2020年云南省中考数学试题(含答案)

合集下载

2020年云南省中考数学试卷(含详细解析)

2020年云南省中考数学试卷(含详细解析)
(3)若运往 地的物资不少于140吨,求总运费 的最小值.
22.如图,四边形 是菱形,点 为对角线 的中点,点 在 的延长线上, ,垂足为 ,点 在 的延长线上, ,垂足为 .
(1)若 ,求证:四边形 是菱形;
(2)若 , 的面积为16,求菱形 的面积.
23.抛物线 与 轴交于 、 两点,与 轴交于点 ,点 的坐标为 ,点 的坐标为 .点 为抛物线 上的一个动点.过点 作 轴于点 ,交直线 于点 .
A. B.1C. D.
8.若整数 使关于 的不等式组 ,有且只有45个整数解,且使关于 的方程 的解为非正数,则 的值为()
A. 或 B. 或 C. 或 D. 或 或
评卷人
得分
二、填空题
9.中国是最早采用正负数表示相反意义的量的国家.某仓库运进面粉7吨,记为 吨,那么运出面粉8吨应记为___________吨.
18.某地响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展“美化绿色城市”活动,绿化升级改造了总面积为360万平方米的区域.实际施工中,由于采用了新技术,实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务.实际平均每年绿化升级改造的面积是多少万平方米?
19.甲、乙两个家庭来到以“生态资源,绿色旅游”为产业的美丽云南,各自随机选择到大理、丽江、西双版纳三个城市中的一个城市旅游.假设这两个家庭选择到哪个城市旅游不受任何因素影响,上述三个城市中的每一个被选到的可能性相同,甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率为 .
(1)直接写出甲家庭选择到大理旅游的概率;
(1) ___________, _________, _________;

云南省2020年中考数学试题及解析

云南省2020年中考数学试题及解析

试题第1页,总19页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前云南省2020年中考数学试题试题副标题题号 一 二 三 总分 得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人 得分一、单选题1.下列图形既是轴对称图形,又是中心对称图形的是( )A. B. C. D.【答案】B 【解析】 【分析】根据轴对称图形和中心对称图形的概念逐一进行判断即可. 【详解】A 、是轴对称,不是中心对称图形,不符合题意;B 、是轴对称图形,也是中心对称图形,符合题意;C 、是轴对称,不是中心对称图形,不符合题意;D 、是轴对称,不是中心对称图形,不符合题意, 故选B. 【点睛】本题考查了轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形. 2.2020年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为( )试题第2页,总19页A .68.8×104B .0.688×106C .6.88×105D .6.88×106【答案】C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】688000的小数点向左移动5位得到6.88, 所以688000用科学记数法表示为6.88×105, 故选C . 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 3.一个十二边形的内角和等于( ) A.2160° B.2080°C.1980°D.1800°【答案】D 【解析】 【分析】根据多边形的内角和公式进行求解即可. 【详解】多边形内角和公式为2180()n -⨯︒,其中n 为多边形的边的条数, ∴十二边形内角和为(122)1801800-⨯︒=︒, 故选D. 【点睛】本题考查了多边形的内角和,熟记多边形的内角和公式是解题的关键. 4x 的取值范围为( ) A.x≤0 B.x ≥-1C.x ≥0D.x≤-1【答案】B 【解析】试题第3页,总19页【分析】根据二次根式有意义有条件进行求解即可. 【详解】 有意义,则被开方数1x +要为非负数, 即10x +≥, ∴1x ≥-, 故选B. 【点睛】本题考查了二次根式有意义的条件,熟知二次根式有意义的条件是被开方数为非负数是解题的关键.5.一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是( ) A.48π B.45π C.36π D.32π【答案】A 【解析】 【分析】先求出圆锥底面圆半径,然后根据“圆锥的全面积=侧面积+底面积”进行求解即可. 【详解】设圆锥底面圆的半径为r ,母线长为l ,则底面圆的周长等于半圆的弧长8π, ∴28r ππ=, ∴4r =,∴圆锥的全面积=2163248S S rl r πππππ+=+=+=侧底, 故选A. 【点睛】本题考查了圆锥的全面积,正确把握圆锥全面积公式是解题的关键.6.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( ) A.(-1)n -1x 2n -1 B.(-1)n x 2n -1 C.(-1)n -1x 2n +1 D.(-1)n x 2n +1【答案】C 【解析】 【分析】观察可知奇数项为正,偶数项为负,除符号外,底数均为x ,指数比所在项序数的2倍试题第4页,总19页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………多1,由此即可得. 【详解】观察可知,奇数项系数为正,偶数项系数为负,∴可以用1(1)n --或1(1)n +-,(n 为大于等于1的整数)来控制正负, 指数为从第3开始的奇数,所以指数部分规律为21n , ∴第n 个单项式是 (-1)n -1x 2n +1 , 故选C. 【点睛】本题考查了规律题——数字的变化类,正确分析出哪些不变,哪些变,是按什么规律发生变化的是解题的关键.7.如图,△ABC 的内切圆⊙O 与BC 、CA 、AB 分别相切于点D 、E 、F ,且AB =5,BC =13,CA =12,则阴影部分(即四边形AEOF)的面积是( )A.4B.6.25C.7.5D.9【答案】A 【解析】 【分析】先利用勾股定理判断△ABC 为直角三角形,且∠BAC=90°,继而证明四边形AEOF 为正方形,设⊙O 的半径为r ,利用面积法求出r 的值即可求得答案. 【详解】∵AB=5,BC=13,CA=12, ∴AB 2+AC 2=BC 2,∴△ABC 为直角三角形,且∠BAC=90°, ∵⊙O 为△ABC 内切圆,∴∠AFO=∠AEO=90°,且AE=AF , ∴四边形AEOF 为正方形, 设⊙O 的半径为r , ∴OE=OF=r , ∴S 四边形AEOF =r², 连接AO ,BO ,CO ,试题第5页,总19页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………∴S △ABC =S △AOB +S △AOC +S △BOC , ∴11()22AB AC BC r AB AC ++=⋅, ∴r=2,∴S 四边形AEOF =r²=4, 故选A. 【点睛】本题考查了三角形的内切圆,勾股定理的逆定理,正方形判定与性质,面积法等,正确把握相关知识是解题的关键.8.若关于x 的不等式组()2120x a x ⎧->⎨-<⎩的解集为x >a ,则a 的取值范围是( )A.a <2B.a ≤2C.a >2D.a ≥2【答案】D 【解析】 【分析】先求出每一个不等式的解集,然后根据不等式组有解根据已知给的解集即可得出答案. 【详解】()2120x a x ⎧->⎨-<⎩①②, 由①得2x >, 由②得x a >,又不等式组的解集是x >a ,根据同大取大的求解集的原则,∴2a >, 当2a =时,也满足不等式的解集为2x >, ∴2a ≥,故选D. 【点睛】本题考查了解一元一次不等式组,不等式组的解集,熟练掌握不等式组解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.试题第6页,总19页试题第7页,总19页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人 得分二、填空题9.若零上8℃记作+8℃,则零下6℃记作________℃.. 【答案】-6 【解析】 【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答即可. 【详解】零上8℃记作+8℃,则零下6℃记作-6℃, 故答案为:-6. 【点睛】本题考查了正数与负数,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.10.分解因式:x 2-2x+1= . 【答案】(x-1)2. 【解析】 【详解】解:x 2-2x+1=(x-1)2. 故答案为:(x-1)2.11.如图,若AB ∥CD ,∠1=40度,则∠2=___________度.【答案】140 【解析】 【分析】根据两直线平行,同位角相等,可求得∠3的度数,再根据邻补角的定义即可求得答案. 【详解】 ∵AB ∥CD ,试题第8页,总19页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………∴∠3=∠1=40°, ∴∠2=180°-∠3=140°, 故答案为:140.【点睛】本题考查了平行线的性质,邻补角的定义,正确把握平行线的性质是解题的关键. 12.若点(3,5)在反比例函数(0)ky k x=≠的图象上,则k =__________. 【答案】15 【解析】 【分析】把点(3,5)代入反比例函数解析式进行求解即可. 【详解】∵点(3,5)在反比例函数ky x=上, ∴53k =, ∴3515k =⨯=, 故答案为:15. 【点睛】本题考查了反比例函数图象上点的坐标特征,熟知反比例函数图象上的点的坐标一定符合反比例函数的解析式是解题的关键.13.某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A 、B 、C 、D 、E 五个等级,绘制的统计图如下:根据以上统计图提供的信息,则D 等级这一组人数较多的班是________ 【答案】甲班试题第9页,总19页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解析】 【分析】分别求出甲班与乙班成绩为D 等级的人数进行比较即可. 【详解】由频数分布直方图知甲班成绩为D 等级的人数为13人, 由扇形统计图知乙班成绩为D 等级的人数为40×30%=12, ∴D 等级较多的人数是甲班, 故答案为:甲班. 【点睛】本题考查了频数分布直方图,扇形统计图,读懂统计图,从中找到必要的信息是解题的关键.14.在平行四边形ABCD 中,∠A =30°,AD =43,BD =4,则平行四边形ABCD 的面积等于 ______________. 【答案】163或83 【解析】 【分析】过点D 作DE ⊥AB ,垂足为E ,分点E 在AB 上或AB 的延长线上两种情况,分别利用三角函数求出AE 、DE 的长,利用勾股定理求出BE 的长,继而可得AB 的长,然后利用平行四边形的面积公式进行求解即可. 【详解】过点D 作DE ⊥AB ,垂足为E ,如图1,点E 在AB 上,∵∠A=30°,∴DE=ADsin30°=3AE=ADcos30°=6, 在Rt △DBE 中,222BD DE -=, ∴AB=AE+BE=8,∴平行四边形ABCD 的面积为833⨯=试题第10页,总19页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………如图2,点E 在AB 的延长线上,∵∠A=30°,∴DE=ADsin30°=23,AE=ADcos30°=6, 在Rt △DBE 中,BE=222BD DE -=, ∴AB=AE-BE=4,∴平行四边形ABCD 的面积为42383⨯=, 故答案为:163或83. 【点睛】本题考查了解直角三角形,平行四边形的面积,正确地画出图形是解题的关键. 评卷人 得分三、解答题15.计算:()()0223541π----+- . 【答案】7. 【解析】 【分析】按顺序先分别进行乘方运算、0指数幂运算、算术平方根运算、负指数幂运算,然后再按运算顺序进行计算即可. 【详解】 原式=9-1-2+1 =7. 【点睛】本题考查了实数的混合运算,涉及了0指数幂、负指数幂等运算,熟练掌握各运算的运算法则是解题的关键.16.已知:如图,AB=AD ,BC=DC .求证:∠B=∠D .【答案】见解析 【解析】……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………【分析】连接AC ,在△ABC 和△ADC 中,AB=AD ,BC=DC ,AC=AC ,通过SSS 可正全等,所以∠B=∠D . 【详解】证明:连接AC ,在△ABC 和△ADC 中,AB AD BC DC AC AC =⎧⎪=⎨⎪=⎩, ∴△ABC ≌△ADC , ∴∠B=∠D .17.某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示: 月销售量/件数 1770 480 220 180 120 90 人数 113334(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.【答案】(1)平均数为278,中位数为180,众数为90;(2)中位数最适合作为月销售目标,理由见解析. 【解析】 【分析】(1)根据平均数、中位数、众数的概念以及求解方法分别进行求解即可; (2)分析不低于平均数、中位数、众数的人数,根据题意进行确定即可. 【详解】(1)这15名销售人员该月销售量数据的平均数为试题第12页,总19页177048022031803120390415++⨯+⨯+⨯+⨯=278,排序后位于中间位置的数为180,故中位数180, 数据90出现了4次,出现次数最多,故众数为90; (2)中位数最适合作为月销售目标.理由如下:在这15人中,月销售额不低于278(平均数)件的有2人,月销售额不低于180(中位数)件的有8人,月销售额不低于90(众数)件的有15人.所以,如果想让一半左右的营销人员都能够达到月销售目标,(1)中的平均数、中位数、众数中,中位数最适合作为月销售目标. 【点睛】本题考查了平均数、中位数、众数,熟练掌握平均数、中位数、众数的概念,意义以及求解方法是解题的关键.18.为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动,已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.【答案】甲、乙两校师生所乘大巴车的平均速度分别为60km/h 和90km/h. 【解析】 【分析】解:设甲校师生所乘大巴车的平均速度为xkm/h ,则乙校师生所乘大巴车的平均速度为1.5xkm/h ,根据甲校师生比乙校师生晚1小时到达目的地列出方程进行求解即可. 【详解】设甲校师生所乘大巴车的平均速度为xkm/h ,则乙校师生所乘大巴车的平均速度为1.5xkm/h.根据题意得24027011.5x x-=, 解得x =60,经检验,x =60是原分式方程的解且符合实际意义, 1.5x =90,答:甲、乙两校师生所乘大巴车的平均速度分别为60km/h 和90km/h. 【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.19.甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x 、y 表示.若x +y 为奇数,则甲获胜;若x +y 为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x ,y )所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.【答案】(1)见解析;(2)这个游戏对双方公平,理由见解析. 【解析】 【分析】(1)通过列表法即可得(x,y)所有可能出现的结果数;(2)根据(1)的结果,分别找出x+y 为奇数、x+y 为偶数的结果数,利用概率公式分别求解后进行比较即可. 【详解】 (1)列表如下:由表格可知(x ,y)所有可能出现的结果共有16种; (2)这个游戏对双方公平,理由如下:由列表法可知,在16种可能出现的结果中,它们出现的可能性相等,∵x +y 为奇数的有8种情况,∴P(甲获胜)=81162=, ∵x +y 为偶数的有8种情况,∴P(乙获胜)=81162= , ∴P(甲获胜)=P(乙获胜), ∴这个游戏对双方公平. 【点睛】试题第14页,总19页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………本题考查了列表法或树状图法求概率,判断游戏的公平性,用到的知识点为:概率=所求情况数与总情况数之比.20.如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO =OC ,BO =OD ,且∠AOB =2∠OAD.(1)求证:四边形ABCD 是矩形;(2)若∠AOB ∶∠ODC =4∶3,求∠ADO 的度数.【答案】(1)证明见解析;(2)∠ADO==36°. 【解析】 【分析】(1)先判断四边形ABCD 是平行四边形,继而根据已知条件推导出AC=BD ,然后根据对角线相等的平行四边形是矩形即可;(2)设∠AOB=4x ,∠ODC=3x ,则∠OCD=∠ODC=3x.,在△ODC 中,利用三角形内角和定理求出x 的值,继而求得∠ODC 的度数,由此即可求得答案. 【详解】(1)∵AO =OC ,BO =OD , ∴四边形ABCD 是平行四边形,又∵∠AOB =2∠OAD ,∠AOB 是△AOD 的外角, ∴∠AOB =∠OAD +∠ADO. ∴∠OAD =∠ADO. ∴AO =OD.又∵AC =AO +OC =2AO ,BD =BO +OD =2OD , ∴AC =BD.∴四边形ABCD 是矩形.(2)设∠AOB=4x ,∠ODC=3x ,则∠ODC=∠OCD=3x , 在△ODC 中,∠DOC+∠OCD+∠CDO=180° ∴4x+3x+3x=180°,解得x=18°, ∴∠ODC=3×18°=54°, ∵四边形ABCD 是矩形, ∴∠ADC=90°,∴∠ADO=∠ADC-∠ODC=90°-54°=36°.【点睛】本题考查了矩形的判定与性质,三角形内角和定理等知识,熟练掌握和灵活运用相关知识是解题的关键.21.已知k是常数,抛物线y=x2+(k2+k-6)x+3k的对称轴是y轴,并且与x轴有两个交点.(1)求k的值:(2)若点P在抛物线y=x2+(k2+k-6)x+3k上,且P到y轴的距离是2,求点P的坐标.【答案】(1)k=-3;(2)点P的坐标为(2,-5)或(-2,-5).【解析】【分析】(1)根据抛物线的对称轴是y轴以及对称轴公式可得关于k的方程,解方程后再根据抛物线与x轴的交点个数即可确定答案;(2)由点P到y轴的距离即可确定出点P的横坐标,再根据抛物线的解析式即可求得点P 的纵坐标即可得答案.【详解】(1)∵抛物线y=x2+(k2+k-6)x+3k的对称轴是y轴,∴2622b k kxa+-=-=-=,即k2+k-6=0,解得k=-3或k=2,当k=2时,二次函数解析式为y=x2+6,它的图象与x轴无交点,不满足题意,舍去,当k=-3时,二次函数解析式为y=x2-9,它的图象与x轴有两个交点,满足题意,∴k=-3;(2)∵P到y轴的距离为2,∴点P的横坐标为-2或2,当x=2时,y=-5;当x=-2时,y=-5,∴点P的坐标为(2,-5)或(-2,-5).【点睛】本题考查了抛物线的对称轴,抛物线与x轴的交点等知识,熟练掌握相关内容是解题的关键.试题第16页,总19页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………22.某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y (千克)与销售单价x (元/千克)的函数关系如下图所示: (1)求y 与x 的函数解析式(也称关系式); (2)求这一天销售西瓜获得的利润的最大值.【答案】(1)y 与x 的函数解析式为()()20022006102001012x x y x ⎧-+≤≤⎪=⎨<≤⎪⎩;(2)这一天销售西瓜获得利润的最大值为1250元. 【解析】 【分析】(1)当6≤x≤10时,由题意设y =kx +b(k =0),利用待定系数法求得k 、b 的值即可;当10<x≤12时,由图象可知y =200,由此即可得答案;(2))设利润为w 元,当6≦x≤10时,w =-2002172x -()+1250,根据二次函数的性质可求得最大值为1250;当10<x≤12时,w =200x -1200,由一次函数的性质结合x 的取值范围可求得w 的最大值为1200,两者比较即可得答案. 【详解】(1)当6≤x≤10时,由题意设y =kx +b(k =0),它的图象经过点(6,1000)与点(10,200), ∴1000620010k bk b=+⎧⎨=+⎩ ,解得2002200k b =-⎧⎨=⎩, ∴当6≤x≤10时, y =-200x+2200, 当10<x≤12时,y =200,综上,y 与x 的函数解析式为()()20022006102001012x x y x ⎧-+≤≤⎪=⎨<≤⎪⎩;(2)设利润为w 元,……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………当6≤x≤10时,y =-200x +2200,w =(x -6)y =(x -6)(-200x +200)=-2002172x -()+1250, ∵-200<0,6≦x≤10, 当x =172时,w 有最大值,此时w=1250; 当10<x≤12时,y =200,w =(x -6)y =200(x -6)=200x -1200, ∴200>0,∴w =200x -1200随x 增大而增大, 又∵10<x≤12,∴当x =12时,w 最大,此时w=1200, 1250>1200,∴w 的最大值为1250,答:这一天销售西瓜获得利润的最大值为1250元. 【点睛】本题考查了一次函数的应用,二次函数的应用,涉及了待定系数法,二次函数的性质,一次函数的性质等,弄清题意,找准各量间的关系是解题的关键.23.如图,A B 是⊙C 的直径,M 、D 两点在AB 的延长线上,E 是⊙C 上的点,且DE 2=DB·DA.延长AE 至F ,使AE =EF ,设BF =10,cos ∠BED=45. (1)求证:△DEB ∽△DAE ; (2)求DA ,DE 的长;(3)若点F 在B 、E 、M 三点确定的圆上,求MD 的长.【答案】(1)证明见解析; (2)DA=1607,DE=1207;(3)MD =35235. 【解析】 【分析】试题第18页,总19页(1)根据两边对应成比例且夹角相等的两个三角形相似进行判定即可;(2)由直径所对的圆周角是直角可得BE⊥AF,再根据中垂线的性质可得AB=BF=10,由△DEB ∽△DAE,cos ∠BED=45,可得cos ∠EAD =45,在Rt△ABE中,解直角三角形可求得AE的长,BE的长,再由△DEB ∽△DAE,根据相似三角形的对应边成比例可得6384DE DB EBDA DE AE====,结合DB=DA-AB即可求得AD、DE的长;(3)连接FM,根据∠BEF=90°,根据90度角所对的弦是直径可确定出BF是B、E、F 三点确定的圆的直径,再根据点F在B、E、M三点确定的圆上,可得四点F、E、B、M在同一个圆上,继而确定出点M在以BF为直径的圆上,在Rt△AMF中,由cos ∠FAM=AMAF可求得AM的长,再根据MD=DA-AM即可求得答案.【详解】(1)DE2=DB·DA,∴DE DB DA DE=,又∵∠D=∠D,∴△DEB∽△DAE;(2)∵AB是⊙C的直径,E是⊙C上的点,∴∠AEB=90°,即BE⊥AF,又∵AE=EF,BF=10,∴AB=BF=10,∵△DEB ∽△DAE,cos ∠BED=45,∴∠EAD=∠BED,cos ∠EAD =cos ∠BED=45,在Rt△ABE中,由于AB=10,cos ∠EAD=45,得AE=ABcos∠EAD=8,∴6 BE==,∵△DEB ∽△DAE,∴6384 DE DB EBDA DE AE====,∵DB=DA-AB=DA-10,∴341034DEDADADE⎧=⎪⎪⎨-⎪=⎪⎩,解得16071207DADE⎧=⎪⎪⎨⎪=⎪⎩,……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………经检验,16071207DA DE ⎧=⎪⎪⎨⎪=⎪⎩是341034DE DA DA DE ⎧=⎪⎪⎨-⎪=⎪⎩的解,∴DA=1607,DE=1207; (3)连接FM ,∵BE ⊥AF ,即∠BEF =90°,∴BF 是B 、E 、F 三点确定的圆的直径,∵点F 在B 、E 、M 三点确定的圆上,即四点F 、E 、B 、M 在同一个圆上, ∴点M 在以BF 为直径的圆上, ∴FM ⊥AB ,在Rt △AMF 中,由cos ∠FAM =AMAF得 AM =AFcos ∠FAM =2AEcos ∠EAB =2×8×45=645, ∴MD =DA -AM =160643527535-=. 【点睛】本题考查了相似三角形的判定与性质,确定圆条件,圆周角定理的推论,解直角三角形等知识,综合性较强,有一定的难度,正确添加辅助线,灵活运用相关知识是解题的关键.注意数形结合思想的运用.。

