西南交大高等数学IB离线作业完整答案
第二学期高等数学(B)Ⅱ期末考试试卷答案
解:
G G i j G ∂ ∂ rot A = ∂x ∂y 2 z − 3 y 3x − z
2002-2003 学年第二学期高等数学(B)Ⅱ期末考试试卷答案
北 方
交
通
大
学
2002-2003 学年第二学期高等数学(B)Ⅱ期末考试试卷答案
一.计算题(本题满分 35 分,共有 5 道小题,每道小题 7 分) , 1.设 z = arctan 解:
y ,求 dz . x
⎛ y⎞ ⋅ d⎜ ⎟ , ⎝ x⎠ ⎛ y⎞ 1+ ⎜ ⎟ ⎝x⎠ 1
z = 4 1−
求下雨时过房顶上点 P 1, 解:
x2 y2 − . 16 36
(
3,
11 处的雨水流下的路线方程(不考虑摩擦) .
)
雨水沿 z 轴下降最快的方向下流,即沿着 z 的梯度
grad z =
∂z G ∂z G i+ j ∂y ∂x
的反方向下流.因而雨水从椭球面上流下的路线在 xOy 坐标面上的投影曲线上任一点处的切线应与
G k G G G ∂ = 2 i + 4 j + 6k ∂z y − 2x
5.求解微分方程 y ′′ + 4 y = 4 cos 2 x . 解: 先解对应的齐次方程 y ′′ + 4 y = 0 .其特征方程为 r + 4 = 0 ,得其解为 r1 = 2i , r2 = −2i .因而对
最新西南交通大学高等数学练习题答案详解优秀名师资料
西南交通大学高等数学练习题答案详解精品文档西南交通大学高等数学练习题答案详解高等数学1. 函数y?xcos2? A. 奇函数x3?x是1?xB. 偶函数C. 非奇非偶函数D. 有界函数2. 函数y?2cos的周期是B.?C.?D. 0an?2,. 设数列an,bn及cn满足:对任意的n,an?bn?cn,且limn??lim?0,则limbn?n??n??A. 0B. 1C.D. -21 / 32精品文档x2?2x?14. lim=x?ix3?xA.1B. 0C.1D. ?5. 在抛物线y?x2上点M的切线的倾角为 A. 1124tan2x?,则点M的坐标为11B. C. D.426.limx?0e?1?sinxB.2 / 32精品文档1xA. 0 C. 1 D. -27. A.limx?012B. eC.1D. ?8. 设曲线y?x与直线x=2的交点为P,则曲线在P点的切线方程是 A x-y-4=0B x+y-1=0C x+y-3=0D x-y+2=09. y?x?3?sinx,则y?? A. xx?1xx?3x?cosx1B. x?3ln3?cosxxxC. xlnx?3ln3?cosxxxD. x?3ln3?cosx3 / 32精品文档xx10. f在点x0可微是f在点x0连续的 A. 充分条件B. 必要条件C. 充分必要条件D. 无关条件11. 函数y?2x3?6x2?18x?7单调减少的区间是 A.B. x? D.C. ,12.?sin3xdx?11cos3x?c B. ?cos3x?C C. ?cos3x?C D. cos3x?C3 21dt,则??? 13. 设??? sinx1?t21cosxcosx1?? A.B.C.D.1?sin2x1?sin2x1?sin2x1?sin2xA.14. 函数5e的一个原函数为 A.e5x5xB.e4 / 32精品文档5xC.15xeD. ?e5x15.??2??2xcos3xdx= B.A.2???4C. 0D.216. 下列广义积分收敛的是 A.5 / 32精品文档??dxx1B.dx? 022C.??11dx 1?xD.?adxa?x2217. 下列集合可作为一条有向直线在空间直角坐标系中的方向角?,?,?的是 A. 5?,45?,60?C. 0?,45?,60?,18. 设函数f?xy? A. 06 / 32精品文档B. 12B.5?,60?,60? D.5?,60?,90? y,则f?=xxC. ?1D.2219. 设函数u?ln,则du2=A.1C. dx?dy?dz 0.24D.3B.7 / 32精品文档23x ??xA?2xcos2x B xsinx2C sinxDsin2x2. 当D?{|x2?y2?1} 时,则??dx?DA ?B 1C 0D ?a23. 设a?0,则?? A.?B.?C.发散D.?4225. 曲面z?x2?y2在点处的切平面方程是A.?4??0 B ?4??0 C. ?2??0,D.?4??0?26. 判断级数?n?118 / 32精品文档n?12n2?n是 A绝对收 . B条件收敛. C 发散 . D 以上都不正确 . ?g27. f???x,x?0其中g?=2要使f在x?0处连续,则a?A. 0B. 1C.D. e28. 方程y???4y?0的通解是 A. y?Ce2x?Ce?2xC.y?C1e2x?C2e?2x?B. y?C1e2x?e?2x D. y?e2x?C2e?2xn?1x2n?129. ?内的和函数是n?1!AsinxB cosx Cex30. 设f?3??x9 / 32精品文档20tdt,,则f=西南交通大学网络教育2010年秋季入学考试模拟题高等数学1.函数y?x2sinx?ln,则y?? A. xx?1x3?3x?cosx2B. x?3ln3?cosx D. x?3ln3?cosxxxxxC. x?3x?sinxx7. f在点x0可导是f在点x0连续的 A. 充分条件B. 必要条件C. 充分必要条件D. 无关条件8. 函数y?2x3?6x2?18x?7单调减少的区间是 A.B. x? D.10 / 32精品文档C. ,1x9. 曲线y?e?1的水平渐近线方程为 A. x?1B. y?1C. x?0D.y?0210.?5一、填空题: 1(设函数z?z是由?nxz?lnzy所确定,则dz?0,1,1??dx?dy (?2(设幂级数?anx的收敛区间为??3,3?,则幂级数?an?x?1?的收11 / 32精品文档n?0n?0n敛区间为 ??2,4? ((设函数??x,f???0,y???x?00?x??的付氏级数的和函数为S,则S??2(4(设z?f,其中f具有连续的二阶偏导数,则x??z?x?y2=1x???f121x12 / 32精品文档2f2??yx3?? ( f225(设幂级数?an?x?1?在x?0处收敛,而在x?2处发散,则幂级数?anxn的n?0n?0n?收敛域为 [?1,1)((函数?n?1?n关于x的幂级数展开式为 ? ( f??1??x,x?2n?1x?x?2n?0?2?3?y7(设函数z?x,则dz? dx?2ln2dy8(曲线x?t,y??t2,z?t3的切线中,与平面x?2y?3z?6垂直的切线方程是13 / 32精品文档x?11?y?1?2?z?13z(9(设z?z是由方程e?zsin?lna a?0为常数所确定的二元函数,则 dz? yzcose?sin2zdx?xzcose?sinzdy(10.旋转抛物面z?x?y的切平面:x?4y?8z?1?0,2平行与已知平面x?y?2z?1.111(微分方程2y???y??y?0的通解为 Y?C1e2x?C2e14 / 32精品文档?x,1x2y???y??y?e的通解为 y?C1e2?C2ex?x?12e(x12.曲线?:x??tecosudu,y?2sint?cost,z?1?eu3t在点?0,1,2?处的切线方程为3(函数f?1x?4的麦克劳林级数的第5项为?x44515 / 32精品文档,收敛域为.14.(已知函数f?2x?3y?x?y,有一个极值点,则a?2, b?3,此时函数f 的极大值为 .ab15.试写出求解下列条件极值问题的拉格朗日函数:分解已知正数a为三个正数x,y,z之和,使x,y,z的倒数之和最小L?x,y,z??1x?1y?1z???x?y?z?a?16函数f?xln?1?x?的麦克劳林级数的收敛域为x???1,1?,f?二、单项选择题:请将正确结果的字母写在括号内。
【交大】高等数学习题及详细解答
