却在下面听得云里雾里。

有一次考试就碰到了一道动点轨迹的难题。

那是一个正方体,在它的棱上有一个动点,规定这个动点到正方体某个面的距离始终保持不变。

我看着题目,脑海里就像一团乱麻。

我先试着在草稿纸上把正方体画出来,可是怎么画都觉得不太对劲,那线条歪歪扭扭的,就像喝醉了酒的蚯蚓。

我想象着那个动点在正方体的棱上慢慢移动,可就是想不出它到底会画出什么样的轨迹。

我旁边的同桌倒是很淡定,他拿着铅笔在纸上比划着。

我凑过去看,他一边画一边说:“你看,这个动点到那个面的距离不变,就相当于它在和这个面平行的一个平面上运动。

”我似懂非懂地点点头,可还是不太明白。

他无奈地看了我一眼,然后拿了一个橡皮擦,放在正方体的模型上,说:“你把这个橡皮擦当成动点,现在你看,它沿着棱移动的时候,是不是始终在一个平面内?”我仔细一看,好像有点明白了。

就像一个小蚂蚁在正方体的框架上爬行,但是只能在一个特定高度的平面上爬,这样它的轨迹就不是随意的了。

还有一道题是关于圆锥里的动点。

一个动点在圆锥的母线和底面圆周之间运动,并且它到圆锥顶点的距离和到底面圆心的距离有一定的比例关系。

这可把我难住了,我看着圆锥的图形,想象着那个动点像个调皮的小精灵在圆锥里穿梭。

我尝试着建立空间直角坐标系,想用坐标来表示动点的位置,可是那些坐标值就像调皮的数字,在我脑袋里跳来跳去,怎么都理不顺。

我叹了口气,觉得自己像是迷失在立体几何的迷宫里,找不到出口。

不过,经过不断地练习和老师的耐心讲解,我慢慢地开始掌握了一些门道。

立体几何中的动点问题

立体几何中的动点问题

立体几何中的动点问题一、立体几何中的动点问题嘿,小伙伴们,咱今天来唠唠立体几何里的动点问题哈。

这动点问题就像一个调皮的小怪兽,在立体几何这个大城堡里到处乱窜呢。

你想啊,立体几何本身就已经够让人头疼的了,再加上个动点,那简直是“难上加难”。

比如说一个正方体或者长方体里面,有个点在棱上或者面上动来动去的,你要去研究它的轨迹啦,它和其他点、线、面之间的关系啦,真的是很考验我们的小脑袋瓜。

我给你们举个例子哈,就像有个三棱柱,在它的一条侧棱上有个动点,这个动点和底面三角形的某个顶点连线,然后问你这条连线和底面的夹角怎么随着这个动点的移动而变化。

这时候你就得动用你学过的那些立体几何的知识了,像什么直线和平面的夹角公式啦,向量的方法啦。

而且呢,这个动点问题还常常和空间想象力挂钩。

有时候你光靠在纸上画图还不行,得在脑子里构建出那个立体的模型,想象着那个点是怎么动的。

这就像是你自己在脑子里玩一个3D游戏一样,不过这个游戏可没那么容易通关哦。

还有一种情况也很常见,就是在一个圆锥或者圆柱里面有动点。

圆锥和圆柱本身就是曲线图形,再加上动点,就像是在弯弯绕绕的迷宫里找出口一样。

比如说在圆锥的侧面上有个动点,要你求这个动点到圆锥底面圆心的距离的取值范围,你就得考虑圆锥的母线长啦,底面半径啦,还有这个动点的运动范围啦。

其实解决立体几何中的动点问题呢,也有一些小窍门。

一个就是多画图,不同位置的图都画一画,这样你就能比较直观地看到动点的变化了。

再一个就是要善于把立体问题转化成平面问题,利用平面几何的知识来解决。

就像把圆锥展开成扇形,把圆柱展开成长方形,这样可能就会让问题变得简单一些呢。

不过呢,不管有多少小窍门,都得靠我们自己多做练习题,多去思考,这样才能真正掌握这个有点“小狡猾”的动点问题。

加油哦,小伙伴们!。

立体几何中的动点轨迹问题

立体几何中的动点轨迹问题

同理,在平面 AA1D1D 内满足条件的点的轨迹长度为52π.在平面 A1B1C1D1 内满足条件 的点的轨迹为以 A1 为圆心,A1F 为半径的14圆弧,长度为 2π×4×14=2π.同理,在平 面 ABCD 内满足条件的点的轨迹为以 A 为圆心,AE 为半径的圆弧,长度为 2π×3×14 =32π.故轨迹的总长度为52π+52π+2π+32π=172π.
的长度最小.因为 B1N1=D1N1= 5,B1D1=2 2,所以△B1N1D1 的边 B1D1 上的高为
52- 22= 3,则 S△B1N1D1=12×2 2× 3= 6,则当 B1N⊥D1N1 时,B1N 最
小,即 B1Nmin=2S△DB1N1N1 1D1=2
6=2 5
530.
总结 提炼
与平行有关的轨迹问题的解题策略 (1)线面平行转化为面面平行得轨迹; (2)平行时可利用法向量垂直关系求轨迹.
模型 3 动点保持等距关系
3 (2023·湖北联考节选)已知正方体 ABCD-A1B1C1D1 的棱长为 3,P 为正方体表 53
面上的一个动点,A1P=2 3,则点 P 的轨迹长度为___2__π__.
【解析】 如图,点 P 的轨迹一部分是在平面 ABB1A1,A1B1C1D1, ADD1A1 三个面内以 2 3为半径,圆心角为π6的三段圆弧,另一部分是 在平面 BCC1B1,CDD1C1,ABCD 三个面内以 3为半径,圆心角为π2 的三段圆弧.故点 P 的轨迹的长度为112×2π×2 3×3+14×2π× 3×3=523π.
点击对应数字即可跳转到对应题目
1
2
3
4
5
6
7
8
9
配套精练
2 . 如 图 , 正 方 体 ABCD - A1B1C1D1 的 棱 长 为 2 , E , F 分 别 为

立体几何中的轨迹问题(解析版)

 立体几何中的轨迹问题(解析版)