2020年云南中考数学试卷(附答案解析版)

2020年云南中考数学试卷(附答案解析版)

2020年中考数学试卷一、填空题(本大题共6个小题,每题3分,共18分)1.(3分)2的相反数是 .2.(3分)已知关于x 的方程2x+a+5=0的解是x=1,则a 的值为 .3.(3分)如图,在△ABC 中,D 、E 分别为AB 、AC 上的点,若DE ∥BC ,AA AA =13,则AA +AA +AA AA +AA +AA= .4.(3分)使√9−A 有意义的x 的取值范围为 .5.(3分)如图,边长为4的正方形ABCD 外切于⊙O ,切点分别为E 、F 、G 、H .则图中阴影部分的面积为 .6.(3分)已知点A (a ,b )在双曲线y=5A上,若a 、b 都是正整数,则图象经过B (a ,0)、C (0,b )两点的一次函数的解析式(也称关系式)为 .二、选择题(本大题共8个小题,每小题只有一个正确答案,每小题4分,共32分)7.(4分)作为世界文化遗产的长城,其总长大约为6700000m.将6700000用科学记数法表示为()A.6.7×105B.6.7×106C.0.67×107D.67×1088.(4分)下面长方体的主视图(主视图也称正视图)是()A.B.C.D.9.(4分)下列计算正确的是()A.2a×3a=5a B.(﹣2a)3=﹣6a3C.6a÷2a=3a D.(﹣a3)2=a6 10.(4分)已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形11.(4分)sin60°的值为()A.√3B.√32C.√22D.1 212.(4分)下列说法正确的是()A.要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B.4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C.甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62D.某次抽奖活动中,中奖的概率为150表示每抽奖50次就有一次中奖13.(4分)正如我们小学学过的圆锥体积公式V=13πr2h(π表示圆周率,r表示圆锥的地面半径,h表示圆锥的高)一样,许多几何量的计算都要用到π.祖冲之是世界上第一个把π计算到小数点后7位的中国古代科学家,创造了当时世界上的最高水平,差不多过了1000年,才有人把π计算得更精确.在辉煌成就的背后,我们来看看祖冲之付出了多少.现在的研究表明,仅仅就计算来讲,他至少要对9位数字反复进行130次以上的各种运算,包括开方在内.即使今天我们用纸笔来算,也绝不是一件轻松的事情,何况那时候没有现在的纸笔,数学计算不是用现在的阿拉伯数字,而是用算筹(小竹棍或小竹片)进行的,这需要怎样的细心和毅力啊!他这种严谨治学的态度,不怕复杂计算的毅力,值得我们学习.下面我们就来通过计算解决问题:已知圆锥的侧面展开图是个半圆,若该圆锥的体积等于9√3π,则这个圆锥的高等于()A.5√3A B.5√3C.3√3A D.3√314.(4分)如图,B、C是⊙A上的两点,AB的垂直平分线与⊙A交于E、F 两点,与线段AC交于D点.若∠BFC=20°,则∠DBC=()A.30° B.29° C.28° D.20°三、解答题(共9个小题,满分70分)15.(6分)如图,点E、C在线段BF上,BE=CF,AB=DE,AC=DF.求证:∠ABC=∠DEF.16.(6分)观察下列各个等式的规律:第一个等式:22−12−12=1,第二个等式:32−22−12=2,第三个等式:42−32−12=3…请用上述等式反映出的规律解决下列问题:(1)直接写出第四个等式;(2)猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的.17.(8分)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?18.(6分)某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.19.(7分)在一个不透明的盒子中,装有3个分别写有数字6,﹣2,7的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出所有可能出现的结果;(2)求两次取出的小球上的数字相同的概率P.20.(8分)如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.21.(8分)已知二次函数y=﹣2x2+bx+c图象的顶点坐标为(3,8),该二次函数图象的对称轴与x轴的交点为A,M是这个二次函数图象上的点,O是原点.(1)不等式b+2c+8≥0是否成立?请说明理由;(2)设S是△AMO的面积,求满足S=9的所有点M的坐标.22.(9分)在学习贯彻习近平总书记关于生态文明建设系列重要讲话精神,牢固树立“绿水青山就是金山银山”理念,把生态文明建设融入经济建设、政治建设、文化建设、社会建设各个方面和全过程,建设美丽中国的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A、B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A30人/辆380元/辆B20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式(也称关系式),请直接写出x的取值范围;(2)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案最省钱?23.(12分)已知AB是⊙O的直径,PB是⊙O的切线,C是⊙O上的点,AC ∥OP,M是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B 与直线CM上的点连线距离的最小值为f.(1)求证:PC是⊙O的切线;(2)设OP=32AC,求∠CPO的正弦值;(3)设AC=9,AB=15,求d+f的取值范围.参考答案与试题解析一、填空题(本大题共6个小题,每题3分,共18分)1.(3分)(2017•云南)2的相反数是﹣2 .【考点】14:相反数.【分析】根据相反数的定义可知.【解答】解:﹣2的相反数是2.【点评】主要考查相反数的定义:只有符号相反的两个数互为相反数.0的相反数是其本身.2.(3分)(2017•云南)已知关于x的方程2x+a+5=0的解是x=1,则a的值为﹣7 .【考点】85:一元一次方程的解.【分析】把x=1代入方程计算即可求出a的值.【解答】解:把x=1代入方程得:2+a+5=0,解得:a=﹣7,故答案为:﹣7.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.(3分)(2017•云南)如图,在△ABC中,D、E分别为AB、AC上的点,若DE∥BC,AAAA=13,则AA+AA+AAAA+AA+AA=13.【考点】S9:相似三角形的判定与性质.【分析】直接利用相似三角形的判定方法得出△ADE∽△ABC,再利用相似三角形的周长比等于相似比进而得出答案.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴AAAA=AA+AA+AAAA+AA+AA=13.故答案为:1 3.【点评】此题主要考查了相似三角形的判定与性质,正确得出相似三角形是解题关键.4.(3分)(2017•云南)使√9−A有意义的x的取值范围为x≤9 .【考点】72:二次根式有意义的条件.【分析】二次根式的被开方数是非负数,即9﹣x≥0.【解答】解:依题意得:9﹣x≥0.解得x≤9.故答案是:x≤9.【点评】考查了二次根式的意义和性质.概念:式子√A(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.5.(3分)(2017•云南)如图,边长为4的正方形ABCD 外切于⊙O ,切点分别为E 、F 、G 、H .则图中阴影部分的面积为 2π+4 .【考点】MC :切线的性质;LE :正方形的性质;MO :扇形面积的计算.【分析】连接HO ,延长HO 交CD 于点P ,证四边形AHPD 为矩形知HF 为⊙O 的直径,同理得EG 为⊙O 的直径,再证四边形BGOH 、四边形OGCF 、四边形OFDE 、四边形OEAH 均为正方形得出圆的半径及△HGF 为等腰直角三角形,根据阴影部分面积=12S ⊙O +S △HGF 可得答案. 【解答】解:如图,连接HO ,延长HO 交CD 于点P ,∵正方形ABCD 外切于⊙O ,∴∠A=∠D=∠AHP=90°,∴四边形AHPD 为矩形,∴∠OPD=90°,又∠OFD=90°,∴点P 于点F 重合,则HF 为⊙O 的直径,同理EG 为⊙O 的直径,由∠B=∠OGB=∠OHB=90°且OH=OG 知,四边形BGOH 为正方形,同理四边形OGCF 、四边形OFDE 、四边形OEAH 均为正方形,∴BH=BG=GC=CF=2,∠HGO=∠FGO=45°,∴∠HGF=90°,GH=GF=√AA 2+AA 2=2√2则阴影部分面积=12S ⊙O +S △HGF =12•π•22+12×2√2×2√2 =2π+4,故答案为:2π+4.【点评】本题主要考查切线的性质及扇形面积的计算,熟练掌握切线的性质、矩形的判定得出圆的半径是解题的关键.6.(3分)(2017•云南)已知点A (a ,b )在双曲线y=5A上,若a 、b 都是正整数,则图象经过B (a ,0)、C (0,b )两点的一次函数的解析式(也称关系式)为 y=﹣5x+5或y=﹣15x+1 . 【考点】G6:反比例函数图象上点的坐标特征.【分析】先根据反比例函数图象上点的坐标特征得出ab=5,由a 、b 都是正整数,得到a=1,b=5或a=5,b=1.再分两种情况进行讨论:当a=1,b=5;②a=5,b=1,利用待定系数法即可求解.【解答】解:∵点A (a ,b )在双曲线y=5A上, ∴ab=5,∵a 、b 都是正整数,∴a=1,b=5或a=5,b=1.设经过B (a ,0)、C (0,b )两点的一次函数的解析式为y=mx+n .①当a=1,b=5时,由题意,得{A +A =0A =5,解得{A =−5A =5, ∴y=﹣5x+5;②当a=5,b=1时,由题意,得{5A +A =0A =1,解得{A =−15A =1, ∴y=﹣15x+1. 则所求解析式为y=﹣5x+5或y=﹣15x+1. 故答案为y=﹣5x+5或y=﹣15x+1. 【点评】本题考查了反比例函数图象上点的坐标特征,待定系数法求一次函数的解析式.正确求出a 、b 的值是解题的关键.二、选择题(本大题共8个小题,每小题只有一个正确答案,每小题4分,共32分)7.(4分)(2017•云南)作为世界文化遗产的长城,其总长大约为6700000m .将6700000用科学记数法表示为( )A .6.7×105B .6.7×106C .0.67×107D .67×108【考点】1I :科学记数法—表示较大的数.【专题】17 :推理填空题.【分析】用科学记数法表示较大的数时,一般形式为a ×10n ,其中1≤|a|<10,n 为整数,据此判断即可.【解答】解:6700000=6.7×106.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.8.(4分)(2017•云南)下面长方体的主视图(主视图也称正视图)是()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】根据正视图是从物体正面看到的平面图形,据此选择正确答案.【解答】解:长方体的主视图(主视图也称正视图)是故选C.【点评】本题主要考查了长方体的三视图,解题的关键是掌握正视图的含义,此题基础题.9.(4分)(2017•云南)下列计算正确的是()A.2a×3a=5a B.(﹣2a)3=﹣6a3C.6a÷2a=3a D.(﹣a3)2=a6【考点】4I:整式的混合运算.【分析】根据整式的混合运算即可求出答案.【解答】解:(A)原式=6a2,故A错误;(B)原式=﹣8a3,故B错误;(C)原式=3,故C错误;故选(D)【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.10.(4分)(2017•云南)已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【考点】L3:多边形内角与外角.【专题】11 :计算题.【分析】设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程组,从而求出边数n的值.【解答】解:设这个多边形是n边形,则(n﹣2)•180°=900°,解得:n=7,即这个多边形为七边形.故本题选C.【点评】根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.11.(4分)(2017•云南)sin60°的值为( )A .√3B .√32C .√22D .12 【考点】T5:特殊角的三角函数值.【分析】直接根据特殊角的三角函数值进行计算即可.【解答】解:sin60°=√32. 故选B .【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.12.(4分)(2017•云南)下列说法正确的是( )A .要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B .4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C .甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62D .某次抽奖活动中,中奖的概率为150表示每抽奖50次就有一次中奖 【考点】X3:概率的意义;V2:全面调查与抽样调查;W1:算术平均数;W4:中位数;W7:方差.【分析】分别根据全面调查与抽样调查的意义、中位数的定义、方差的定义及概率的意义对各选项进行逐一判断即可.【解答】解:A 、∵要了解灯泡的使用寿命破坏性极大,∴只能采用抽样调查的方法,故本选项正确;B 、∵4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为102.5,故本选项错误;C 、甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差不能确定,故本选项错误;D 、某次抽奖活动中,中奖的概率为150表示每抽奖50次可能有一次中奖,故本选项错误.故选A .【点评】本题考查的是概率的意义,熟知全面调查与抽样调查的意义、中位数的定义、方差的定义及概率的意义是解答此题的关键.13.(4分)(2017•云南)正如我们小学学过的圆锥体积公式V=13πr 2h (π表示圆周率,r 表示圆锥的地面半径,h 表示圆锥的高)一样,许多几何量的计算都要用到π.祖冲之是世界上第一个把π计算到小数点后7位的中国古代科学家,创造了当时世界上的最高水平,差不多过了1000年,才有人把π计算得更精确.在辉煌成就的背后,我们来看看祖冲之付出了多少.现在的研究表明,仅仅就计算来讲,他至少要对9位数字反复进行130次以上的各种运算,包括开方在内.即使今天我们用纸笔来算,也绝不是一件轻松的事情,何况那时候没有现在的纸笔,数学计算不是用现在的阿拉伯数字,而是用算筹(小竹棍或小竹片)进行的,这需要怎样的细心和毅力啊!他这种严谨治学的态度,不怕复杂计算的毅力,值得我们学习.下面我们就来通过计算解决问题:已知圆锥的侧面展开图是个半圆,若该圆锥的体积等于9√3π,则这个圆锥的高等于( )A .5√3AB .5√3C .3√3AD .3√3【考点】MP :圆锥的计算.【分析】设母线长为R ,底面圆半径为r ,根据弧长公式、扇形面积公式以及圆锥体积公式即可求出圆锥的高【解答】解:设母线长为R ,底面圆半径为r ,圆锥的高为h ,由于圆锥的侧面展开图是个半圆∴侧面展开图的弧长为:180AA 180=πR, ∵底面圆的周长为:2πr,∴πR=2πr,∴R=2r ,∴由勾股定理可知:h=√3r ,∵圆锥的体积等于9√3π∴9√3π=13πr 2h , ∴r=3,∴h=3√3故选(D )【点评】本题考查圆锥的计算,解题的关键是熟练运用圆锥的计算公式,本题属于基础中等题型.14.(4分)(2017•云南)如图,B 、C 是⊙A 上的两点,AB 的垂直平分线与⊙A 交于E 、F 两点,与线段AC 交于D 点.若∠BFC=20°,则∠DBC=( )A .30°B .29°C .28°D .20°【考点】M5:圆周角定理;KG :线段垂直平分线的性质.【分析】利用圆周角定理得到∠BAC=40°,根据线段垂直平分线的性质推知AD=BD ,然后结合等腰三角形的性质来求∠ABD 、∠ABC 的度数,从而得到∠DBC .【解答】解:∵∠BFC=20°,∴∠BAC=2∠BFC=40°,∵AB=AC ,∴∠ABC=∠ACB=180°−40°2=70°. 又EF 是线段AB 的垂直平分线,∴AD=BD ,∴∠A=∠ABD=40°,∴∠DBC=∠ABC ﹣∠ABD=70°﹣40°=30°.故选:A .【点评】本题考查了圆周角定理,线段垂直平分线的性质.注意掌握数形结合思想的应用.三、解答题(共9个小题,满分70分)15.(6分)(2017•云南)如图,点E、C在线段BF上,BE=CF,AB=DE,AC=DF.求证:∠ABC=∠DEF.【考点】KD:全等三角形的判定与性质.【分析】先证明△ABC≌△DEF,然后利用全等三角形的性质即可求出∠ABC=∠DEF.【解答】解:∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,在△ABC与△DEF中,{AA=AA AA=AA AA=AA∴△ABC≌△DEF(SSS)∴∠ABC=∠DEF【点评】本题考查全等三角形的判定与性质,解题的关键是熟练运用全等三角形的判定,本题属于基础题型.16.(6分)(2017•云南)观察下列各个等式的规律:第一个等式:22−12−12=1,第二个等式:32−22−12=2,第三个等式:42−32−12=3… 请用上述等式反映出的规律解决下列问题:(1)直接写出第四个等式;(2)猜想第n 个等式(用n 的代数式表示),并证明你猜想的等式是正确的.【考点】37:规律型:数字的变化类.【分析】(1)根据题目中的式子的变化规律可以写出第四个等式;(2)根据题目中的式子的变化规律可以猜想出第n 等式并加以证明.【解答】解:(1)由题目中式子的变化规律可得,第四个等式是:52−42−12=4; (2)第n 个等式是:(A +1)2−A 2−12=A , 证明:∵(A +1)2−A 2−12=[(A +1)+A ][(A +1)−A ]−12 =2A +1−12 =2A 2=n ,∴第n个等式是:(A+1)2−A2−12=A.【点评】本题考查规律型:数字的变化类,解答本题的关键是明确题目中式子的变化规律,求出相应的式子.17.(8分)(2017•云南)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据百分比=所占人数总人数计算即可解决问题,求出八年级、九年级、被抽到的志愿者人数画出条形图即可;(2)用样本估计总体的思想,即可解决问题;【解答】解:(1)由题意总人数=20÷40%=50人,八年级被抽到的志愿者:50×30%=15人九年级被抽到的志愿者:50×20%=10人,条形图如图所示:(2)该校共有志愿者600人,则该校九年级大约有600×20%=120人,答:该校九年级大约有120名志愿者【点评】本题考查条形图、扇形统计图、样本估计总体等知识,解题的关键是掌握基本概念,熟练应用所学知识解决问题.18.(6分)(2017•云南)某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【专题】12 :应用题.【分析】(1)首先根据题意,设该商店第一次购进水果x 千克,则第二次购进水果2x 千克,然后根据:(1000第一次购进水果的重量+2)×第二次购进的水果的重量=2400,列出方程,求出该商店第一次购进水果多少千克即可.(2)首先根据题意,设每千克水果的标价是x 元,然后根据:(两次购进的水果的重量﹣20)×x+20×0.5x ≥两次购进水果需要的钱数+950,列出不等式,求出每千克水果的标价是多少即可.【解答】解:(1)设该商店第一次购进水果x 千克,则第二次购进水果2x 千克, (1000A+2)×2x=2400 整理,可得:2000+4x=2400解得x=100经检验,x=100是原方程的解答:该商店第一次购进水果100千克.(2)设每千克水果的标价是x 元,则(100+100×2﹣20)×x+20×0.5x ≥1000+2400+950整理,可得:290x ≥4350解得x ≥15∴每千克水果的标价至少是15元.答:每千克水果的标价至少是15元.【点评】此题主要考查了分式方程的应用,以及一元一次不等式的应用,要熟练掌握,注意建立不等式要善于从“关键词”中挖掘其内涵.19.(7分)(2017•云南)在一个不透明的盒子中,装有3个分别写有数字6,﹣2,7的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出所有可能出现的结果;(2)求两次取出的小球上的数字相同的概率P.【考点】X6:列表法与树状图法.【分析】(1)根据题意先画出树状图,得出所有可能出现的结果数;(2)根据(1)可得共有9种情况,两次取出小球上的数字相同有3种:(6,6)、(﹣2,﹣2)、(7,7),再根据概率公式即可得出答案.【解答】解:(1)根据题意画图如下:所有可能出现的结果共有9种;(2)∵共有9种情况,两次取出小球上的数字相同的有3种情况,∴两次取出小球上的数字相同的概率为39=1 3.【点评】此题可以采用列表法或者采用树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件.解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20.(8分)(2017•云南)如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF 的面积S.【考点】LA:菱形的判定与性质;KH:等腰三角形的性质.【分析】(1)先根据直角三角形斜边上中线的性质,得出DE=12AB=AE,DF=12AC=AF,再根据AB=AC,点E、F分别是AB、AC的中点,即可得到AE=AF=DE=DF,进而判定四边形AEDF是菱形;(2)设EF=x,AD=y,则x+y=7,进而得到x2+2xy+y2=49,再根据Rt△AOE中,AO2+EO2=AE2,得到x2+y2=36,据此可得xy=132,进而得到菱形AEDF的面积S.【解答】解:(1)∵AD⊥BC,点E、F分别是AB、AC的中点,∴Rt △ABD 中,DE=12AB=AE , Rt △ACD 中,DF=12AC=AF , 又∵AB=AC ,点E 、F 分别是AB 、AC 的中点,∴AE=AF ,∴AE=AF=DE=DF ,∴四边形AEDF 是菱形;(2)如图,∵菱形AEDF 的周长为12,∴AE=3,设EF=x ,AD=y ,则x+y=7,∴x 2+2xy+y 2=49,①∵AD ⊥EF 于O ,∴Rt △AOE 中,AO 2+EO 2=AE 2,∴(12y )2+(12x )2=32, 即x 2+y 2=36,②把②代入①,可得2xy=13,∴xy=132, ∴菱形AEDF 的面积S=12xy=134.【点评】本题主要考查了菱形的判定与性质的运用,解题时注意:四条边相等的四边形是菱形;菱形的面积等于对角线长乘积的一半.21.(8分)(2017•云南)已知二次函数y=﹣2x 2+bx+c 图象的顶点坐标为(3,8),该二次函数图象的对称轴与x 轴的交点为A ,M 是这个二次函数图象上的点,O 是原点.(1)不等式b+2c+8≥0是否成立?请说明理由;(2)设S 是△AMO 的面积,求满足S=9的所有点M 的坐标.【考点】HA :抛物线与x 轴的交点;H4:二次函数图象与系数的关系.【分析】(1)由题意可知抛物线的解析式为y=﹣2(x ﹣3)2+8,由此求出b 、c 即可解决问题.(2)设M (m ,n ),由题意12•3•|n|=9,可得n=±6,分两种情形列出方程求出m 的值即可;【解答】解:(1)由题意抛物线的顶点坐标(3,8),∴抛物线的解析式为y=﹣2(x ﹣3)2+8=﹣2x 2+12x ﹣10,∴b=12,c=﹣10,∴b+2c+8=12﹣20+8=0,∴不等式b+2c+8≥0成立.(2)设M (m ,n ),由题意12•3•|n|=9, ∴n=±6,①当n=6时,6=﹣2m 2+12m ﹣10,解得m=2或4,②当n=﹣6时,﹣6=﹣2m2+12m﹣10,解得m=3±√7,∴满足条件的点M的坐标为(2,6)或(4,6)或(3+√7,﹣6)或(3﹣√7,﹣6).【点评】本题考查抛物线与x轴的交点、二次函数图象与系数的关系等知识,解题的关键是熟练掌握二次函数的三种形式,学会利用参数构建方程解决问题.22.(9分)(2017•云南)在学习贯彻习近平总书记关于生态文明建设系列重要讲话精神,牢固树立“绿水青山就是金山银山”理念,把生态文明建设融入经济建设、政治建设、文化建设、社会建设各个方面和全过程,建设美丽中国的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A、B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A30人/辆380元/辆B20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式(也称关系式),请直接写出x的取值范围;(2)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案最省钱?【考点】FH:一次函数的应用;C9:一元一次不等式的应用.【分析】(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式即可;(2)列出不等式,求出自变量x的取值范围,利用函数的性质即可解决问题;【解答】解:(1)由题意:y=380x+280(62﹣x)=100x+17360.∵30x+20(62﹣x)≥1441,∴x≥20.1,∴21≤x≤62.(2)由题意100x+17360≤21940,∴x≤45.8,∴21≤x≤45,∴共有25种租车方案,x=21时,y有最小值=175700元.【点评】本题考查一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会利用函数的性质解决最值问题.23.(12分)(2017•云南)已知AB是⊙O的直径,PB是⊙O的切线,C是⊙O上的点,AC∥OP,M是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM上的点连线距离的最小值为f.(1)求证:PC是⊙O的切线;(2)设OP=32AC,求∠CPO的正弦值;。

