(完整word版)高中数学必修五基本不等式练习题

合集下载

(完整版)必修五第三章不等式练习题(含答案),推荐文档

(完整版)必修五第三章不等式练习题(含答案),推荐文档

等式练习题 第一部分1.下列不等式中成立的是(7.在R 上定义运算 :xy x(1 y),若不等式(x a)(x a) 1对任意实数x 成立,贝U 实数a 的取值范围是().A. {a| 1 a 1}B .{a| 0 a 2}1 3 C {a| 1 a £} D.{a| 3 11-a -}2 28已知正实数x,y 满足x 2y4,则丄 4x 丄的最小值为y•9 .设x, y 为正实数,aJ x 22xy y ,bpjxy,c xy .试比较a 、c 的大小.A. b a C. D. a cB. b c a b ca c bA.若a 则ac 2 bc 2 .若 a b ,贝U a 2b 2 C.若aab b 21.若 a b 0,贝U -a2.已知a 1 3,b14,(A). c a3.已知a,b,c 满足c (B)3 5a b3 4,则a,b,c 的大小关系是()(C) b a c a 且ac 0,下列选项中不一定(D) c成立的是((A ) ab ac(B )(C) cb 2 ab 2(D) ac(a c) 04 .规定记号“O”表示一种运算,定义若1O k 2<3,则k 的取值范围为A . 1 k 1B aO b^/ab a (a , b 为正实数),5 .若a,b,c 为实数, 则下列命题正确的是(A.若a 则ac 2bc 2B.若a ab b 2C.若aD.若a 1bab6.设a0.5. I,b log 3,c log 4 2,则(6.226函数y = 3x + x^+1的最小值是()A.10 .已知不等式ax 2 5x 2 0的解集是M .(1)若2 M ,求a 的取值范围;(2)若 M x2x2,求不等式ax 2 5x a 2 10的解集.第二部分1.给出以下四个命题:1 12 2①若a>b ,则-<匚; ②若ac >bc ,则a>b ;a b ③若 a>|b|,则 a>b ; ④若 a>b ,则 a 2>b 2.其中正确的是(A.②④ B .②③ C .①② D ①③2.设 a , b € R, A. b -a>0 B若a -1 b|>0,贝U 下列不等式中正确的是( .a 3+ b 2<0)C . b + a>0D . a — b <0 3.在下列函数中,最小值是 2的是() A.x + 2 .y =尸(x >0)C. y = sin x + cscx , x € (0 ,ny )4. 已知log a (a 2+ 1)vlog a 2a<0,则a 的取值范围是( A. (0,1) B ・(扌,1)C. (0, 2)5. f (x) = ax 2+ ax - 1 在 R 上满足 f (x)<0, 则a 的取值范围是( )A. (-X, 0]B. (-X,- 4)C. (-4,0)D. (-4,0]B.C.6.41 17.设a>0, b>0.若{3是3与3的等比中项,则o +b 的最小值为( )A. 8D-4&已知当x>0时,不等式x 2— m)+ 4>0恒成立,则实数m 的取值范围是 9.已知 A = {x|x 2— 3x + 2<0},{x|x 2— (a + 1)x + a <0}.⑴若A B,求a 的取值范围; ⑵若B? A 求a 的取值范围1 910.已知x>0, y>0,且x + y = 1,求X + y 的最小值.11.已知a , b , c 都是正数,且a +b + c = 1.求证:(1 — a)(1 — b)(1 — c) >8abc. 证明•/ a 、b 、c 都是正数,且a +b + c = 1,•-1 — a = b + c 寸 bc>0, 1—b=a+c >2ac>0, 1 — c = a + b 寸 ab>0.••• (1 — a)(1 — b)(1 — C) •^Oc •2ab= 8abc.212.不等式 kx — 2x + 6kv0(k 工0).(1) 若不等式的解集为{x|x< — 3或x> — 2},求k 的值; (2) 若不等式的解集为R,求k 的取值范围.B. 4C. 11. D. 【解析】对于A ,若c 不成立;对于C,若a2. D 【解析】 参考答案 第一部分,显然ac 2b 0,则 a 2;故选Dbc 2不成立;对于B ,若b a 0,则a 2ab b 2b 2,所以C 错;对于D,若a b33 4 2 3. C 【解析】 1所以c 综上,所以答案为:D.Qa c, ac 0, 0,a (1) Qb c,a 0,ab ac;⑵ Q b a,0,0, c b 0 ;(3) Q c a,,Q ac 0, ac a0 ■⑷b a 且c 0, a 0, 0或b 0或b 0, cb 2和ab 2的大小不能确定,即C 选项不一定成立■故选C.4. A 【解析】根据题意1e k 2 1 k 2 3化简为k 2绝对值如下: 原不等式为 k 2k 2 0解得2 0时, 原不等式为 0成立,所以k k 2 0 ,对k 分情况去 k 1,所以0 k 原不等式为 k 2k 2 0,解得 1 k 2,所以1 综上, 5. B 【解析】对于 所以选择 A. 当c 0时, 0,所以1a 所以a b,故D 错,所以选b a两边同时除以 A, ab 故A 错;对于C, 不等式不成立, 11,故C 错;对于D,因为a b 0 , b因为a 1bB .6. A【解析】••• a 20.5, b log 3 , c log42 , 1>2 0.51log 3 >1, Iog 42= -b >a >c .故选: 27. C8. 1 【解析】【解析】根据题意化简不等式为(X a )(1 (X a)) 1,即 X 2 X(a 2 a 1) 0 对任意实数X 成立,所以根据二次恒成立 0,解得(当且仅当“X y 4”时,取“ ”),故最小值为1.39.a 2 X 22 2 2 22 2xy y 2, c 2X 22xy y 2c 2 a 2xy ;X 0, y0, xy 0,即 c a ;10. (1) a12 (2) X3 X 1【解析】(1)由2 M ,说明元素2满足不等式ax 2 5x 2 0,代入即可求出a的取值范围; (2)由M x2 X 2,2,2是方程ax 25x 20的两个根,由韦达定理即可求出a 2,代入原不等式解一元二次不等式即可;(1)v 2 M 2,二 a 2 5 2 20,••• a 2(2)v Mx1 X 2 ,••• 1,2是方程ax 2 5x 20的两个根,11 y X 8 yX y 1 4 5 25 21 / y X 4点 1 -1 8尸y4x A.由X 2y 4化为4x4 X 2 4x1 2x1 2xX 2y 4,因为o,y所以1 8所以 X + y = (x+ y)( 1+ 9) = y+ — + 10>2 ' 八 X y X y y 9x 1 9当且仅当x =—时,等号成立,又因为X +y = 1.所以当 x = 4, y = 12 时,(X + y) min = 16.•••由韦达定理得2 1/•不等式ax 2 5x a0即为:2x 2 5x 3 0其解集为X第二部分2.解析 由 a —|b|>0? |b|va? — a<b<a? a + b>0,故选 C.3.解析X 2y=- + -的值域为(一X,— 2] U [2,+X);X + 2 --- 1y〒=也〒 + k >2(X >0);1y = SinX + CSCX = SinX + 茹>2(0<Sin X <1);y = 7x + 7—x>2(当且仅当x = 0时取等号).7.解析 V s 是 3a 与 3b 的等比中项? 3a •3b= 3a + b= 3? a + b = 1, v a>0,b>0, /^ab1 1 a + b 1 1 「a +萨石=Ob ^ 1=4.411.解析因为 x>0, y>0, X + 9= 1,9X-—+ 10= 16. y。