1. 利用定积分定义计算由直线y =x +1,直线x =a ,x =b (a<b )及x 轴所围成的图形的面积. 解 因y =x +1在[a,b ]上连续,所以x +1在[a,b ]上可积,从而可特殊地将[a,b ]n 等分,并取,,()()1i i i b a b a b aa i x f a i n n nξξ---=+==++Δ, 于是111()[()1]1()(1)11()[(1)(1)()]2nni i i i ni b a b af x a i n nb a b a a i n n b a n a n b a n ξ===--=++-=-++=-+++-⋅∑∑∑Δ 故面积 2111(1)lim ()()(1)22nbi i an i b a S x x f x b a a b a n ξ→∞=-=+==-+++-∑⎰d Δ 1()(2)2b a a b =-++2. 利用定积分的几何意义求定积分: (1)102d x x ⎰;(2) 0ax ⎰(a >0).解 (1)根据定然积分的几何意义知, 102d x x ⎰表示由直线y =2x ,x =0,x =1及x 轴所围的三角形的面积,而此三角形面积为1,所以12d x x ⎰=1.(2) 根据定积分的几何意义知,0ax ⎰表示由曲线0,y x x a ===及x 轴所围成的14圆的面积,而此14圆面积为214πa ,所以2014πx a =⎰.3. 根据定积分的性质,比较积分值的大小: (1)120d x x ⎰与130d x x ⎰; (2)1e d x x ⎰与1(1)d x x +⎰.解 (1)∵当[0,1]x ∈时,232(1)0x x x x -=-≥,即23x x ≥,又2x3x ,所以11230d d x x x x >⎰⎰.(2)令()1,()1e e x xf x x f x '=--=-,因01x ≤≤,所以()0f x '>, 从而()(0)0f x f ≥=,说明1e xx ≥+,又e x1+x .所以11(1)e d d xx x x >+⎰⎰.4. 估计下列各积分值的范围: (1)421(1)d x x +⎰;(2) arctan d x x ;(3)2e d ax ax --⎰(a >0); (4)22e d xxx -⎰.解 (1)在区间[1,4]上,函数2()1f x x =+是增函数,故在[1,4]上的最大值(4)17M f ==,最小值(1)2m f ==,所以4212(41)(1)17(41)d x x -≤+≤-⎰, 即 4216(1)51d x x ≤+≤⎰.(2)令()arctan f x x x =,则2()arctan 1xf x x x '=++,当x ∈时,()0f x '>,从而()f x在上是增函数,从而f (x )在上的最大值M f ==,最小值πm f ==所以2arctan 93ππππd x x =≤≤= 即2arctan 93ππd x x x ≤≤.(3)令2()e x f x -=,则2()2e x f x x -'=-,令()0f x '=得驻点x =0,又(0)1f =,2()()ea f a f a -=-=,a >0时, 21ea -<,故()f x 在[-a,a ]上的最大值M =1,最小值2ea m -=,所以2222ee d aa x aa x a ---≤≤⎰.(4)令2()e xxf x -=,则2()(21)e xxf x x -'=-,令()0f x '=得驻点12x =,又(0)1,f = 1241(),(2)2e ef f -==,从而()f x 在[0,2]上的最大值2e M =,最小值14e m -=,所以 212242ee d e x x x --≤≤⎰,而2222ed e d x xx x x x --=-⎰⎰,故 21024222e ed ex xx ---≤≤-⎰.5. 设f (x )及g (x )在[a , b ]上连续, 证明:(1)若在[a , b ]上, f (x )≥0, 且0)(=⎰ba dx x f , 则在[a ,b ]上f (x )≡0; (2)若在[a , b ]上, f (x )≥0, 且f (x )≢0, 则0)(>⎰ba dx x f ;(3)若在[a , b ]上, f (x )≤g (x ), 且⎰⎰=b a ba dx x g dx x f )()(, 则在[a ,b ]上f (x )≡g (x ).证明 (1)假如f (x )≢0, 则必有f (x )>0. 根据f (x )在[a , b ]上的连续性, 在[a , b ]上存在一点x 0, 使f (x 0)>0, 且f (x 0)为f (x )在[a , b ]上的最大值.再由连续性, 存在[c , d ]⊂[a , b ], 且x 0∈[c , d ], 使当x ∈[c , d ]时, 2)()(0x f x f >. 于是0)(2)()()()()()(0>-≥≥++=⎰⎰⎰⎰⎰c d x f dx x f dx x f dx x f dx x f dx x f dc bd d c c a b a . 这与条件0)(=⎰ba dx x f 相矛盾. 因此在[a ,b ]上f (x )≡0.(2)证法一 因为f (x )在[a , b ]上连续, 所以在[a , b ]上存在一点x 0, 使f (x 0)>0, 且f (x 0)为f (x )在[a , b ]上的最大值.再由连续性, 存在[c , d ]⊂[a , b ], 且x 0∈[c , d ], 使当x ∈[c , d ]时, 2)()(0x f x f >. 于是⎰⎰>-≥≥badcc d x f dx x f dx x f 0)(2)()()(0. 证法二 因为f (x )≥0, 所以0)(≥⎰ba dx x f . 假如0)(>⎰ba dx x f 不成立. 则只有0)(=⎰ba dx x f , 根据结论(1), f (x )≡0, 矛盾. 因此0)(>⎰ba dx x f .(3)令F (x )=g (x )-f (x ), 则在[a , b ]上F (x )≥0且0)()()]()([)(=-=-=⎰⎰⎰⎰ba b a b a b a dx x f dx x g dx x f x g dx x F ,由结论(1), 在[a , b ]上F (x )≡0, 即f (x )≡g (x ).1. 求下列导数:(1) 20d d x t x ⎰; (2) 53ln 2d e d d x t t t x -⎰;(3) cos 2sin cos()d xxt t '⎡⎤π⎢⎥⎣⎦⎰; (4) 22dsin d d xtt xtπ⎰(x >0). 解220(1)()2d d x t x x'==⎰5353ln 2(2)d e d e d x tx t t x x --=⎰cos cos sin 222sin 00cos sin 220022222(3)cos()cos()cos()cos()cos()cos(cos )(cos )cos(sin )(sin )cos(cos )sin cos(sin )cos cos(sin )sin πd πd πd πd πd πππππx x xx xx t t t t t t t t t tx x x x x x x x x x ''⎡⎤⎡⎤=-⎣⎦⎣⎦''⎡⎤⎡⎤=-⎣⎦⎣⎦''=⋅-⋅=--=-⎰⎰⎰⎰⎰22cos(sin )cos (sin cos )cos(sin )ππx x x x x =-2222sin sin sin (4)cos sin sin cos .ππd d d d d d d d d d xx t t x t t xt x x x t x x x x x x x x x⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭--=-=⎰⎰2. 