2020年云南省昆明市中考数学试卷含答案解析

2020年云南省昆明市中考数学试卷含答案解析

2020年云南省昆明市中考数学试卷一、填空题(本大题共6小题,每小题3分,共18分)1.|﹣10|=.2.分解因式:m2n﹣4n=.3.如图,点C位于点A正北方向,点B位于点A北偏东50°方向,点C位于点B北偏西35°方向,则∠ABC的度数为°.4.要使有意义,则x的取值范围是.5.如图,边长为2cm的正六边形螺帽,中心为点O,OA垂直平分边CD,垂足为B,AB=17cm,用扳手拧动螺帽旋转90°,则点A在该过程中所经过的路径长为cm.6.观察下列一组数:﹣,,﹣,,﹣,…,它们是按一定规律排列的,那么这一组数的第n个数是.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.由5个完全相同的正方体组成的几何体的主视图是()A.B.C.D.8.下列判断正确的是()A.北斗系统第五十五颗导航卫星发射前的零件检查,应选择抽样调查B.一组数据6,5,8,7,9的中位数是8C.甲、乙两组学生身高的方差分别为S甲2=2.3,S乙2=1.8.则甲组学生的身高较整齐D.命题“既是矩形又是菱形的四边形是正方形”是真命题9.某款国产手机上有科学计算器,依次按键:,显示的结果在哪两个相邻整数之间()A.2~3B.3~4C.4~5D.5~610.下列运算中,正确的是()A.﹣2=﹣2B.6a4b÷2a3b=3abC.(﹣2a2b)3=﹣8a6b3D.•=a11.不等式组,的解集在以下数轴表示中正确的是()A.B.C.D.12.某校举行“停课不停学,名师陪你在家学”活动,计划投资8000元建设几间直播教室,为了保证教学质量,实际每间建设费用增加了20%,并比原计划多建设了一间直播教室,总投资追加了4000元.根据题意,求出原计划每间直播教室的建设费用是()A.1600元B.1800元C.2000元D.2400元13.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与y轴交于点B(0,﹣2),点A(﹣1,m)在抛物线上,则下列结论中错误的是()A.ab<0B.一元二次方程ax2+bx+c=0的正实数根在2和3之间C.a=D.点P1(t,y1),P2(t+1,y2)在抛物线上,当实数t>时,y1<y2 14.在正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形.如图,△ABC是格点三角形,在图中的6×6正方形网格中作出格点三角形△ADE(不含△ABC),使得△ADE∽△ABC(同一位置的格点三角形△ADE只算一个),这样的格点三角形一共有()A.4个B.5个C.6个D.7个三、解答题(本大题共9小题,满分70分.请考生用黑色碳素笔在答题卡相应的题号后答题区域内作答,必须写出运算步骤、推理过程或文字说明,超出答题区域的作答无效.特别注意:作图时,必须使用黑色碳素笔在答题卡上作图)15.(5分)计算:12021﹣+(π﹣3.14)0﹣(﹣)﹣1.16.(6分)如图,AC是∠BAE的平分线,点D是线段AC上的一点,∠C=∠E,AB=AD.求证:BC=DE.17.(7分)某鞋店在一周内销售某款女鞋,尺码(单位:cm)数据收集如下:24 23.5 21.5 23.5 24.5 23 22 23.5 23.5 23 22.5 23.5 23.5 22.5 24 24 22.525 23 23 23.5 23 22.5 23 23.5 23.5 23 24 22 22.5(1)请补全频数分布表和频数分布直方图;(2)若店主要进货,她最应该关注的是尺码的众数,上面数据的众数为;(3)若店主下周对该款女鞋进货120双,尺码在23.5≤x<25.5范围的鞋应购进约多少双?18.(7分)有一个可自由转动的转盘,被分成了三个大小相同的扇形,分别标有数字2,4,6;另有一个不透明的瓶子,装有分别标有数字1,3,5的三个完全相同的小球.小杰先转动一次转盘,停止后记下指针指向的数字(若指针指在分界线上则重转),小玉再从瓶子中随机取出一个小球,记下小球上的数字.(1)请用列表或画树状图的方法(选其中一种)表示出所有可能出现的结果;(2)若得到的两数字之和是3的倍数,则小杰贏;若得到的两数字之和是7的倍数,则小玉赢,此游戏公平吗?为什么?19.(8分)为了做好校园疫情防控工作,校医每天早上对全校办公室和教室进行药物喷洒消毒,她完成3间办公室和2间教室的药物喷洒要19min;完成2间办公室和1间教室的药物喷洒要11min.(1)校医完成一间办公室和一间教室的药物喷洒各要多少时间?(2)消毒药物在一间教室内空气中的浓度y(单位:mg/m3)与时间x(单位:min)的函数关系如图所示:校医进行药物喷洒时y与x的函数关系式为y=2x,药物喷洒完成后y与x成反比例函数关系,两个函数图象的交点为A(m,n).当教室空气中的药物浓度不高于1mg/m3时,对人体健康无危害,校医依次对一班至十一班教室(共11间)进行药物喷洒消毒,当她把最后一间教室药物喷洒完成后,一班学生能否进入教室?请通过计算说明.20.(8分)如图,点P是⊙O的直径AB延长线上的一点(PB<OB),点E是线段OP的中点.(1)尺规作图:在直径AB上方的圆上作一点C,使得EC=EP,连接EC,PC(保留清晰作图痕迹,不要求写作法);并证明PC是⊙O的切线;(2)在(1)的条件下,若BP=4,EB=l,求PC的长.21.(9分)【材料阅读】2020年5月27日,2020珠峰高程测量登山队成功登顶珠穆朗玛峰,将用中国科技“定义”世界新高度.其基本原理之一是三角高程测量法,在山顶上立一个规标,找到2个以上测量点,分段测量山的高度,再进行累加.因为地球面并不是水平的,光线在空气中会发生折射,所以当两个测量点的水平距离大于300m时,还要考虑球气差,球气差计算公式为f=(其中d为两点间的水平距离,R为地球的半径,R取6400000m),即:山的海拔高度=测量点测得山的高度+测量点的海拔高度+球气差.【问题解决】某校科技小组的同学参加了一项野外测量某座山的海拔高度活动.如图,点A,B的水平距离d=800m,测量仪AC=1.5m,觇标DE=2m,点E,D,B在垂直于地面的一条直线上,在测量点A处用测量仪测得山项觇标顶端E的仰角为37°,测量点A处的海拔高度为1800m.(1)数据6400000用科学记数法表示为;(2)请你计算该山的海拔高度.(要计算球气差,结果精确到0.01m)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)22.(8分)如图,两条抛物线y1=﹣x2+4,y2=﹣x2+bx+c相交于A,B两点,点A在x轴负半轴上,且为抛物线y2的最高点.(1)求抛物线y2的解析式和点B的坐标;(2)点C是抛物线y1上A,B之间的一点,过点C作x轴的垂线交y2于点D,当线段CD取最大值时,求S△BCD.23.(12分)如图1,在矩形ABCD中,AB=5,BC=8,点E,F分别为AB,CD的中点.(1)求证:四边形AEFD是矩形;(2)如图2,点P是边AD上一点,BP交EF于点O,点A关于BP的对称点为点M,当点M落在线段EF上时,则有OB=OM.请说明理由;(3)如图3,若点P是射线AD上一个动点,点A关于BP的对称点为点M,连接AM,DM,当△AMD是等腰三角形时,求AP的长.2020年云南省昆明市中考数学试卷参考答案与试题解析一、填空题(本大题共6小题,每小题3分,共18分)1.|﹣10|=10.解:根据负数的绝对值等于它的相反数,得|﹣10|=10.故答案为:10.2.分解因式:m2n﹣4n=n(m+2)(m﹣2).解:原式=n(m2﹣4)=n(m+2)(m﹣2),故答案为:n(m+2)(m﹣2)3.如图,点C位于点A正北方向,点B位于点A北偏东50°方向,点C位于点B北偏西35°方向,则∠ABC的度数为95°.解:如图所示:由题意可得,∠1=∠A=50°,则∠ABC=180°﹣35°﹣50°=95°.故答案为:95.4.要使有意义,则x的取值范围是x≠﹣1.解:要使分式有意义,需满足x+1≠0.即x≠﹣1.故答案为:x≠﹣1.5.如图,边长为2cm的正六边形螺帽,中心为点O,OA垂直平分边CD,垂足为B,AB=17cm,用扳手拧动螺帽旋转90°,则点A在该过程中所经过的路径长为10πcm.解:连接OD,OC.∵∠DOC=60°,OD=OC,∴△ODC是等边三角形,∴OD=OC=DC=2(cm),∵OB⊥CD,∴BC=BD=(cm),∴OB=BC=3(cm),∵AB=17cm,∴OA=OB+AB=20(cm),∴点A在该过程中所经过的路径长==10π(cm),故答案为10π.6.观察下列一组数:﹣,,﹣,,﹣,…,它们是按一定规律排列的,那么这一组数的第n个数是(﹣1)n..解:观察下列一组数:﹣=﹣,=,﹣=﹣,=,﹣=﹣,…,它们是按一定规律排列的,那么这一组数的第n个数是:(﹣1)n.故答案为:(﹣1)n.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.由5个完全相同的正方体组成的几何体的主视图是()A.B.C.D.解:由5个完全相同的正方体组成的几何体的主视图是.故选:A.8.下列判断正确的是()A.北斗系统第五十五颗导航卫星发射前的零件检查,应选择抽样调查B.一组数据6,5,8,7,9的中位数是8C.甲、乙两组学生身高的方差分别为S甲2=2.3,S乙2=1.8.则甲组学生的身高较整齐D.命题“既是矩形又是菱形的四边形是正方形”是真命题解:A.北斗系统第五十五颗导航卫星发射前的零件检查,应选择全面调查,所以A选项错误;B.一组数据6,5,8,7,9的中位数是7,所以B选项错误;C.甲、乙两组学生身高的方差分别为S甲2=2.3,S乙2=1.8.则乙组学生的身高较整齐,所以C选项错误;D.命题“既是矩形又是菱形的四边形是正方形”是真命题,所以D选项正确.故选:D.9.某款国产手机上有科学计算器,依次按键:,显示的结果在哪两个相邻整数之间()A.2~3B.3~4C.4~5D.5~6解:使用计算器计算得,4sin60°≈3.464101615,故选:B.10.下列运算中,正确的是()A.﹣2=﹣2B.6a4b÷2a3b=3abC.(﹣2a2b)3=﹣8a6b3D.•=a解:A、﹣2=﹣,此选项错误,不合题意;B、6a4b÷2a3b=3a,此选项错误,不合题意;C、(﹣2a2b)3=﹣8a6b3,正确;D、•=•=﹣a,故此选项错误,不合题意;故选:C.11.不等式组,的解集在以下数轴表示中正确的是()A.B.C.D.解:,∵解不等式①得:x>﹣1,解不等式②得:x≤3,∴不等式组的解集是﹣1<x≤3,在数轴上表示为:,故选:B.12.某校举行“停课不停学,名师陪你在家学”活动,计划投资8000元建设几间直播教室,为了保证教学质量,实际每间建设费用增加了20%,并比原计划多建设了一间直播教室,总投资追加了4000元.根据题意,求出原计划每间直播教室的建设费用是()A.1600元B.1800元C.2000元D.2400元解:设原计划每间直播教室的建设费用是x元,则实际每间建设费用为1.2x,根据题意得:,解得:x=2000,经检验:x=2000是原方程的解,答:每间直播教室的建设费用是2000元,故选:C.13.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与y轴交于点B(0,﹣2),点A(﹣1,m)在抛物线上,则下列结论中错误的是()A.ab<0B.一元二次方程ax2+bx+c=0的正实数根在2和3之间C.a=D.点P1(t,y1),P2(t+1,y2)在抛物线上,当实数t>时,y1<y2解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a<0,∴ab<0,所以A选项的结论正确;∵抛物线的对称轴为直线x=1,抛物线与x轴的一个交点坐标在(0,0)与(﹣1,0)之间,∴抛物线与x轴的另一个交点坐标在(2,0)与(3,0)之间,∴一元二次方程ax2+bx+c=0的正实数根在2和3之间,所以B选项的结论正确;把B(0,﹣2),A(﹣1,m)代入抛物线得c=﹣2,a﹣b+c=m,而b=﹣2a,∴a+2a﹣2=m,∴a=,所以C选项的结论正确;∵点P1(t,y1),P2(t+1,y2)在抛物线上,∴当点P1、P2都在直线x=1的右侧时,y1<y2,此时t≥1;当点P1在直线x=1的左侧,点P2在直线x=1的右侧时,y1<y2,此时0<t<1且t+1﹣1>1﹣t,即<t<1,∴当<t<1或t≥1时,y1<y2,所以D选项的结论错误.故选:D.14.在正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形.如图,△ABC是格点三角形,在图中的6×6正方形网格中作出格点三角形△ADE (不含△ABC),使得△ADE∽△ABC(同一位置的格点三角形△ADE只算一个),这样的格点三角形一共有()A.4个B.5个C.6个D.7个解:如图,所以使得△ADE∽△ABC的格点三角形一共有6个.故选:C.三、解答题(本大题共9小题,满分70分.请考生用黑色碳素笔在答题卡相应的题号后答题区域内作答,必须写出运算步骤、推理过程或文字说明,超出答题区域的作答无效.特别注意:作图时,必须使用黑色碳素笔在答题卡上作图)15.(5分)计算:12021﹣+(π﹣3.14)0﹣(﹣)﹣1.解:原式=1﹣2+1+5=5.16.(6分)如图,AC是∠BAE的平分线,点D是线段AC上的一点,∠C=∠E,AB=AD.求证:BC=DE.证明:∵AC是∠BAE的平分线,∴∠BAC=∠DAE,∵∠C=∠E,AB=AD.∴△BAC≌△DAE(AAS),∴BC=DE.17.(7分)某鞋店在一周内销售某款女鞋,尺码(单位:cm)数据收集如下:24 23.5 21.5 23.5 24.5 23 22 23.5 23.5 23 22.5 23.5 23.5 22.5 24 24 22.525 23 23 23.5 23 22.5 23 23.5 23.5 23 24 22 22.5绘制如图不完整的频数分布表及频数分布直方图:尺码/cm划记频数21.5≤x<22.5322.5≤x<23.51223.5≤x<24.51324.5≤x<25.52(1)请补全频数分布表和频数分布直方图;(2)若店主要进货,她最应该关注的是尺码的众数,上面数据的众数为23.5;(3)若店主下周对该款女鞋进货120双,尺码在23.5≤x<25.5范围的鞋应购进约多少双?解:(1)表中答案为:12补全频数分布表如上表所示:补全的频数分布直方图如图所示:(2)样本中,尺码为23.5cm的出现次数最多,共出现9次,因此众数是23.5,故答案为:23.5;(3)120×=60(双)答:该款女鞋进货120双,尺码在23.5≤x<25.5范围的鞋应购进约60双.18.(7分)有一个可自由转动的转盘,被分成了三个大小相同的扇形,分别标有数字2,4,6;另有一个不透明的瓶子,装有分别标有数字1,3,5的三个完全相同的小球.小杰先转动一次转盘,停止后记下指针指向的数字(若指针指在分界线上则重转),小玉再从瓶子中随机取出一个小球,记下小球上的数字.(1)请用列表或画树状图的方法(选其中一种)表示出所有可能出现的结果;(2)若得到的两数字之和是3的倍数,则小杰贏;若得到的两数字之和是7的倍数,则小玉赢,此游戏公平吗?为什么?解:(1)用列表法表示所有可能出现的结果情况如下:(2)由(1)的表格可知,共有9种可能出现的结果,其中“和为3的倍数”的有3种,“和为7的倍数”的有3种,∴P(小杰胜)==,P(小玉胜)==,因此游戏是公平的.19.(8分)为了做好校园疫情防控工作,校医每天早上对全校办公室和教室进行药物喷洒消毒,她完成3间办公室和2间教室的药物喷洒要19min;完成2间办公室和1间教室的药物喷洒要11min.(1)校医完成一间办公室和一间教室的药物喷洒各要多少时间?(2)消毒药物在一间教室内空气中的浓度y(单位:mg/m3)与时间x(单位:min)的函数关系如图所示:校医进行药物喷洒时y与x的函数关系式为y=2x,药物喷洒完成后y与x成反比例函数关系,两个函数图象的交点为A(m,n).当教室空气中的药物浓度不高于1mg/m3时,对人体健康无危害,校医依次对一班至十一班教室(共11间)进行药物喷洒消毒,当她把最后一间教室药物喷洒完成后,一班学生能否进入教室?请通过计算说明.解:(1)设完成一间办公室和一间教室的药物喷洒各要xmin和ymin,则,解得,故校医完成一间办公室和一间教室的药物喷洒各要3min和5min;(2)一间教室的药物喷洒时间为5min,则11个房间需要55min,当x=5时,y=2x=10,故点A(5,10),设反比例函数表达式为:y=,将点A的坐标代入上式并解得:k=50,故反比例函数表达式为y=,当x=55时,y=<1,故一班学生能安全进入教室.20.(8分)如图,点P是⊙O的直径AB延长线上的一点(PB<OB),点E是线段OP的中点.(1)尺规作图:在直径AB上方的圆上作一点C,使得EC=EP,连接EC,PC(保留清晰作图痕迹,不要求写作法);并证明PC是⊙O的切线;(2)在(1)的条件下,若BP=4,EB=l,求PC的长.解:(1)如图,点C即为所求;证明:∵点E是线段OP的中点,∴OE=EP,∵EC=EP,∴OE=EC=EP,∴∠COE=∠ECO,∠ECP=∠P,∵∠COE+∠ECO+∠ECP+∠P=180°,∴∠ECO+∠ECP=90°,∴OC⊥PC,且OC是⊙O的半径,∴PC是⊙O的切线;(2)∵BP=4,EB=l,∴OE=EP=BP+EB=5,∴OP=2OE=10,∴OC=OB=OE+EB=6,在Rt△OCP中,根据勾股定理,得PC==8.则PC的长为8.21.(9分)【材料阅读】2020年5月27日,2020珠峰高程测量登山队成功登顶珠穆朗玛峰,将用中国科技“定义”世界新高度.其基本原理之一是三角高程测量法,在山顶上立一个规标,找到2个以上测量点,分段测量山的高度,再进行累加.因为地球面并不是水平的,光线在空气中会发生折射,所以当两个测量点的水平距离大于300m时,还要考虑球气差,球气差计算公式为f=(其中d为两点间的水平距离,R为地球的半径,R取6400000m),即:山的海拔高度=测量点测得山的高度+测量点的海拔高度+球气差.【问题解决】某校科技小组的同学参加了一项野外测量某座山的海拔高度活动.如图,点A,B的水平距离d=800m,测量仪AC=1.5m,觇标DE=2m,点E,D,B在垂直于地面的一条直线上,在测量点A处用测量仪测得山项觇标顶端E的仰角为37°,测量点A处的海拔高度为1800m.(1)数据6400000用科学记数法表示为 6.4×106;(2)请你计算该山的海拔高度.(要计算球气差,结果精确到0.01m)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)解:(1)6400000=6.4×106,故答案为6.4×106.(2)如图,过点C作CH⊥BE于H.由题意AB=CH=800m,AC=BH=1.5m,在Rt△ECH中,EH=CH•tan37°≈600(m),∴DB=600﹣DE+BH=599.5(m),由题意f=≈0.043(m),∴山的海拔高度=599.5+0.043+1800≈2399.54(m).22.(8分)如图,两条抛物线y1=﹣x2+4,y2=﹣x2+bx+c相交于A,B两点,点A在x轴负半轴上,且为抛物线y2的最高点.(1)求抛物线y2的解析式和点B的坐标;(2)点C是抛物线y1上A,B之间的一点,过点C作x轴的垂线交y2于点D,当线段CD取最大值时,求S△BCD.解:(1)当y1=0时,即﹣x2+4=0,解得x=2或x=﹣2,又点A在x轴的负半轴,∴点A(﹣2,0),∵点A(﹣2,0),是抛物线y2的最高点.∴﹣=﹣2,即b=﹣,把A(﹣2,0)代入y2=﹣x2﹣x+c得,c=﹣,∴抛物线y2的解析式为:y2=﹣x2﹣x﹣;由得,,,∵A(﹣2,0),∴点B(3,﹣5),答:抛物线y2的解析式为:y2=﹣x2﹣x﹣,点B(3,﹣5);(2)由题意得,CD=y1﹣y2=﹣x2+4﹣(﹣x2﹣x﹣),即:CD=﹣x2+x+,当x=﹣=时,CD最大=﹣×+×+=5,∴S△BCD=×5×(3﹣)=.23.(12分)如图1,在矩形ABCD中,AB=5,BC=8,点E,F分别为AB,CD的中点.(1)求证:四边形AEFD是矩形;(2)如图2,点P是边AD上一点,BP交EF于点O,点A关于BP的对称点为点M,当点M落在线段EF上时,则有OB=OM.请说明理由;(3)如图3,若点P是射线AD上一个动点,点A关于BP的对称点为点M,连接AM,DM,当△AMD是等腰三角形时,求AP的长.(1)证明:∵四边形ABCD是矩形,∴AB=CD,AB∥CD,∠A=90°,∵AE=EB,DF=FC,∴AE=DF,AE∥DF,∴四边形AEFD是平行四边形,∵∠A=90°,∴四边形AEFD是矩形.(2)证明:如图2中,连接PM.BM.∵四边形AEFD是矩形,∴EF∥AD,∵BE=AE,∴BO=OP,由翻折可知,∠PMB=∠A=90°,∴OM=OB=OP.(3)解:如图3﹣1中,当MA=MD时,连接BM,过点M作MH⊥AD于H交BC于F.∵MA=MD,MH⊥AD,∴AH=HD=4,∵∠BAH=∠ABF=∠AHF=90°,∴四边形ABFH是矩形,∴BF=AH=4,AB=FH=5,∴∠BFM=90°,∵BM=BA=5,∴FM===3,∴HM=HF=FM=5﹣3=2,∵∠ABP+∠APB=90°,∠MAH+∠APB=90°,∴∠ABP=∠MAH,∵∠BAP=∠AHM=90°,∴△ABP∽△HAM,∴=,∴=,∴AP=.如图3﹣2中,当AM=AD时,连接BM,设BP交AM于F.∵AD=AM=8,BA=BM=5,BF⊥AM,∴AF=FM=4,∴BF===3,∵tan∠ABF==,∴=,∴AP=,如图3﹣3中,当DA=DM时,此时点P与D重合,AP=8.如图3﹣4中,当MA=MD时,连接BM,过点M作MH⊥AD于H交BC于F.∵BM=5,BF=4,∴FM=3,MH=3+5=8,由△ABP∽△HAM,可得=,∴=,∴AP=10,综上所述,满足条件的P A的值为或或8或10.。