不等式必修5试题及答案

不等式必修5试题及答案

不等式必修5试题及答案一、选择题1. 若不等式\(ax^2 + bx + c > 0\)的解集为\((-1, 2)\),则a的值是:A. 1B. -1C. 0D. 2答案:B2. 已知\(x^2 - 5x + 6 < 0\),求x的取值范围。

A. \((-\infty, 2) \cup (3, +\infty)\)B. \((2, 3)\)C. \((-\infty, 1) \cup (4, +\infty)\)D. \((1, 4)\)答案:B二、填空题1. 已知\(\frac{1}{x} > 0\),则x的取值范围是________。

答案:\(x > 0\) 或 \(x < 0\)(x不能为0)2. 若不等式\(2x - 3 > 5\)的解集为\((4, +\infty)\),则x的取值范围是________。

答案:\(x > 4\)三、解答题1. 解不等式\(3x^2 - 5x - 2 < 0\)。

答案:首先,找到方程\(3x^2 - 5x - 2 = 0\)的根,通过求解得到\(x = \frac{5 \pm \sqrt{25 + 24}}{6} = \frac{5 \pm 7}{6}\),即\(x = 2\)和\(x = -\frac{1}{3}\)。

因此,不等式的解集为\((-\frac{1}{3}, 2)\)。

2. 已知\(a > 0\),\(b > 0\),且\(a + b = 2\),求\(\frac{1}{a} + \frac{1}{b}\)的最小值。

答案:利用基本不等式,我们有\(\frac{1}{a} + \frac{1}{b} =\frac{1}{2}(a + b)(\frac{1}{a} + \frac{1}{b}) = \frac{1}{2}(2 + \frac{b}{a} + \frac{a}{b})\)。

(完整word版)高二数学必修五不等式测试题(含答案)

(完整word版)高二数学必修五不等式测试题(含答案)

不等式测试题一、选择题(本大题共 12 小题,每题 5 分,共 60 分。

) 1. 设 a<b<0,则以下不等式中不可以建立的是 ( )1 1 1 1 C . a > b2 2A .a >bB .a-b >a D .a >b2. 设 a, b R ,若 a | b | 0 ,则以下不等式中正确的选项是 ()A . b a 0B . a 3 b 3C . a 2 b 2 0D . b a 03. 假如正数 a ,b ,c , d 知足 a b cd 4 ,那么() A . ab ≤ cd ,且等号建即刻 a ,b ,c , d 的取值独一 B . ab ≥ cd ,且等号建即刻 a ,b ,c , d 的取值独一C . ab ≤ cd ,且等号建即刻 a ,b ,c , d 的取值不独一 D . ab ≥ cd ,且等号建即刻 a ,b ,c , d 的取值不独一 4. 已知直角三角形的周长为2,则它的最大面积为( )A .3-2 2B .3+2 2C .3- 2D .3+ 25. 已知 a0, b 0,则112 ab 的最小值是()a 2 b..A .2B .24D 5C6. 若 0 a a ,0 b b , 且a a b b1,则以下代数式中值最大的是()121212 12A . ab abB . aabbC . ababD .11 12 21 21 21 22 128sin 2 x 的最小值为(7. 当 0<x< 时,函数 f( x)=1cos2x)2sin 2x338. 以下不等式中,与不等式“ x<3”同解的是( )A .x( x+4) 2<3( x+4) 2B .x( x-4) 2<3( x-4) 2C .x+ x-4 < 3+ x-4D .x+ 1 <3+ 1x 2x 22x 1-2 x 1 9. 对于 x 的不等式 (x-2)(ax-2) >0 的解集为{ x ︱x ≠2,x ∈R },则 a=( )A . 2B .-2C .-1D . 1 10. 不等式∣ x 2-x-6 ∣ >∣3-x ∣的解集是( )A .(3,+∞)B .( -∞, -3) ∪( 3,+∞)C . ( -∞,- 3) ∪(- 1,+∞)D .( -∞,- 3) ∪(- 1,3)∪( 3, +∞)11. 设 y=x 2+2x+5+x 21 5 ,则此函数的最小值为()2x1726A . 4B .2C. 5D .以上均不对12. 若方程 x 2 -2x + lg(2a 2-a)=0 有两异号实根,则实数 a 的取值范围是()11 A .(2 ,+∞) ∪( -∞, 0)B .(0 ,2 )1 11C .( -2 ,0) ∪( 2 ,1) D.( -1,0) ∪( 2 ,+∞) 二、填空题:(本大题共 4 小题,每题 5 分,共 20 分。