第20讲 立体几何中轨迹问题7类【题型一】由动点保持平行性求轨迹【典例分析】如图,在边长为a 的正方体ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 、N 分别是CC 1、C 1D 1、DD 1、CD 、BC 的中点,M 在四边形EFGH 边上及其内部运动,若MN ∥面A 1BD ,则点M 轨迹的长度是( )A 3B 2C 3aD 2a 【答案】D 【分析】连接GH 、HN ,有GH ∥BA 1,HN ∥BD ,证得面A 1BD ∥面GHN ,由已知得点M 须在线段GH 上运动,即满足条件,由此可得选项. 【详解】解:连接GH 、HN 、GN ,∥在边长为a 的正方体ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 分别是CC 1、C 1D 1、DD 1、CD 的中点,N 是BC 的中点,则GH ∥BA 1,HN ∥BD ,又GH ⊄面A 1BD ,BA 1⊂面A 1BD ,所以//GH 面A 1BD ,同理可证得//NH 面A 1BD , 又GH HN H ⋂=,∥面A 1BD ∥面GHN ,又∥点M 在四边形EFGH 上及其内部运动,MN ∥面A 1BD , 则点M 须在线段GH 上运动,即满足条件,GH 2,则点M 2. 故选:D.【变式演练】1.在三棱台111A B C ABC -中,点D 在11A B 上,且1//AA BD ,点M 是三角形111A B C 内(含边界)的一个动点,且有平面//BDM 平面11A ACC ,则动点M 的轨迹是( )A .三角形111ABC 边界的一部分 B .一个点 C .线段的一部分D .圆的一部分【答案】C 【分析】过D 作11//DE AC 交11B C 于E ,连接BE ,证明平面//BDE 平面11AAC C ,得M DE ∈,即得结论. 【详解】如图,过D 作11//DE AC 交11B C 于E ,连接BE ,1//BD AA ,BD ⊄平面11AAC C ,1AA ⊂平面11AAC C ,所以//BD 平面11AAC C , 同理//DE 平面11AAC C ,又BD DE D ⋂=,,BD DE ⊂平面BDE ,所以平面//BDE 平面11AAC C ,所以M DE ∈,(M 不与D 重合,否则没有平面BDM ), 故选:C .2.已知正方体1111ABCD A B C D -的棱长为2,E 、F 分别是棱1AA 、11A D 的中点,点P 为底面ABCD 内(包括边界)的一动点,若直线1D P 与平面BEF 无公共点,则点P 的轨迹长度为( )A 21B 5C 32D 6【答案】B 【分析】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设点(),,0P a b ,计算出平面BEF 的一个法向量m 的坐标,由已知条件得出10D P m ⋅=,可得出a 、b 所满足的等式,求出点P 的轨迹与线段AD 、BC 的交点坐标,即可求得结果.【详解】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()2,2,0B 、()2,0,1E 、()1,0,2F 、()10,0,2D ,设点(),,0P a b ,()0,2,1BE =-,()1,0,1EF =-,设平面BEF 的法向量为(),,m x y z =, 由200m BE y z m EF x z ⎧⋅=-+=⎨⋅=-+=⎩,取2z =,可得()2,1,2m =,()1,,2D P a b =-,由题意可知,1//D P 平面BEF ,则1240D P m a b ⋅=+-=,令0b =,可得2a =;令2b =,可得1a =.所以,点P 的轨迹交线段AD 于点()2,0,0A ,交线段BC 的中点()1,2,0M , 所以,点P 的轨迹长度为()()2221025AM =-+-=故选:B.3.在棱长为2的正方体1111ABCD A B C D -中,点E ,F 分别是棱11C D ,11B C 的中点,P 是上底面1111D C B A 内一点(含边界),若//AP 平面BDEF ,则Р点的轨迹长为( ) A .1 B 2C .2 D .22【答案】B 【分析】由分别取棱11A B 、11A D 的中点M 、N ,连接MN ,由线面平行得面面平行,得动点轨迹,从而可计算其长度. 【详解】如图所示,分别取棱11A B 、11A D 的中点M 、N ,连接MN ,连接11B D , ∥M 、N 、E 、F 为所在棱的中点,∥11//MN B D ,11//EF B D ,∥//MN EF , 又MN ⊄平面BDEF ,EF ⊂平面BDEF ,∥//MN 平面BDEF ,连接NF ,由11//NF A B ,11NF A B =,11//A B AB ,11A B AB =,可得//NF AB ,NF AB =,则四边形ANFB 为平行四边形,则//AN FB ,而AN ⊄平面BDEF ,FB ⊂平面BDEF ,则//AN 平面BDEF . 又ANNM N =,∥平面//AMN 平面BDEF .又P 是上底面1111D C B A 内一点,且//AP 平面BDEF , ∥P 点在线段MN 上.又1112MN B D =,∥P 2【题型二】动点保持垂直性求轨迹【典例分析】在正方体1111ABCD A B C D -中,Q 是正方形11B BCC 内的动点,11A Q BC ⊥,则Q 点的轨迹是( ) A .点1B B .线段1B CC .线段11B CD .平面11B BCC【答案】B 【分析】如图,连接1A C ,证明1BC ⊥1B Q ,又1BC ⊥1B C ,即得解.【详解】如图,连接1A C ,因为111111111111,,,,BC AQ BC A B AQ A B A AQ A B ⊥⊥=⊂平面11A B Q ,所以1BC ⊥平面11A B Q , 又1B Q ⊂平面11A B Q ,所以1BC ⊥1B Q ,又1BC ⊥1B C .所以点Q 在线段1B C 上.故选:B【变式演练】1.在正方体1111ABCD A B C D -中,点P 在侧面11BCC B 及其边界上运动,且保持1AP BD ⊥,则动点P 的轨迹为( ) A .线段1CBB .线段1BCC .1BB 的中点与1CC 的中点连成的线段D .BC 的中点与11B C 的中点连成的线段【答案】A 【分析】利用直线与平面垂直的判定可得1BD ⊥面1ACB ,又点P 在侧面11BCC B 及其边界上运动,并且总是保持AP 与1BD 垂直,得到点P 的轨迹为面1ACB 与面11BCC B 的交线. 【详解】如图,连接AC ,1AB ,1B C ,在正方体1111ABCD A B C D -中,有1BD ⊥平面1ACB ,又点P 在侧面11BCC B 及其边界上运动,∴故点P 的轨迹为平面1ACB 与平面11BCC B 的交线段1CB .故选:A.2.在棱长为1的正方体1111ABCD A B C D -中,M ,N 分别为1BD ,11B C 的中点,点P 在正方体的表面上运动,且满足MP CN ⊥.给出下列说法: ∥点P 可以是棱1BB 的中点; ∥线段MP 的最大值为34; ∥点P 的轨迹是正方形; ∥点P 轨迹的长度为25其中所有正确说法的序号是________.【答案】∥∥ 【分析】以D 为坐标原点,分别以DA ,DC ,1DD 为x 轴,y 轴,z 轴建立空间直角坐标系,求出MP 的坐标,从而得到MP 的最大值,即可判断选项∥,通过分析判断可得点P 不可能是棱1BB 的中点,从而判断选项∥,又1EF GH ==,5EH FG ==∥和选项∥. 【详解】解:在正方体1111ABCD A B C D -中,以D 为坐标原点,1DC 为x 轴,y 轴, ∥该正方体的棱长为1,M ,N 分别为1BD ,11B C 的中点, ∥()0,0,0D ,M (12,12,12),1,1,12N ⎛⎫ ⎪⎝⎭,()0,1,0C∥1,0,12CN ⎛⎫= ⎪⎝⎭,设(),,P x y z ,则111,,222MP x y z ⎛⎫=--- ⎪⎝⎭,∥MP CN ⊥,∥1110222x z ⎛⎫-+-= ⎪⎝⎭,即2430x z +-=当1x =时,14z =,当0x =时,34z =,取11,0,4E ⎛⎫ ⎪⎝⎭,11,1,4F ⎛⎫ ⎪⎝⎭,30,1,4G ⎛⎫ ⎪⎝⎭,30,0,4H ⎛⎫ ⎪⎝⎭,连结EF ,FG ,GH ,HE ,则()0,1,0EF GH ==,11,0,2EH FG ⎛⎫==- ⎪⎝⎭,∥四边形EFGH 为矩形,则0EF CN ⋅=,0EH CN ⋅=, 即EF CN ⊥,EH CN ⊥,又EF 和EH 为平面EFGH 中的两条相交直线, ∥CN ⊥平面EFGH ,又111,,224EM ⎛⎫=- ⎪⎝⎭,111,,224MG ⎛⎫=- ⎪⎝⎭,∥M 为EG 的中点,则M ∈平面EFGH , 为使MP CN ⊥,必有点P ∈平面EFGH ,又点P 在正方体表面上运动,∥点P 的轨迹为四边形EFGH , 因此点P 不可能是棱1BB 的中点,故选项∥错误; 又1EF GH ==,5EH FG ==, ∥EF EH ≠,则点P 的轨迹不是正方形且矩形EFGH 周长为52225+=故选项∥错误,选项∥正确;∥1,0,12CN ⎛⎫= ⎪⎝⎭,111,,222MP x y z ⎛⎫=--- ⎪⎝⎭,又MP CN ⊥,则1110222x z ⎛⎫-+-= ⎪⎝⎭,即2430x z +-=,∥322x z =-,点P 在正方体表面运动, 则30212z ≤-≤,解1344z ≤≤, ∥2222211111522222MP x y z z y ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-=-+- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭故当14z =或34z =,0y =或1,MP 取得最大值为34,故∥正确.故答案为:∥∥.3.如图,在正方体1111ABCD A B C D -中,E 是棱1CC 的中点,F 是侧面11BCC B 内的动点,且1A F 与平面1D AE 的垂线垂直,则下列说法不正确的是( )A .1A F 与1D E 不可能平行B .1A F 与BE 是异面直线C .点F 的轨迹是一条线段D .三棱锥1F ABD -的体积为定值 【答案】A 【分析】设平面1D AE 与直线BC 交于G ,连接AG ,EG ,则G 为BC 的中点,分别取1B B ,11B C 的中点M ,N ,连接1A M ,MN ,1A N ,证明平面1//A MN 平面1D AE ,即可分析选项ABC 的正误;再由//MN EG ,得点F到平面1D AE 的距离为定值,可得三棱锥1F ABD -的体积为定值判断D . 【详解】解:设平面1D AE 与直线BC 交于G ,连接AG ,EG , 则G 为BC 的中点,分别取1B B ,11B C 的中点M ,N , 连接1A M ,MN ,1A N , 如图,∥11//A M D E ,1A M平面1D AE ,1D E ⊂平面1D AE ,∥1//A M 平面1D AE ,同理可得//MN 平面1D AE , 又1A M 、MN 是平面1A MN 内的两条相交直线,∥平面1//A MN 平面1D AE ,而1//A F 平面1D AE ,∥1A F ⊂平面1A MN , 得点F 的轨迹为一条线段,故C 正确;并由此可知,当F 与M 重合时,1A F 与1D E 平行,故A 错误;∥平面1//A MN 平面1D AE ,BE 和平面1D AE 相交,∥1A F 与BE 是异面直线,故B 正确; ∥//MN EG ,则点F 到平面1D AE 的距离为定值,∥三棱锥1F ABD -的体积为定值,故D 正确. 故选:A .【题型三】由动点保持等距(或者定距)求轨迹【典例分析】已知正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为底面ABCD 内一点,若P 到棱CD ,A 1D 1距离相等的点,则点P 的轨迹是( ) A .直线 B .椭圆C .抛物线D .双曲线【答案】D 【分析】以D 为坐标原点建立空间直角坐标系D xyz -,求出点P 的轨迹方程即可判断. 【详解】如图示,过P 作PE ∥AB 与E ,过P 作PF ∥AD 于F ,过F 作FG ∥AA 1交A 1D 1于G ,连结PG ,由题意可知PE=PG以D 为坐标原点建立空间直角坐标系D xyz -,设(),,0P x y ,由PE=PG 得: 2211x y -=+,平方得:()2211x y --=即点P 的轨迹是双曲线.故选:D.【变式演练】1.如图,在四棱锥P ABCD -中,侧面PAD 为正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为正方形ABCD 内(包括边界)的一个动点,且满足MP MC =.则点M 在正方形ABCD 内的轨迹为( )A .B .C .D .【答案】A 【分析】如图,以D 为坐标原点,建立空间直角坐标系,设(),,0M x y ,正方形ABCD 的边长为a ,求出MC ,MP 的坐标,利用MP MC =可得x 与y 的关系,即可求解. 【详解】如图,以D 为坐标原点,DA ,DC 所在的直线分别为x ,y 轴建立如图所示的空间直角坐标系,设正方形ABCD 的边长为a ,(),,0M x y ,则0x a ≤≤,0y a ≤≤,32a a P ⎛ ⎝⎭,()0,,0C a ,则()22MC x a y =+-222322a a MP x y ⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭MP MC =,得2x y =,所以点M 在正方形ABCD 内的轨迹为一条线段()102y x x a =≤≤, 故选:A .2.如图,在棱长为4的正方体ABCD A B C D ''''-中,E 、F 分别是AD 、A D ''的中点,长为2的线段MN 的一个端点M 在线段EF 上运动,另一个端点N 在底面A B C D ''''上运动,则线段MN 的中点P 的轨迹(曲面)与正方体(各个面)所围成的几何体的体积为( )A .43πB .23π C .6πD .3π【分析】连接PF 、NF ,分析得出1FP =,可知点P 的轨迹是以点F 为球心,半径长为1的球面,作出图形,结合球体的体积公式可求得结果. 【详解】连接PF 、NF ,因为//AD A D '',AD A D ''=,且E 、F 分别为AD 、A D ''的中点, 故//AE A F '且AE A F '=,所以,四边形AA FE '为平行四边形,故//EF AA '且4EF AA ='=,AA '⊥平面A B C D '''',则EF ⊥平面A B C D '''',因为FN ⊂平面A B C D '''',所以,EF FN ⊥,P 为MN 的中点,故112FP MN ==,所以,点P 的轨迹是以点F 为球心,半径长为1的球面,如下图所示:所以,线段MN 的中点P 的轨迹(曲面)与正方体(各个面)所围成的几何体为球F 的14, 故所求几何体的体积为3141433V ππ=⨯⨯=.故选:D.3.四棱锥P ﹣OABC 中,底面OABC 是正方形,OP ∥OA ,OA =OP =a .D 是棱OP 上的一动点,E 是正方形OABC 内一动点,DE 的中点为Q ,当DE =a 时,Q 的轨迹是球面的一部分,其表面积为3π,则a 的值是( ) A .23B .26C .336D .6【分析】由题意结合选项可特殊化处理,即取OP 与底面垂直,求得Q 的轨迹,结合球的表面积求解. 【详解】解:不妨令OP ∥OC ,则OP ∥底面OABC , 如图,∥D 是OP 上的动点,∥OD ∥底面OABC ,可得OD ∥OE , 又Q 为DE 的中点,∥OQ 1122DE a ==,即Q 的轨迹是以O 为球心,以12a 为半径的18球面, 其表面积为S 214384a ππ=⨯⨯=,得a 6=.故选:B .【题型四】由动点保持等角(或定角)求轨迹【典例分析】正方体1111ABCD A B C D -中,M ,N 分别为AB ,11A B 的中点,P 是边11C D 上的一个点(包括端点),Q 是平面1PMB 上一动点,满足直线MN 与直线AN 夹角与直线MN 与直线NQ 的夹角相等,则点Q 所在轨迹为( )A .椭圆B .双曲线C .抛物线D .抛物线或双曲线【分析】根据题设分析可知:Q 点轨迹为以AN 为母线,MN 为轴,AB 为底面直径的圆锥体,及其关于11A B 反向对称的锥体与平面1PMB 的交线,应用数形结合,结合平面与双锥面相交所成曲线的性质判断Q 所在轨迹的形状. 【详解】由题设,Q 点轨迹为以AN 为母线,MN 为轴,AB 为底面直径的圆锥体,及其关于11A B 反向对称的锥体与平面1PMB 的交线,如下图示:当P 是边11C D 上移动过程中,只与下方锥体有相交,Q 点轨迹为抛物线; 当P 是边11C D 上移动过程中,与上方锥体也有相交,Q 点轨迹为双曲线;故选:D【变式演练】1.如图,斜线段AB 与平面α所成的角为60︒,B 为斜足,平面α上的动点P 满足30PAB ∠=︒,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支【答案】C 【分析】由题可知点P 在以AB 为轴的圆锥的侧面上,再结合条件可知P 的轨迹符合圆锥曲线中椭圆定义,即得. 【详解】用垂直于圆锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线.此题中平面α上的动点P 满足30PAB ∠=︒,可理解为P 在以AB 为轴的圆锥的侧面上, 再由斜线段AB 与平面α所成的角为60︒,可知P 的轨迹符合圆锥曲线中椭圆定义. 故可知动点P 的轨迹是椭圆. 故选:C.2.如图所示,1111ABCD A B C D -为长方体,且AB =BC =2,1AA =4,点P 为平面1111A B C D 上一动点,若11PBC BC C ∠=∠,则P 点的轨迹为( )A .抛物线B .椭圆C .双曲线D .圆【答案】B【分析】建立空间直角坐标系,利用空间向量的坐标运算和轨迹方程思想求得P 的轨迹方程,进而根据方程判定轨迹类型. 【详解】如图,建立直角坐标系,则()()10,0,4,0,2,0B C ,2222112425BC BC CC =+=+= 设(),,0P x y ,则向量(),,4BP x y =-,向量()10,2,4BC =-,()111222211cos ||2551624CC BP BC PBC BC BP BC x y ∠=====+++-, ∥()()2228416y x y +=++,即2243160x y y +-=,228644333x y ⎛⎫+-= ⎪⎝⎭,22831166439y x ⎛⎫- ⎪⎝⎭+=,这方程表示的轨迹是平面1111A B C D 上的椭圆,故选:B.3.在长方体1111ABCD A B C D -中,6AB AD ==,12AA =,M 为棱BC 的中点,动点P 满足APD CPM ∠=∠,则点P 的轨迹与长方体的侧面11DCC D 的交线长等于___________. 【答案】23π【分析】由题意画出图形,由角的关系得到边的关系,然后再在平面11DCC D 内建系,求出P 的轨迹方程,确定点P 的轨迹与长方体的面11DCC D 的交线,进而求得交线长. 【详解】 如下图所示:当P 在面11DCC D 内时,AD ⊥面11DCC D ,CM ⊥面11DCC D ; 又APD MPC ∠=∠,在Rt PDA 与Rt PCM 中,∥6AD =,则3MC =, ∥tan tan AD MCAPD MPC PD PC∠==∠=,则63PD PC=,即2PD PC =. 在平面11DCC D 中,以DC 所在直线为x 轴,以DC 的垂直平分线为y 轴建立平面直角坐标系,则()3,0D -,()3,0C ,设(),P x y ,由2PD PC =()()2222323x y x y ++-+整理得:221090x x y -++=,即()22516x y -+=. ∥点P 的轨迹是以F (5,0)为圆心,半径为4的圆.设圆F 与面11DCC D 的交点为E 、M ,作EK 垂直x 轴于点K ,如图,则21sin 42EK EFK EF ∠===;∥6EFK π∠=;故点P 的轨迹与长方体的面11DCC D 的交线为劣弧ME ,所以劣弧ME 的长为2463ππ⨯=.故答案为:【题型五】 投影求轨迹【典例分析】1822年,比利时数学家 Dandelin 利用圆锥曲线的两个内切球,证明了用一个平面去截圆锥,可以得到椭圆(其中两球与截面的切点即为椭圆的焦点),实现了椭圆截线定义与轨迹定义的统一性.在生活中,有一个常见的现象:用手电筒斜照地面上的篮球,留下的影子会形成椭圆.这是由于光线形成的圆锥被地面所截产生了椭圆的截面.如图,在地面的某个占1A 正上方有一个点光源,将小球放置在地面,使得1AA 与小球相切.