求下列极限:(1) 02arctan d limxx t t x→⎰; (2) 2030sin 3d lime d x xx tt t t t→-⎰⎰; (3)()22220e d lime d x t xx t t t t→⎰⎰.解 ()002200021arctan arctan arctan 11(1)limlim lim lim 222d d x xx x x x t t t t x x x x x →→→→'⎡⎤--⎣⎦+====-'⎰⎰2220030003300222200sin 3sin 3sin 32(2)lim lim lim 2sin 3sin 3lim lim 663d d e e d e d e e x x x x x x x t xt x xx x t t t t x x x t tt t x x x x-→→→--→→'⎡⎤⋅⎢⎥⎣⎦=='⎡⎤⎣⎦=⋅=⋅⋅=⎰⎰⎰⎰ ()()[]222222222222222200002000022000200022(3)lim lim lim lim 222lim lim lim 2122e d e d e d e e d e e e d e d e d e e e e xxx x t t t x tx x x x x x x t x t x t x x x x x x x t t t t x x t tt t t x x x x →→→→→→→'⎡⎤⋅⎢⎥⎣⎦==='⎡⎤⎣⎦'⎡⎤⎣⎦====+'+⋅⎰⎰⎰⎰⎰⎰⎰ 3. 求由方程e d cos d 0yxt t t t +=⎰⎰所确定的隐函数y =y (x )的导数.解 方程两边对x 求导数得:cos 0e y y x '⋅+=, cos e yxy '∴=-. 又由已知方程有000sin e y xtt +=,即1sin sin 00e y x -+-=即1sin e yx =-,于是有cos cos sin 1e yx xy x '=-=-.4. 当x 为何值时,I (x )=2e d xt t t -⎰有极值?解 2()e x I x x -'=,令()0I x '=得驻点0x =,又22()(12),(0)10e x I x x I -''''=-=>, 所以当x =0时,I (x )有极小值,且极小值为I (0)=0.5. 计算下列定积分:(1)3x ⎰; (2)221d x x x --⎰;(3)()d f x x π⎰,其中,0,2()sin ,2x x f x x x π⎧≤≤⎪⎪=⎨π⎪≤≤π;⎪⎩ (4){}222max 1,d x x -⎰.解433322233222(1)(43)(8333x x ⎛⎫==-=- ⎪⎝⎭⎰21222221101(2)()()()d d d d x x x x x x x x x x x x --=-+-+--⎰⎰⎰⎰012322332101111111116322332x x x x x x -⎛⎫⎛⎫⎛⎫=++=--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()22220022(3)()sin 1cos 82ππππππππd d d xf x x x x x x x =+=+=+-⎰⎰⎰(4)由于22221()max{1,}11112x x f x x x x x ⎧-≤<-⎪==-≤<⎨⎪≤≤⎩,于是 21121212223312122111120max{1,}333d d 1d d x x x x x x x x x x -------=++=++=⎰⎰⎰⎰6. 已知f (x )连续,且f (2)=3,求2222()d d lim(2)xt x f u u t x →⎡⎤⎢⎥⎣⎦-⎰⎰.解 []222222222222()()()()limlim lim lim(2)2(2)2(2)(2)x xt t x xx x x x t f u u t f u u f u u f u u x x x x →→→→''⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦===--''-⎡⎤-⎣⎦⎰⎰⎰⎰⎰⎰d d d d d d 22()113lim lim ()(2)2222x x f x f x f →→-==-=-=-.7. 设k 为正整数. 试证下列各题: (1)⎰-=ππ0cos kxdx ;(2)⎰-=ππ0sin kxdx ;(3)⎰-=πππkxdx 2cos ;(4)⎰-=πππkxdx 2sin.证明 (1)⎰--=-=--==ππππππ000)(sin 1sin 1|sin 1cos k kk k kx k kxdx . (2))(cos 1cos 1cos 1sin ππππππ-+-=-=--⎰k kk k x k k kxdx0cos 1cos 1=+-=ππk k k k .(3)πππππππππ=+=+=+=---⎰⎰22|)2sin 21(21)2cos 1(21cos 2kx k x dx kx kxdx . (4)πππππππππ=+=-=-=---⎰⎰22|)2sin 21(21)2cos 1(21sin 2kx k x dx kx kxdx .8. 设k 及l 为正整数, 且k ≠l . 试证下列各题: (1)⎰-=ππ0sin cos lxdx kx ;(2)⎰-=ππ0cos cos lxdx kx ;(3)⎰-=ππ0sin sin lxdx kx .证明 (1)⎰⎰----+=ππππdx x l k x l k lxdx kx ])sin()[sin(21sin cos 0])cos()(21[])cos()(21[=----++-=--ππππx l k l k x l k l k .(2)⎰⎰---++=ππππdx x l k x l k lxdx kx ])cos()[cos(21cos cos 0])sin()(21[])sin()(21[=--+++=--ππππx l k l k x l k l k .(3)⎰⎰----+-=ππππdx x l k x l k lxdx kx ])cos()[cos(21sin sin .0])sin()(21[])sin()(21[=--+++-=--ππππx l k l k x l k l k .9. 设⎩⎨⎧∈∈=]2 ,1[ ]1 ,0[ )(2x x x x x f . 求⎰=x dt t f x 0)()(ϕ在[0, 2]上的表达式, 并讨论ϕ(x )在(0,2)内的连续性.解 当0≤x ≤1时, 302031)()(x dt t dt t f x xx===⎰⎰ϕ; 当1<x ≤2时, 6121212131)()(2211020-=-+=+==⎰⎰⎰x x tdt dt t dt t f x x xϕ.因此 ⎪⎩⎪⎨⎧≤<-≤≤=21 612110 31)(23x x x x x ϕ.因为31)1(=ϕ, 3131lim )(lim 30101==-→-→x x x x ϕ,316121)6121(lim )(lim 20101=-=-=+→+→x x x x ϕ,所以ϕ(x )在x =1处连续, 从而在(0, 2)内连续.10. 设⎪⎩⎪⎨⎧><≤≤=ππx x x x x f 或0 00 sin 21)(. 求⎰=x dt t f x 0)()(ϕ在(-∞, +∞)内的表达式.解 当x <0时, 00)()(0===⎰⎰xxdt dt t f x ϕ;当0≤x ≤π时, 21cos 21|cos 21sin 21)()(00+-=-===⎰⎰x t tdt dt t f x xxxϕ; 当x >π时, πππϕ00|cos 210sin 21)()(t dt tdt dt t f x x x-=+==⎰⎰⎰10cos 21cos 21=+-=π. 因此 ⎪⎩⎪⎨⎧≥≤≤-<=ππϕx x x x x 10 )cos 1(210 0)(.11. 设f (x )在[a , b ]上连续, 在(a , b )内可导且f '(x )≤0, ⎰-=xa dt t f ax x F )(1)(. 证明在(a , b )内有F '(x )≤0.证明 根据积分中值定理, 存在ξ∈[a , x ], 使))(()(a x f dt t f xa-=⎰ξ. 于是有)(1)()(1)(2x f ax dt t f a x x F xa-+--='⎰))(()(1)(12a x f a x x f a x ----=ξ)]()([1ξf x f ax --=. 由f '(x )≤0可知f (x )在[a , b ]上是单调减少的, 而a ≤ξ≤x , 所以f (x )-f (ξ)≤0. 又在(a , b )内,x -a >0, 所以在(a , b )内 0)]()([1)(≤--='ξf x f ax x F .。