专题复习高中数学必修5基本不等式经典例题(word文档良心出品)

专题复习高中数学必修5基本不等式经典例题(word文档良心出品)

基本不等式知识点:1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”) 若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x x x x+≥+≥+≤即或 (当且仅当b a =时取“=”)4.若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a bb a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”)5.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注意:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用应用一:求最值例:求下列函数的值域(1)y =3x 2+12x 2(2)y =x +1x解:(1)y =3x 2+12x 2≥23x 2·12x 2= 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x ≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x)≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧技巧一:凑项例 已知54x <,求函数14245y x x =-+-的最大值。

高中数学必修五不等式知识点与练习题(K12教育文档)

高中数学必修五不等式知识点与练习题(K12教育文档)

高中数学必修五不等式知识点与练习题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学必修五不等式知识点与练习题(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学必修五不等式知识点与练习题(word版可编辑修改)的全部内容。

第五讲 不等式基础讲析一.不等式的性质:1.同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a c b d +>+(若,a b c d ><,则a c b d ->-),但异向不等式不可以相加;同向不等式不可以相减; 2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则a b c >);3.左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b >>4.若0ab >,a b >,则11a b <;若0ab <,a b >,则11a b>。

练习:(1)对于实数c b a ,,中,给出下列命题:①22,bc ac b a >>则若; ②b a bc ac >>则若,22; ③22,0b ab a b a >><<则若; ④ba b a 11,0<<<则若;⑤b aab b a ><<则若,0; ⑥b a b a ><<则若,0;⑦b c b a c a b a c ->->>>则若,0; ⑧11,a b a b>>若,则0,0a b ><。

完整word版)高中数学必修五基本不等式练习题

完整word版)高中数学必修五基本不等式练习题

完整word版)高中数学必修五基本不等式练习题基本不等式练题一、单项选择1.已知$x>0$,函数$y=\frac{4}{x}+x$的最小值是()A.4.B.5.C.6.D.82.在下列函数中,最小值为2的是()A $y=x+1$B $y=3x+3-x^2$C $y=\log_{10}x+\frac{11}{\pi}$D $y=\sin x+\log_{10}(x\sin^2x)$3.已知$\frac{5}{3}x+\frac{3}{5}y=1(x>0,y>0)$,则$xy$的最小值是()A.15.B.6.C.60.D.14.已知$x>1,y>1$且$xy=16$,则$\log_2x\cdot\log_2y$()A.有最大值2.B.等于4.C.有最小值3.D.有最大值465.若$a,b\in\mathbb{R}$,且$ab>0$,则下列不等式中恒成立的是()A.$a^2+b^2>2ab$。

B.$a+b\geq2ab$。

C.$\frac{1}{a}+\frac{1}{b}>\frac{2}{a+b}$。

D.$\frac{a}{b}+\frac{b}{a}\geq2$6.若正数$a$、$b$满足$ab=a+b+3$,则$a+b$的取值范围是()A.$[9,+\infty)$。

B.$[6,+\infty)$。

C.$(0,9]$。

D.$(0,6)$7.已知正项等比数列$\{a_n\}$满足$a_7=a_6+2a_5$。

若存在两项$a_m$,$a_n$使得$a_ma_n=4a_1$,则$(19+\sqrt{17})$的最小值为()A.3456.B.811.C.1417.D.198.设$0<b<a<1$,则下列不等式成立的是()A.$a+b>1$。

B.$a+b1$9.已知$a+2b=2(a,b>0)$,则$ab$的最大值为( )A。

高中数学必修5常考题型基本不等式 Word版含解析

高中数学必修5常考题型基本不等式 Word版含解析

基本不等式【知识梳理】.重要不等式当,是任意实数时,有+≥,当且仅当=时,等号成立..基本不等式()有关概念:当,均为正数时,把叫做正数,的算术平均数,把叫做正数,的几何平均数.()不等式:当,是任意正实数时,,的几何平均数不大于它们的算术平均数,即≤,当且仅当=时,等号成立.()变形:≤,+≥(其中>,>,当且仅当=时等号成立).【常考题型】题型一、利用基本不等式证明不等式【例】已知,,∈,求证:++≥++.[证明]由基本不等式可得:+=()+()≥,同理:+≥,+≥,∴(+)+(+)+(+)≥++,从而++≥++.【类题通法】.利用基本不等式证明不等式,关键是所证不等式中必须有“和”式或“积”式,通过将“和”式转化为“积”式或将“积”式转化为“和”式,从而达到放缩的效果..注意多次运用基本不等式时等号能否取到.【对点训练】.已知,是正数,求证≤.证明:∵>,>,∴+≥>,∴≤=,即≤(当=时取“=”).题型二、利用基本不等式求最值【例】()已知,>,且+=,求的最大值.()已知>,求()=+的最小值;()设>,>,且+=,求+的最小值.[解]()∵,>且+=,所以由基本不等式可得≤==,当且仅当==时,取到最大值.∴的最大值为.()∵>,∴->,>,于是()=+=-++≥+=,当且仅当-=即=时,()取到最小值.()法一:∵>,>+=,∴+=+=++≥+=+,当且仅当=,即=时,等号成立,解得=-,=-,∴当=-,=-时,+有最小值+.法二:+=·=(+)=++≥+=+,以下同解法一.【类题通法】.利用基本不等式求最值,必须按照“一正,二定,三相等”的原则,即()一正:符合基本不等式≥成立的前提条件,>,>;()二定:化不等式的一边为定值;()三相等:必须存在取“=”号的条件,即“=”号成立.以上三点缺一不可..若是求和式的最小值,通常化(或利用)积为定值;若是求积的最大值,通常化(或利用)和为定值,其解答技巧是恰当变形,合理拆分项或配凑因式.【对点训练】.()已知+=,求+的最小值;()已知>,>,且+=,求的最大值.。