若15A A =,小球半径为2,则小球在地面的影子形成的椭圆的离心率为( )A .23B .45 C .13D .25【答案】A 【分析】设21A F x =,从而可得15AA = ,122A A x =+,23AA x =+,利用勾股定理可得10x =,再由离心率的定义即可求解. 【详解】在21Rt AA A 中,设21A F x =,2DA x ∴=15AA = ,122A A x =+,23AA x =+,2225(2)(3)x x ∴++=+, 10x ∴=, ∥长轴长12212A A a ==,6a =,624c =-=则离心率23c e a ==.故选:A【变式演练】1.如图,已知水平地面上有一半径为3的球,球心为O ',在平行光线的照射下,其投影的边缘轨迹为椭圆C .如图,椭圆中心为O ,球与地面的接触点为E ,4OE =.若光线与地面所成角为θ,椭圆的离心率e =__________.【答案】45【分析】根据平行投影计算出椭圆C 的短半轴长b ,再求出光线与水平面所成锐角的正弦,进而求得椭圆C 的长轴长2a 而得解. 【详解】连接OO ',则O OE θ'∠=,因为34,O E OE '==,如图:所以2222345OO O E OE ''+=+=,所以3sin 5O E OO θ'==' 在照射过程中,椭圆的短半轴长b 是球的半径R ,即3b =,过球心与椭圆长轴所在直线确定的平面截球面所得大圆及对应光线,如图:椭圆的长轴长2a 是AC ,过A 向BC 做垂线,垂足是B ,则,AB O O O E AC ''⊥⊥,由题意得:326sin sin 5AB R ACB θ==∠==,,又sin ABACB AC∠=, 则35AB AC =,10AC =,即2105a a ==,, 所以椭圆的离心率为2225945ca b e a--====.故答案为:45【题型六】翻折与动点求轨迹(难点)【典例分析】如图,将四边形ABCD 中,ADC 沿着AC 翻折到1AD C ,则翻折过程中线段DB 中点M 的轨迹是( )A .椭圆的一段B .抛物线的一段C .双曲线的一段D .一段圆弧【答案】D 【分析】过点D 作AC 的垂线,垂足为F ,过点点B 作AC 的垂线,垂足为E ,连接,DE BF ,再分别分析翻折前、后的变化量与不变量,在翻折后的图形中取BE 中点O ,进而可得答案. 【详解】解:在四边形ABCD 中,过点D 作AC 的垂线,垂足为F ,过点点B 作AC 的垂线,垂足为E ,连接,DE BF ,如图1,所以当四边形ABCD 确定时, DEF 和BEF 三边长度均为定值,当ADC 沿着AC 翻折到1AD C ,形成如图2的几何体,并取BE 中点O ,连接OM , 由于在翻折过程中,1DE D E =,所以由中位线定理可得112OM D E =为定值, 所以线段DB 中点M 的轨迹是以BE 中点O 为圆心的圆弧上的部分.故选:D【变式演练】1.已知∥ABC 的边长都为2,在边AB 上任取一点D ,沿CD 将∥BCD 折起,使平面BCD ∥平面AC D .在平面BCD 内过点B 作BP ∥平面ACD ,垂足为P ,那么随着点D 的变化,点P 的轨迹长度为( ) A .6πB .3π C .23π D .π【答案】C 【分析】根据题意,先确定点P 轨迹的形状,进而求出轨迹的长度即可. 【详解】由题意,在平面BCD 内作BQ ∥CD ,交CD 于Q ,因为平面BCD ∥平面ACD ,平面BCD 与平面ACD 交于CD ,所以BQ ∥平面ACD ,又BP ∥平面ACD ,所以P ,Q 两点重合,于是随着点D 的变化,BP ∥CD 始终成立,可得在平面ABC 中,BP ∥CP 始终成立,即得点P 的轨迹是以BC 为直径的圆的一部分,由题意知随着点D 的变化,∥BCD 的范围为0,3π⎡⎤⎢⎥⎣⎦,可得点P 的轨迹是以BC 为直径(半径为1)的圆的13,即得点P 的轨迹长度为2122133ππ⨯⨯=.故选:C.2.如图,等腰梯形ABCD 中,//AB CD ,2AB =,1AD BC ==,AB CD >,沿着AC 把ACD △折起至1ACD △,使1D 在平面ABC 上的射影恰好落在AB 上.当边长CD 变化时,点1D 的轨迹长度为( )A .2π B .3π C .4π D .6π【答案】B 【分析】根据1D 的射影在边AB 上,且1AD 固定长度为1,所以1D 的轨迹在以A 为原点半径为1的圆上,因此考虑CD 的长度缩短到0时和CD 变长到AB 的长度两种情况,从而求出夹角大小,进而求出弧长. 【详解】因为1D 的射影在边AB 上,且1AD 固定长度为1,所以1D 的轨迹在以A 为原点半径为1的圆上.考虑极端情况:当CD 的长度缩短到0时,1,,C D D 都汇聚到线段AB 的中点(D 2);当CD 变长到AB 的长度时(1D 的射影为D 3),如图,设3AD t =,则32BD t =-,在13D D ARt中,22131D D t =-,同理:()22312CD t =+-,()22221313412D D CD CD t ⎡⎤=-=-+-⎣⎦∥()22141212t t t ⎡⎤-+-=-⇒=⎣⎦,即1D 在线段AB 上的投影与点A 的距离为12,从而1AD 与AB 夹角为3π,故点1D 的轨迹为1=33ππ⨯.故选:B.3.已知矩形ABCD 中,1AB =,2AE =ABE △沿着BE 进行翻折,使得点A 与点S 重合,若点S 在平面BCDE 上的射影在四边形BCDE 内部(包含边界),则动点S 的轨迹长度是( )A 3πB 6πC 6πD 3π 【答案】C 【分析】过点A 作AM BE ⊥于点M ,交BC 于点G ,则点S 在平面BCDE 上的射影N 落在线段MG 上.由翻折过程可知,6SM AM ==S 的轨迹是以点M 6为半径的一段圆弧,求出圆心角,利用弧长公式求出弧长. 【详解】如图(1),过点A 作AM BE ⊥于点M ,交BC 于点G ,则点S 在平面BCDE 上的射影N 落在线段MG 上.在Rt ABE △中,1AB =,2AE =3BE =2633AM =. 翻折的过程中,动点S 满足6SM =S 的轨迹是以点M 6.易得3BM =233EM =,AME GMB ∽△△,所以12MG MB MA ME ==,则6MG SM =<,如图(2),在圆M 中,0S M AG ⊥,1S G AG ⊥,所以点S 的轨迹是01S S ,且111cos 2MG S MG MS ∠==,则1π3S MG ∠=,10π6S MS ∠=,从而点S 的轨迹长度为π66π6=. 故选:C【课后练习】1.(多选题)(海南省海口市北京师范大学海口附属学校12月月考)如图,已知正方体1111ABCD A B C D -的棱长为112,,M DD 的中点,N 为正方形ABCD 所在平面内一动点,则下列结论正确的是( )A .若N 到直线1BB 与直线DC 的距离相等,则N 的轨迹为抛物线 B .若2MN =,则MN 的中点的轨迹所围成图形的面积为π C .若1D N 与AB 所成的角为60,则N 的轨迹为双曲线 D .若MN 与平面ABCD 所成的角为60,则N 的轨迹为椭圆 【答案】ABC 【分析】A :由1BB ⊥平面ABCD ,可得NB 即为N 到直线1BB 的距离,由抛物线的定义即可判断; B :由题意可得MN 中点的轨迹为以MD 3ABCD 的圆,计算可判断; C :建立空间直角坐标系,设(N x ,y ,0),由1D N 与AB 所成的角为60°,可得点N 的轨迹方程,从而可判断;D :由MN 与平面ABCD 所成的角为MND ∠,计算可得DN 为定值,可判断点N 的轨迹为以D 为圆心,DN 为半径的圆,从而可判断. 【详解】对于A ,1BB ⊥平面ABCD ,NB 即为N 到直线1BB 的距离, 在平面ABCD 内,点N 到定点B 的距离与到定直线DC 的距离相等, ∥点N 的轨迹就是以B 为焦点,DC 为准线的抛物线,故A 正确; 对于B ,1BB ⊥平面ABCD ,NB 即为N 到直线1BB 的距离, 在平面ABCD 内,点N 到定点B 的距离与到定直线DC 的距离相等, ∥点N 的轨迹就是以B 为焦点,DC 为准线的抛物线,故B 正确; 对于C ,如图,建立空间直角坐标系,(0D ,0,0),1(0D ,0,2),(2A ,0,0),(2B ,2,0),设(N x ,y ,0),则1(D N x =,y ,2)-,(0AB =,2,0),122121cos60242y D N AB D N ABx y ⋅︒==⨯++⨯, 化简得2234y x -=,即2214134y x -=,∥N 的轨迹为双曲线,故C 正确;对于D ,MN 与平面ABCD 所成的角为MND ∠,∥60MND ∠=︒, 则3DN =∥点N 的轨迹为以D 3D 错误. 故选:ABC ﹒2.(广东省六校高三上学期第三次联考数学试题)(多选题)如图的正方体1111ABCD A B C D -中,棱长为2,点E 是棱1DD 的中点,点F 在正方体表面上运动.以下命题正确的有( )A .侧面11CDD C 上不存在点F ,使得11B F CD ⊥B .点D 到面1A BE 的距离与点1C 到面1A BE 的距离之比为13C .若点F 满足1//B F 平面1A BE ,则动点F 的轨迹长度为25D .若点F 到点A 221F的轨迹长度为23π 【答案】BD 【分析】先找到点F 满足1//B F 平面1A BE 的轨迹,可判断选项AC ,将平面1A BE 补全,利用比例判断选项B ,找到满足点F 到点A 221D 【详解】取11C D 中点M ,1C C 中点N ,连接1B M ,1B N ,MN ,易证11//B N A E ,又1B N ⊄平面1A BE ,1A E ⊂平面1A BE ,所以1//B N 平面1A BE , 又1//MN A B ,同理得到//MN 平面1A BE , 所以平面1//B MN 平面1A BE ,所以若点F 满足1//B F 平面1A BE ,则点F 在1B MN △的三边上运动,112,5MN B M B N ===F 的轨迹长度为252C 错误;当点F 在侧面11CDD C 上运动时,点F 的运动轨迹为线段MN ,当F 运动到MN 中点时,因为∥1B MN 是等腰三角形,所以1B F MN ⊥,又因为1//MN CD ,所以11B F CD ⊥,故A 错误;取CD 中点G ,连接BG ,EG ,易证1//A B EG ,则1,,,A B E G 共面,令1C D EG H ⋂=,则易得113DH C H =, 所以点D 到面1A BE 的距离与点1C 到面1A BE 的距离之比为13,故B 正确;22122>F 到点A 221则动点F 的轨迹在正方形11B BCC 和正方形11CC D D 及正方形1111D C B A 上, 若在正方形11B BCC 上,则满足22222143(2BF BA BF +=⇒=<,所以在正方形11B BCC 上,动点F 的轨迹为以B 4323, 同理点F 在正方形1111D C B A 及正方形11CC D D 面上运动时,轨迹分别为以1,A D 43为半径的四分之一圆弧,所以动点F 23323π⨯=,所以D 正确;故选:BD3.(多选题)(全国著名重点中学领航高考冲刺试卷(六))如图,在正方体1111ABCD A B C D -中,E 为1AA 的中点,点F 在线段1AD 上运动,G 为底面ABCD 内一动点,则下列说法正确的是( )A .11C F CB ⊥B .若1//FG CD ,则点G 在线段AC 上C .当点F 从A 向1D 运动时,三棱锥1D BFC -的体积由小变大D .若1GD ,GE 与底面ABCD 所成角相等,则动点G 的轨迹为圆的一部分 【答案】ABD 【分析】结合线面垂直的知识来判断A 选项的正确性.结合平面的知识来判断B 选项的正确性.结合锥体体积的求法来确定C 选项的正确性.结合阿波罗尼斯圆的知识来判断D 选项的正确性. 【详解】连接1A D ,∥1C F 在平面11ADD A 内的射影为1D F ,11CB A D ∥,且11A D D F ⊥,则1A D ⊥平面11C D F ,11A D C F ⊥,∥11C F CB ⊥,故A 正确;∥1FG CD ∥,∥FG 与1CD 确定唯一的平面α,而平面1ACD 与α有F ,1D ,C 三个不在一条直线上的公共点,∥平面1ACD 与α重合,又G 为底面ABCD 内一动点,则点G 必在平面1ACD 与平面ABCD 的交线AC 上,故B 正确;∥11AD BC ∥,1AD ⊄平面1DBC ,1BC ⊂平面1DBC ,∥1AD ∥平面1DBC ,故当点F 在1AD 上运动时,点F 到平面1DBC 的距离不变,于是三棱锥1F BDC -的体积不变,即三棱锥1D BFC -的体积不变,故C 错误; 连接GD ,GA ,当1GD ,GE 与底面ABCD 所成角相等时,易得2GD GA =,∥AD 为定值,由阿波罗尼斯圆易知点G 的轨迹为圆的一部分,故D 正确. 阿波罗尼斯圆:已知平面上两点A ,B ,则所有满足PAk PB=(0k >且1k ≠)的点P 的轨迹是一个以定比m :n 内分和外分定线段AB 的两个分点的连线为直径的圆,此圆称为阿波罗尼斯圆. 故选:ABD4.(吉林省梅河口市第五中学第一次月考)在棱长为1的正方体1111ABCD A B C D -中,M ,N 分别为1AA ,1CC 的中点,O 为底面ABCD 的中心,点P 在正方体的表面上运动,且满足NP MO ⊥,则下列说法正确的是( )A .点P 可以是棱1BB 的中点B .线段NP 2C .点P 的轨迹是平行四边形D .点P 轨迹的长度为12【答案】B 【分析】在正方体1111ABCD A B C D -中,以点D 为坐标原点,分别以DA 、DC 、1DD 方向为x 轴、y 轴、z 轴正方向,建立空间直角坐标系,根据NP MO ⊥,确定点P 的轨迹,在逐项判断,即可得出结果. 【详解】在正方体1111ABCD A B C D -中,以点D 为坐标原点,分别以DA 、DC 、1DD 方向为x 轴、y 轴、z 轴正方向,建立空间直角坐标系,因为该正方体的棱长为1,,M N 分别为1AA ,1CC 的中点,则()0,0,0D ,11,0,2M ⎛⎫⎪⎝⎭,10,1,2N ⎛⎫⎪⎝⎭,11,,022O ⎛⎫⎪⎝⎭,所以111,,222OM ⎛⎫=- ⎪⎝⎭,设(),,P x y z ,则1,1,2NP x y z ⎛⎫=-- ⎪⎝⎭,因为NP MO ⊥, 所以0NP OM ⋅=所以()1111102222x y z ⎛⎫--+-= ⎪⎝⎭,即2221x y z -+=-,令0z =,当12x =时,1y =;当0x =时,12y =;取1,1,02E ⎛⎫ ⎪⎝⎭,10,,02F ⎛⎫ ⎪⎝⎭,连接EF ,FN ,NE ,则11,,022EF ⎛⎫=-- ⎪⎝⎭,11,0,22EN ⎛⎫=- ⎪⎝⎭,则111110022222EF OM ⎛⎫⎛⎫⋅=-⨯+-⨯-+⨯= ⎪ ⎪⎝⎭⎝⎭,111110022222EN OM ⎛⎫⋅=-⨯+⨯-+⨯= ⎪⎝⎭,所以EF OM ⊥,EN OM ⊥,又EF EN E ⋂=,且EF ⊂平面EFN ,EN ⊂平面EFN ,所以OM ⊥平面EFN ,所以,为使NP OM ⊥,必有点P ∈平面EFN ,又点P 在正方体的表面上运动,所以点P 的轨迹为正三角形EFN ,故C 错误;因此点P 不可能是棱1BB 的中点,故A 错误;线段NP 的最大值为NF 2=B 正确; 点P 22232=D 错误; 故选:B5.(广东省深圳市平冈高级中学高三上学期9月第一次月考)如图所示,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点,F 是侧面CDD 1C 1上的动点,且B 1F ∥平面A 1BE ,则F 在侧面CDD 1C 1上的轨迹的长度是( )A .aB .2aC 2aD 2a 【答案】D【分析】过1B 做与平面1A BE 平行的平面,该平面与侧面11CDD C 的交线,即为满足条件的轨迹,求解即可.【详解】设G ,H ,I 分别为CD ,CC 1,C 1D 1边上的中点,连接B 1I ,B 1H ,IH ,CD 1,EG ,BG ,则1A B ∥1CD ∥GE ,所以 A 1,B ,E ,G 四点共面,由1B H ∥11,A E A E ⊄平面B 1HI ,1B H ⊂平面B 1HI ,所以A 1E ∥平面B 1HI ,同理A 1B ∥平面B 1HI ,111A B A E A =,所以平面A 1BGE ∥平面B 1HI ,又因为B 1F ∥平面A 1BE ,所以F 落在线段HI 上,因为正方体ABCD -A 1B 1C 1D 1的棱长为a ,所以1122HI CD ==, 即F 在侧面CDD 1C 12.故选:D. 6.(湖南省永州市高三上学期第一次适应性考试)已知在三棱锥S ABC -中,D 为线段AB 的中点,点E 在SBC △(含边界位置)内,则满足//DE 平面SAC 的点E 的轨迹为( )A .线段SB ,BC 的中点连接而成的线段B .线段SB 的中点与线段BC 靠近点B 的三等分点连接而成的线段C .线段BC 的中点与线段SB 靠近点B 的三等分点连接而成的线段D .线段BC 靠近点B 的三等分点与线段SB 靠近点B 的三等分点连接而成的线段【答案】A【分析】利用面面平行得到线面平行,即可.【详解】解:如图所示,P 、Q 分别为线段SB ,BC 的中点,所以//PQ SC ,//,DQ AC PQ ⊄平面SAC ,AC ⊂平面SAC ,所以//PQ 平面SAC ,同理//DQ 平面SAC ,PQ DQ Q =,所以平面//PDQ 平面SAC ,若DE ⊆平面PDQ ,则会有//DE 平面SAC ,故点E 的轨迹为线段SB ,BC 的中点连接而成的线段,故选A.7.(辽宁省实验中学上学期联考)已知正六棱柱111111ABCDEF A B C D E F -3P 在棱1AA 上运动,点Q 在底面ABCDEF 内运动,2PQ =R 为PQ 的中点,则动点R 的轨迹与正六棱柱的侧面和底面围成的较小部分的体积为( )A .224πB 218πC 2πD .23π 【答案】B【分析】根据题意,可判断出动点R 的轨迹为球,结合球的体积公式,即可求解.【详解】由直角三角形的性质得2AR =, 所以点R 在以A 2 因为23BAF π∠=,所以动点R 的轨迹与正六棱柱的侧面和底面围成的较小部分16球, 其体积为3142263ππ⨯=⎝⎭. 故选:B.8.四棱锥P OABC -中,底面OABC 是正方形,OP OA ⊥,OA OP a ==.D 是棱OP 上的一动点,E 是正方形OABC 内一动点,DE 的中点为Q ,当DE a =时,Q 的轨迹是球面的一部分,其表面积为3π,则a 的值是( )A .23B .26C .336D .6 【答案】B【分析】首先假设OP OC ⊥,将四棱锥P OABC -放在正方体中,然后根据直角三角形斜边中线等于斜边的一半求得12OQ a =,得到点Q 的轨迹,最后根据题意列出方程求出a 的值 . 【详解】由题意不妨设OP OC ⊥,又OP OA ⊥,底面OABC 是正方形,所以可将四棱锥P OABC -放在一个正方体内,所以DO ⊥面OABC ,又OE ⊂面OABC ,则DO OE ⊥,又DE 的中点为Q ,所以1122OQ DE a ==, 即Q 的轨迹是以O 为球心,12OQ a =为半径的球,且点Q 恒在正方体内部, 又因为8个一样的正方体放在一起,点Q 的轨迹就可以围成一个完整的球,所以Q 的轨迹是以O 为球心,12OQ a =为半径的球的18球面, 所以2114382a ππ⎛⎫⨯= ⎪⎝⎭,解得6a = 故选:B9.棱长为a 的正方体1111ABCD A B C D -中,点P 在平面..1111D C B A 内运动,点1B 到直线DP 的距离为定值,若动点P 的轨迹为椭圆,则此定值可能..为( ) A 3 B 3a C 6a D 6 【答案】A【分析】设1B DP α∠=,分析出点P 在以1DB 为轴的圆锥的侧面上,计算出3d a <,并分析出45,可得出6d ≠,由此可得出合适的选项.【详解】如下图所示:因为点1B 到直线DP 的距离为定值,所以,点P 在以1DB 为轴的圆锥的侧面上,因为点P 的轨迹为椭圆,即圆锥被平面1111D C B A 所截的截面为椭圆,设圆锥轴截面的半顶角为α,则点1B 到直线DP 的距离为1sin 3sin 3d B D a a αα==<,当截面与圆锥的母线平行时,即45α=时,截面为抛物线,不合乎题意, 所以,63sin 452d a ≠=. 综合选择,可知A 选项合乎题意.故选:A.10.(上海市建平中学期中)已知菱形ABCD 边长为2,60ABC ∠=︒,沿对角线AC 折叠成三棱锥B ACD '-,使得二面角B AC D '--为60°,设E 为B C '的中点,F 为三棱锥B ACD '-表面上动点,且总满足AC EF ⊥,则点F 轨迹的长度为( )A .23B .33C 3D 33【答案】D【分析】 在侧面B AC '上,点F 的轨迹是EP ,在侧面B CD '上,点F 的轨迹是EQ ,在底面ACD 上,点F 的轨迹是PQ ,求EPQ △的周长即可.【详解】。