西南交通高等数学IIB离线作业
西南交《高等数学IIB》离线作业一、单项选择题(只有一个选项正确,共10道小题)1. A(A) 1(B) 0(C) 2(D) 32. 在点(2,1,0)的法向量为()B(A) (1,1,0)(B) (1,2,0)(C) (0,1,2)(D) (1,1,1)3. B(A) 1(B) 2(C) 3(D) 44. 微分方程的通解是()A(A)(B)(C)(D)5. B(A) 1(B) 2(C) 3(D) 46. 微分方程的通解为(D )(A)(B)(C)(D)7. B(A) 1(B) -1(C) 0(D) -28. 微分方程的通解为(A )(A)(B)(C)(D)9. 微分方程的通解为(C )(A)(B)(C)(D)10. D(A) 1(B) 2(C) 3(D) 4四、主观题(共7道小题)11.求下列微分方程的通解:12.求下列一阶微分方程的通解:13.求下列二阶微分方程的通解:14.求下列各函数的定义域:15.求下列函数的偏导数:16.求下列函数的17.验证:一、单项选择题(只有一个选项正确,共6道小题)1. 设D是矩形区域,则D(A) 1/2(B) 2(C) 1/4(D) 42. 曲面在(2,1,2)点的法向量为(A )(A) (1,4,-1)(B) (1,0,0)(C) (1,4,1)(D) (-1,2,0)3. 设D是矩形区域,则C(A) 1/3(B) 2/3(C) 1/4(D) 3/44. 若,则C(A)(B)(C)(D)5. 若则D(A) 0(B) 1(C) 2(D) 36. 若则B(A)(B)(C)(D)四、主观题(共7道小题)7.设,则,求8.设,而,求9.求函数的极值.10.求函数的极值.11.计算下列二重积分(1),其中D是由两坐标轴及直线x+y=2所围成的闭区域;(2) ,其中D是矩形闭区域: ;(3),其中D是顶点分别为(0,0),(π,0),(π,π)的三角形闭区域.12.利用格林公式, 计算下列曲线积分:13.用比值审敛法判别下列级数的收敛性:一、单项选择题(只有一个选项正确,共4道小题)1. A(A) 3/2(B) 1/2(C) 1(D) 22. B(A) 1/4(B) 1/3(C) 1(D) -13. D(A)(B)(C)(D)4. C(A) x<2(B)(C) |x|<2(D) |x|>2四、主观题(共6道小题)5.利用极坐标计算下列各题:6.计算下列对弧长的曲线积分:7.计算下列对坐标的曲线积分: (3)8.利用格林公式, 计算下列曲线积分:9.判别下列级数的收敛性:10.判别下列级数是否收敛? 如果是收敛的, 是绝对收敛还是条件收敛?。
2009~2010学年第二学期《高等数学BII》半期试题参考答案
2009~2010学年第二学期《高等数学BII》半期试题参考答案西南交通大学2009-2010学年第(二)学期半期考试题一、单项选择题(共5个小题,每小题4分,共20分).1.累次积分cos 2(cos ,sin )d f r r rdr πθθθθ??可表示成【 D】(A )100(,)dy f x y dx ?(B )10(,)dy f x y dx(C )10(,)dx f x y dy ?(D )10(,)dx f xy dy ?解:根据该二重积分可知,积分区域为半圆域:01,0x y ≤≤≤≤,所以应选D 。
2. 两直线1112y z x λ+--==与11x y z +=-=相交,则必有【 D 】(A )1λ= (B )32λ=(C )54λ=- (D )54λ=解:直线11x y z +=-=的参数方程为:11x t y t z t =-??=+??=?,将此参数方程代入直线1112y z x λ+--==,得2122t t t λ+--==,解得654t λ=??=??,故应选(D )。
3.极限332200lim x y x y x xy y →→+-+=【 A 】(A) 0 (B) 1 (C)12(D)不存在极限解;因为33222222000000()()lim lim lim()0x x x y y y x y x y x xy y x y x xy y x xy y →→→→→→++-+==+=-+-+,故应选(A )。
4.曲面2xyz =的切平面与三个坐标面所围四面体的体积V =【 C 】 (A) 3 (B) 6 (C) 9 (D) 12解:设曲面2xyz =在第一卦限的任意一个切点为(,,)x y z ,则切平面方程为:班级学号姓名密封装订线密封装订线密封装订线()()()0yz X x xz Y y xy Z z -+-+-=,其中2xyz =,即36yzX xzY xyZ xyz ++==,则该切平面与三个坐标轴的交点分别为:6(,0,0)yz,6(0,,0)xz ,6(0,0,)xy ,则该切平面与三个坐标面所围四面体的体积221666363696()2V yz xz xy xyz ====,故应选(C )。
高等数学B解答
试卷号:高等数学B 下(答案)注:各主观题答案中每步得分是标准得分,实际得分应按下式换算:第步实际得分本题实际得分解答第步标准得分解答总标准得分N =N ⨯一、填空题(将正确答案填在横线上)(本大题分2小题, 每小题5分, 共10分)1、302、0二、解答下列各题(本大题共2小题,总计16分)1、(本小题8分)原式=102、(本小题8分)解:原式=)1cos 1(31sin sin 103203102-==⎰⎰⎰dy y y dx y dy y(10分)三、解答下列各题(本大题共2小题,总计16分)1、(本小题8分)∂∂ux x x y ===201dd arcsin (8分)=0 (10分)2、(本小题8分) 解:lim x y xxye xy →→-+00416=++-→→lim ()x y x xye xy xy 00416 8分=-8 10分四、解答下列各题(本大题共2小题,总计20分)1、(本小题10分)解:zz y y x x z e F f F f F e y x f z y x F -='='=-=,,,),(),,(, 6分{}0222,1,2,2=-----=z y x n 切平面为 。
10分2、(本小题10分)由z e xy y y z e x xy x x xy y xy =-++==-+-=⎧⎨⎪⎩⎪()()2310232022,得驻点(,),,--⎛⎝ ⎫⎭⎪211214 4分 D z z z z xxxy yx yy =)432()34232()34232()232(2232222232x x y x x e y x xy xy y x e y x xy xy y x e y y y xy e xy xy xy xy -+-+-++-+-++-++-= D e (,)-=-<-21504D e 12142014,-⎛⎝ ⎫⎭⎪=-<-8分点()--⎛⎝ ⎫⎭⎪211214,,,非极值点。
西南大学2018级《高等数学IB》英文课程考核试卷B及答案