必修5不等式练习题

必修5不等式练习题

必修5不等式练习题一、基础题1. 已知 $a > b$,求证:$a b > 0$。

2. 若 $x > 3$,则 $2x + 1$ 与 $3x 2$ 的大小关系是?3. 解不等式:$2(x 3) > 3(x + 1) 5$。

4. 若 $a$、$b$ 是实数,且 $a < b$,则 $a^2$ 与 $b^2$ 的大小关系是?5. 已知 $x$ 为正数,求证:$x + \frac{1}{x} \geq 2$。

二、中等题1. 解不等式组:$\begin{cases} 2x 3y > 6 \\ x + 4y \leq 8 \end{cases}$。

2. 若 $a$、$b$、$c$ 是实数,且 $a < b < c$,则 $a^3$、$b^3$、$c^3$ 的大小关系是?3. 已知 $x$、$y$ 为实数,且 $x^2 + y^2 = 1$,求证:$x + y \leq \sqrt{2}$。

4. 解不等式:$\frac{1}{x 2} > \frac{2}{x + 3}$。

5. 若 $a$、$b$ 是正数,且 $a \neq b$,求证:$\frac{a + b}{2} > \sqrt{ab}$。

三、提高题1. 已知 $x$、$y$、$z$ 为实数,且 $x^2 + y^2 + z^2 = 1$,求证:$x + y + z \leq \sqrt{3}$。

2. 解不等式:$|2x 5| > 3$。

3. 若 $a$、$b$、$c$ 是等差数列,且 $a > 0$,$b > 0$,$c > 0$,求证:$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \geq\frac{9}{a + b + c}$。

4. 已知 $x$、$y$ 为实数,且 $x^2 + y^2 = 4$,求 $x +y$ 的取值范围。

高中数学必修5基本不等式精选题目(附答案)

高中数学必修5基本不等式精选题目(附答案)