立体几何中专题——轨迹问题

立体几何中专题——轨迹问题

立体几何中专题——轨迹问题 一、 利用空间运动的观点来求轨迹(掌握空间中常见轨迹的形成原理)1、空间两条异面直线m 和n ,动点P 在直线m 上运动,动点Q 在直线n 上运动,求PQ 中点的轨迹。

2、直线PA 是平面M 的一条斜线,且与平面M 成α角,斜足为A ,动直线PB 过点P 且与直线PA 成β角,交平面M 于点B ,求点B 的轨迹。

3、已知直平行六面体1111D C B A ABCD -的各条棱长均为3,︒=∠60BAC ,长为2的线段MN 的一个端点M 在1DD 上运动,另一端点N 在底面ABCD 上运动,则MN 的中点P 的轨迹与共一顶点D 的三个面所围成的几何体的体积为( )(A )92π (B )94π (C )3π (D )34π 4、如图,已知AB 是平面α的斜线段,A 为斜足,若点P 在平面α内运动,满足BP AB ⊥,则动点P 的轨迹是( )A 、圆B 、椭圆C 、一条直线D 、两条平行线5、如图,已知AB 是平面α的斜线段,A 为斜足,若点P 在平面α内运动,使得ABP ∆的面积为定值,则动点P 的轨迹是( )A 、圆B 、椭圆C 、一条直线D 、两条平行线6、在正方体1111D C B A ABCD -中,M 是1CC 的中点,若点P 在11ABB A 所在的平面上,满足11PDB MDB ∠=∠,则点P 的轨迹是:( )(A )圆 (B )椭圆 (C )双曲线 (D )抛物线7、在正方体1111D C B A ABCD -,E 是1AA 的中点, 点P 在侧面11B BDD上运动,若EP 总与直线AC 成等角,则点P 的轨迹( )(A )圆或其一部分 (B )椭圆或其一部分(C )双曲线或其一部分 (D )抛物线或其一部分8、在正方体1111D C B A ABCD -中, 点P 在侧面11B BCC 及其边界上运动, 并总是保持1BD AP ⊥, 则动点P 的轨迹( )(A )线段C B 1 (B )线段1BC(C )线段1BB 与1CC 的中点连成的线段(D )线段BC 与11C B 的中点连成的线段9、如图,在正方体1111D C B A ABCD -中,,点M 是棱CD 的中点,点0是侧面D D AA 11的中心,若点P 在侧面11B BCC 及其边界上运动,并且保持OP ⊥AM ,则动点P 的轨迹是( )(A)线段C B 1. (B)线段1BC .(C)线段1BB . (D)线段BC .10、如图,在正方形ABCD 中,E ,F 分别为线段AD ,BC 上的点,∠ABE =20°,∠CDF =30°.将△ABE 绕直线BE 、△CDF绕直线CD 各自独立旋转一周,则在所有旋转过程中,直线AB与直线DF 所成角的最大值为_________.二、 利用解析的方法求空间的轨迹(空间问题平面化) 1、在正方体1111D C B A ABCD -中, 点P 在侧面11B BCC 的一个动点,P 到直线BC 与直线11D C 的距离相等,则动点P 的轨迹所在曲线为( )(A )圆 (B )直线 (C )双曲线 (D )抛物线2、P 是正四面体ABC S -的面SBC 上一点,P 到面ABC 的距离与到点S 距离相等,则点P 的轨迹所在曲线为( )(A )圆 (B )椭圆 (C )双曲线 (D )抛物线3、在正方体1111D C B A ABCD -中, 棱长为1,点P 在平面AC 内的动点,P 到直线11D A 的距离等于P 到CD 的距离,则动点P 的轨迹所在曲线是( )(A )椭圆 (B )直线 (C )双曲线 (D )抛物线若改为P 到直线D A 1的距离等于P 到CD 的距离,则动点P 的轨迹所在曲线呢?4、在梯形ABCD 中,E 、F 分别为底边AB 、CD 的中点,把四边形AEFD 沿直线EF 折起后所在平面记为α,α∈P ,设PB 、PC 与α所成角分别为21θθ=,则点P 的轨迹为( )A 、直线B 、圆C 、椭圆D 、抛物线(第17题)。