西南大学 计算机与信息科学学院《高等数学IB 》课程试题 【B 】卷阅卷须知:阅卷用红色墨水笔书写,得分用阿拉伯数字写在每小题题号前,用正分表示,不得分则在题号前写0;大题得分登录在对应的分数框内;统一命题的课程应集体阅卷,流水作业;阅卷后要进行复核,发现漏评、漏记或总分统计错误应及时更正;对评定分数或统分记录进行修改时,修改人必须签名。
PLEASE ANSWER IN CHINESE OR IN ENGLISH!!1. Fill the best answer in the blanks (3 points each ,15 points in all)(1) The general solution to the differential equation )0(112d d >-=+x xy x y x is __________ .(2) The sum of the series++++⋅+⋅+⋅)1(1431321211n n is _________________. (3) The angle between the planes 15263=--z y x and 522=-+z y x isarccos ___________.(4) If z =22),(y x y x y x f +-+=, then =)4,3(d z_________________.(5) Reversing the order of integration:=⎥⎥⎦⎤⎢⎢⎣⎡⎰⎰y x y x f y y d d ),(10_______ __ __ __.2. Choose the correspondingletter of the best answer that completes the特别提醒:学生必须遵守课程考核纪律,违规者将受到严肃处statements or answers the questions among A, B, C, and D, and fill in the blanks (3 points each ,15 points in all).(1) The tangent plane of the surface 922=++z y x at the point (1, 2, 4) is _____ ______. A .1442=++z y x B .1442=+-z y x C .1442-=-+z y xD .1442=--z y x(2) Let ⎪⎩⎪⎨⎧=≠++=)0,0(),(,0)0,0(),(,)sin(),(2243y x y x y x y x y x f . Then the partial derivative)0,0(y f ∂∂ ________.A .does not existB .equals 1C .is equal to 0 D. is -1. (3) The interval of convergence of the power series ∑∞=--11)1(n nn nx is _____ ______. A .)1,1(- B .)1,1[- C .]1,1[-D .]1,1(-(4) The equation for the tangent to the ellipse 2422=+y x at the point (-2, 1) is ____ _____ . A. 12-=-y x B. 42-=-y x C. 42=-y x D. 42-=+y x (5) The surface integral with respect to area=⎰⎰S x Σd 2 ____ _____, where Σ i s the cone 10,222≤≤+=z y x z .A. 4π2 B. 3π2 C. 4π2- D. 3π2-3. Find the solutions for following problems by computing (8 points each ,40 points in all)(1) Find ()()115sin lim0,0,-+→xy x y y x .Solution(2) Integrate the surface integral⎰⎰++Sy x z z x y z y x d d d d d d downward the surface S :()h z y x z ≤≤+=0222.Solution(3) Evaluating the double integrals y x Ry d d e 2⎰⎰-,where R is the triangle region with vertices O (0, 0), A (1, 1), and B (0, 1). Solution(4) Use Stokes’ Theorem to e valuate the line integral ⎰++Cx z z y x x d d 4d e 22,whereC is curve determined by ⎪⎩⎪⎨⎧=+--=xy x y x z 242222counterclockwise as viewed from the positive z -axis direction.Solution (5)Applying Green’s Theorem toc alculate the line integral()()⎰-+-=Cy y y y x x xy I d cos e d 12e ,where C is the part of 2x y = from A (-1, 1) to B (1, 1).Solution4. Solve the following comprehensive problems (10 points each,30 points in all) (1) Find the shortest distance between 2xy=and 02=--yx.Solution(2) Find the sum of the series∑∞=-⎪⎭⎫⎝⎛11 21nn n.Solution(3) Let f (x ) has the continuous first-order derivative. Show that the line integral[]⎰-++Cy xy f y y x x y xy f y d 1)(d )(1222 is path independent in the upper half xy -plane ( y > 0), and compute the line integral from ⎪⎭⎫ ⎝⎛32,3 to (1, 2). Proof西南大学计算机与信息科学学院《高等数学》课程试题【B 】卷参考答案和评分标准 阅卷须知:阅卷用红色墨水笔书写,得分用阿拉伯数字写在每小题题号前,用正分表示,不得分则在题号前写0;大题得分登录在对应的分数框内;统一命题的课程应集体阅卷,流水作业;阅卷后要进行复核,发现漏评、漏记或总分统计错误应及时更正;对评定分数或统分记录进行修改时,修改人必须签名。
高等数学1B第一次作业答案 - 西南交通大学网络教育学院
(±1,0) ,
斜率为
k= y′=(1+ 1 x 2 ) | x=±1 =2 ,
所以切线方程为:
y=2(x±1)
15.
求下列函数的导数:
(1) y= (2x+5) 4 ; (2) y=cos (4−3x) ;(3) y=ln (1+ x 2 ) ; (4) y= sin 2 x ; (5) y= sin 2x x ; (6) y=ln (x+ a 2 + x 2 )
(4)
lim x→0 xcot x= lim x→0 x sin x cos x=1 .
(5)
lim x→0 1−cos 2x xsin x = lim x→0 1−cos 2x x 2 x sin x = lim x→0 [ sin 2x x 2 ] 2 1 1+cos 2x =2 .