高中数学必修5基本不等式精选题目(附答案)高中数学必修5基本不等式精选题目(附答案)1.重要不等式当a ,b 是任意实数时,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.基本不等式(1)有关概念:当a ,b 均为正数时,把a +b2叫做正数a ,b 的算术平均数,把ab 叫做正数a ,b 的几何平均数.(2)不等式:当a ,b 是任意正实数时,a ,b 的几何平均数不大于它们的算术平均数,即ab ≤a +b2,当且仅当a =b 时,等号成立.(3)变形:ab ≤? ????a +b 22≤a 2+b 22,a +b ≥2ab (其中a >0,b >0,当且仅当a=b 时等号成立).题型一:利用基本不等式比较大小1.已知m =a +1a -2(a >2),n =22-b 2(b ≠0),则m ,n 之间的大小关系是( ) A .m >n B .m <="">D .不确定2.若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg a +b 2,则P ,Q ,R 的大小关系是________.题型二:利用基本不等式证明不等式3.已知a ,b ,c 均为正实数,求证:2b +3c -a a +a +3c -2b 2b +a +2b -3c3c ≥3.4.已知a ,b ,c 为正实数,且a +b +c =1,求证:? ????1a -1? ????1b -1? ??1c -1≥8.题型三:利用基本不等式求最值5.已知lg a +lg b =2,求a +b 的最小值.6.已知x >0,y >0,且2x +3y =6,求xy 的最大值.7.已知x >0,y >0,1x +9y =1,求x +y 的最小值.8.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( )A .8B .7C .6D .5题型四:利用基本不等式解应用题9.某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:(1)仓库面积S 的最大允许值是多少?(2)为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?巩固练习:1.下列结论正确的是( ) A .当x >0且x ≠1时,lg x +1lg x ≥2 B .当x >0时,x +1x≥2 C .当x ≥2时,x +1x 的最小值为2 D .当0<="">x 无最大值2.下列各式中,对任何实数x 都成立的一个式子是( ) A .lg(x 2+1)≥lg(2x ) B .x 2+1>2x C.1x 2+1≤1 D .x +1x ≥23.设a ,b 为正数,且a +b ≤4,则下列各式中正确的一个是( ) A.1a +1b <1 B.1a +1b ≥1 C.1a +1b <2D.1a +1b ≥24.四个不相等的正数a ,b ,c ,d 成等差数列,则( ) A.a +d2>bcB.a +d2<bc< p="">C.a+d2=bc D.a+d2≤bc5.若x>0,y>0,且2x+8y=1,则xy有()A.最大值64B.最小值1 64C.最小值12D.最小值646.若a>0,b>0,且1a+1b=ab,则a3+b3的最小值为________.7.(2017·江苏高考)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是________.8.若对任意x>0,xx2+3x+1≤a恒成立,则a的取值范围是________.9.(1)已知x<3,求f(x)=4x-3+x的最大值;参考答案:1.解:因为a>2,所以a-2>0,又因为m=a+1a-2=(a-2)+1a-2+2,所以m≥2(a-2)·1a-2+2=4,由b≠0,得b2≠0,所以2-b2<2,n=22-b2<4,综上可知m>n.2.解:因为a>b>1,所以lg a>lg b>0,所以Q=12(lg a+lg b)>lg a·lg b=P;Q=12(lg a+lg b)=lg a+lg b=lg ab<lg< p="">a+b2=R.所以P<q<r.< p="">3.[证明]∵a,b,c均为正实数,∴2ba+a2b≥2(当且仅当a=2b时等号成立),3c a+a3c≥2(当且仅当a=3c时等号成立),3c 2b +2b3c ≥2(当且仅当2b =3c 时等号成立),将上述三式相加得? ????2b a +a 2b +? ????3c a +a 3c +? ????3c 2b +2b 3c ≥6(当且仅当a =2b =3c时等号成立),∴? ????2b a +a 2b -1+? ????3c a +a 3c -1+? ????3c 2b +2b 3c -1≥3(当且仅当a =2b =3c 时等号成立),即2b +3c -a a +a +3c -2b 2b +a +2b -3c 3c ≥3(当且仅当a =2b =3c 时等号成立).4.证明:因为a ,b ,c 为正实数,且a +b +c =1,所以1a -1=1-a a =b +c a ≥2bc a . 同理,1b -1≥2ac b ,1c -1≥2abc . 上述三个不等式两边均为正,相乘得? ????1a -1? ????1b -1? ????1c -1≥2bc a ·2ac b ·2abc =8,当且仅当a =b =c =13时,取等号.5.解:由lg a +lg b =2可得lg ab =2,即ab =100,且a >0,b >0,因此由基本不等式可得a +b ≥2ab =2100 =20,当且仅当a =b =10时,a +b 取到最小值20. 6.解:∵x >0,y >0,2x +3y =6,∴xy =16(2x ·3y )≤16·?2x +3y 22=16·? ????622=32,当且仅当2x =3y ,即x =32,y =1时,xy 取到最大值32. 7.解:∵1x +9y =1,∴x +y =(x +y )·? ??1x +9y=1+9x y +y x +9=y x +9xy +10,又∵x >0,y >0,∴y x +9xy +10≥2y x ·9xy +10=16,当且仅当y x =9xy ,即y =3x 时,等号成立.由y =3x ,1x +9y=1,得x =4,y =12,即当x =4,y =12时,x +y 取得最小值16.8.解析:选C 由已知,可得6? 2a +1b =1,∴2a +b =6? ????2a +1b ·(2a +b )=6? ?5+2a b +2b a ≥6×(5+4)=54,当且仅当2a b =2b a 时等号成立,∴9m ≤54,即m ≤6,故选C.9.[解] (1)设铁栅长为x 米,一堵砖墙长为y 米,而顶部面积为S =xy ,依题意得,40x +2×45y +20xy =3 200,由基本不等式得3 200≥240x ×90y +20xy =120xy +20xy ,=120S +20S .所以S +6S -160≤0,即(S -10)(S +16)≤0,故S ≤10,从而S ≤100,所以S 的最大允许值是100平方米,(2)取得最大值的条件是40x =90y 且xy =100,求得x =15,即铁栅的长是15米.练习:1.解析:选B A 中,当0<="">lg x ≥2不成立;由基本不等式知B 正确;C 中,由对勾函数的单调性,知x +1x 的最小值为52;D 中,由函数f (x )=x -1x 在区间(0,2]上单调递增,知x -1x 的最大值为32,故选B.2.解析:选C 对于A ,当x ≤0时,无意义,故A 不恒成立;对于B ,当x =1时,x 2+1=2x ,故B 不成立;对于D ,当x <0时,不成立.对于C ,x 2+1≥1,∴1x 2+1≤1成立.故选C. 3.解析:选B 因为ab ≤?a +b 22≤? ??422=4,所以1a +1b ≥21ab ≥214=1.4.解析:选A 因为a ,b ,c ,d 成等差数列,则a +d =b +c ,又因为a ,b ,c ,d 均大于0且不相等,所以b +c >2bc ,故a +d2>bc .5.解析:选D 由题意xy =? ????2x +8y xy =2y +8x ≥22y ·8x =8xy ,∴xy ≥8,即xy 有最小值64,等号成立的条件是x =4,y =16.6.解析:∵a >0,b >0,∴ab =1a +1b ≥21ab ,即ab ≥2,当且仅当 a =b =2时取等号,∴a 3+b 3≥2(ab )3≥223=42,当且仅当a =b =2时取等号,则a 3+b 3的最小值为4 2.7.解析:由题意,一年购买600x 次,则总运费与总存储费用之和为600x ×6+4x =4? ??900x +x ≥8900x ·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30.8.解析:因为x >0,所以x +1x ≥2.当且仅当x =1时取等号,所以有xx 2+3x +1=1x +1x +3≤12+3=15,即x x 2+3x +1的最大值为15,故a ≥15. 答案:15,+∞(2)已知x ,y 是正实数,且x +y =4,求1x +3y 的最小值. 9.解:(1)∵x <3,∴x -3<0,∴f (x )=4x -3+x =4x -3+(x -3)+3 =-43-x +(3-x )+3≤-243-x·(3-x )+3=-1,当且仅当43-x=3-x ,即x =1时取等号,∴f (x )的最大值为-1. (2)∵x ,y 是正实数,∴(x +y )? ????1x +3y =4+? ????y x +3x y ≥4+2 3.当且仅当y x =3xy ,即x =2(3-1),y =2(3-3)时取“=”号.又x +y =4,∴1x +3y ≥1+32,故1x +3y 的最小值为1+32.</q<r.<></lg<></bc<>。

必修五不等式练习题及参考答案

必修五不等式练习题及参考答案

必修五不等式练习题及参考答案一、选择题。

1.一元二次不等式220ax bx ++>的解集是11(,)23-,则a b +的值是( )。

A. 10B. 10-C. 14D. 14-2.下列各函数中,最小值为2的是 ( D )A .1y x x =+ B .1sin sin y x x =+,(0,)2x π∈C.2y = D.1y x =3、一元二次不等式02>++n mx mx 的解集是{}12|<<-x x ,则m ,n 的值分别是() A 、3,23=-=n m B 、3,23==n mC 、3,23-==n m D 、3,23-=-=n m4、不等式0322>-+x x 的解集是 ( )A.{x|-1<x <3}B.{x|x >3或x <-1}C.{x|-3<x <1}D.{x|x>1或x <-3}5、若对于任何实数,二次函数y=a x 2-x+c 的值恒为负,那么a 、c 应满足 ( )A 、a >0且a c ≤41B 、a <0且a c <41C 、a <0且a c >41D 、a <0且a c <06、在坐标平面上,不等式组⎪⎩⎪⎨⎧≥+-≥+≤020,3y x y x x 所表示的平面区域的面积为( )A .28B .16C .439D .1217、不等式6)23)(5(-≥-+x x 的解集是( )A 、}29,1|{≥-≤x x x 或B 、}291|{≤≤-x xC 、}1,29|{≥-≤x x x 或 D 、}129|{≤≤-x x8.如果实数,x y 满足221x y +=,则(1)(1)xy xy +-有 ( ) A .最小值21和最大值 1 B .最大值1和最小值43 C .最小值43而无最大值 D .最大值2而无最小值 9、不等式1213≥--xx 的解集是( ) A .⎭⎬⎫⎩⎨⎧≤≤243|x x B .⎭⎬⎫⎩⎨⎧<≤243|x x C .⎭⎬⎫⎩⎨⎧≤>432|x x x 或D .{}2|<x x 10、关于x 的方程ax 2+2x -1=0至少有一个正的实根,则a 的取值范围是( )A .a ≥0B .-1≤a <0C .a >0或-1<a <0D .a ≥-111、、对于任意实数x ,不等式04)2(2)2(2<----x a x a 恒成立,则实数a 取值范围是( )A 、()2,∞-B 、(]2,∞-C 、(-2,2)D 、(]2,2- 12、的取植范围是的两侧,则)在直线,)和(,点(a a y x 0236413=+--( ) A .24,7>-<a a 或 B. 24,7=-=a a 或C. 247<<-aD. 724<<-a二填空题。