剖析立体几何中的“动态”问题

剖析立体几何中的“动态”问题

ʏ沈建良所谓动态立体几何问题,是指在点㊁线㊁面运动变化的几何图形中,探寻点㊁线㊁面的位置关系或进行有关角与距离的计算㊂立体几何中常求解一些固定不变的点㊁线㊁面的关系,若给静态的立体几何问题赋予 活力 ,渗透了 动态 的点㊁线㊁面元素,立意会更新颖㊁更灵活,能培养同学们的空间想象能力㊂下面是对破解立体几何 动态 问题的一些思考,以期抛砖引玉㊂一㊁ 动态 问题之轨迹问题例1如图1,在边长为a的正方体A B C D-A1B1C1D1中,E,F,G,H,N分别是C C1,C1D1,D D1,C D,B C的中点,M在四边形E F G H边上及其内部运动,若MNʊ面A1B D,则点M轨迹的长度是()㊂图1A.3aB.2aC.32aD.22a解:因为在边长为a的正方体A B C D-A1B1C1D1中,E,F,G,H分别是C C1, C1D1,D D1,C D的中点,N是B C的中点,则G HʊB A1,HNʊB D㊂又G H⊄面A1B D, B A1⊂面A1B D,所以G Hʊ面A1B D㊂同理可得,NHʊ面A1B D㊂又G HɘHN=H,所以面A1B Dʊ面G HN㊂因为点M在四边形E F G H上及其内部运动,MNʊ面A1B D,所以点M一定在线段G H上运动,即满足条件㊂易得G H=22a㊂故点M轨迹的长度是22a㊂应选D㊂本题利用线面平行㊁面面平行,在动态问题中提炼一些不变的 静态 的量,建立不变量与动点之间的关系,从而确定动点的轨迹长度㊂二㊁ 动态 问题之定值问题例2如图2,在单位正方体A B C D-A1B1C1D1中,点P在线段A D1上运动㊂图2给出以下四个命题:①异面直线A1P与B C1间的距离为定值;②三棱锥D-B P C1的体积为定值;③异面直线C1P与C B1所成的角为定值;④二面角P-B C1-D的大小为定值㊂其中真命题的序号是()㊂A.①②B.③④C.①②③D.①②③④解:对于①,异面直线A1P与B C1间的距离即为两平行平面A D D1A1和平面B C C1B1间的距离,即为正方体的棱长,为定值,①正确㊂对于②,V D-B P C1=V P-D B C1,因为SәD B C1为定值,点PɪA D1,A D1ʊ平面B D C1,所以点P到平面B D C1的距离即为正方体的棱长,所以三棱锥D-B P C1的体积为定值,②正确㊂对于③,在正方体A B C D-A1B1C1D1中,因为B1Cʅ平面A B C1D1,而C1P⊂平面A B C1D1,所以B1CʅC1P,即这0 1数学部分㊃知识结构与拓展高一使用2022年4月Copyright©博看网. All Rights Reserved.两条异面直线所成的角为90ʎ,③正确㊂对于④,因为二面角P -B C 1-D 的大小即为平面A B C 1D 1与平面B D C 1所成的二面角的大小,而这两个平面位置固定不变,所以二面角P -B C 1-D 的大小为定值,④正确㊂应选D㊂动态立体几何问题,在变化过程中总蕴含着某些不变的因素,因此要认真分析其变化特点,寻找不变的静态因素,从静态因素中,找到解决问题的突破口㊂三㊁ 动态 问题之翻折问题例3 如图3,在长方形A B C D 中,A B =2,B C =1,E 为D C 的中点,F 为线段E C (端点除外)上一动点㊂现将әAF D 沿A F 折起,使平面A B D ʅ平面A B C F ,得到如图4所示的四棱锥D -A B C F ㊂在平面A B D 内过点D 作D K ʅA B ,垂足为K ㊂设A K =t ,则t 的取值范围是㊂图3 图4解:过点F 作F M ʅA B 交A B 于点M (作法略)㊂设F C =x ,0<x <1,则M F =B C =1,M B =F C =x ㊂易知A K <A D =1,A B =2,所以点K 一定在点M 的左边,则MK =2-t -x ㊂在R t әA D K 中,D K 2=1-t2,在R tәF MK 中,F K 2=1+(2-t -x )2㊂因为平面A B D ʅ平面A B C F ,平面A B D ɘ平面A B C F =A B ,D K ʅA B ,D K ⊂平面A B D ,所以D K ʅ平面A B C F ,所以D K ʅF K ㊂在R t әD F K 中,D F =2-x ,D K 2+F K 2=D F 2,所以1-t 2+1+(2-t -x )2=(2-x )2,化简得1-2t +t x =0,即t =12-x㊂又因为t =12-x在(0,1)上单调递增,所以12<t <1,即t 的取值范围为12,1()㊂本题是一个动态的翻折问题,通过发现不变的垂直关系,从而得到相关变量间的关系,最终转化成函数的值域问题㊂解决折叠问题的关键是分清折叠前后图形的位置和数量关系的变与不变的量㊂四㊁ 动态 问题之展开问题例4 已知某圆锥的母线长为3,底面半径为1,则该圆锥的体积为㊂设线段A B 为该圆锥底面圆的一条直径,一质点从A 出发,沿着该圆锥的侧面运动,到达B 点后再沿侧面回到A 点,则该质点运动路径的最短长度为㊂解:易得该圆锥的高h =32-1=22㊂所以该圆锥的体积V =13ˑπˑ12ˑ22=223π㊂将该圆锥侧面沿母线S A 展开,如图5所示㊂图5因为圆锥底面周长为2π,扇形半径为3,所以侧面展开后得到的扇形的圆心角øA S A '=2π3㊂由题意知点B 是圆锥侧面展开后得到的扇形的弧A A '的中点,则øA S B =π3,所以A B =A 'B =A S =3㊂所以该质点运动路径的最短长度为A B +A 'B =6㊂空间动态问题常转化为平面的动态问题求解㊂化曲为直是求解曲面上路径长度最短问题的关键㊂本题是求解圆锥侧面上质点运动路径的最短长度问题,可将圆锥侧面沿一条母线展开成扇形,从而在平面图形中解决问题㊂作者单位:江苏省盐城市时杨中学(责任编辑 郭正华)11数学部分㊃知识结构与拓展高一使用 2022年4月Copyright ©博看网. All Rights Reserved.。

立体几何中轨迹问题的处理技巧与方法

立体几何中轨迹问题的处理技巧与方法

ʏ陈 婷立体几何中的轨迹问题,是立体几何与解析几何的知识交汇点㊂这类问题,立意新颖,重视不同知识的交叉与渗透,重视对数学知识与数学能力的考查与应用,是培养同学们数学核心素养的好素材㊂一㊁直接法直接法就是直接利用立体几何的相关知识,合理分析和研究问题中各个元素之间的关系,或者直接利用轨迹定义进行求解的方法㊂例1 如图1,在正方体A B C D -A 1B 1C 1D 1中,P 是侧面B C C 1B 1上的一个动点,若点P 到直线B C 与直线C 1D 1的距离相等,则动点P 的轨迹是下列哪种线的一部分( )㊂图1A.直线 B .圆C .双曲线 D .抛物线分析:根据题设条件,利用空间点线面的位置关系,直接得到动点P 到直线B C 与到点C 1的距离相等,再结合解析几何中抛物线的定义,可得对应的答案㊂解:根据正方体的性质,可知C 1D 1ʅ平面B C C 1B 1,所以动点P 到直线C 1D 1的距离与到点C 1的距离相等㊂又动点P 到直线B C 与到直线C 1D 1的距离相等,所以动点P 到直线B C 与到点C 1的距离相等㊂根据抛物线的定义,可得动点P 的轨迹是一条抛物线的一部分㊂应选D ㊂二㊁转化法转化法就是将立体几何问题转化为平面几何问题,进行合理 降维 处理,进而应用平面几何㊁解析几何等相关知识来分析与求解的方法㊂例2 (2022年高考北京卷)已知正三棱锥P -A B C 的六条棱长均为6,S 是әA B C 及其内部的点构成的集合㊂设集合T ={Q ɪS |P Q ɤ5},则T 表示的区域的面积为( )㊂A .3π4B .πC .2πD .3π分析:根据题设条件,结合正三棱锥的性质,合理构建点P 在底面әA B C 内的射影点O ,结合集合的创新设置进行合理转化,将空间中的距离问题转化为平面上的距离问题加以分析与求解㊂解:设点P 在底面әA B C 内的射影为点O ㊂依题意知әA B C 是边长为6的正三角形,所以A O =B O =C O =23㊂因为P A =P B =P C =6,所以P O =62-(23)2=26㊂若P Q =5,则O Q =P Q 2-P O 2=1,可知动点Q 的轨迹是在底面әA B C 内,以O 为圆心,半径为r =1的圆及其内部,其对应的面积为πr 2=π㊂应选B ㊂三㊁解析法解析法就是利用解析几何在研究轨迹方面的一整套比较完整的理论体系,通过坐标法进行代数运算与逻辑推理的一种求轨迹的方法㊂解析法是解决立体几何图形的二维轨迹问题的常用方法之一㊂例3 (多选题)如图2所示,在正方体A B C D -A 1B 1C 1D 1中,E 是C C 1的中点,点P 在底面A B C D 内运动,若P D 1,P E 与底面A B C D 所成的角相等,则动点P 的轨迹是( )㊂71知识结构与拓展高一数学 2023年4月Copyright ©博看网. All Rights Reserved.图2A.圆的一部分B.椭圆的一部分C.经过线段B C靠近B的三等分点D.经过线段C D靠近C的三等分点分析:根据题意得D P=2P C,以点D为坐标原点,建立平面直角坐标系,通过坐标法进行讨论求解㊂解:由正方体的性质得D D1ʅ平面A B C D,E Cʅ平面A B C D,所以øD P D1,øC P E分别为P D1,P E与底面A B C D所成的角,所以øD P D1=øC P E㊂因为t a nøD P D1=D D1D P,t a nøC P E= C EP C,又D D1=2C E,所以D P=2P C㊂在平面A B C D中,以D为坐标原点,建立平面直角坐标系,如图3所示㊂图3设正方体的边长为a,点P(x,y),xȡ0,yȡ0,则点D(0,0),C(a,0),所以D P2= x2+y2,P C2=(x-a)2+y2,所以x2+y2= 4(x-a)2+4y2,整理得3x2+3y2-8a x+ 4a2=0,显然3x2+3y2-8a x+4a2=0表示圆的方程,所以动点P的轨迹是圆的一部分,A正确,B错误㊂线段B C靠近B的三等分点的坐标为a,23a,线段C D靠近C的三等分点的坐标为23a,0,分别代入方程3x2+3y2-8a x+4a2=0,可得3a2+3ˑ23a2-8a2+4a2=13a2ʂ0,3ˑ23a2+ 3ˑ02-8aˑ23a+4a2=0,所以23a,0在圆3x2+3y2-8a x+4a2=0上,a,23a不在圆3x2+3y2-8a x+4a2=0上,C错误,D 正确㊂应选A D㊂四㊁性质法性质法就是利用轨迹的相关知识来解决立体几何中轨迹问题的一种基本方法㊂有些空间图形的轨迹不一定是二维的,转化为平面问题比较困难,这时可借助性质法来处理㊂例4已知棱长为3的正方体A B C D-A1B1C1D1中,长为2的线段M N的一个端点M在D D1上运动,另一个端点N在底面A B-C D上运动,则线段M N的中点P的轨迹与正方体的面所围成的几何体的体积为㊂分析:不论әMD N如何变化,点P到点D的距离始终等于1㊂从而点P的轨迹是一个以点D为球心,半径为1的球的18,由此可求出体积㊂解:如图4所示,端点N在正方形A B C D内运动㊂图4因为әMD N为直角三角形,P为斜边MN的中点,所以不论әMD N如何变化,点P到点D的距离始终等于1㊂利用立体几何的性质,可知动点P的轨迹是一个以点D为球心,半径为1的球的18,所以所求体积V= 18ˑ43ˑπˑ13=π6㊂作者单位:江苏省海安高级中学(责任编辑郭正华)8 1知识结构与拓展高一数学2023年4月Copyright©博看网. All Rights Reserved.。

SXB130高考数学必修_立体几何中的动点问题

SXB130高考数学必修_立体几何中的动点问题

立体几何中的动点问题在高考试题中,经常考查立体几何中的动点问题,在立体几何中常见的动点问题大致可分为以下几类:一是求动点轨迹问题;二是求动点与某点(或面)的距离问题;三是求直线与直线(或平面)垂直问题;四是求直线与直线(或平面)平行问题;五是平面与平面垂直问题。

本文举例说明这几个问题的解法。

一、 求动点轨迹问题这类问题往往是先利用题中条件把立几问题转化为平面几何问题,再判断动点轨迹。

例1 如图,定点A 和B 都在平面α内,定点α∉P ,α⊥PB ,C 是α内异于A 和B 的动点,且AC PC ⊥。

那么,动点C 在平面α内的轨迹是( ) A. 一条线段,但要去掉两个点 B.C. 一个椭圆,但要去掉两个点D. 半圆,但要去掉两个点 解析:由三垂线定理的逆定理得 ∵AC ⊥PC 且PC 在α内的射影为BC ,∴AC ⊥BC.∴∠ACB=900.∴C 点的轨迹为以AB 为直径圆,但除去A 、B 两点. 二、 动点与某点(面)的距离问题 例2.正方体1111DC B A ABCD -中,棱长为a ,E 是1AA 的中点, 在对角面D DBB 11上找一动点M ,使AM+ME 最小.解析: ,,,11B BB BD BB AC BD AC =⊥⊥ .11D D BB AC 面⊥∴设AC ∩BD=O ,则AO=CO . ∴平面D D BB 11是线段AC 的垂直平分面,∴C 是A 关于平面D D BB 11的对称点。