(6)
lim x→+∞x( x 2 +1 −x)= lim x→+∞x x 2 +1 +x = lim x→+∞1 1+ 1 x 2 +1 = 1 2
6.
利用夹逼准则证明:
(1) lim n→∞( n n 2 +π + n n 2 +2π +⋯+ n n 2 +nπ )=1 ;
(2) lim x→∞( 1 n 2 +1 + 1 n 2 +2 +⋯+ 1 n 2 +n )=1
参考答案:
证明:(1)因为
n 2 n 2 +nπ≤n n 2 +π + n n 2 +2π +⋯+ n n 2 +nπ≤n 2 n 2 +π ,
西南交大网络教育离线作业
11.试用电源的等效变换法求如图2-73所示电路中的电流I。
解:根据电路结构,逐步进行电源的等效变换,如图所示所以,电流12.试用电源的等效变换法求如图2-76所示电路中的电流I和电压U AB。
解:(1)用电源等效变换法求出电流I。
(含未知电流I支路不变,将其余电路部分等效变换等电压源,整个电路将变成单回路电路)等效变换化简如图所以,电流由原电路,有13.试用叠加定理求解题2.7中的电流I,并检验电路的功率平衡。
解:运用叠加原理,每个电源单独作用时的电路及参数如下(1)8V电压源单独作用时的电路如图所示有,电流(2)10V电压源单独作用时的电路如图所示有,电流(3)2V电压源单独作用时的电路如图所示有,电流所以,由叠加原理,有14.试用戴维南定理求如图2-79所示电路中的电流I。
解:第一步:找出二端网络将待求电流I所在的支路移去,二端网络如图第二步:求二端网络的开路电压U AB易知,电压第三步:求等效电阻R O对应无源二端网络如图故,等效电阻第四步:求待求参数电流I4Ω3VAB2ΩI10V画出戴维南等效电路,如图所以,电流15.已知图5-62所示电路中电感,试分析题5.1中当时电路的、和,并画出电流的波形图。
解:‘三要素法’(1)求初始值由题5.1的解可知初始值(2)求稳态值t=∞(∞)(∞)(∞)换路后的稳态电路如下图所示由图可得其中:为换路后的电路中去掉电感L后的二端网络的等效电阻。
所以波形图如下图:16.如图5-70所示电路中,已知,,,,换路前电路已处于稳态,时开关S闭合,试求时路中的和。
解:‘三要素法’(1)求初始值根据换路前的稳态电路(电容断路),有时刻的等效电路如图所示由图可得(2)求稳态值t=∞换路后的稳态电路如下图所示由图可得(3)求时间常数由换路后的电路,有所以17.使异步电动机自己转动起来的基本条件是什么?简述异步电动机的转动原理。
答:异步电动机自己转起来的基本条件是:(1)、定子绕组通入三相交流电流,在气隙中产生旋转磁场;(2)、转子绕组自成回路。
IB数学模块(含答案)
IB数学模块题号:03“不等式选讲”模块(10分)(Ⅰ)已知f(x)=x2+|2x-4|+a,若不等式f(x)≥0 的解集为实数集R,求实数a的取值范围;(Ⅱ)已知x,y,z∈R,且x2+y2+z2=1,求xy-的取值范围.题号:04“坐标系与参数方程”模块(10分)已知椭圆C的参数方程为cossinx ay bαα=⎧⎨=⎩,,(α为参数,a>b>0),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系.(Ⅰ)求椭圆C的极坐标方程;(Ⅱ)对于90,60AOB OAB∠=︒∠=︒的△AOB(只考虑A,O,B按顺时针方向排列的情形),试判断是否存在椭圆C使△AOB的顶点A,B都在椭圆上?并说明理由.参考答案03 解:(Ⅰ)当x≥2时,22()24+(1)5f x x x a x a=+-=+-+,f(x)在x=2时,取最小值a+4;当x<2时,22()24(1)3f x x x a x a=-++=-++,f(x)在x=1时,取最小值a+3,∴f (x )的最小值为a +3,∴要使f (x )≥0的解集为实数集R ,须a +3≥0,即a ≥-3, 故实数a 的取值范围为[-3,+∞). (Ⅱ)∵222()()xy y x =222222221(13)[()]4(1)412y y y x z y y ⎛⎫+-++-=-= ⎪⎝⎭≤≤.∴11xy -≤≤其中当x z y ==或x z y ===xy 取最大值1;当x z y ===或x z y ===xy 取最小值-1.故xy 的取值范围为[-1,1].04 解: (Ⅰ)∵cos sin x a y b αα=⎧⎨=⎩,,∴22x y a b ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭=cos 2α+sin 2α=1,得22221x y a b +=把cos sin x y ρθρθ=⎧⎨=⎩,代入得:222222cos sin 1a b ρθρθ+= ∴所求椭圆C 的极坐标方程为:2222222sin cos a b a b ρθθ=+.(Ⅱ)不妨设A (ρ,θ ),,2B θπ⎫+⎪⎭,由A ,B 在椭圆上可知:222222222222sin cos 3sin cos 22a b a b a b a b θθθθ=+⎡ππ⎤⎛⎫⎛⎫+++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 得:(3a 2-b 2)cos 2θ=(a 2-3b 2)sin 2θ,若cos θ=0,则sin θ≠0,a 2-3b 2=0,∴a =;若cos θ≠0,又3a 2-b 2>0,则 222223tan 3a b a b θ-=->0,∴a 2-3b 2>0,∴a >.因此,当a 时符合要求的椭圆C存在,当a <时符合要求的椭圆C 不存在.。
西南交《高等数学IB》在线作业一答卷
34.定积分上下限交换位置后值不变
答案:错误
35.既是单射又是满射的映射是一一映射。
答案:正确
36.如果f(x)是偶函数,且f'(0)存在,则f'(0)不一定等于0.
答案:错误
37.设f(x)在[a,b]上连续,在(a,b)内具有一阶和二阶导数,如果在(a,b)内f"(x)>0,则f(x)在[a,b]上的图形是凸的.