高中数学必修5基本不等式精选题目(附答案)

高中数学必修5基本不等式精选题目(附答案)

高中数学必修5基本不等式精选题目(附答案)1.重要不等式当a ,b 是任意实数时,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.基本不等式(1)有关概念:当a ,b 均为正数时,把a +b2叫做正数a ,b 的算术平均数,把ab 叫做正数a ,b 的几何平均数.(2)不等式:当a ,b 是任意正实数时,a ,b 的几何平均数不大于它们的算术平均数,即ab ≤a +b2,当且仅当a =b 时,等号成立.(3)变形:ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22,a +b ≥2ab (其中a >0,b >0,当且仅当a=b 时等号成立).题型一:利用基本不等式比较大小1.已知m =a +1a -2(a >2),n =22-b 2(b ≠0),则m ,n 之间的大小关系是( ) A .m >n B .m <n C .m =nD .不确定2.若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg a +b 2,则P ,Q ,R 的大小关系是________.题型二:利用基本不等式证明不等式3.已知a ,b ,c 均为正实数, 求证:2b +3c -a a +a +3c -2b 2b +a +2b -3c3c ≥3.4.已知a ,b ,c 为正实数, 且a +b +c =1,求证:⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥8.题型三:利用基本不等式求最值5.已知lg a +lg b =2,求a +b 的最小值.6.已知x >0,y >0,且2x +3y =6,求xy 的最大值.7.已知x >0,y >0,1x +9y =1,求x +y 的最小值.8.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( )A .8B .7C .6D .5题型四:利用基本不等式解应用题9.某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:(1)仓库面积S 的最大允许值是多少?(2)为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?巩固练习:1.下列结论正确的是( ) A .当x >0且x ≠1时,lg x +1lg x ≥2 B .当x >0时,x +1x≥2 C .当x ≥2时,x +1x 的最小值为2 D .当0<x ≤2时,x -1x 无最大值2.下列各式中,对任何实数x 都成立的一个式子是( ) A .lg(x 2+1)≥lg(2x ) B .x 2+1>2x C.1x 2+1≤1 D .x +1x ≥23.设a ,b 为正数,且a +b ≤4,则下列各式中正确的一个是( ) A.1a +1b <1 B.1a +1b ≥1 C.1a +1b <2D.1a +1b ≥24.四个不相等的正数a ,b ,c ,d 成等差数列,则( ) A.a +d2>bcB.a +d2<bcC.a+d2=bc D.a+d2≤bc5.若x>0,y>0,且2x+8y=1,则xy有()A.最大值64B.最小值1 64C.最小值12D.最小值646.若a>0,b>0,且1a+1b=ab,则a3+b3的最小值为________.7.(2017·江苏高考)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是________.8.若对任意x>0,xx2+3x+1≤a恒成立,则a的取值范围是________.9.(1)已知x<3,求f(x)=4x-3+x的最大值;参考答案:1.解:因为a>2,所以a-2>0,又因为m=a+1a-2=(a-2)+1a-2+2,所以m≥2(a-2)·1a-2+2=4,由b≠0,得b2≠0,所以2-b2<2,n=22-b2<4,综上可知m>n.2.解:因为a>b>1,所以lg a>lg b>0,所以Q=12(lg a+lg b)>lg a·lg b=P;Q=12(lg a+lg b)=lg a+lg b=lg ab<lga+b2=R.所以P<Q<R.3.[证明]∵a,b,c均为正实数,∴2ba+a2b≥2(当且仅当a=2b时等号成立),3c a+a3c≥2(当且仅当a=3c时等号成立),3c 2b +2b3c ≥2(当且仅当2b =3c 时等号成立),将上述三式相加得⎝ ⎛⎭⎪⎫2b a +a 2b +⎝ ⎛⎭⎪⎫3c a +a 3c +⎝ ⎛⎭⎪⎫3c 2b +2b 3c ≥6(当且仅当a =2b =3c时等号成立),∴⎝ ⎛⎭⎪⎫2b a +a 2b -1+⎝ ⎛⎭⎪⎫3c a +a 3c -1+⎝ ⎛⎭⎪⎫3c 2b +2b 3c -1≥3(当且仅当a =2b =3c 时等号成立),即2b +3c -a a +a +3c -2b 2b +a +2b -3c 3c ≥3(当且仅当a =2b =3c 时等号成立).4.证明:因为a ,b ,c 为正实数,且a +b +c =1, 所以1a -1=1-a a =b +c a ≥2bc a . 同理,1b -1≥2ac b ,1c -1≥2abc . 上述三个不等式两边均为正,相乘得⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥2bc a ·2ac b ·2abc =8,当且仅当a =b =c =13时,取等号.5.解:由lg a +lg b =2可得lg ab =2, 即ab =100,且a >0,b >0,因此由基本不等式可得a +b ≥2ab =2100 =20, 当且仅当a =b =10时,a +b 取到最小值20. 6.解:∵x >0,y >0,2x +3y =6, ∴xy =16(2x ·3y )≤16·⎝⎛⎭⎪⎫2x +3y 22=16·⎝ ⎛⎭⎪⎫622=32,当且仅当2x =3y ,即x =32,y =1时,xy 取到最大值32. 7.解:∵1x +9y =1, ∴x +y =(x +y )·⎝ ⎛⎭⎪⎫1x +9y=1+9x y +y x +9=y x +9xy +10, 又∵x >0,y >0, ∴y x +9xy +10≥2y x ·9xy +10=16,当且仅当y x =9xy ,即y =3x 时,等号成立. 由⎩⎪⎨⎪⎧y =3x ,1x +9y=1,得⎩⎨⎧x =4,y =12,即当x =4,y =12时,x +y 取得最小值16.8.解析:选C 由已知,可得6⎝ ⎛⎭⎪⎫2a +1b =1,∴2a +b =6⎝ ⎛⎭⎪⎫2a +1b ·(2a +b )=6⎝ ⎛⎭⎪⎫5+2a b +2b a ≥6×(5+4)=54,当且仅当2a b =2b a 时等号成立,∴9m ≤54,即m ≤6,故选C.9.[解] (1)设铁栅长为x 米,一堵砖墙长为y 米,而顶部面积为S =xy ,依题意得,40x +2×45y +20xy =3 200,由基本不等式得3 200≥240x ×90y +20xy =120xy +20xy , =120S +20S .所以S +6S -160≤0,即(S -10)(S +16)≤0, 故S ≤10,从而S ≤100,所以S 的最大允许值是100平方米,(2)取得最大值的条件是40x =90y 且xy =100, 求得x =15,即铁栅的长是15米. 练习:1.解析:选B A 中,当0<x <1时,lg x <0,lg x +1lg x ≥2不成立;由基本不等式知B 正确;C 中,由对勾函数的单调性,知x +1x 的最小值为52;D 中,由函数f (x )=x -1x 在区间(0,2]上单调递增,知x -1x 的最大值为32,故选B.2.解析:选C 对于A ,当x ≤0时,无意义,故A 不恒成立;对于B ,当x =1时,x 2+1=2x ,故B 不成立;对于D ,当x <0时,不成立.对于C ,x 2+1≥1,∴1x 2+1≤1成立.故选C. 3.解析:选B 因为ab ≤⎝⎛⎭⎪⎫a +b 22≤⎝ ⎛⎭⎪⎫422=4,所以1a +1b ≥21ab ≥214=1.4.解析:选A 因为a ,b ,c ,d 成等差数列,则a +d =b +c ,又因为a ,b ,c ,d 均大于0且不相等,所以b +c >2bc ,故a +d2>bc .5.解析:选D 由题意xy =⎝ ⎛⎭⎪⎫2x +8y xy =2y +8x ≥22y ·8x =8xy ,∴xy ≥8,即xy 有最小值64,等号成立的条件是x =4,y =16.6.解析:∵a >0,b >0,∴ab =1a +1b ≥21ab ,即ab ≥2,当且仅当a =b =2时取等号,∴a 3+b 3≥2(ab )3≥223=42,当且仅当a =b =2时取等号,则a 3+b 3的最小值为4 2.7.解析:由题意,一年购买600x 次,则总运费与总存储费用之和为600x ×6+4x =4⎝ ⎛⎭⎪⎫900x +x ≥8900x ·x =240,当且仅当x =30时取等号,故总运费与总存储费用之和最小时x 的值是30.8.解析:因为x >0,所以x +1x ≥2.当且仅当x =1时取等号, 所以有xx 2+3x +1=1x +1x +3≤12+3=15, 即x x 2+3x +1的最大值为15,故a ≥15. 答案:⎣⎢⎡⎭⎪⎫15,+∞(2)已知x ,y 是正实数,且x +y =4,求1x +3y 的最小值. 9.解:(1)∵x <3, ∴x -3<0,∴f (x )=4x -3+x =4x -3+(x -3)+3 =-⎣⎢⎡⎦⎥⎤43-x +(3-x )+3≤-243-x·(3-x )+3=-1, 当且仅当43-x=3-x , 即x =1时取等号, ∴f (x )的最大值为-1. (2)∵x ,y 是正实数,∴(x +y )⎝ ⎛⎭⎪⎫1x +3y =4+⎝ ⎛⎭⎪⎫y x +3x y ≥4+2 3.当且仅当y x =3xy ,即x =2(3-1),y =2(3-3)时取“=”号. 又x +y =4, ∴1x +3y ≥1+32, 故1x +3y 的最小值为1+32.。