2020年云南省中考数学试卷(含解析)印刷版

2020年云南省中考数学试卷(含解析)印刷版

2020年云南省中考数学试卷一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)中国是最早采用正负数表示相反意义的量的国家.某仓库运进面粉7吨,记为+7吨,那么运出面粉8吨应记为吨.2.(3分)如图,直线c与直线a、b都相交.若a∥b,∠1=54°,则∠2=度.3.(3分)要使有意义,则x的取值范围是.4.(3分)已知一个反比例函数的图象经过点(3,1),若该反比例函数的图象也经过点(﹣1,m),则m =.5.(3分)若关于x的一元二次方程x2+2x+c=0有两个相等的实数根,则实数c的值为.6.(3分)已知四边形ABCD是矩形,点E是矩形ABCD的边上的点,且EA=EC.若AB=6,AC=2,则DE的长是.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.(4分)千百年来的绝对贫困即将消除,云南省95%的贫困人口脱贫,95%的贫困村出列,90%的贫困县摘帽,1500000人通过异地扶贫搬迁实现“挪穷窝”,“斩穷根”(摘自2020年5月11日云南日报).1500000这个数用科学记数法表示为()A.15×106B.1.5×105C.1.5×106D.1.5×1078.(4分)下列几何体中,主视图是长方形的是()A.B.C.D.9.(4分)下列运算正确的是()A.=±2B.()﹣1=﹣2C.(﹣3a)3=﹣9a3D.a6÷a3=a3(a≠0)10.(4分)下列说法正确的是()A.为了解三名学生的视力情况,采用抽样调查B.任意画一个三角形,其内角和是360°是必然事件C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为、,方差分别为s甲2、s乙2,若=,s甲2=0.4,s乙2=2,则甲的成绩比乙的稳定D.一个抽奖活动中,中奖概率为,表示抽奖20次就有1次中奖11.(4分)如图,平行四边形ABCD的对角线AC,BD相交于点O,E是CD的中点.则△DEO与△BCD 的面积的比等于()A.B.C.D.12.(4分)按一定规律排列的单项式:a,﹣2a,4a,﹣8a,16a,﹣32a,…,第n个单项式是()A.(﹣2)n﹣1a B.(﹣2)n a C.2n﹣1a D.2n a13.(4分)如图,正方形ABCD的边长为4,以点A为圆心,AD为半径,画圆弧DE得到扇形DAE(阴影部分,点E在对角线AC上).若扇形DAE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()A.B.1C.D.14.(4分)若整数a使关于x的不等式组,有且只有45个整数解,且使关于y的方程+=1的解为非正数,则a的值为()A.﹣61或﹣58B.﹣61或﹣59C.﹣60或﹣59D.﹣61或﹣60或﹣59三、解答题(本大题共9小题,共70分)15.(6分)先化简,再求值:÷,其中x=.16.(6分)如图,已知AD=BC,BD=AC.求证:∠ADB=∠BCA.17.(8分)某公司员工的月工资如下:员工经理副经理职员A职员B职员C职员D职员E职员F杂工G月工资/700044002400200019001800180018001200元经理、职员C、职员D从不同的角度描述了该公司员工的收入情况.设该公司员工的月工资数据(见上述表格)的平均数、中位数、众数分别为k、m、n,请根据上述信息完成下列问题:(1)k=,m=,n=;(2)上月一个员工辞职了,从本月开始,停发该员工工资,若本月该公司剩下的8名员工的月工资不变,但这8名员工的月工资数据(单位:元)的平均数比原9名员工的月工资数据(见上述表格)的平均数减小了.你认为辞职的那名员工可能是.18.(6分)某地响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展“美化绿色城市”活动,绿化升级改造了总面积为360万平方米的区域.实际施工中,由于采用了新技术,实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务.实际平均每年绿化升级改造的面积是多少万平方米?19.(7分)甲、乙两个家庭来到以“生态资源,绿色旅游”为产业的美丽云南,各自随机选择到大理、丽江、西双版纳三个城市中的一个城市旅游.假设这两个家庭选择到哪个城市旅游不受任何因素影响,上述三个城市中的每一个被选到的可能性相同,甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率为P.(1)直接写出甲家庭选择到大理旅游的概率;(2)用列表法或树状图法(树状图也称树形图)中的一种方法,求P的值.20.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD⊥CE,垂足为D,AC平分∠DAB.(1)求证:CE是⊙O的切线;(2)若AD=4,cos∠CAB =,求AB的长.21.(8分)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:目的地A地(元/辆)B地(元/辆)车型大货车9001000小货车500700现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数解析式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.22.(9分)如图,四边形ABCD是菱形,点H为对角线AC的中点,点E在AB的延长线上,CE⊥AB,垂足为E,点F在AD的延长线上,CF⊥AD,重足为F,(1)若∠BAD=60°,求证:四边形CEHF是菱形;(2)若CE=4,△ACE的面积为16,求菱形ABCD的面积.23.(12分)抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),点C 的坐标为(0,﹣3).点P为抛物线y=x2+bx+c上的一个动点.过点P作PD⊥x轴于点D,交直线BC 于点E.(1)求b、c的值;(2)设点F在抛物线y=x2+bx+c的对称轴上,当△ACF的周长最小时,直接写出点F的坐标;(3)在第一象限,是否存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍?若存在,求出点P所有的坐标;若不存在,请说明理由.2020年云南省中考数学试卷参考答案与试题解析一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)中国是最早采用正负数表示相反意义的量的国家.某仓库运进面粉7吨,记为+7吨,那么运出面粉8吨应记为﹣8吨.【分析】根据正负数的意义,直接写出答案即可.【解答】解:因为题目运进记为正,那么运出记为负.所以运出面粉8吨应记为﹣8吨.故答案为:﹣8.2.(3分)如图,直线c与直线a、b都相交.若a∥b,∠1=54°,则∠2=54度.【分析】直接利用平行线的性质:两直线平行,同位角相等,即可得出答案.【解答】解:∵a∥b,∠1=54°,∴∠2=∠1=54°.故答案为:54.3.(3分)要使有意义,则x的取值范围是x≥2.【分析】根据二次根式有意义的条件得到x﹣2≥0,然后解不等式即可.【解答】解:∵有意义,∴x﹣2≥0,∴x≥2.故答案为x≥2.4.(3分)已知一个反比例函数的图象经过点(3,1),若该反比例函数的图象也经过点(﹣1,m),则m =﹣3.【分析】设反比例函数的表达式为y=,依据反比例函数的图象经过点(3,1)和(﹣1,m),即可得到k=3×1=﹣m,进而得出m=﹣3.【解答】解:设反比例函数的表达式为y=,∵反比例函数的图象经过点(3,1)和(﹣1,m),∴k=3×1=﹣m,解得m=﹣3,故答案为:﹣3.5.(3分)若关于x的一元二次方程x2+2x+c=0有两个相等的实数根,则实数c的值为1.【分析】若一元二次方程有两个相等的实数根,则根的判别式△=b2﹣4ac=0,建立关于c的方程,求出c的值即可.【解答】解:∵关于x的一元二次方程x2+2x+c=0有两个相等的实数根,∴△=b2﹣4ac=22﹣4c=0,解得c=1.故答案为1.6.(3分)已知四边形ABCD是矩形,点E是矩形ABCD的边上的点,且EA=EC.若AB=6,AC=2,则DE的长是或.【分析】由勾股定理可求BC=2,分点E在CD上或在AB上两种情况讨论,由勾股定理可求解.【解答】解:如图,∵四边形ABCD是矩形,∴CD=AB=6,AD=BC,∠ABC=∠ADC=90°,∴BC===2,∴AD=2,当点E在CD上时,∵AE2=DE2+AD2=EC2,∴(6﹣DE)2=DE2+4,∴DE=;当点E在AB上时,∵CE2=BE2+BC2=EA2,∴AE2=(6﹣AE)2+4,∴AE=,∴DE===,综上所述:DE=或,故答案为:或.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.(4分)千百年来的绝对贫困即将消除,云南省95%的贫困人口脱贫,95%的贫困村出列,90%的贫困县摘帽,1500000人通过异地扶贫搬迁实现“挪穷窝”,“斩穷根”(摘自2020年5月11日云南日报).1500000这个数用科学记数法表示为()A.15×106B.1.5×105C.1.5×106D.1.5×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:1500000=1.5×106,故选:C.8.(4分)下列几何体中,主视图是长方形的是()A.B.C.D.【分析】根据各个几何体的主视图的形状进行判断即可.【解答】解:圆柱体的主视图是长方形,圆锥的主视图是等腰三角形,球的主视图是圆形,四面体的主视图是三角形,故选:A.9.(4分)下列运算正确的是()A.=±2B.()﹣1=﹣2C.(﹣3a)3=﹣9a3D.a6÷a3=a3(a≠0)【分析】根据二次根式的性质,负整数指数幂法则,幂的性质进行解答便可.【解答】解:A.,选项错误;B.原式=2,选项错误;C.原式=﹣27a3,选项错误;D.原式=a6﹣3=a3,选项正确.故选:D.10.(4分)下列说法正确的是()A.为了解三名学生的视力情况,采用抽样调查B.任意画一个三角形,其内角和是360°是必然事件C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为、,方差分别为s甲2、s乙2,若=,s甲2=0.4,s乙2=2,则甲的成绩比乙的稳定D.一个抽奖活动中,中奖概率为,表示抽奖20次就有1次中奖【分析】根据普查、抽查,三角形的内角和,方差和概率的意义逐项判断即可.【解答】解:了解三名学生的视力情况,由于总体数量较少,且容易操作,因此宜采取普查,因此选项A不符合题意;任意画一个三角形,其内角和是360°是不可能事件,因此选项B不符合题意;根据平均数和方差的意义可得选项C符合题意;一个抽奖活动中,中奖概率为,表示中奖的可能性为,不代表抽奖20次就有1次中奖,因此选项D不符合题意;故选:C.11.(4分)如图,平行四边形ABCD的对角线AC,BD相交于点O,E是CD的中点.则△DEO与△BCD 的面积的比等于()A.B.C.D.【分析】利用平行四边形的性质可得出点O为线段BD的中点,结合点E是CD的中点可得出线段OE 为△DBC的中位线,利用三角形中位线定理可得出OE∥BC,OE=BC,进而可得出△DOE∽△DBC,再利用相似三角形的面积比等于相似比的平方,即可求出△DEO与△BCD的面积的比.【解答】解:∵平行四边形ABCD的对角线AC,BD相交于点O,∴点O为线段BD的中点.又∵点E是CD的中点,∴线段OE为△DBC的中位线,∴OE∥BC,OE=BC,∴△DOE∽△DBC,∴=()2=.故选:B.12.(4分)按一定规律排列的单项式:a,﹣2a,4a,﹣8a,16a,﹣32a,…,第n个单项式是()A.(﹣2)n﹣1a B.(﹣2)n a C.2n﹣1a D.2n a【分析】根据题意,找出规律:单项式的系数为(﹣2)的幂,其指数为比序号数少1,字母为a.【解答】解:∵a=(﹣2)1﹣1a,﹣2a=(﹣2)2﹣1a,4a=(﹣2)3﹣1a,﹣8a=(﹣2)4﹣1a,16a=(﹣2)5﹣1a,﹣32a=(﹣2)6﹣1a,…由上规律可知,第n个单项式为:(﹣2)n﹣1a.故选:A.13.(4分)如图,正方形ABCD的边长为4,以点A为圆心,AD为半径,画圆弧DE得到扇形DAE(阴影部分,点E在对角线AC上).若扇形DAE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()A.B.1C.D.【分析】根据圆锥的底面周长与展开后所得扇形的弧长相等列式计算即可.【解答】解:设圆椎的底面圆的半径为r,根据题意可知:AD=AE=4,∠DAE=45°,∴2πr=,解得r=.答:该圆锥的底面圆的半径是.故选:D.14.(4分)若整数a使关于x的不等式组,有且只有45个整数解,且使关于y的方程+=1的解为非正数,则a的值为()A.﹣61或﹣58B.﹣61或﹣59C.﹣60或﹣59D.﹣61或﹣60或﹣59【分析】解不等式组,得<x≤25,根据不等式组有且只有45个整数解,可得﹣61≤a<﹣58,根据关于y的方程+=1的解为非正数:解得a≥﹣61,又y+1不等于0,进而可得a的值.【解答】解:解不等式组,得<x≤25,∵不等式组有且只有45个整数解,∴﹣20≤<﹣19,解得﹣61≤a<﹣58,因为关于y的方程+=1的解为:y=﹣a﹣61,y≤0,∴﹣a﹣61≤0,解得a≥﹣61,∵y+1≠0,∴y≠﹣1,∴a≠﹣60则a的值为:﹣61或﹣59.故选:B.三、解答题(本大题共9小题,共70分)15.(6分)先化简,再求值:÷,其中x=.【分析】原式利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=÷=•=,当x=时,原式=2.16.(6分)如图,已知AD=BC,BD=AC.求证:∠ADB=∠BCA.【分析】根据SSS推出△ADB和△BCA全等,再根据全等三角形的性质得出即可.【解答】证明:在△ADB和△BCA中,,∴△ADB≌△BCA(SSS),∴∠ADB=∠BCA.17.(8分)某公司员工的月工资如下:员工经理副经理职员A职员B职员C职员D职员E职员F杂工G月工资/元700044002400200019001800180018001200经理、职员C、职员D从不同的角度描述了该公司员工的收入情况.设该公司员工的月工资数据(见上述表格)的平均数、中位数、众数分别为k、m、n,请根据上述信息完成下列问题:(1)k=2700,m=1900,n=1800;(2)上月一个员工辞职了,从本月开始,停发该员工工资,若本月该公司剩下的8名员工的月工资不变,但这8名员工的月工资数据(单位:元)的平均数比原9名员工的月工资数据(见上述表格)的平均数减小了.你认为辞职的那名员工可能是经理或副经理.【分析】(1)求出9个数据之和再除以总个数即可;对于中位数,按从大到小的顺序排列,找出最中间的那个数即可;出现频数最多的数据即为众数;(2)根据剩下的8名员工的月工资数据的平均数比原9名员工的月工资数据的平均数减小,得出辞职的那名员工工资高于2700元,从而得出辞职的那名员工可能是经理或副经理.【解答】解:(1)平均数k=(7000+4400+2400+2000+1900+1800×3+1200)÷9=2700,9个数据从大到小排列后,第5个数据是1900,所以中位数m=1900,1800出现了三次,次数最多,所以众数n=1800.故答案为:2700,1900,1800;(2)由题意可知,辞职的那名员工工资高于2700元,所以辞职的那名员工可能是经理或副经理.故答案为:经理或副经理.18.(6分)某地响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展“美化绿色城市”活动,绿化升级改造了总面积为360万平方米的区域.实际施工中,由于采用了新技术,实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务.实际平均每年绿化升级改造的面积是多少万平方米?【分析】设原计划每年绿化升级改造的面积是x万平方米,则实际每年绿化升级改造的面积是2x万平方米,根据“实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务”列出方程即可求解.【解答】解:设原计划每年绿化升级改造的面积是x万平方米,则实际每年绿化升级改造的面积是2x 万平方米,根据题意,得:﹣=4,解得:x=45,经检验,x=45是原分式方程的解,则2x=2×45=90.答:实际平均每年绿化升级改造的面积是90万平方米.19.(7分)甲、乙两个家庭来到以“生态资源,绿色旅游”为产业的美丽云南,各自随机选择到大理、丽江、西双版纳三个城市中的一个城市旅游.假设这两个家庭选择到哪个城市旅游不受任何因素影响,上述三个城市中的每一个被选到的可能性相同,甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率为P.(1)直接写出甲家庭选择到大理旅游的概率;(2)用列表法或树状图法(树状图也称树形图)中的一种方法,求P的值.【分析】(1)直接用概率公式求解可得;(2)记到大理、丽江、西双版纳三个城市旅游分别为A、B、C,列表得出所有等可能结果,从中找到甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的结果数,根据概率公式求解可得.【解答】解:(1)甲家庭选择到大理旅游的概率为;(2)记到大理、丽江、西双版纳三个城市旅游分别为A、B、C,列表得:A B CA(A,A)(A,B)(A,C)B(B,A)(B,B)(B,C)C(C,A)(C,B)(C,C)由表格可知,共有9种等可能性结果,其中甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的有3种结果,所以甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率P==.20.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD⊥CE,垂足为D,AC平分∠DAB.(1)求证:CE是⊙O的切线;(2)若AD=4,cos∠CAB=,求AB的长.【分析】(1)连接OC.只要证明OC⊥DE即可解决问题;(2)连接BC,根据圆周角定理得到∠ACB=90°,根据角平分线的定义得到∠DAC=∠CAB,根据相似三角形的性质即可得到结论.【解答】(1)证明:连接OC.∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠CAD=∠CAB,∴∠DAC=∠ACO,∴AD∥OC,∵AD⊥DE,∴OC⊥DE,∴直线CE是⊙O的切线;(2)连接BC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ADC=∠ACB,∵AC平分∠DAB,∴∠DAC=∠CAB,∴△DAC∽△CAB ,∴=,∵cos∠CAB ==,∴设AC=4x,AB=5x ,∴=,∴x =,∴AB =.21.(8分)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:目的地A地(元/辆)B地(元/辆)车型大货车9001000小货车500700现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数解析式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.【分析】(1)设大货车、小货车各有x与y辆,根据题意列出方程组即可求出答案.(2)根据题中给出的等量关系即可列出y与x的函数关系.(3)先求出x的范围,然后根据y与x的函数关系式即可求出y的最小值.【解答】解:(1)设大货车、小货车各有x与y辆,由题意可知:,解得:,答:大货车、小货车各有12与8辆(2)设到A地的大货车有x辆,则到A地的小货车有(10﹣x)辆,到B地的大货车有(12﹣x)辆,到B地的小货车有(x﹣2)辆,∴y=900x+500(10﹣x)+1000(12﹣x)+700(x﹣2)=100x+15600,其中2<x<10.(3)运往A地的物资共有[15x+10(10﹣x)]吨,15x+10(10﹣x)≥140,解得:x≥8,∴8≤x<10,当x=8时,y有最小值,此时y=100×8+15600=16400元,答:总运费最小值为16400元.22.(9分)如图,四边形ABCD是菱形,点H为对角线AC的中点,点E在AB的延长线上,CE⊥AB,垂足为E,点F在AD的延长线上,CF⊥AD,重足为F,(1)若∠BAD=60°,求证:四边形CEHF是菱形;(2)若CE=4,△ACE的面积为16,求菱形ABCD的面积.【分析】(1)根据菱形的性质得到∠ABC=∠ADC=120°,根据角平分线的性质得到CE=CF,根据直角三角形的性质得到EH=FH=AC,于是得到结论;(2)根据三角形的面积公式得到AE=8,根据勾股定理得到AC==4,连接BD,则BD⊥AC,AH=AC=2,根据相似三角形的性质得到BD=2BH=2,由菱形的面积公式即可得到结论.【解答】解:(1)∵四边形ABCD是菱形,∠BAD=60°,∴∠EAC=∠F AC=30°,又∵CE⊥AB,CF⊥AD,∴CE=CF=1/2AC,∵点H为对角线AC的中点,∴EH=FH=1/2AC,∴CE=CF=EH=FH,∴四边形CEHF是菱形;(2)∵CE⊥AB,CE=4,△ACE的面积为16,∴AE=8,∴AC==4,连接BD,则BD⊥AC,AH=AC=2,∵∠AHB=∠AEC=90°,∠BAH=∠EAC,∴△ABH∽△ACE,∴=,∴=,∴BH=,∴BD=2BH=2,∴菱形ABCD的面积=AC•BD==20.23.(12分)抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),点C 的坐标为(0,﹣3).点P为抛物线y=x2+bx+c上的一个动点.过点P作PD⊥x轴于点D,交直线BC 于点E.(1)求b、c的值;(2)设点F在抛物线y=x2+bx+c的对称轴上,当△ACF的周长最小时,直接写出点F的坐标;(3)在第一象限,是否存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍?若存在,求出点P所有的坐标;若不存在,请说明理由.【分析】(1)把A、C点的坐标代入抛物线的解析式列出b、c的方程组,解得b、c便可;(2)连接BC与对称轴交于点F,此时△ACF的周长最小,求得BC的解析式,再求得BC与对称轴的交点坐标便可;(3)设P(m,m2﹣2m﹣3)(m>3),根据相似三角形的比例式列出m的方程解答便可.【解答】解:(1)把A、C点的坐标代入抛物线的解析式得,,解得,;(2)连接BC,与抛物线的对称轴交于点F,连接AF,如图1,此时,AF+CF=BF+CF=BC的值最小,∵AC为定值,∴此时△AFC的周长最小,由(1)知,b=﹣2,c=﹣3,∴抛物线的解析式为:y=x2﹣2x﹣3,∴对称轴为x=1,令y=0,得y=x2﹣2x﹣3=0,解得,x=﹣1,或x=3,∴B(3,0),令x=0,得y=x2﹣2x﹣3=﹣3,∴C(0,﹣3),设直线BC的解析式为:y=kx+b(k≠0),得,解得,,∴直线BC的解析式为:y=x﹣3,当x=1时,y=x﹣3=﹣2,∴F(1,﹣2);(3)设P (m ,m 2﹣2m ﹣3)(m >3),过P 作PH ⊥BC 于H ,过D 作DG ⊥BC 于G ,如图2, 则PH =5DG ,E (m ,m ﹣3),∴PE =m 2﹣3m ,DE =m ﹣3,∵∠PHE =∠DGE =90°,∠PEH =∠DEG ,∴△PEH ∽△DEG ,∴,∴,∵m =3(舍),或m =5,∴点P 的坐标为P (5,12).故存在点P ,使点P 到直线BC 的距离是点D 到直线BC 的距离的5倍,其P 点坐标为(5,12).。