连CE 交面D D BB 11于M , 则M 就是要求的点,这时AM+ME 最小。

又AM=CM, ∴AM+ME 的最小值就是CE 的长,而2412222a a AE AC CE +=+==a 23, 此时AM+ME 的最小值为a 23. 简评:本题先证明平面D D BB 11是线段AC 的垂直平分面,然后利用C 是A 关于平面D D BB 11的对称点,所以AM=CM, AM+ME 的最小值,即为CM+ME 的最小值,即CE 的长,所以M 点为CE 和平面D D BB 11的交点。

2023高考一轮热题---立体几何中的轨迹问题

2023高考一轮热题---立体几何中的轨迹问题

19立体几何中的轨迹问题【题型一】由动点保持平行性求轨迹【典例分析】如图,在边长为a 的正方体ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 、N 分别是CC 1、C 1D 1、DD 1、CD 、BC 的中点,M 在四边形EFGH 边上及其内部运动,若MN ∥面A 1BD ,则点M 轨迹的长度是( )AB C D【提分秘籍】基本规律1.线面平行转化为面面平行得轨迹2.平行时可利用法向量垂直关系求轨迹【变式演练】1.在三棱台111A B C ABC −中,点D 在11A B 上,且1//AA BD ,点M 是三角形111A B C 内(含边界)的一个动点,且有平面//BDM 平面11A ACC ,则动点M 的轨迹是( )A .三角形111ABC 边界的一部分 B .一个点C .线段的一部分D .圆的一部分2.已知正方体1111ABCD A B C D −的棱长为2,E 、F 分别是棱1AA 、11A D 的中点,点P 为底面ABCD 内(包括边界)的一动点,若直线1D P 与平面BEF 无公共点,则点P 的轨迹长度为( )A 1BC D3.在棱长为2的正方体1111ABCD A B C D −中,点E ,F 分别是棱11C D ,11B C 的中点,P 是上底面1111D C B A 内一点(含边界),若//AP 平面BDEF ,则Р点的轨迹长为( )A .1BC .2D .【题型二】动点保持垂直性求轨迹【典例分析】在正方体1111ABCD A B C D −中,Q 是正方形11B BCC 内的动点,11A Q BC ⊥,则Q 点的轨迹是( )A .点1B B .线段1BC C .线段11B CD .平面11B BCC【提分秘籍】基本规律1.可利用线线线面垂直,转化为面面垂直,得交线求轨迹2.利用空间坐标运算求轨迹3.利用垂直关系转化为平行关系求轨迹【变式演练】1.在正方体1111ABCD A B C D −中,点P 在侧面11BCC B 及其边界上运动,且保持1AP BD ⊥,则动点P 的轨迹为 A .线段1CBB .线段1BC C .1BB 的中点与1CC 的中点连成的线段D .BC 的中点与11B C 的中点连成的线段2.在棱长为1的正方体1111ABCD A B C D −中,M ,N 分别为1BD ,11B C 的中点,点P 在正方体的表面上运动,且满足MP CN ⊥.给出下列说法:①点P 可以是棱1BB 的中点;②线段MP 的最大值为34; ③点P 的轨迹是正方形;④点P 轨迹的长度为2其中所有正确说法的序号是________.3.如图,在正方体1111ABCD A B C D −中,E 是棱1CC 的中点,F 是侧面11BCC B 内的动点,且1A F 与平面1D AE 的垂线垂直,则下列说法不正确的是( )A .1A F 与1D E 不可能平行B .1A F 与BE 是异面直线C .点F 的轨迹是一条线段D .三棱锥1F ABD −的体积为定值【题型三】由动点保持等距(或者定距)求轨迹【典例分析】已知正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为底面ABCD 内一点,若P 到棱CD ,A 1D 1距离相等的点,则点P 的轨迹是( )A .直线B .椭圆C .抛物线D .双曲线【提分秘籍】基本规律1.距离,可转化为在一个平面内的距离关系,借助于圆锥曲线定义或者球和圆的定义等知识求解轨迹2.利用空间坐标计算求轨迹【变式演练】1.如图,在四棱锥P ABCD −中,侧面PAD 为正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为正方形ABCD 内(包括边界)的一个动点,且满足MP MC =.则点M 在正方形ABCD 内的轨迹为( )A .B .C .D .2.如图,在棱长为4的正方体ABCD A B C D ''''−中,E 、F 分别是AD 、A D ''的中点,长为2的线段MN 的一个端点M 在线段EF 上运动,另一个端点N 在底面A B C D ''''上运动,则线段MN 的中点P 的轨迹(曲面)与正方体(各个面)所围成的几何体的体积为( )A .43π B .23π C .6π D .3π 3.四棱锥P ﹣OABC 中,底面OABC 是正方形,OP ⊥OA ,OA =OP =a .D 是棱OP 上的一动点,E 是正方形OABC 内一动点,DE 的中点为Q ,当DE =a 时,Q 的轨迹是球面的一部分,其表面积为3π,则a 的值是( )A .B .C .D .6【题型四】由动点保持等角(或定角)求轨迹【典例分析】正方体1111ABCD A B C D −中,M ,N 分别为AB ,11A B 的中点,P 是边11C D 上的一个点(包括端点),Q 是平面1PMB 上一动点,满足直线MN 与直线AN 夹角与直线MN 与直线NQ 的夹角相等,则点Q 所在轨迹为( )A .椭圆B .双曲线C .抛物线D .抛物线或双曲线【提分秘籍】基本规律1. 直线与面成定角,可能是圆锥侧面。

立体几何轨迹问题例析

立体几何轨迹问题例析
能 力 ) .
P 是 平 面 ABC 上 的 动 点 , 动 点 P 到 直 线 D 且 A。 D 的 距 离 与 到 点 M 的 距 离 的 平 方 差 为 1,
维普资讯
热 点



【 3  ̄1 3所 例 ] I 图
示 , 方 体 AB 正 CD — Al Cl B Dl 中 , 侧 面
平 面 A B C 上 , 以 点 P 的 轨 迹 是 平 面 AB C 所 与 侧 面 BCC。 的 交 线 B C 选 B B . .
点 评 : 析 几 何 求 轨 迹 , 是 求 出 动 点 的 解 先
化 简 , 动 点 P 的 轨 迹 方 程 为 得

2 ,

一- K ‘
所 以 动 点 P 的 轨 迹 为 抛 物 线 , B 选 .
解 法 二 ( 义 法 ) 如 图 2, 题 意 有 定 : 依 I PF I一 I PM I 1, I 一 即 PE — I I PM 所 I .
轨迹方程 , 讨 论轨迹 的形状、 置、 小, 再 位 大 最 后 说 明 轨 迹 是 什 么 图 形 . 用 的 方 法 有 : - 常 直t & 法 、 义 法 、 移 法 、 轨 法 和 参 数 法 .立 体 几 定 转 交
达 ; 何 法 比 较 抽 象 、 路 曲 折 ( 要 较 强 的 空 几 思 需

【 2 如 图 2 正 方 体 ABCD — A 例 】 , B C D
的 棱 长 为 1 点 M 在 棱 AB 上 , AM 一 ÷ , , 且 点

间 想 象 能 力 ) 不 易 表 达 ( 要 较 强 的 逻 辑 思 维 、 需

立体几何中动点轨迹问题的几种解题方法_柳双生

立体几何中动点轨迹问题的几种解题方法_柳双生

六、 试用猜想证明法求解
猜想 证 明 法 也 是 解 决 空 间 轨 迹 问 题 的 一 种 可 以 尝试着使用的 方 法 , 这 往 往 是 以 立 体 几 何 的 定 理 及 空间图形的定义为依据 , 大胆猜想 , 然后通过验证 , 以
z ∩

P O y α
α , 过 点 P 且 与 直 线 l 成 30o 角 的
三、 应用坐标法求解
用代数方法研究几何问题是解析几何的本质 , 通 过 建 立 直 角 坐 标 系,设 出 动 点 坐 标,将 几 何 问 题 转 化 成代数问题来解决 , 这是探求空间图形中的轨迹问题 常用的一种方法 . 例 3. 正方体 ABCD-A1B1C1D1 的 棱 长 为 1 , 点 P 是 平 面 ABCD 上 的 动 点 , 且 动 点 P 到 直 线 A1D1 的 距 离与动点 P 到直线 AB 的 距 离 的 平 方 和 为 2 , 则 动 点 的轨迹是 ( )

A. 一条线段
M
D1 A1
B. 椭圆的一部分 C. 双曲线的一部分 D. 抛物线的一部分
分 析 : 在 平 面 A1B1C1D1 中 , 过 点 P 作 PM ⊥A1D1, 垂 足 为 点 M, 在 平 面 ADD1A1 中 过 点 M 作 MN ∥AA1, 交 AD 于 点 N , 又 因 为 PN=PB ,MN=BB1, 所 以 △ PMN
直线交面 α 于点 M , 若点 M 的轨 迹为一圆锥曲线 , 求其离心率 .
M x
达到解决的目的 . 例 6. 在正四棱锥 S-ABCD 中 ,E 是 BC 的 中 点 , 点 P 在侧面 △SCD 内及 其 边 界 上 运 动 , 并 且 总 是 保 持 PE⊥AC , 则动点 P 的轨迹是 ( )

高考专题 立体几何中轨迹、翻折、探索性问题

高考专题 立体几何中轨迹、翻折、探索性问题
返回导航
12
解析:如图所示,连接 AC1 交平面 A1BD 于 O,连接 EO, 由题意可知 AC1⊥平面 A1BD, 所以∠AEO 是 AE 与平面 A1BD 所成的角,所以∠AEO=α.
返回导航
13
由 sin α=255可得 tan α=2,即AEOO=2. 在四面体 A-A1BD 中,BD=A1D=A1B=2 6, AB=AD=AA1=2 3,所以四面体 A-A1BD 为正三棱锥,O 为△BDA1 的重心,
返回导航
17
∴平面 BCE∥平面 MND,即平面 MND 为平面 α, 则点 G 到平面 DMN 的距离 d 即为点 G 到直线 DQ 的距离, ∵D→G=0, 33,- 36,D→Q=(0,-2 3,- 6), ∴D→G·D→Q=-2+2=0,即 DG⊥DQ, ∴点 G 到直线 DQ 的距离 d=|D→G|=1, ∴截面圆的半径 r= 22-12= 3,∴球被平面 α 截得的截面圆周长为 2πr=2 3π, 即平面 α 截点 P 的轨迹所形成的图形的周长为 2 3π.
返回导航
19
解: (1)证明:在△ABD 中,由余弦定理得,BD= AB2+AD2-2AB·ADcos A= 4+1-2×2×1×12= 3,
∴AD2+BD2=AB2,得 AD⊥DB,翻折后有 A′D⊥DB, 又平面 A′BD⊥平面 BCD,且平面 A′BD∩平面 BCD=DB, 根据平面与平面垂直的性质定理可得 A′D⊥平面 BCD, 又∵BC⊂平面 BCD,∴A′D⊥BC. 在平行四边形 ABCD 中,AD⊥DB,BC∥AD,∴BC⊥DB, ∵A′D∩DB=D,∴BC⊥平面 A′DB, ∵BC⊂平面 A′BC,∴平面 A′BC⊥平面 A′BD.
返回导航
15