高中必修5不等式练习题及答案

高中必修5不等式练习题及答案

[基础训练A组]一、选择题1.若一2/+5兀一2>0,则丁4/-4・丫 + 1+2卜-2|等于()A. 4x —5B. — 3C. 3D. 5 —4兀2.函数y=log丄(x+古+1)(x > 1)的最大值是()A. —2B. 2C. —3D. 33人一13.不等式一的解集是()2—x3 3 3A. {x|—WxW2}B. {x| —Wx V2}C・ {x|x>2 或x W —} D. {x|xV2}4 4 44.设a>l>b>-l,则下列不等式中恒成立的是()A. — < —B. — > —C・ a>b* D・ £>2ba h a b5.如果实数x,y 满足x2 3+y J=l,则(1—xy)(1+xy)有()1 3A.最小值一和最大值1B.最大值1和最小值二2 43C.最小值;而无最大值D.最大值1而无最小值46.二次方程/+ (a s+l)x+a-2=0,有一个根比1尢另一个根比一1小,则a的取值范围是()A・一3 <a<l B. -2<a<0 C. -l<a<0 D. 0<a<2二、填空题(五个小题,每题6分,共30分)x > -21.不等式组、r的负整数解是______________________O兀>一3■2.一个两位数的个位数字比十位数字大2,若这个两位数小于30,则这个两位数为__________ oV2 +13.不等式一<0的解集是 _______________________ o2-x4.当尤= ____________ 时,函数y =,(2-小)有最_______值,其值是___________ 。