2020年云南省昆明市中考数学试卷及答案(word版).doc

2020年云南省昆明市中考数学试卷及答案(word版).doc

2020年云南省昆明市中考数学一、选择题(每小题3分,满分27分)1、昆明小学1月份某天的气温为5℃,最低气温为﹣1℃,则昆明这天的气温差为( )A 、4℃B 、6℃C 、﹣4℃D 、﹣6℃答案:B2、如图是一个由相同的小正方体组成的立体图形,它的主视图是( )答案:D3、据2020年全国第六次人口普查数据公布,云南省常住人口为45966239人,45966239用科学记数法表示且保留两个有效数字为( )A 、4.6×107B 、4.6×106C 、4.5×108D 、4.5×107 答案;A4、小明在九年级进行的六次数学测验成绩如下(单位:分):76、82、91、85、84、85,则这次数学测验成绩的众数和中位数分别为( )A 、91,88B 、85,88C 、85,85D 、85,84.5 答案:D5、若x 1,x 2是一元二次方程2x 2﹣7x+4=0的两根,则x 1+x 2与x 1•x 2的值分别是( )A 、﹣72,﹣2B 、﹣72,2C 、72,2D 、72,﹣2 答案:C6、列各式运算中,正确的是( )A 、3a•2a=6aB 22=C 2=D 、(2a+b )(2a ﹣b )=2a 2﹣b 2答案:B7、(2020•昆明)如图,在Y ABCD 中,添加下列条件不能判定Y ABCD 是菱形的是( )A 、AB=BCB 、AC ⊥BD C 、BD 平分∠ABC D 、AC=BD 答案:D8、抛物线y=ax 2+bx+c (a≠0)的图象如图所示,则下列说法正确的是( )A 、b 2﹣4ac <0B 、abc <0C 、12b a -<-D 、a ﹣b+c <0 答案:C9、如图,在Rt △ABC 中,∠ACB=90°,BC=3,AB 的垂直平分线ED 交BC 的延长线与D 点,垂足为E ,则sin ∠CAD=( )A 、14B 、13C D答案:A二、填空题(每题3分,满分18分.)10、当x 时,二次根式答案x≥511、如图,点D 是△ABC 的边BC 延长线上的一点,∠A=70°,∠ACD=105°,则∠B= .答案:35°.12、若点P (﹣2,2)是反比例函数k y x =的图象上的一点,则此反比例函数的解析式为 . 答案:y=4x13、计算:2()ab a b a a b a b ++÷--= . 答案:a14、如图,在△ABC 中,∠C=120°,AB=4cm ,两等圆⊙A 与⊙B 外切,则图中两个扇形(即阴影部分)的面积之和为 cm 2.(结果保留π).答案:23π15、某公司只生产普通汽车和新能源汽车,该公司在去年的汽车产量中,新能源汽车占总产量的10%,今年由于国家能源政策的导向和油价上涨的影响,计划将普通汽车的产量减少10%,为保持总产量与去年相等,那么今年新能源汽车的产量应增加的百分数为 . 答案:90%三、简答题(共10题,满分75.)161020111()1)(1)2--+-.答案:解:原式+2﹣1﹣17、解方程:31122x x+=--. 答案:解:方程的两边同乘(x ﹣2),得3﹣1=x ﹣2,解得x=4.检验:把x=4代入(x ﹣2)=2≠0.∴原方程的解为:x=4.18、在Y ABCD 中,E ,F 分别是BC 、AD 上的点,且BE=DF .求证:AE=CF .答案:证明:∵四边形ABCD 是平行四边形,∴AB=CD ,∠B=∠D ,∵BE=DF ,∴△ABE ≌△CDF ,∴AE=CF .19、某校在八年级信息技术模拟测试后,八年级(1)班的最高分为99分,最低分为40分,课代表将全班同学的成绩(得分取整数)进行整理后分为6个小组,制成如下不完整的频数分布直方图,其中39.5~59.5的频率为0.08,结合直方图提供的信息,解答下列问题:(1)八年级(1)班共有50名学生;(2)补全69.5~79.5的直方图;(3)若80分及80分以上为优秀,优秀人数占全班人数的百分比是多少?(4)若该校八年级共有450人参加测试,请你估计这次模拟测试中,该校成绩优秀的人数大约有多少人?答案:解:(1)4÷0.08=50,(2)69.5~79.5的频数为:50﹣2﹣2﹣8﹣18﹣8=12,如图:(3)18850×100%=52%,(4)450×52%=234(人),答:优秀人数大约有234人.20、在平面直角坐标系中,△ABC的位置如图所示,请解答下列问题:(1)将△ABC向下平移3个单位长度,得到△A1B1C1,画出平移后的△A1B1C1;(2)将△ABC绕点O顺时针方向旋转180°,得到△A2B2C2,画出旋转后的△A2B2C2,并写出A2点的坐标.答案:解:(1)所画图形如下:(2)所画图形如下:∴A 2点的坐标为(2,﹣3).21、如图,在昆明市轨道交通的修建中,规划在A 、B 两地修建一段地铁,点B 在点A 的正东方向,由于A 、B 之间建筑物较多,无法直接测量,现测得古树C 在点A 的北偏东45°方向上,在点B 的北偏西60°方向上,BC=400m ,请你求出这段地铁AB 的长度.(结果精确到1m 2 1.4143 1.732≈≈,)答案:解:过点C 作CD ⊥AB 于D ,由题意知:∠CAB=45°,∠CBA=30°,∴CD=12BC=200, BD=CB•cos (90°﹣60°)=400×323,AD=CD=200,∴AB=AD+BD=200+2003≈546(m),答:这段地铁AB的长度为546m.22、小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1、2、3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张.(1)请用画树形图或列表的方法(只选其中一种),表示出两次抽出的纸牌数字可能出现的所有结果;(2)若规定:两次抽出的纸牌数字之和为奇数,则小昆出获胜,两次抽出的纸牌数字之和为偶数,则小明获胜,这个游戏公平吗?为什么?答案:解:(1)(2)不公平.理由:因为两纸牌上的数字之和有以下几种情况:1+1=2;2+1=3;3+1=4;1+2=3;2+2=4;3+2=5;1+3=4;2+3=5;3+3=6共9种情况,其中5个偶数,4个奇数.即小坤获胜的概率为为59,而小明的概率为49,∴59>49,∴此游戏不公平.23、A市有某种型号的农用车50辆,B市有40辆,现要将这些农用车全部调往C、D两县,C县需要该种农用车42辆,D县需要48辆,从A市运往C、D两县农用车的费用分别为每辆300元和150元,从B市运往C、D两县农用车的费用分别为每辆200元和250元.(1)设从A市运往C县的农用车为x辆,此次调运总费为y元,求y与x的函数关系式,并写出自变量x的取值范围;(2)若此次调运的总费用不超过16000元,有哪几种调运方案?哪种方案的费用最小?并求出最小费用?答案:解:(1)从A市运往C县的农用车为x辆,此次调运总费为y元,根据题意得:y=300x+200(42﹣x)+150(50﹣x)+250(x﹣2),即y=200x+15400,所以y与x的函数关系式为:y=200x+15400.又∵042050020x x x x ≥⎧⎪-≥⎪⎨-≥⎪⎪-≥⎩,解得:2≤x≤42,且x 为整数,所以自变量x 的取值范围为:2≤x≤42,且x 为整数.(2)∵此次调运的总费用不超过16000元,∴200x+15400≤16000解得:x≤3,∴x 可以取:2或3,方案一:从A 市运往C 县的农用车为2辆,从B 市运往C 县的农用车为40辆,从A 市运往D 县的农用车为48辆,从B 市运往D 县的农用车为0辆,方案二:从A 市运往C 县的农用车为3辆,从B 市运往C 县的农用车为39辆,从A 市运往D 县的农用车为47辆,从B 市运往D 县的农用车为1辆,∵y=200x+154000是一次函数,且k=200>0,y 随x 的增大而增大,∴当x=2时,y 最小,即方案一费用最小,此时,y=200×2+15400=15800,所以最小费用为:15800元.24、如图,已知AB 是⊙O 的直径,点E 在⊙O 上,过点E 的直线EF 与AB 的延长线交与点F ,AC ⊥EF ,垂足为C ,AE 平分∠FAC .(1)求证:CF 是⊙O 的切线;(2)∠F=30°时,求OFES S ∆四边形AOEC 的值?答案:(1)证明:连接OE ,∵AE 平分∠FAC ,∴∠CAE=∠OAE ,又∵OA=OE ,∠OEA=∠OAE ,∠CAE=∠OEA ,∴OE ∥AC ,∴∠OEF=∠ACF ,又∵AC ⊥EF ,∴∠OEF=∠ACF=90°,∴OE ⊥CF ,又∵点E 在⊙O 上,∴CF 是⊙O 的切线;(2)∵∠OEF=90°,∠F=30°,∴OF=2OE又OA=OE ,∴AF=3OE ,又∵OE ∥AC ,∴△OFE ∽△AFC , ∴23OE OF AC AF ==,∴49OFE AFC S S ∆∆=,∴45OFE S S ∆=四边形AOEC .25、如图,在Rt △ABC 中,∠C=90°,AB=10cm ,AC :BC=4:3,点P 从点A 出发沿AB 方向向点B 运动,速度为1cm/s ,同时点Q 从点B 出发沿B→C→A 方向向点A 运动,速度为2cm/s ,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC 、BC 的长;(2)设点P 的运动时间为x (秒),△PBQ 的面积为y (cm 2),当△PBQ 存在时,求y 与x 的函数关系式,并写出自变量x 的取值范围;(3)当点Q 在CA 上运动,使PQ ⊥AB 时,以点B 、P 、Q 为定点的三角形与△ABC 是否相似,请说明理由;(4)当x=5秒时,在直线PQ 上是否存在一点M ,使△BCM 得周长最小,若存在,求出最小周长,若不存在,请说明理由.答案:解:(1)设AC=4x ,BC=3x ,在Rt△ABC 中,AC 2+BC 2=AB 2,即:(4x )2+(3x )2=102,解得:x=2,∴AC=8cm,BC=6cm ;(2)①当点Q 在边BC 上运动时,过点Q 作QH⊥AB 于H ,∵AP=x,∴BP=10﹣x ,BQ=2x ,∵△QHB∽△ACB, ∴QH QB AC AB =,∴QH=85x ,y=12BP •QH=12(10﹣x )•85x=﹣45x 2+8x (0<x≤3), ②当点Q 在边CA 上运动时,过点Q 作QH′⊥AB 于H′,∵AP=x,∴BP=10﹣x ,AQ=14﹣2x ,∵△AQH′∽△ABC, ∴'AQ QH AB BC =,即:'14106x QH -=,解得:QH′=35(14﹣x ), ∴y=12PB•QH′=12(10﹣x )•35(14﹣x )=310x 2﹣365x+42(3<x <7); ∴y 与x 的函数关系式为:y=2248(03)533642(37)105x x x x x x ⎧-+<≤⎪⎪⎨⎪-+<<⎪⎩; (3)∵AP=x,AQ=14﹣x ,∵PQ⊥AB,∴△APQ∽△ACB,∴AP AQ PQ AC AB BC ==,即:148106x x PQ -==, 解得:x=569,PQ=143,∴PB=10﹣x=349,∴1421334179PQ BC PB AC==≠, ∴当点Q 在CA 上运动,使PQ⊥AB 时,以点B 、P 、Q 为定点的三角形与△ABC 不相似;(4)存在.理由:∵AQ=14﹣2x=14﹣10=4,AP=x=5,∵AC=8,AB=10,∴PQ 是△ABC 的中位线,∴PQ∥AB,∴PQ⊥AC,∴PQ 是AC 的垂直平分线,∴PC=AP=5,∴当点M 与P 重合时,△BCM 的周长最小, ∴△BCM 的周长为:MB+BC+MC=PB+BC+PC=5+6+5=16.∴△BCM 的周长最小值为16.。

2020年云南省中考数学试卷及答案解析

2020年云南省中考数学试卷及答案解析

2020年云南省中考数学试卷及答案解析2020年云南省中考数学试卷一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)中国是最早采用正负数表示相反意义的量的国家。

某仓库运进面粉7吨,记为+7吨,那么运出面粉8吨应记为-8吨。

2.(3分)如图,直线c与直线a、b都相交。

若a∥b,∠1=54°,则∠2=126°。

3.(3分)要使√(x+2)有意义,则x的取值范围是x≥-2.4.(3分)已知一个反比例函数的图象经过点(3,1),若该反比例函数的图象也经过点(-1,m),则m=-3/2.5.(3分)若关于x的一元二次方程x^2+2x+c=0有两个相等的实数根,则实数c的值为1.6.(3分)已知四边形ABCD是矩形,点E是矩形ABCD的边上的点,且EA=EC。

若AB=6,AC=2,则DE的长是4.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.(4分)千百年来的绝对贫困即将消除,云南省95%的贫困人口脱贫,95%的贫困村出列,90%的贫困县摘帽,xxxxxxx人通过异地扶贫搬迁实现“挪穷窝”,“斩穷根”(摘自2020年5月11日云南日报)。

xxxxxxx这个数用科学记数法表示为1.5×10^6.8.(4分)下列几何体中,主视图是长方形的是B。

9.(4分)下列运算正确的是3-1=-2.10.(4分)下列说法正确的是D。

一个抽奖活动中,中奖概率为1/20,表示抽奖20次就有1次中奖。

11.(4分)如图,平行四边形ABCD的对角线AC,BD相交于点O,E是CD的中点。

则△DEO与△BCD的面积的比等于1/4.12.(4分)按一定规律排列的单项式:a,-2a,4a,-8a,16a,-32a,…,第n个单项式是(-2)^(n-1)a。

1.剔除格式错误和明显有问题的段落,无需改写。

2.15.先化简,再求值:$$\frac{(x+3)(x+2)}{(x+3)(x-2)}\div\frac{(x-3)(x+2)}{(x-3)(x+2)}$$化简后得:$$\frac{x+2}{x-2}$$代入$x=1$,得:$$\frac{3}{-1}=-3$$16.如图,已知$AD=BC$,$BD=AC$。

2020年云南省中考数学试卷(含答案解析)

2020年云南省中考数学试卷(含答案解析)

2020年云南省中考数学试卷(含答案解析) 2020年云南省中考数学试卷一、选择题(本大题共8小题,共32.0分)1.根据题意可知,科学记数法表示为1.5×106,故选C。

2.根据主视图的定义可知,主视图是几何体在某一方向上的投影,投影是一个平面图形,故主视图是长方形的几何体只有长方体和正方体,故选A。

3.根据运算法则可知,√4=2,(−3a)3=−27a3,故选B。

4.根据指数的运算法则可知,(2)−1=1/2,a6÷a3=a3(a≠0),故选BD。

5.根据平行四边形对角线的性质可知,△aaa与△aaa的面积的比等于1:3,故选C。

6.根据题意可知,第n个单项式是(−2)a−1a,故选A。

7.根据扇形面积公式可知,扇形DAE的面积为4π/3,根据圆锥的侧面展开图可知,扇形DAE的弧长为底面圆的周长,即4√2,故底面圆的半径为2√2/π,故选D。

二、填空题(本大题共6小题,共18.0分)1.根据题意可知,采用抽样调查的目的是为了解三名学生的视力情况,故填“目的”。

2.根据三角形内角和定理可知,任意画一个三角形,其内角和是180°,不是必然事件,故填“不是”。

3.根据题意可知,甲的成绩比乙的稳定,即方差小,故填“甲的成绩比乙的稳定”。

4.根据中奖概率的定义可知,中奖概率为1/20,故填“1/20”。

5.根据题意可知,整数a使关于x的不等式组{2a−a>a+1,4a−a<a+1}有且只有45个整数解,且使关于y的方程2a+a+2/(a+1)+1/a=1的解为非正数,故填“45”。

6.根据题意可知,按一定规律排列的单项式为a,−2a,4a,−8a,16a,−32a,…,故填“-64a”。

了不同的旅游线路,甲家庭选择了A、B、C三个景点,乙家庭选择了B、C、D三个景点.已知甲家庭在A、B、C三个景点的花费分别为300元、400元、500元,乙家庭在B、C、D三个景点的花费分别为350元、450元、550元.1)甲、乙两个家庭在B、C两个景点的总花费相同,求B、C两个景点的平均花费;2)若甲、乙两个家庭的总花费相同,求甲家庭和乙家庭的平均花费;3)若甲家庭和乙家庭的总花费相差不超过200元,问哪个家庭的总花费更高?20.某校初三年级有600名学生,其中男生占总数的40%,女生占总数的60%.初三(1)班有40名学生,其中男生占总数的45%.1)初三年级男生人数是多少?2)初三(1)班女生人数是多少?3)初三年级女生人数是多少?4)初三年级女生人数比初三(1)班女生人数多多少?解析】根据题意可得:begin{aligned}P(\text{甲、乙两家选择同一城市}) &= P(\text{甲家选择城市}) \times P(\text{乙家选择城市}) \\frac{1}{3} \times \frac{1}{3} \\frac{1}{9}end{aligned}因此,甲家选择到大理旅游的概率为$\dfrac{1}{3}$。

2020年云南省中考数学试题(教师版含解析)

2020年云南省中考数学试题(教师版含解析)