答案:A
14.当x→0时,xsin(1/x)+1是( )
A.有界变量
B.无穷小量
C.无穷大量
D.无界变量
答案:A
15.{图}
A.D
B.C
C.B
D.A
答案:B
16.{图}
A.D
B.C
C.B
D.A
答案:B
17.当x→1时,函数(x2-1)/(x-1)*e^[(1/x-1)]的极限 ( )
西南交《高等数学IB》在线作业一
试卷总分:100 得分:100
一、单选题 (共 20 道试题,共 60 分)
1.{图}
A.D
B.C
C.B
D.A
答案:B
2.函数y=|x|在x=0处的微分是( )
A.不存在
B.dx
C.0
D.-dx
答案:A
3.{图}
A.D
B.C
C.B
答案:正确
26.函数的极大值点一定是它的最大值点
答案:错误
27.曲线的凹凸性发生改变的点是曲线的拐点
答案:正确
28.可导的函数必是连续函数
西南交通大学2011~2012第二学期《高等数学CII》期末试题解答(20130618)修改
2011-2012学年第(二)学期《高等数学CII 》期末试题详细解答一、填空题(每题3分,共18分)1、母线平行于x 轴且通过曲线⎩⎨⎧=+-=++0162222222z y x z y x 的柱面方程是22316y z -= 解:因为“母线平行于x 轴的柱面方程”中不含x ,故所求柱面方程就是“消去曲线⎩⎨⎧=+-=++0162222222z y x z y x 方程中的x ”后得到的方程,即22316y z -=。
2、空间曲线段⎩⎨⎧==02L 2x y z :绕z 轴旋转一周所得的旋转曲面方程为222()z x y =+ 解:因为“曲线⎩⎨⎧==02L 2x y z :在yoz 面上”,故它绕z 轴旋转一周所得的旋转曲面方程就是将曲线⎩⎨⎧==02L 2x y z :的方程中的式子22z y =中的z 不变、y换成得到的,即为(22222()z x y ==+,也即222()z x y =+。
3、过点()1,1,2-且在x 轴、y 轴上的截距分别为2和1的平面方程为12xy z ++= 解:由条件“所求平面在x 轴、y 轴上的截距分别为2和1”,可设所求平面的截距式方程为121x y z c ++=,又所求平面过点()1,1,2-,则2111121c c-++=⇒=, 故所求平面方程为1211x y z++=,或2220x y z ++-=。
4、00x y →→=0解:2222000000221()112=lim 0112x x x y y y x y x y y x→→→→→→=++ 5、已知22yx ydxa dy x du ++=,则a =1- 解:此题是考平面曲线积分与路径无关的那几个等价条件。
因为222222x dy a ydx ay xdu dx dy x y x y x y +==++++,所以2222x yx ay x y x y ''⎛⎫⎛⎫= ⎪ ⎪++⎝⎭⎝⎭, 即22222222222222222222221()()()()x y x x x y y y y x x y a a a x y x y x y x y +-+---=⇒=⇒=-++++ 6、设L 为周长为a 的椭圆15422=+y x ,则22(254)L xy x y ds ++=⎰ 20a 解:因为椭圆周22:145x y L +=关于x 轴和y 轴对称,而 2222(254)2(54)LLLxy x y ds xy ds x y ds ++=++⎰⎰⎰,则由对称性,得20Lxy ds =⎰ ;故222222(254)(54)20202045L L L L x y xy x y ds x y ds ds ds a ⎛⎫++=+=+== ⎪⎝⎭⎰⎰⎰⎰ 。
西南交大《高等数学IB》离线作业 完整答案教材
一、单项选择题(只有一个选项正确,共7道小题)1. A(A) x-y+1=0(B) x+y+1=02. B(A) 1(B) 1/23. A(A) 4(B) 24. A(A) 2(B) 15. B(A) 10(B) -106. A(A) -5/2(B) -3/27. B(A) 1(B) 3四、主观题(共2道小题)8.9.计算下列极限:一、单项选择题(只有一个选项正确,共8道小题)1. A(A) 4(B) 22. A(A) 1(B) 2(C) 3(D) 43. D(A)(B)(C)(D)4. 函数的单调增加区间是()C(A)(B)(C) [-1,1](D)5. B(A) 1(B) 2(C) 3(D) 46. B(A)(B)(C)(D)7. C(A)(B)(C)(D)8. D(A)(B)(C)(D)四、主观题(共6道小题)9.证明方程至少有一个根介于1和2之间.解证明: 设f(x)= , 显然是连续的, 又f(1)=1−3−1=−3<0 ,由零点定理知存在c∈(1, 2) , 使得即方程至少有一个根介于1和2之间.10.求下列函数的导数:解:(1) (2)(3)(4)(5)(6)11.求下列函数的导数:解:(1)(2) (3)(4)12.求下列函数的二阶导数:解:(1) (2)(3)13.证明方程只有一个正根.解证明: 设则f(0)=−1<0, f(1)=1>0 , 由零点定理知方程x在0和1之间有一个(正)根. 若方程有两个正根a,b,a>b>0,则由罗尔定理知存在使得但这显然是不可能的, 所以方程只有一个正根.14.用洛必达法则求下列极限:解:(1)(2) (3)(4)一、单项选择题(只有一个选项正确,共5道小题)1. A(A) 2/3(B) 3/2(C) 5(D) 62. <> C(A)(B)(C)(D)3. B(A) 0(B) 1(C) 2(D) 34. 函数的单调递减区间是()C(A) (-∞,1)(B) [0,+∞](C) (1,+∞)(D) [-1,+∞]5. B(A)(B)(C)(D)四、主观题(共10道小题)6.验证函数满足关系式:。
17-18(2)《高等数学》(下)半期试题解答(1)
则直线
l1与
l2
的夹角
0
2
为:
班级
密封装订线
( ) cos = cos s 1 , s 2
= s1 • s2 =
−1 + 2 + 2
= 1 = arccos 1 = ,故应选(C).