第七章 §7.10 立体几何中的动态、轨迹问题-2025高中数学大一轮复习讲义人教A版

第七章 §7.10 立体几何中的动态、轨迹问题-2025高中数学大一轮复习讲义人教A版

§7.10立体几何中的动态、轨迹问题重点解读“动态”问题是高考立体几何问题最具创新意识的题型,它渗透了一些“动态”的点、线、面等元素,给静态的立体几何题赋予了活力,题型更新颖.同时,由于“动态”的存在,也使立体几何题更趋多元化,将立体几何问题与平面几何中的解三角形问题、多边形面积问题以及解析几何问题之间建立桥梁,使得它们之间灵活转化.题型一平行、垂直中的动态轨迹问题例1如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H ,N 分别是CC 1,C 1D 1,DD 1,CD ,BC 的中点,M 在四边形EFGH 边上及其内部运动,若MN ∥平面A 1BD ,则点M 轨迹的长度是()A.3aB.2aC.3a 2D.2a 2答案D 解析连接HN ,GN (图略),∵在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H ,N 分别是CC 1,C 1D 1,DD 1,CD ,BC 的中点,则GH ∥BA 1,HN ∥BD ,又GH ⊄平面A 1BD ,BA 1⊂平面A 1BD ,∴GH ∥平面A 1BD ,同理可证得NH ∥平面A 1BD ,又GH ∩HN =H ,GH ,HN ⊂平面GHN ,∴平面A 1BD ∥平面GHN ,又∵点M 在四边形EFGH 上及其内部运动,MN ∥平面A 1BD ,则点M 在线段GH 上运动,即满足条件,又GH =22a ,则点M 轨迹的长度是2a 2.思维升华动点轨迹的判断一般根据线面平行、线面垂直的判定定理和性质定理,结合圆或圆锥曲线的定义推断出动点的轨迹,有时也可以利用空间向量的坐标运算求出动点的轨迹方程.跟踪训练1正四棱锥S -ABCD 的底面边长为2,高为2,E 是边BC 的中点,动点P 在正四棱锥表面上运动,并且总保持PE ⊥AC ,则动点P 的轨迹的周长为()A.6+2B.6-2C .4D.5+1答案A 解析如图,设AC ,BD 交于O ,连接SO ,由正四棱锥的性质可得SO ⊥平面ABCD ,因为AC ⊂平面ABCD ,故SO ⊥AC .又BD ⊥AC ,SO ∩BD =O ,SO ,BD ⊂平面SBD ,故AC ⊥平面SBD .由题意,PE ⊥AC 则动点P 的轨迹为过E 且垂直AC 的平面与正四棱锥S -ABCD 的交线,即平面EFG ,则AC ⊥平面EFG .由线面垂直的性质可得平面SBD ∥平面EFG ,又由面面平行的性质可得EG ∥SB ,GF ∥SD ,EF ∥BD ,又E 是边BC 的中点,故EG ,GF ,EF 分别为△SBC ,△SDC ,△BCD 的中位线.由题意BD =22,SB =SD =22+2=6,故EG +EF +GF =12×(6+6+22)=6+ 2.即动点P 的轨迹的周长为6+ 2.题型二距离、角度有关的动态轨迹问题例2已知长方体ABCD -A 1B 1C 1D 1的外接球的表面积为5π,AA 1=2,点P 在四边形A 1ACC 1内,且直线BP 与平面A 1ACC 1所成的角为π4,则长方体的体积最大时,动点P 的轨迹长为()A .πB.2π2C.π2D.2π4答案C解析因为长方体ABCD -A 1B 1C 1D 1的外接球的表面积为5π,设外接球的半径为R ,所以4πR 2=5π,解得R =52R =-52(舍去),即外接球的直径为5,设AB =a ,BC =b ,则a 2+b 2+22=5,可得a 2+b 2=1,所以V =2ab ≤a 2+b 2=1,当且仅当a =b =22时,等号成立.如图,设AC ,BD 相交于点O ,因为BO ⊥AC ,BO ⊥AA 1,AC ∩AA 1=A ,AC ,AA 1⊂平面A 1ACC 1,所以BO ⊥平面A 1ACC 1,因为直线BP 与平面A 1ACC 1所成的角为π4,所以∠BPO =π4,故OP =12,则点P 的轨迹是以O 为圆心,半径r =12的半圆弧,所以动点P 的轨迹长为πr =π2.思维升华距离、角度有关的轨迹问题(1)距离:可转化为在一个平面内的距离关系,借助于圆锥曲线定义或者球和圆的定义等知识求解轨迹.(2)角度:直线与面成定角,可能是圆锥侧面;直线与定直线成等角,可能是圆锥侧面.跟踪训练2已知三棱锥P -ABC 的外接球O 的半径为13,△ABC 为等腰直角三角形,若顶点P 到底面ABC 的距离为4,且三棱锥P -ABC 的体积为163,则满足上述条件的顶点P 的轨迹长度是________.答案43π解析设底面等腰直角三角形ABC 的直角边的边长为x (x >0),∵顶点P 到底面ABC 的距离为4且三棱锥P -ABC 的体积为163,∴13×12x 2×4=163,解得x =22,∴△ABC 的外接圆半径为r 1=12×2×22=2,∴球心O 到底面ABC 的距离d 1=R 2-r 21=13-22=3,又∵顶点P 到底面ABC 的距离为4,∴顶点P 的轨迹是一个截面圆的圆周(球心在底面ABC 和截面圆之间)且球心O 到该截面圆的距离d 2=1,∵截面圆的半径r 2=R 2-d 22=13-1=23,∴顶点P 的轨迹长度是2πr 2=2π×23=43π.题型三翻折有关的动态轨迹问题例3在矩形ABCD 中,E 是AB 的中点,AD =1,AB =2,将△ADE 沿DE 折起得到△A ′DE ,设A ′C 的中点为M ,若将△ADE 沿DE 翻折90°,则在此过程中动点M 形成的轨迹长度为________.答案2π8解析如图,设AC 的中点为M 0,△ADE 沿DE 翻折90°,此时平面A ′DE ⊥平面ABCD ,取CD 中点P ,CE 中点Q ,PQ 中点N ,连接PQ ,MP ,MQ ,MN ,M 0P ,M 0Q ,M 0N .MP =M 0P =12AD =12,MQ =M 0Q =12AE =12,PQ =12DE =22,△MPQ 和△M 0PQ 是等腰直角三角形,且在旋转过程中保持形状大小不变,故动点M 的轨迹是以N 为圆心,12PQ 为半径的一段圆弧,又MP ∥A ′D ,MP ⊄平面A ′DE ,A ′D ⊂平面A ′DE ,∴MP ∥平面A ′DE ,同理MQ ∥平面A ′DE ,又∵MP ∩MQ =M ,∴平面MPQ ∥平面A ′DE ,又平面A ′DE ⊥平面ABCD ,故平面MPQ ⊥平面ABCD ,又平面MPQ ∩平面ABCD =PQ ,MN ⊥PQ ,故MN ⊥平面ABCD ,又M 0N ⊂平面ABCD ,∴MN ⊥M 0N ,故动点M 形成的轨迹长度为14π·PQ =2π8.思维升华翻折有关的轨迹问题(1)翻折过程中寻找不变的垂直的关系求轨迹.(2)翻折过程中寻找不变的长度关系求轨迹.(3)可以利用空间坐标运算求轨迹.跟踪训练3(2024·连云港模拟)在矩形ABCD 中,AB =3,AD =1,点E 在CD 上,现将△AED 沿AE 折起,使平面AED ⊥平面ABC ,当E 从D 运动到C 时,求点D 在平面ABC 上的射影K 的轨迹长度为()A.22 B.223 C.π2 D.π3答案D解析由题意,将△AED 沿AE 折起,使平面AED ⊥平面ABC ,在平面AED 内过点D 作DK ⊥AE ,垂足K 为D 在平面ABC 上的射影,连接D ′K ,由翻折的特征知,则∠D ′KA =90°,故K 点的轨迹是以AD ′为直径的圆上一段弧,根据长方形知圆半径是12,如图当E 与C 重合时,∠D ′AC =60°,所以AK =12,取O 为AD ′的中点,得到△OAK 是正三角形.故∠KOA =π3,所以∠KOD ′=2π3,射影K 的轨迹长度为12×2π3=π3.课时精练一、单项选择题1.在正方体ABCD -A 1B 1C 1D 1中,Q 是正方形B 1BCC 1内的动点,A 1Q ⊥BC 1,则Q 点的轨迹是()A .点B 1B .线段B 1C C .线段B 1C 1D .平面B 1BCC 1答案B 解析如图,连接A 1C ,因为BC 1⊥A 1Q ,BC 1⊥A 1B 1,A 1Q ∩A 1B 1=A 1,A 1Q ,A 1B 1⊂平面A 1B 1Q ,所以BC 1⊥平面A 1B 1Q ,又B 1Q ⊂平面A 1B 1Q ,所以BC 1⊥B 1Q ,又BC 1⊥B 1C ,所以点Q 在线段B 1C 上.2.(2023·佛山模拟)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,点P 为正方形A 1B 1C 1D 1内的动点,满足直线BP 与下底面ABCD 所成角为60°的点P 的轨迹长度为()A.33B.3π6 C.3 D.3π2答案B 解析直线BP 与下底面ABCD 所成的角等于直线BP 与上底面A 1B 1C 1D 1所成的角,连接B 1P ,如图,因为BB 1⊥平面A 1B 1C 1D 1,PB 1⊂平面A 1B 1C 1D 1,所以BB 1⊥PB 1,故∠BPB 1为直线BP 与上底面A 1B 1C 1D 1所成的角,则∠BPB 1=60°,因为BB 1=1,所以PB 1=BB 1tan 60°=33,故点P 的轨迹为以B 1为圆心,33为半径,位于平面A 1B 1C 1D 1内的14圆,故轨迹长度为14×2π×33=3π6.3.如图,在三棱柱ABC -A 1B 1C 1中,M 为A 1C 1的中点,N 为侧面BCC 1B 1上的一点,且MN ∥平面ABC 1,若点N 的轨迹长度为2,则()A .AC 1=4B .BC 1=4C .AB 1=6D .B 1C =6答案B 解析如图,取B 1C 1的中点D ,BB 1的中点E ,连接MD ,DE ,ME ,由MD ∥A 1B 1∥AB ,DE ∥BC 1,又MD ⊄平面ABC 1,AB ⊂平面ABC 1,所以MD ∥平面ABC 1,同理可得DE ∥平面ABC 1,又MD ∩DE =D ,MD ,DE ⊂平面MDE ,所以平面MDE ∥平面ABC 1,又MN ∥平面ABC 1,故点N 的轨迹为线段DE ,又由DE =12BC 1=2,可得BC 1=4.4.已知四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 为正方形,侧棱与底面垂直,点P 是侧棱DD 1上的点,且DP =2PD 1,AA 1=3,AB =1.若点Q 在侧面BCC 1B 1(包括其边界)上运动,且总保持AQ ⊥BP ,则动点Q 的轨迹长度为()A.3B.2C.233D.52答案D 解析如图,在侧棱AA 1上取一点R ,使得AR =2RA 1,连接PR ,BR ,过点A 作AN ⊥BR 交BR 于点M ,交BB 1于点N ,连接AC ,CN ,BD ,由PR ∥AD ,可知PR ⊥AN ,BR ,PR ⊂平面BPR ,BR ∩PR =R ,从而AN ⊥平面BPR ,BP ⊂平面BPR ,所以BP ⊥AN ,又由BP 在平面ABCD 内的射影BD ⊥AC ,所以BP ⊥AC ,AN ,AC ⊂平面ACN ,AN ∩AC =A ,知BP ⊥平面ACN ,CN ⊂平面ACN ,所以BP ⊥CN ,所以动点Q 的轨迹为线段CN ,在Rt △ABN ,Rt △RAB 中,∠BAN =∠ARB ,所以Rt △ABN ∽Rt △RAB ,则BN AB =AB RA ,得BN =12,易得CN =BN 2+BC 2=122+12=52.5.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别是棱AD ,B 1C 1的中点.若点P 为侧面正方形ADD 1A 1内(含边界)动点,且B 1P ∥平面BEF ,则点P 的轨迹长度为()A.12B .1C.52D.π2答案C 解析取A 1D 1的中点M ,连接AM ,B 1M ,AB 1,EM ,FM ,如图所示,在正方体ABCD -A 1B 1C 1D 1中,AD ∥B 1C 1且AD =B 1C 1,因为E ,F 分别是棱AD ,B 1C 1的中点,则AE ∥B 1F 且AE =B 1F ,所以四边形AB 1FE 为平行四边形,则AB 1∥EF ,因为AB 1⊄平面BEF ,EF ⊂平面BEF ,所以AB 1∥平面BEF ,同理可证AM ∥平面BEF ,因为AB 1∩AM =A ,AB 1,AM ⊂平面AB 1M ,所以平面AB 1M ∥平面BEF ,因为AM ⊂平面AA 1D 1D ,若P ∈AM ,则B 1P ⊂平面AB 1M ,所以B 1P ∥平面BEF ,所以点P 在侧面AA 1D 1D 内的轨迹为线段AM ,由勾股定理可得AM =AA 21+A 1M 2=52.6.已知菱形ABCD 边长为2,∠ABC =60°,沿对角线AC 折叠成三棱锥B ′-ACD ,使得二面角B ′-AC -D 为60°,设E 为B ′C 的中点,F 为三棱锥B ′-ACD 表面上动点,且总满足AC ⊥EF ,则点F 轨迹的长度为()A .23B .33 C.3 D.332答案D 解析连接AC ,BD 交于点O ,连接OB ′,四边形ABCD 为菱形,∠ABC =60°,所以AC ⊥BD ,OB ′⊥AC ,△ABC ,△ACD ,△AB ′C 均为正三角形,所以∠B ′OD 为二面角B ′-AC -D 的平面角,于是∠B ′OD =60°,又因为OB ′=OD ,所以△B ′OD 为正三角形,所以B ′D =OB ′=OD =2×32=3,取OC 的中点P ,取CD 的中点Q ,连接EP ,EQ ,PQ ,所以PQ ∥OD ,EP ∥OB ′,所以AC ⊥EP ,AC ⊥PQ ,EP ∩PQ =P ,所以AC ⊥平面EPQ ,所以在三棱锥B ′-ACD 表面上,满足AC ⊥EF 的点F 轨迹为△EPQ ,因为EP =12OB ′,PQ =12OD ,EQ =12B ′D ,所以△EPQ 的周长为3×32=332,所以点F 轨迹的长度为332.二、多项选择题7.(2024·济南模拟)已知正方体ABCD -A 1B 1C 1D 1的各顶点均在表面积为12π的球面上,P 为该球面上一动点,则()A .存在无数个点P ,使得PA ∥平面A 1B 1C 1D 1B .当平面PAA 1⊥平面CB 1D 1时,点P 的轨迹长度为2πC .当PA ∥平面A 1B 1CD 时,点P 的轨迹长度为2πD .存在无数个点P ,使得平面PAD ⊥平面PBC答案ACD 解析因为该球的表面积为4πr 2=12π,故半径r =3,且正方体的棱长满足(2r )2=3a 2=12,故棱长a =2,选项A ,由题意可知平面ABCD ∥平面A 1B 1C 1D 1,且PA ∥平面A 1B 1C 1D 1,故PA ⊂平面ABCD ,则P 的轨迹为正方形ABCD 的外接圆,故有无数个点P 满足,故A 正确;选项B ,易知AC 1⊥平面CB 1D 1,且平面PAA 1⊥平面CB 1D 1,PA ⊂平面PAA 1,故P 的轨迹为矩形AA 1C 1C 的外接圆,其周长为2πr =23π,故B 错误;选项C ,因为PA ∥平面A 1B 1CD ,设过PA 且与平面A 1B 1CD 平行的平面为α,则P 的轨迹为α与外接球的交线,其半径为a 2=1,周长为2π,故C 正确;选项D ,若平面PAD ⊥平面PBC ,则点P 在以四边形ABCD 为轴截面的某个圆柱面上,该圆柱面与球面交线为曲线,故有无数个点P 满足,故D 正确.8.(2023·长沙模拟)在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为正方体表面上的动点,N 为线段AC 1上的动点,若直线AM 与AB 的夹角为π4,则下列说法正确的是()A .点M 的轨迹确定的图形是平面图形B .点M 的轨迹长度为π2+22C .C 1M 的最小值为2-1D .当点M 在侧面BB 1C 1C 上时,33AN +MN 的最小值为1答案BCD 解析如图,建立空间直角坐标系,则D (0,1,0),C 1(1,1,1),∵直线AM 与AB 的夹角为π4,当点M 在侧面AA 1D 1D 上时,AB ⊥AM ,不合题意;当点M 在底面A 1B 1C 1D 1和侧面CC 1D 1D (不包含边界)上时,点M 到直线AB 的距离大于AB 的长度,此时,AM 与AB 的夹角大于π4;当点M 在侧面AA 1B 1B 和底面ABCD 上时,可知线段AB 1,AC 满足题意;当点M 在侧面BCC 1B 1上时,由AB ⊥BM ,可知BM =AB ,此时弧B 1C 为所求.∴M 点的轨迹为线段AC ,AB 1,弧B 1C ,显然线段AC ,AB 1,弧B 1C 不共面,∴A 错误;对于B ,点M 的轨迹长度为π2+22,∴B 正确;对于C ,若M 在线段AC 上,则C 1M 的最小值为1,同理,若M 在线段AB 1上,则C 1M 的最小值也为1,若M 在弧B 1C 上,则C 1M 的最小值为C 1B -1=2-1,∴C 正确;对于D ,M (1,y ,z )(0≤y ≤1,0≤z ≤1),且y 2+z 2=1,由题意设N (λ,λ,λ),λ∈[0,1],则33AN +MN =λ+(1-λ)2+(y -λ)2+(z -λ)2≥λ+(1-λ)2=λ+(1-λ)=1,当且仅当y =z =λ,且y 2+z 2=1,即y =z =λ=22时,等号成立,∴D 正确.三、填空题9.已知正方体ABCD -A 1B 1C 1D 1的棱长为2,M 为棱B 1C 1的中点,N 为底面正方形ABCD上一动点,且直线MN 与底面ABCD 所成的角为π3,则动点N 的轨迹长度为________.答案43π9解析如图所示,取BC 中点G ,连接MG ,NG ,由正方体的特征可知,MG ⊥底面ABCD ,故MN 与底面ABCD 的夹角即为∠MNG ,所以∠MNG =π3,则MG NG =tan π3⇒NG =233,故点N 在以G 为圆心,233为半径的圆上,又N 在底面正方形ABCD 上,即点N 的轨迹为图示中的圆弧 EF ,易知BG EG =1233=32⇒∠EGB =π6⇒∠EGF =π-π6-π6=2π3,所以动点N 的轨迹长度为233×2π3=43π9.10.如图所示,在平行四边形ABCD 中,E 为AB 中点,DE ⊥AB ,DC =8,DE =6.沿着DE 将△ADE 折起,使A 到达点A ′的位置,且平面A ′DE ⊥平面ADE .设P 为△A ′DE 内的动点,若∠EPB =∠DPC ,则点P 的轨迹长度为______.答案4π3解析建立如图所示的空间直角坐标系,则D (0,0,0),C (0,8,0),E (6,0,0),B (6,4,0),设P (x ,0,z ),则PD →=(-x ,0,-z ),PC →=(-x ,8,-z ),PE →=(6-x ,0,-z ),PB →=(6-x ,4,-z ),∴cos ∠EPB =cos 〈PE →,PB →〉=PE →·PB →|PE →||PB |→=(6-x )2+z 2(6-x )2+z 2(6-x )2+16+z 2,cos ∠DPC =cos 〈PD →,PC →〉=PD →·PC →|PD →||PC |→=x 2+z 2x 2+z 2x 2+64+z 2,∵∠EPB =∠DPC ,∴cos ∠EPB =cos ∠DPC ,∴(6-x )2+z 2(6-x )2+z 2(6-x )2+16+z 2=x 2+z 2x 2+z 2x 2+64+z 2,整理化简得x 2+z 2-16x +48=0,即(x -8)2+z 2=16,∴点P 的轨迹为圆弧,所在圆交A ′E 于P 1(6,0,23),交DE 于P 2(4,0,0),则|P 1P 2—→|=(6-4)2+(0-0)2+(23-0)2=4,∴ 12PP 所对应的圆心角α=π3,∴弧长l =αr =π3×4=4π3,即点P 的轨迹长度为4π3.。