2020年云南省中考数学试卷一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)中国是最早采用正负数表示相反意义的量的国家.某仓库运进面粉7吨,记为+7吨,那么运岀而粉8吨应记为_______ 吨.2.(3分)如图,直线C与直线“、b都相交.若u∕∕b,Z 1=54° ,贝∣JZ2=___ 度.3.(3分)要使代石有意义,则X的取值范围是______ .4.(3分)已知一个反比例函数的图象经过点(3, 1),若该反比例函数的图象也经过点(-1」?),则m= _ .5.(3分)若关于X的一元二次方程/+2χ+c=0有两个相等的实数根,则实数C的值为_______ •6.(3分)已知四边形ABCD是矩形,点E是矩形ABCD的边上的点,且EA=EC.若ΛB=6,AC=2√W,则DE的长是________ .二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.(4分)千百年来的绝对贫困即将消除,云南省95%的贫困人口脱贫,95%的贫困村出列,90%的贫困县摘帽,1500000人通过异地扶贫搬迁实现“挪穷窝”,“斩穷根”(摘自2020年5月11日云南日报).1500000 这个数用科学记数法表示为()A.15× IO6B. 1.5XlO5C. 1.5×106D. 1.5XlO78.(4分)下列几何体中,主视图是长方形的是()9.(4分)下列运算正确的是()C・(-3α)3= - %3 D・a6÷a3=a3(u≠0)10.(4分)下列说法正确的是()A.为了解三名学生的视力情况,采用抽样调查B・任意画一个三角形,英内角和是360°是必然事件C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为玮、范,方差分别为「卩2、%2, 人龙甲=g乙’s甲2=0.4, S乙~ = 2,则卬的成绩比乙的稳立D. —个抽奖活动中,中奖概率为丄,表示抽奖20次就有1次中奖2011・(4分)如图,平行四边形ABCD的对角线AG BD相交于点O, E是CD的中点・贝IJZkDEO与ABCD的而积的比等于(An --------)B ---------- CA.丄B. L c. 2 D. 22 4 6 812. (4分)按一定规律排列的单项式:“,-1&/, -32t∕,…,第"个单项式是()A.(・2)讥B. (-2)SC. 2n'l a D・2n a13. (4分)如图,正方形ABCD的边长为4,以点A为圆心,AD为半径,画圆狐DE得到扇形D4E(阴影部分,点E在对角线AC上)・若扇形DAE正好是一个圆锥的侧面展开图,则该圆锥的底而圆的半径是()3 ,有且只有45个整数解,且使关于y的方程4κ-a≥x+l誉曇R的解为非正数,则“的值为(A.・ 61 或-58A・√4=÷2 B. =-2B. 1 D∙⅛14. (4分)若整数“使关于X的不等式组2B.・ 61 或-59A. √2C. -60 或・59D. - 61 或-60 或・59三、解答题(本大题共9小题,共70分)2 215.(6分)先化简,再求值:X李其中X=I.艾2_4 X+2 216.(6 分)如图,已知AD=BG BD=AC・求证:ZADB=∕BCA∙17・(8分)某公司员工的月工资如下:员工经理副经理职员A 职员B 职员Q 职员D 职员E 职员F 杂工G月工资/ 7000 4400 2400 2000 1900 1800 1800 1800 1200元经理、职员C.职员D从不同的角度描述了该公司员工的收入情况.设该公司员工的月工资数据(见上述表格)的平均数、中位数、众数分别为k、m、n,请根据上述信息完成下列问题:(I)K= ____ , m= ________ , H= ________:(2)上月一个员工辞职了,从本月开始,停发该员工工资,若本月该公司剩下的8名员工的月工资不变,但这8名员工的月工资数据(单位:元)的平均数比原9需员工的月工资数据(见上述表格)的平均数减小应聘者了.你认为辞职的那划员工可能是________ •18.(6分)某地响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展“美化绿色城市”活动,绿化升级改造了总而积为360万平方米的区域.实际施工中,由于采用了新技术,实际平均每年绿化升级改造的而积是原讣划平均每年绿化升级改造的而积的2倍,所以比原让划提前4年完成了上述绿化升级改造任务.实际平均每年绿化升级改造的面积是多少万平方米?19.(7分)甲、乙两个家庭来到以“生态资源,绿色旅游”为产业的美丽云南,各自随机选择到大理、丽江、西双版纳三个城市中的一个城市旅游.假设这两个家庭选择到哪个城币旅游不受任何因素影响,上述三个城市中的每一个被选到的可能性相同,甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率为P.(1)直接写岀甲家庭选择到大理旅游的概率:(2)用列表法或树状图法(树状图也称树形图)中的一种方法,求P的值.20.(8分)如图,AB为C)O的直径,C为G)O上一点,ADdC1E,垂足为D, AC平分ZDAB.(1)求证:CE是G)O的切线;21.(8分)众志成城抗疫情,全国人民在行动.某公司决立安排大、小货车共20辆,运送260吨物资到A 地和B地,支援当地抗击疫情.每俩大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:目的地A地(元/辆)B地(it/辆)车型大货车900 1000小货车500 700现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A 地,其余前往B地,设前往A地的大货车有X辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与X的函数解析式,并直接写出X的取值范围:(3)若运往A地的物资不少于140吨,求总运费y的最小值.22.(9分)如图,四边形ABCD是菱形,点H为对角线AC的中点,点E在AB的延长线上,CELAB,重足为E,点F在AD的延长线上,CF丄AD,重足为F,⑴若ZBAD=60° ,求证:四边形CEHF是菱形:(2)若CE=4,ΔACE的而积为16,求菱形ABCD的而积.23.(12分)抛物线y=x1+bx+c与X轴交于A、B两点,与y轴交于点G点A的坐标为(-1, 0),点C的坐标为(0, -3).点P为抛物线y=x2+hx+c上的一个动点.过点P作PD丄X轴于点D,交直线BC于点E. ⑴求b、C的值;(2)设点F在抛物线y=x2+hx+c的对称轴上,当AACF的周长最小时,直接写出点F的坐标:(3)在第一象限,是否存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍?若存在,求岀点P所有的坐标;若不存在,请说明理由.2020年云南省中考数学试卷参考答案与试題解析一、填空题(本大题共6小题,每小题3分,共18分)1.【解答】解:因为题目运进记为正,那么运出记为负.所以运出而粉8吨应记为-8吨.故答案为:-8.2.【解答】解:∖9a∕∕b9Z 1=54° ,ΛZ2=Zl=540・故答案为:54.3.【解答】解:∙∙∙√7迈有意义,Λχ-2^0,•U2.故答案为x>2.4.【解答】解:设反比例函数的表达式为y=^,X•••反比例函数的图象经过点(3, 1)和(・1, m),.∖k=3× I= - m,解得m= - 3,故答案为:-3.5.【解答】解:•••关于X的一元二次方程x2+2r+c=0有两个相等的实数根, .*.Δ=Z>2 - 4<∕C=22 -4c=0,解得c=l.故答案为1.6.【解答】解:如图,D ____________ ±•••四边形ABCD是矩形,:.CD=AB=G9AD=BC, ZABC=ZADC=90° ,∙,∙ BC=Q 戎 2 _AB 2=\/40-36=2,∙∙∙AD=2,当点E在CD上时,∖9AE2=DE2+AD2=EC2,Λ(6 - DE)2=DE2+4,.•.DE=邑3当点E在AB上时,∖9 CE2=BE2+BC2=EA29/.AE2=(6 - AE)2+4,.∙.AE=12,3二选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.【解答】解:1500000= 1.5XlO6,故选:C.8.【解答】解:圆柱体的主视图是长方形,圆锥的主视图是等腰三角形,球的主视图是圆形,四而体的主视图是三角形,故选:A.9.【解答】解:A.√4=2,选项错误:B.原式=2,选项错误:C.原式=-27√,选项错误;D.原式=a6'3=a∖选项正确.故选:D.10.【解答】解:了解三需学生的视力情况,由于总体数量较少,且容易操作,因此宜采取普査,因此选项A不符合题意:任意画一个三角形,其内角和是360°是比可能事件,因此选项B不符合题意;根据平均数和方差的意义可得选项C符合题意;一个抽奖活动中,中奖槪率为丄,表示中奖的可能性为丄,不代表抽奖20次就有1次中奖,因此选项20 20D不符合题意:故选:C.11.【解答】解:∙.∙平行四边形ABCD的对角线AC, BD相交于点O,・•・点O为线段BD的中点.又•・•点E是CD的中点,.∙.线段OE为ADBC的中位线,.t.OE∕∕BC, OE=丄BC,2•••△DOE S/^DBC,SΔDOE,(OE)2_ 丄.Λ^∆DBC BC 4故选:B.12.【解答】解:-2)宀“,-加=(-2)24a=( - 2)3 I Cb-8t∕=(-2)4"lα,16t∕=(- 2)5 l t∕,-32^=(-2)6'lα,•••由上规律可知,第"个单项式为:(-2)“九.故选:A.13.【解答】解:设圆椎的底面圆的半径为r,根据题意可知:AD=AE=4,ZDAE=45° ,Λ2πr=⅛^π≡.180解得「=丄2答:该圆锥的底面圆的半径是丄.2故选:D.14. 【解答】解:解不等式组,得 MlVXW25, 3•••不等式组有且只有45个整数解,••• - 20≤Atl< - 19,3解得-61≤t∕< -58,因为关于y 的方程勿七吃十旦=I 的解为: y+1 1+yy= - - 61 ♦ >W0, .∙. - t/ - 61 WO,Vy+l≠O, Λy≠ - L RH - 60则"的值为:-61或-59. 故选:B.三、解答题(本大题共9小题,共7()分)(I)?(x+2) (χ-2) x(x-2)—,X当X=JL 时,原式=2.216. 【解答】证明:在ZXADB 和Z ∖BC4中,AD 二 BC BD 二AC , AB=BA∙∙∙ AADB 竺 ABCA(SSS), :.ZADB=ZBCA.17. 【解答】解:(1)平均数 k =(7000+4400+2400+2000+1900+1800X3+1200)÷9=2700, 9个数据从大到小排列后,第5个数据是1900,所以中位数加=1900,(X-2 )2 「(工-2) 15【解答】解:≡=(≡Γ2)∙-1800出现了三次,次数最多,所以众数n=1800.故答案为:2700, 1900, 1800:(2)由题意可知,辞职的那名员工工资髙于2700元,所以辞职的那名员工可能是经理或副经理・故答案为:经理或副经理.18.【解答】解:设原计划每年绿化升级改造的而积是Λ万平方米.则实际每年绿化升级改造的而积是2A∙万平方米,根拯题意,得:360 _ 360 =4解得:x=45,经检验,x=45是原分式方程的解,则2x=2×45=90.答:实际平均每年绿化升级改造的而积是90万平方米.,9∙【解答】解:⑴甲家庭选择到大理旅游的概率皤⑵记到大理、丽江、西双版纳三个城市旅游分别为A、B、C9列表得:ABCA(A, A)⑷B)(A, C)B(B,A)(B, B)(B, C)C(G A)(C,B)(G C)由表格可知,共有9种等可能性结果,其中甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的有3种结果,所以甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率P=^=丄.9 320.【解答】(1)证明:连接OC.∖90A = 0C.:.ZOAC=ZOC A,9: AC平分ZDAB,∙∙∙ ZCAD= ZCAB,:.ZDAC=ZACO 9 .∖AD∕∕OC, TAD 丄 DE,:.OC 丄 DE,・•.直线CE 是OO 的切线:⑵连接BC,∙.∙ AB 为G)O 的直径,Λ ZACB=90° ,:.ZADC=ZACB,TAC 平分 ZDAB,:.ZDAC=ZCAB.ΛΔDAC<×>ΔCAB,• AD = AC•••设 ΛC=4χ9 AB=5X ,• 4 _4龙4x 5x∙∙∙x=邑21・【解答】解:(1)设大货车.小货车各有A ∙与y 俩,解得: x=12y=SAC ABVCOSZCAB=^=XAB 5由题意可知: 15x+10y=260x+y=20答:大货车、小货车各有12与8辆(2)设到A地的大货车有X辆,则到A地的小货车有(IO-X)辆,到B地的大货车有(12-X)辆,到B地的小货车有(—2)辆,Λy=90θΛ+500(10 -χ)+1000(12 - x)+700(.v - 2) =100Λ+15600>其中2<x<10・(3)运往A地的物资共有[15A+10(10 - X)]吨,15x+Io(Io-X)MI40,解得:xN8,Λ8≤Λ<10,当x=8时,y 有最小值,此时y= IOOX8+15600= 16400 元,答:总运费最小值为16400元.22.【解答】解:(1)∙∙∙四边形ABCD是菱形,ZBAD=60° ,Λ ZABC=ZADC= ∖20a ,VCE丄AB, CF丄AD:.CE=CF.TH为对角线AC的中点,∙∙∙EH=FH=Sc,2VZCAE= 30° ,VCE=IAC92:.CE=EH=CF=FH,.•・四边形CEHF是菱形:(2) V CE±AB, C£=4, ZkACE 的而积为16,∕∙ A£?=8,ΛAC=A∕CE2+AE2=4√5∙V AAHB=AAEC=^ , ZBAH=ZEAC,:.ZBHs'ACE 、• BH_AH • ■ ≡""≡≡ ~*CE AE∙∙∙BH=真,ΛβD=2BH=2√5>23. 【解答】解:(1)把A 、C 点的坐标代入抛物线的解析式得,"l-b+c=Ol u c=-3k> 二-2解得,b 《c=-3(2)连接BC,与抛物线的对称轴交于点F,连接AF,如图1, 此时,AF+CF=BF+CF=BC 的值最小,VAC 为泄值,.∙.此时AAFC 的周长最小,由(1)知,b= -2, C= - 3,••・抛物线的解析式为:y=∕-2∖∙-3,••・对称轴为A=L令 y=0,得 y=x 1 - 2Λ∙ - 3=0<解得,X= - h 或x=3,∙∙∙B(3, 0),令 Λ=0,得 y=x 2 - 2x - 3= - 3,∙∙∙菱形ABCD 的而积=Λ4C ∙BD∙∙∙C(0, - 3),设宜线BC的解析式为:y=k,x+h伙HO),得f3k+b=0b=-3解得,(k=l ,IbA3・•・直线BC的解析式为:y=Λ -3,当X= 1 时,y=x - 3= - 2»(3)设P(m m2 - 2m - 3)(m>3),过P 作PH丄BC 于过D 作DG丄BC 于G,如图2,则PH=SDG9 E(m, - 3),∙°∙PE=m1・ 3m, DE=HI - 3,VZPHE=ZDGE=90o , ZPEH=ZDEG,:仏PEHSHDEG,• PE _PH ee DE -DG:•加=3(舍),或m=5,・•・点P的坐标为P(5, 12).故存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍,其P点坐标为(5, 12).圉2。

2020年云南省昆明市中考数学试卷及答案(Word解析版)

2020年云南省昆明市中考数学试卷及答案(Word解析版)

云南省昆明市2020年中考数学试卷一、选择题(每小题3分,满分24分,在每小题给出的四个选项中,只有一项是正确的。

)1.(3分)(2019•云南)﹣6的绝对值是()A.﹣6 B.6C.±6 D.考点:绝对值.专题:计算题.分析:根据绝对值的性质,当a是负有理数时,a的绝对值是它的相反数﹣a,解答即可;解答:解:根据绝对值的性质,|﹣6|=6.故选B.点评:本题考查了绝对值的性质,熟记:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2019•昆明)下面几何体的左视图是()A.B.C.D.考点:简单几何体的三视图.分析:根据左视图是从图形的左面看到的图形求解即可.解答:解:从左面看,是一个等腰三角形.故选A.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.(3分)(2019•昆明)下列运算正确的是()A.x6+x2=x3B.C.(x+2y)2=x2+2xy+4y2D.考点:完全平方公式;立方根;合并同类项;二次根式的加减法分析:A、本选项不能合并,错误;B、利用立方根的定义化简得到结果,即可做出判断;C、利用完全平方公式展开得到结果,即可做出判断;D、利用二次根式的化简公式化简,合并得到结果,即可做出判断.解答:解:A、本选项不能合并,错误;B、=﹣2,本选项错误;C、(x+2y)2=x2+4xy+4y2,本选项错误;D、﹣=3﹣2=,本选项正确.故选D点评:此题考查了完全平方公式,合并同类项,以及负指数幂,幂的乘方,熟练掌握公式及法则是解本题的关键.4.(3分)(2019•昆明)如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C的度数为()A.50°B.60°C.70°D.80°考点:三角形中位线定理;平行线的性质;三角形内角和定理.分析:在△ADE中利用内角和定理求出∠AED,然后判断DE∥BC,利用平行线的性质可得出∠C.解答:解:由题意得,∠AED=180°﹣∠A﹣∠ADE=70°,∵点D,E分别是AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,∴∠C=∠AED=70°.故选C.点评:本题考查了三角形的中位线定理,解答本题的关键是掌握三角形中位线定理的内容:三角形的中位线平行于第三边,并且等于第三边的一半.5.(3分)(2019•昆明)为了了解2019年昆明市九年级学生学业水平考试的数学成绩,从中随机抽取了1000名学生的数学成绩.下列说法正确的是()A.2019年昆明市九年级学生是总体B.每一名九年级学生是个体C.1000名九年级学生是总体的一个样本D.样本容量是1000考点:总体、个体、样本、样本容量.分析:根据总体、个体、样本、样本容量的概念结合选项选出正确答案即可.解答:解:A、2019年昆明市九年级学生的数学成绩是总体,原说法错误,故本选项错误;B、每一名九年级学生的数学成绩是个体,原说法错误,故本选项错误;C、1000名九年级学生的数学成绩是总体的一个样本,原说法错误,故本选项错误;D、样本容量是1000,该说法正确,故本选项正确.故选D.点评:本题考查了总体、个体、样本、样本容量的知识,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6.(3分)(2019•昆明)一元二次方程2x2﹣5x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定考点:根的判别式.分析:求出根的判别式△,然后选择答案即可.解答:解:∵△=(﹣5)2﹣4×2×1=25﹣8=17>0,∴方程有有两个不相等的实数根.故选A.点评:总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7.(3分)(2019•昆明)如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为()A.100×80﹣100x﹣80x=7644 B.(100﹣x)(80﹣x)+x2=7644C.(100﹣x)(80﹣x)=7644 D.100x+80x=356考点:由实际问题抽象出一元二次方程.专题:几何图形问题.分析:把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.解答:解:设道路的宽应为x米,由题意有(100﹣x)(80﹣x)=7644,故选C.点评:此题主要考查了由实际问题抽象出一元二次方程,把中间修建的两条道路分别平移到矩形地面的最上边和最左边是做本题的关键.8.(3分)(2019•昆明)如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB的中点.其中正确的结论有()A.5个B.4个C.3个D.2个考点:相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;正方形的性质分析:依据正方形的性质以及勾股定理、矩形的判定方法即可判断△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形,从而作出判断.解答:解:∵四边形ABCD是正方形,∴∠BAC=∠DAC=45°.∵在△APE和△AME中,,∴△APE≌△AME,故①正确;∴PE=EM=PM,同理,FP=FN=NP.∵正方形ABCD中AC⊥BD,又∵PE⊥AC,PF⊥BD,∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE∴四边形PEOF是矩形.∴PF=OE,∴PE+PF=OA,又∵PE=EM=PM,FP=FN=NP,OA=AC,∴PM+PN=AC,故②正确;∵四边形PEOF是矩形,∴PE=OF,在直角△OPF中,OF2+PF2=PO2,∴PE2+PF2=PO2,故③正确.∵△BNF是等腰直角三角形,而△POF不一定是,故④错误;∵△AMP是等腰直角三角形,当△PMN∽△AMP时,△PMN是等腰直角三角形.∴PM=PN,又∵△AMP和△BPN都是等腰直角三角形,∴AP=BP,即P时AB的中点.故⑤正确.故选B.点评:本题是正方形的性质、矩形的判定、勾股定理得综合应用,认识△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形是关键.二、填空题(每小题3分,满分18分)9.(3分)(2019•昆明)据报道,2019年一季度昆明市共接待游客约为12340000人,将12340000人用科学记数法表示为 1.234×107人.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将12340000用科学记数法表示为1.234×107.故答案为:1.234×107.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(3分)(2019•昆明)已知正比例函数y=kx的图象经过点A(﹣1,2),则正比例函数的解析式为y=﹣2x.考点:待定系数法求正比例函数解析式.分析:把点A的坐标代入函数解析式求出k值即可得解.解答:解:∵正比例函数y=kx的图象经过点A(﹣1,2),∴﹣k=2,解得k=﹣2,∴正比例函数的解析式为y=﹣2x.故答案为:y=﹣2x.点评:本题考查了待定系数法求正比例函数解析式,把点的坐标代入函数解析式计算即可,比较简单.11.(3分)(2019•昆明)求9的平方根的值为±3.考点:平方根.分析:根据平方根的定义解答.解答:解:∵(±3)2=9,∴9的平方根的值为±3.故答案为:±3.点评:本题考查了平方根的定义,是基础题,熟记概念是解题的关键.12.(3分)(2019•昆明)化简:=x+2.考点:分式的加减法.专题:计算题.分析:先转化为同分母(x﹣2)的分式相加减,然后约分即可得解.解答:解:+=﹣==x+2.故答案为:x+2.点评:本题考查了分式的加减法,把互为相反数的分母化为同分母是解题的关键.13.(3分)(2019•昆明)如图,从直径为4cm的圆形纸片中,剪出一个圆心角为90°的扇形OAB,且点O、A、B在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是cm.考点:圆锥的计算.专题:计算题.分析:设圆锥的底面圆的半径为r,由于∠AOB=90°得到AB为⊙O的直径,则OB=AB=2cm,根据弧长公式计算出扇形OAB的弧AB的长,然后根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长进行计算.解答:解:设圆锥的底面圆的半径为r,连结AB,如图,∵扇形OAB的圆心角为90°,∴∠AOB=90°,∴AB为⊙O的直径,∴AB=4cm,∴OB=AB=2cm,∴扇形OAB的弧AB的长==π,∴2πr=π,∴r=(cm).故答案为.点评:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.也考查了圆周角定理和弧长公式.14.(3分)(2019•昆明)在平面直角坐标系xOy中,已知点A(2,3),在坐标轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有8个.考点:等腰三角形的判定;坐标与图形性质.专题:数形结合.分析:建立网格平面直角坐标系,然后作出符合等腰三角形的点P的位置,即可得解.解答:解:如图所示,使得△AOP是等腰三角形的点P共有8个.故答案为:8.点评:本题考查了等腰三角形的判定,作出图形,利用数形结合的思想求解更形象直观.三、解答题(共9题,满分58分。