s1 • s2 1+4+1 • 1+1+4 2
23
3.二元函数
f
( x,
y)
=
xy x2 + y2
,
(
x
−0
=
0−0 lim x→0 x
=
lim 0 = 0 ,
x→0
f
y
(
0
,
0
)
=
lim
y→0
f
(0 , 0 + y) −
y
f
(0 , 0)
=
lim
y→0
0 • y
02 + (y)2
y
−0
=
0−0 lim y→0 y
=
lim 0 = 0 ,
y→0
所以函数
f (x, y) 在点 (0 , 0) 处的两个偏导数都存在,且
西南交通大学 2017-2018 学年第(2)学期半期测试题解答
课程代码 1272005 课程名称 《高等数学》BII 考试时间 90 分钟
一、选择题(每小题 5 分,共 6 个小题,共 30 分)
密封装订线
1.曲面 x2 − y2 − z2 = 3 是【 A 】 4
(A) xoy 面上的双曲线绕 x 轴旋转一周所得;
4
4
4
所以曲面
x2 4
西南交通大学期末真题及答案19-20高等数学II半期考试试卷参考解答
西南交通大学2019-2020学年第2学期半期测试课程代码 MATH011512 课程名称 高等数学II 考试时间 60 分钟注意:本试卷共9道大题,需要详细解答过程,将答案写在答题纸上,考试结束前拍照上传。
要求独立完成,诚信参考!考试诚信承诺书。
我郑重承诺:我愿意服从学校本次考试的安排,承认考试成绩的有效性,并已经认真阅读、了解了《西南交通大学考试考场管理办法》和《西南交通大学本科生考试违规处理办法》,我愿意在本次考试过程中严格服从监考教师的相关指令安排,诚信考试。
如果在考试过程中违反相关规定,我愿意接受《西南交通大学本科生考试违规处理办法》的规定处理。
您是否同意:A. 同意B. 不同意选择B 选项,本次考试无效。
一(10分) 、判断直线1212:012+--==-x y z L 与222:2+=⎧⎨+-=⎩x y L x y z 的位置关系,并给出理由。
解 法一 化2L 为对称方程12:121-==--x y zL (不唯一) 故12、L L 方向向量分别为()()120,1,21,2,1=-=--、s s ,(不唯一)分别过点()()122,1,20,2,0=-=、M M计算121201212110212-⎡⎤=--=-⎣⎦-,,s s M M (8分)(不唯一,只要最终表明混合积不为零即可)这表明直线异面(而且12⊥s s 表明其异面垂直)法二 1L 的参数为2122=-⎧⎪=+⎨⎪=-⎩x y t z t ,(不唯一)代入2L 得41221222-++=⎧⎨-++-+=⎩t t t (*),(*)无解,这表明12、L L 无交点,故它们要么平行要么异面,注意到12、L L 方向向量分别为()()120,1,21,2,1=-=--、s s ,它们不平行,这表明12、L L 异面。
二 (10分)、 设函数()22,=z f xy x y ,其中f 具有二阶连续偏导数,求d z 及22∂∂z x。
2013春BII答案
1高等数学B Ⅱ试卷(A 卷)参考答案与评分标准 一、填空题(本大题共5小题,每小题3分,共15分) 1.1; 2.2; 3.3; 4.4; 5.5 二、单项选择题(本大题共5小题,每小题3分,共15分) 1.D ; 2.C ; 3.B ; 4.A ; 5.A . 三、计算题(本大题共6小题,每小题8分,共48分) 1.【解】已知直线的方向向量为 11123211=-=++--i j k s i j k ...................................4分 故所求平面方程为 2(2)3(1)0x y z -+-+=或 2370x y z ++-=.....................8分2. 【解】因为221ln()2z x y =+,故22221122z x x x x y x y ∂=⋅⋅=∂++222222222222()2()()z x y x x y x x x y x y ∂+-⋅-==∂++.........................4分同理,有2222222()z x y y x y ∂-=∂+.........................6分因此,222222222222220()()z z y x x y x y x y x y ∂∂--+=+=∂∂++.........................8分 3.【解】方程两边求微分,得233330z dz yzdx zxdy xydz ---=.................4分故有22yzzxdz dx dy z xy z xy =+--.....................8分4.【解】交换积分顺序,得2100y y I dy e dx -=⎰⎰..............................4分22110011|22y y e ye dy e e ---==-=⎰.................8分5.【解】由于2 01(1)1n n n x x ∞==-+∑, 11x -<< 故21111()()43213f x x x x x ==-++++1111)11481124x x =⋅-⋅--++........2分 001111(1)()(1)()4284n n n n n n x x ∞∞==--=⋅--⋅-∑∑............4分 123021(1)()(1)2n nn n n x +∞+=-=--∑.......................6分 由112x -<,得13x -<<;由114x -<,得35x -<<。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西南交大高等数学I B 离线作业完整答案公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]
一、单项选择题(只有一个选项正确,共7道小题)
1. A
(A) x-y+1=0
(B) x+y+1=0
2. B
(A) 1
(B) 1/2
3. A
(A) 4
(B) 2
4. A
(A) 2
(B) 1
5. B
(A) 10
(B) -10
6. A
(A) -5/2
(B) -3/2
7. B
(A) 1
(B) 3
四、主观题(共2道小题)
8.
9.计算下列极限:
一、单项选择题(只有一个选项正确,共8道小题)
1. A
(A) 4
(B) 2
2. A
(A) 1
(B) 2
(C) 3
(D) 4
3. D
(A)
(B)
(C)
(D)
4. 函数的单调增加区间是()C
(A)
(B)
(C) [-1,1]
(D)
5. B
(A) 1
(B) 2
(C) 3
(D) 4
6. B
(A)
(B)
(C)
(D)
7. C
(A)
(B)
(C)
(D)
8. D
(A)
(B)
(C)
(D)
四、主观题(共6道小题)
9.证明方程至少有一个根介于1和2之间.
解
证明: 设 f(x)= , 显然是连续的, 又
f(1)=1?3?1=?3<0 ,由零点定理知存在c∈(1,?2) , 使得即方程至少有一个根介于1和2之间. 10.求下列函数的导数:
解:(1) (2) (3)
(4)(5) (6)
11.求下列函数的导数:
解:(1) (2) (3)
(4)
12.求下列函数的二阶导数:
解:(1) (2) (3)
13.证明方程只有一个正根.
解
证明: 设则 f(0)=?1<0,?f(1)=1>0 , 由零点定理知方程x在0和1之间有一个(正)根. 若方程有两个正根a,b,a>b>0,则由罗尔定理知存在使得但这显然是不可能的, 所以方程只有一个正根.
14.用洛必达法则求下列极限:
解:(1)(2) (3)
(4)
一、单项选择题(只有一个选项正确,共5道小题)
1. A
(A) 2/3
(B) 3/2
(C) 5
(D) 6
2. <> C
(A)
(B)
(C)
(D)
3. B
(A) 0
(B) 1
(C) 2
(D) 3
4. 函数的单调递减区间是()C
(A) (-∞,1)
(B) [0,+∞]
(C) (1,+∞)
(D) [-1,+∞]
5. B
(A)
(B)
(C)
(D)
四、主观题(共10道小题)
6.验证函数满足关系式:。
解:
所以
7.确定下列函数的单调区间:
解:(1)
所以单增区间:
单减区间:
(2)
所以单增区间: ?
单减区间:
(3)
所以单增区间:
单减区间:
8.证明不等式: 证明: 设
则
所以<="" p="">
在
上单增, 从而当
时, 有<="" p="" ,="">
即.
9.求下列函数的极值:
解:(1)由
是极小值点,极小值为:2.
(2)由
10.
11.
判定下列曲线的凹凸性:解:(1)由
所以函数
在定义域内是凸的。
(2)由
所以函数
在
上是凹的.
12.
求下列不定积
分:
解:(1)
(2)
(3)
(4)
(5)
(6)
(7)
13.
计算下列各定积
分:
解:(1)
(2)
(3)
(4)
14.
利用函数的奇偶性计算下列积分:解:(1) 因为
是奇函数, 所以
(2)
15.
求下列图形的面积:解:(1) 所求面积
(2)所求面积。