立体几何中的轨迹问题(详细版)

立体几何中的轨迹问题(详细版)

立体几何中的轨迹问题高考数学有一类学科内的综合题,它们的新颖性、综合性,值得我们重视,在知识网络交汇点处设计试题是高考命题改革的一个方向,以空间问题为为背景的轨迹问题作为解析几何与立体几何的交汇点,由于知识点多,数学思想和方法考查充分,求解比较困难。

通常要求学生有较强的空间想象能力,以及能够把空间问题转化到平面上,再结合解析几何方法求解,以下精选几个问题来对这一问题进行探讨,旨在探索题型规律,揭示解题方法。

一、用空间运动的观点来得到点的轨迹。

例1:直线PA 是平面M 的一条斜线,斜足为A ,动直线PB 过点P 且与直线PB 垂直,且交平面M 于点B ,求动点B 的轨迹。

解:先探讨直线PB 的运动轨迹,由于直线PB 始终与PA 垂直,可知PB 的运动轨迹应是直线PA 的垂直平面N 。

再结合点B 一定在平面M 内,所以点B 的轨迹应该是两个平面的交线,所以点B 的轨迹是一条直线。

针对以上解法,我们对这一问题作一深层次的探讨:若直线PA 与平面M 成α角,直线PB 始终与直线PA 成β角,再来求点B 的轨迹。

由上述解法可知,我们只要得到直线PB 的空间轨迹,再来考察该轨迹与平面M 的交线即可。

由简单的模型模拟即可知,直线PB 的轨迹是一个圆锥面,再用一个平面截圆锥面,这一知识在平面解析几何中圆锥曲线的来历中有提到,即所得曲线可能是圆、椭圆、抛物线、双曲线。

因此,我们在以下命题:直线PA 是平面M 的一条斜线,且与平面M 成α角,斜足为A ,动直线PB 过点P 且与直线PB 成β角,交平面M 于点B ,求动点B 的轨迹。

结论: (1)若α=90°,β≠90°,则动点B 的轨迹是一个圆; (2)若α≠90°,β=90°,动点B 的轨迹是一条直线;(3)若α≠90°,β≠90°,则①若90°>α>β,则轨迹是椭圆; ②若α=β,则轨迹是抛物线; ③若α<β,则轨迹是双曲线。

立体几何中动点轨迹问题

立体几何中动点轨迹问题
查求轨迹 的基本方法 。下面从两个方面说明。

滁州
2 3 9 0 0 0 )
证 明同例 1的② , 略, 注: 其
中s i n 0 : 2 X / 2

变式 2 :在 四棱 锥 P _ - A B C 中, 面P A B上面 A B C D, 且 A D上
AB, BC J . AB, AD=4, BC=8, AB= 6,
在面 S B C内的一部分。
②面 S B C不垂 直面 A B C时 ,过 P作 P G上面 A B C于 G, 过
1 T 、 l
G作 G H ̄B C, 则B C ̄P H, 则 R t aP G H 中, B c —A的二面角) 。
s i n 0为 S _ _
SBC
和“ 激励” 下, 使幼儿 自主地进入表现音乐 的最佳状 态—— “ 情于 歌声 中” , 使幼儿的歌唱兴趣、 音乐能力得 到更好 的发展 。
激发幼儿学习兴趣 、发挥主动性是幼儿歌唱活动中的较高
8 8
感 的抒发 , 良好个性 的发展。
模式 , 为了促进幼儿的歌唱潜能的发展 , 最关键 的是要激发 幼儿 的表 现欲望 、 激情 与灵感 , 使 每一位幼儿都有无 拘无 束 、 适合 表 现、 自由释放 的机会 ; 我们要接纳每一位幼儿不同的、 多元 、 可变 的、 有相当 自由度 的表现形式 , 幼儿在前 , 教师在后 , 让幼儿 的兴 趣激发在先 , 让课堂成为“ 唤醒 ” 和“ 激励” 的地方 , 在这种“ 唤醒”
N 2 雪 0 1 4 年 第 3 3 期 ( 总 痛 第 2 论 6 1 坛 期 )
立体几何中动点轨迹问题
岳新 霞 ( 安徽 省 滁 州来自 中 , 安徽立体 几何 中动点轨迹 问题是 较为新颖 的一种 创新命 题形 式 ,它重点体现了在解析几何与立体几何 的知识交汇处设计 图 形, 不仅能考查立体几何点线面之间的位置关系 , 又能巧妙地考

高中数学精讲精练立体几何中动点的轨迹问题ppt课件

高中数学精讲精练立体几何中动点的轨迹问题ppt课件
立体几何中动点的轨迹问题
引题:
(1)正方体ABCD–A1B1C1D1的棱长为2,点M是BC的中 点,点P是平面ABCD内的一个动点,且满足PM=2,P 到直线A1D1的距离为 5 ,则点P的轨迹是( ) A.圆 B.双曲线 C.两个点 D.直线 (2)如图AB是平面α的斜线段,A为斜足,若点P在平面 α内运动,使得△ABP的面积为定值,则动点P的轨迹 是( ) A.圆 B.椭圆 C.一条直线 D.两条平行直线
A1
B1 C1 F E
D1
A C
D
3 2 3 B 3 2 13 C . m m m D . m 2 5 2 2
例2. 在正方体ABCD-A1B1C1D1中,P是侧面BB1C1C内 一动点,若P到直线BC与直线C1D1的距离相等,则动 点P的轨迹所在的曲线是 ( ) A.直线 B.圆 C.双曲线 D.抛物线
D1 C1 B1
A1
变式:若 PA 2PQ,结果如何?
O
A
D
C B
例3.已 知 正 方 体 ABC D- A1B1C1D1的 棱 长 为 3, 点O在 棱 AA1上 , 且 O A1 2O A ,平面 过 点O且 垂 直 于 AA1, 点P 在平面 内 ,PQ A1C1于 点Q . 若PA 2PQ, 则 点 P的 轨 迹 是 __________ _.
D C B
空间动点问题策略一: 动态问题静态化
E
A
练习 1.如 图 正 方 体 ABCD A1 B1C1 D1中, E为 棱DD1上 的 1 一 点, DE DD1,F为 侧 面 CDD1C1上 的 动 点 ,且 3 B1 F 平 面A1 BE , 则B1 F与 平 面 CDD1C1所 成 角 的 正 切值构成的集合为 3 A . 2 2 13 B . 5

立体几何中轨迹问题的盘点

立体几何中轨迹问题的盘点

又 P ;  ̄ A… PP 1 ‘ in 。 16 7 s一 / P. A 一 ×n . b : u - b 3 , A , d
(- ,s 一E由 干 o l i 万,题 , 则n P  ̄
立意知: PE — PH, . ・ .
sn ∈ ( 1 ia 0,],

/ x )+ 一2 ̄ + , ( -6 / 化简知点 P的轨迹为圆.
例 4 正 方 体 AB D C -
A, 的 棱 长 为 1 在 正 方 BC D ,
体 表 面 上 与 点 A 距 离 是 √ 的
点 形 成 一 条 曲线 , 条 曲 线 的 长 这
度是 ( )

() A
( c)
(霉 B/ )
( D)
解 :’ . 。—



< < , ,


BD1 面 ABl 上 C,. ’ .BD1 B1 故 选 ( . 上 C, A)
例 2 若 三 棱 锥 B D 的 侧 面 AB 内 一 动 点 P C C 到 底 面 BC 的 距 离 与 到 棱 AB 的 距 离 相 等 , 动 点 P D 则
例 1 如 图 , 方 体 AB D- 正 C A B C 中 , 点 t D P 在 侧 面 B C。 及 其 边 界 上 运 动 , 且 总 C B 并 保 持 AP B , 动 点 P 的 轨 迹 上 D, 则
是 ( ) A
在 平 面 a内 , A为 原 点 , B所 在 直线 为 z轴 建 立 以 A 平 面 直 角 坐 标 系 , A( , ) B( , ) 设 P( , , 则 00 , 6 o , z ) 得

‘ .
பைடு நூலகம்
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档