2020年云南省昆明市中考数学试卷及答案解析

2020年云南省昆明市中考数学试卷及答案解析

第 1 页 共 25 页
2020年云南省昆明市中考数学试卷
一、填空题(本大题共6小题,每小题3分,共18分)
1.(3分)|﹣10|= .
2.(3分)分解因式:m 2n ﹣4n = .
3.(3分)如图,点C 位于点A 正北方向,点B 位于点A 北偏东50°方向,点C 位于点B
北偏西35°方向,则∠ABC 的度数为 °.
4.(3分)要使5x+1有意义,则x 的取值范围是 .
5.(3分)如图,边长为2√3cm 的正六边形螺帽,中心为点O ,OA 垂直平分边CD ,垂足
为B ,AB =17cm ,用扳手拧动螺帽旋转90°,则点A 在该过程中所经过的路径长为 cm .
6.(3分)观察下列一组数:−23,69,−1227,2081
,−30243,…,它们是按一定规律排列的,那么这一组数的第n 个数是 .
二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)
7.(4分)由5个完全相同的正方体组成的几何体的主视图是( )。

2020年云南省昆明中考数学试卷-答案

2020年云南省昆明中考数学试卷-答案

2020年云南省昆明市初中学业水平考试数学答案一、1.【答案】102.【答案】()()22n m m +-3.【答案】954.【答案】1x ≠-5.【答案】10π6.【答案】()()113n n n n +-二、7.【答案】A8.【答案】D9.【答案】B10.【答案】C11.【答案】B12.【答案】C13.【答案】D14.【答案】C三、15.【答案】原式()12155=-+--=16.【答案】证明:AC ∵是BAE ∠的平分线,BAC DAE =∴∠∠在ABC △和ADE △中,C EBAC DAE AB AD=⎧⎪=⎨⎪=⎩∠∠∠∠()AAS ABC ADE ∴△≌△BC DE =∴.17.【答案】解:(1)补全频数分布表如下:________________ _____________划记补全频数分布直方图如下图:(2)23.5(3)1321206030+⨯=(双) 答:若店主下周对该款女鞋进货120双,尺码在23.525.5x ≤<范围的鞋应购进约60双.树状图(略)所以,可能的结果共有9种,它们出现的可能性相等.(2)数字之和为3的倍数记为事件A ,结果有3种,即()2,1,()4,5,()6,3,()3193P A ==∴; 数字之和为7的倍数记为事件B ,结果有3种,即()2,5,()4,3,()6,1,()3193P B ==∴,()()P A P B =∵, ∴此游戏公平.19.【答案】解:(1)设校医完成一间办公室的药物喷洒要min x ,一间教室的药物喷洒要min y .根据题意得3219,211.x y x y +=⎧⎨+=⎩解得3,5.x y =⎧⎨=⎩答:校医完成一间办公室的药物喷洒要3min ,一间教室的药物喷洒要5min .(2)由(1)得:5m =,则2510n =⨯=,()5,10A ∴.设药物喷洒完成后y 与x 的函数解析式为()0k y k x=≠, 则105k =,解得50k =, ()505y x x=∴≥ 当1y ≤,即501x ≤,解得50x ≥, 11550⨯∵>∴当校医把最后一间教室药物喷洒完成后,一班学生能进入教室.20.【答案】(1)作图如图所示(正确作出EC ,PC ,有作图痕迹)证法一:连接OC .EC EP =∵,ECP P =∴∠∠,∵点E 是线段OP 的中点,EO EP =∴,EO EC =∴,EOC ECO =∴∠∠,在OPC △中,180POC PCO P ++=︒∠∠∠,即:180EOC ECO ECP P +++=︒∠∠∠∠,22180ECO ECP +=︒∴∠∠90ECO ECP +=︒∴∠∠,OC PC ∴⊥,∵OC 是O 的半径,∴PC 是O 的切线.证法二:连接OC .∵点E 是线段OP 的中点,OE PE =∴,CE PE =∵,OE CE PE ==∴,∴点O ,C ,P 三点在以点E 为圆心,EO 为半径的圆上, OP ∴是E 的直径,90OCP =︒∴∠,OC PC ∴⊥,∵OC 是O 的半径,PC ∴是O 的切线.(2)4BP =∵,1EB =,5EO EP BP EB ==+=∴,210OP EO ==∴,6OC OB EO EB ==+=,在Rt OPC △中,90OCP =︒∠,由勾股定理可得:8PC ==.21.【答案】(1)66.410⨯;(2)解:过点C 作CM EB ⊥,垂足M .由题意得:37ECM =︒∠,四边形ABMC 为矩形,则800m CM AB ==, 1.5m BM AC ==,在Rt CME △中,90CME =︒∠,tan EM ECM CM=∠, tan 800tan37600EM CM ECM ==⨯︒≈∴∠,800d =∵,6400000R =,220.430.438000.0436400000d f R ⨯===∴, ∴该山海拔高度为:()()600 1.5218000.0432399.54m +-++≈ 答:该山海拔高度约为2399.54m .22.【答案】(1)解法一:当10y =时,240x -+=,解得2x =±, ∵点A 在x 轴负半轴上,()2,0A -∴.2215y x bx c =-++∵的最高点为()2,0A -, ()22,1251220.5b bc ⎧-=-⎪⎛⎫⎪⨯- ⎪⎨⎝⎭⎪⎪-⨯--+=⎩∴解得4,54.5b c ⎧=-⎪⎪⎨⎪=-⎪⎩ ∴抛物线2y 的解析式为22144555y x x =---, 解法二:当10y =,即240x -+=,解得2x =±, ∵点A 在x 轴负半轴上,()2,0A -∴,2215y x bx c =-++∵的最高点为()2,0A -, ∴抛物线2y 的解析式为()22125y x =-+,即22144555y x x =---. 当12y y =时,即221444555x x x -+=---, 解得13x =,22x =-(舍去).∴当3x =时,2345y =-+=-,()3,5B -∴.(2)解:如图,设点()2,4C m m -+,则点2144,555D m m m ⎛⎫--- ⎪⎝⎭,∵点C 是抛物线1y 上A ,B 之间的一点, 23m -∴<<22214444244555555CD m m m m m ⎛⎫=-+----=-++ ⎪⎝⎭∴ 当4154225m =-=⎛⎫⨯- ⎪⎝⎭时,CD 有最大值, 即2414124552525CD ⎛⎫=-⨯+⨯+= ⎪⎝⎭, 过点B 作EB CD ⊥,垂足为E . ∵点C 的横坐标为12,点B 的横坐标为3. 15322BE =-=∴,1152552224BCD S CD BE ==⨯⨯=△∴. 23.【答案】(1)证明:∵四边形ABCD 是矩形, AB CD ∴∥,AB CD =,90A =︒∠,∵点E ,F 分别是AB ,CD 的中点, ∴12AE AB =,12DF CD =,AE DF =∴AE DF ∵∥,∴四边形AEFD 是平行四边形,90A =︒∵∠∴四边形AEFD 是矩形.(2)解法一:连接OA ,AM ,∵点A 关于BP 的对称点为M ,∴BP 垂直平分AM ,∴OA OM =∵四边形AEFD 是矩形,∴EF AB ⊥,∵点E 是AB 的中点,∴EF 垂直平分AB ,∴OA OB =,∴OB OM =. 解法二:连接OA ,AM ,∵点A 关于BP 的对称点为M ,∴BP 垂直平分AM ,∴OA OM =∵四边形AEFD 是矩形,EO AP ∴∥,1BO BE OP EA==∴, BO OP =∴,在Rt ABP △中,12AO BO BP ==, OB OM =∴.(3)解:分四种情况:①当MA MD =,且点P 在边AD 上时, 过点M 作直线MH AD ⊥于点H ,交BC 于点G ,连接PM ,BM ,8AD BC ==∵,142AH AD ==∴, 90BAH ABG AHG ===︒∵∠∠∠,∴四边形ABGH 是矩形,4BG AH ==∴,5HG AB ==,∵BP 垂直平分AM ,5BM BA ==∴,AP PM =,在Rt BGM △中,90BGM =︒∠,由勾股定理可得:3MG ==2HM =∴,设AP PM a ==,4PH a =-,在Rt PHM △在,90PHM =︒∠,由勾股定理可得: 222PH HM PM +=,即()22242a a -+=,解得52a =, 52AP =∴, ②当MA MD =,且点P 在边AD 的延长线上时, 过点M 作MH AD ⊥于点H ,交BC 于点G ,连接PM ,BM .8AD BC ==∵,142AH AD ==∴, 90BAH ABG AHG ===︒∵∠∠∠,∴四边形ABGH 是矩形,4BG AH ==∴,5HG AB ==,在Rt BGM △中,90BGM =︒∠,5BM BA ==, 由勾股定理可得:3MG ==8HM =∴.设AP PM a ==,则4PH a =-,在Rt PHM △中,90PHM =︒∠,由勾股定理可得: 222PH HM PM +=,即()22248a a -+=,解得10a =, 10AP =∴.③当DA DM =时,连接BM ,BA BM =∵,BD ∴为AM 的垂直平分线,即点D 为AM 的垂直平分线与射线AD 的交点, ∵点A 关于BP 的对称点为点M ,∴点P 为AM 的垂直平分线与射线AD 的交点, ∴点D 与点P 重合,∴8AP AD ==④当8AM AD ==时,设BP 交AM 于点Q ,连接PM ,BM .BP ∵垂直平分AM ,5BA BM ==∴,11422AQ AM AD ===, 在Rt ABQ △中,90AQB =︒∠,又勾股定理可得:3BQ =ABQ PBA =∵∠∠,90BQA BAP ==︒∠∠, ABQ PBA ∴△∽△,BQ QA BA AP =∴,即345AP=, 203AP =∴.综上所述,AP的长为52或10或8或203.11/ 11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机密★考试结束前
2020年云南省初中学业水平考试
数学试题卷(含答案)
(全卷三个大题,共23个小题,共8页;满分120分,考试用时120分钟)
注意事项:
1.本卷为试题卷。

考生必须在答题卡上解题作答。

答案应书写在答题卡的相应位置上,在
试题卷、草稿纸上作答无效。

2.考试结束后,请将试题卷和答题卡一并交回。

一、填空题(本大题共6小题,每小题3分,共18分)
1.中国是最早采用正负数表示相反意义的量的国家.某仓库运进面粉7吨,记为+7吨,那么运出面粉8吨应记为吨.
2.如图,直线c与直线a、b都相交,若a∥b,∠1=54°,则∠2= 度.
3.,则x的取值范围是 .
4.已知一个反比例函数的图象经过点(3,1),若该反比例函数的图象也经过点(-1,m),则m=
.
5.若关于X的一元二次方程X 2+2 X +c=0有两个相等的实数根,则实数c的值为。

6.已知四边形ABCD是矩形,点E是矩形ABCD的边上的点,且EA=EC.若AB=6,AC=则DE的长是 .
二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)
7.干百年来的绝对贫困即将消除,云南省95%的贫困人口脱贫,95%的贫困村出列,90%的贫困
县摘帽,1500000人通过异地扶贫搬迁实现“挪穷窝”,“斩穷根”(摘自2020年5月11日云南日报)、1500000这个数用科学记数法表示为
A.15×106
B.1.5×155
C.1.5×106
D.1.5×107
8.下列几何体中,主视图是长方形的是
9.下列运算正确的是
A.4 =±2
B.(
1
2
)-1=-2
C.(-3a)3=-9a3
D.a 6÷a3=a3(a≠0)
10.下列说法正确的是
A.为了解三名学生的视力情况,采用抽样调查
B.任意画一个三角形,其内角和是360°是必然事件
C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为

χ、

χ,方差分
别为s2甲、s2乙,若

χ=

χ,s2甲=0.4, s2乙=2,则甲的成绩比乙的稳定
D.一个抽奖活动中,中奖概率为
1
20
,表示抽奖20次就有1次中奖
11.如图,平行四边形ABCD的对角线AC,BD相交于点O,E是CD的中点.则△DEO与△BCD的面
积的比等于
A.
1
2
B.
1
4
C.
1
6
D.
1
8
12.按一定规律排列的单项式:a,-2a,4a,-8a,16a,-32a,…,第n个单项式是
A.(-2)n-1a
B.(-2)n a
C.2n-1a
D.2n a
13.如图,正方形ABCD的边长为4,以点A为圆心,AD为半径画圆弧DE得到扇形DAE(阴影部
分,点E在对角线AC上).若扇形DAE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是
A.2
B.1
C.
2
2
D.
1
2
14.若整数a使关于x的不等式组
111
23
41
a>
χχ
χχ
+

-+
-
,有且只有45个整数解,且使关于y
的方程2260
1
11
y a
y y
++
+=
++
的解为非正数,则a的值为
A.-61或-58
B.-61或-59
C.-60或-59
D.-61或-60或-59
三、解答题(本大题共9小题,共70分)
15.(本小题满分6分)
先化简,再求值:
22
2
442
2
4
χχχχ
χ
χ
-+-
÷
+
-
其中x=
1
2
.
16.(本小题满分6分)
如图,已知AD=B C,BD=AC.
求证:∠ADB=∠BCA.
某公司员工的月工资如下:
经理、职员C、职员D从不同的角度描述了该公司员工的收入情况.
设该公司员工的月工资数据(见上述表格)的平均数、中位数、众数分别为k、m、n,
请根据上述信息完成下列间题;
(1)k= , m= , n= ;
(2)上月一个员工辞职了,从本月开始,停发该员工工资,若本月该公司剩下的8名员工的月工资不变,但这8名员工的月工资数据(单位:元)的平均数比原9名员工的月工资数据(见上述表格)的平均数减小了,你认为辞职的那名员工可能是 .
18. (本小题满分6分)
某地响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展“美化绿色城市“活动,绿化升级改造了总面积为360万平方米的区域,实际施工中,由于采用了新技术,实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务,实际平均每年绿化升级改造的面积是多少万平方米?
甲、乙两个家庭来到以“生态资源,绿色旅游”为产业的美丽云南,各自随机选择到大理、丽江、西双版纳三个城市中的一个城市旅游.假设这两个家庭选择到哪个城市旅游不受任何因素影响,上述三个城市中的每一个被选到的可能性相同,甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率为P.
(1)直接写出甲家庭选择到大理旅游的概率;
(2)用列表法或树状图法(树状图也称树形图)中的一种方法,求P 的值.
20.(本小题满分8分)
如图,AB 为⊙O 的直径,C 为⊙O 上ー点,AD ⊥CE ,垂足为D ,AC 平分∠DAB . (1)求证:CE 是⊙O 的切线; (2)若AD =4,cos ∠CAB
=
4
5
,求AB 的长.
21.(本小题满分8分)
众志成城抗疫情,全国人民在行动,某公司决定安排大、小货车共20辆,运送260吨物资到A 地和B 地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:
现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A 地,其余前往B 地,设前往A 地的大货车有x 辆,这20辆货车的总运费为y 元.
(1)这20辆货车中,大货车、小货车各有多少辆? (2)求y 与x 的函数解析式,并直接写出x 的取值范围. (3)若运往A 地的物资不少于140吨,求总运费y 的最小值.
A 地(元/辆)
B 地(元/辆)
大货车 900 1000 小火车
500
700
目的地
车型
22.(本小题满分9分)
如图,四边形ABCD是菱形,点H为对角线AC的中点,点E在AB的延长线上,CE⊥AB,垂足为E,点F在AD的延长线上,CF⊥AD,垂足为F.
(1)若∠BAD=60°,求证:四边形CEHF是菱形;
(2)若CE=4,△ACE的面积为16,求菱形ABCD的面积.
23.(本小题满分12分)
抛物线y=x2+b x+c与x轴交于A、B两点,与y轴交于点C,点A的坐标为(-1,0),点C的坐标为(0,-3).点P为抛物线y=x2+b x+c上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E.
(1)求b、c的值;
(2)设点F在抛物线y=x2+b x+c的对称轴上,当△ACF的周长最小时,直接写出点F的坐
标;
(3)在第一象限,是否存在点P,使点P到直线BC的距离是点D到直线BC的距离的5倍?
若存在,求出点P所有的坐标;若不存在,请说明理由.。

相关文档
最新文档