5・若f(n) = V«2+l 一亿g(n)=舁一J宀1,0(〃)=丄⑺已N),用不等号连结起来为______2n2 不等式---------- ----------- V0的解集为R,求实数m的取值范围。

(word完整版)专题复习:高中数学必修5基本不等式经典例题(教师用)

(word完整版)专题复习:高中数学必修5基本不等式经典例题(教师用)

知识点: 基本不等式1. (1)若 a,b2. ⑴若a,b⑶若a, b R ,则ab当且仅当ab 时取“=”)3.若x01 21x 若x1x若x1x 丄b取a=”)x x4.若 abb 0a b b 2K -ab aaa仅当a b“”)5.若 a,ba b )⑴ 当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大” (2)求最值的条件“一正,二定,三取等”⑶均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用应用一:求最值例:求下列函数的值域1(i )y = 3x 2 +乔=—2 •••值域为(— — 2] U [2 , + R )技巧一:凑项例已知x5,求函数y 4x-的最大值。

4x 5R ,则a 2 b 2 2ab ⑵若a,b R ,则ab a 一-(当且仅当a b 时取“=”)2R *,则」ab (2)若a,b R *,则a b 2 ab (当且仅当a b 时取“=”)20,所以首先要“调整”符号,又(4x 2)g - 不是常数,所以对 4x 2要进行拆、凑项,4x 5解:因4x 55 11Qx,5 4x0, y 4x 25 4x32 3 144x 55 4x1当且仅当5 4x ,即x 1时,上式等号成立,故当 x 1时,y max 1。

5 4x技巧二:凑系数 例:当时,求y x(8 2x)的最大值。

解析:由「知,;二,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。

注意到 2x (8 2x) 8为定值,故只需将 y x(8 2x)凑上一个系数即可。

尹=^S-2x)=女N • (8 - 2x)] < g严苒-込/ 三 §当’「,即x = 2时取等号 当x = 2时,y x(8 2x)的最大值为8。

技巧三:分离换元A 3十7工+10 + C 3十5(尤十1)十4y ■ --------------- = ---------------------------x + 1变式:设03,求函数y4x(3 2x)的最大值。

(完整word版)高中数学必修五基本不等式练习题

(完整word版)高中数学必修五基本不等式练习题

基本不等式练习题一、单项选择1.已知 x0 ,函数y 4x 的最小值是()xA. 4B.5C. 6D.83.在以下函数中,最小值为 2 的是()A y x1B y3x 3 xxC y lg x1(1 x10)D y sin x1(0x)lg x sin x24.已知531( x0, y0) ,则xy的最小值是()x yA.15 B.6C.60D.15.已知 x1,y 1且 xy 16 ,则 log 2 x log 2 y ()A.有最大值 2 B .等于 4C.有最小值 3 D .有最大值 46.若 a, b R ,且ab0 ,则以下不等式中恒成立的是()A .a2b22abB .a b2abC .112 D .ba2 a b ab a b7.若正数 a、b 满足 ab a b 3 ,则 a b 的取值范围是()A.[ 9,)B. [6,)C. (0,9] D .(0,6)8.已知正项等比数列{a n } 满足 a7a62a5.若存在两项 a m , a n使得a m a n4a119,则的最小值为()m nA 8B11C14D17 34569. 设 0<b<a<1,则以下不等式成立的是()10. 知a2b 2(a, b 0) ,则ab的最大值为( )A.1B. 2C. 3D.1 2311. 若 0<a< 1,0<b< 1,a b ,则a+b,2ab , a2+b2,2ab 中最大一个是()A.a+b B.2ab C.a2+b2D.2ab12. 知x1, y 1 ,且1ln x,1,ln y 成等比数列,则xy 有() 44A、最小值eB、最小值eC、最大值eD、最大值e13. 3 a a 6 6 a 3 的最大值为()A.9B.9C. 3D.3 22214. x0, y0, xy9 ,则 s x 2y 2取最小值时 x 的值为()y xA.1B. 2C.3D.615. 知 a,b R ,且ab 0 ,则以下不等式中不正确的选项是()A.ba2B.2 ab a b C .a b a b D .a b a b a b二、填空题16.知 x0, y0,且21 1 ,若 x2 y m 22m 恒成立,则实数 m 的取值范围____ . x y17.正实数 x, y, z 满足x23xy 4 y2z0 ,则当z获取最大值时, x 2 y z 的最大值为xy18.知 a0, b0 ,函数 f ( x)x2(ab a4b)x ab 是偶函数,则 f ( x) 的图象与y轴交点纵坐标的最小值为__________.19. f ( x)x12) 在 x n 处获取最小值,则 n( xx 220.知 x0, y0,lg 2x lg8 y lg 2 ,则1 1的最小值是. x3y21.知正实数 x, y 满足x2y2xy1,则x+y 的最大值是__________.22.a、b 是正实数,以下不等式①ab2ab ,② aabb ,③ a 2 b 2 4ab3b 2 ,④ ab2 2 恒成立的序号为a bab23. ( x, y) 在直线 x 2 y 3 上搬动,则 2x 4y 的最小值为24. 知 x 0, y0, x y xy 8 ,则 x y 的最小值是 __________.25.0 x1 , 则 x (12 ) 的最大值是 _________.2 x26. > 0 ,则 yx的最大值是 ___________.x 2427. 实数 x, y 满足 2x + 2 y = 4x + 4 y , 则 8x + 8y 的取值范围是 ________28. 知 a, b 都是正实数,函数 y2aexb 的图像过点( 0,1 ),则11的最小值是.a b29. 实数 a,b 满足 a2b 2 1 且c a b ,恒成立,则 c 的取值范围是 ____________.30. 若 x 、 y 为正整数,且满足 416 1 ,则x y 的最小值为;x y_________1131. a b 1(a 0,b0),则 a b的最小值为32. x, y 均为正实数,且33 1 ,则 xy 的最小值为.x2 y2三、解答题33. 知 a, b 是不相等的正常数,实数 x, y (0,) .a 2b 2 (a b) 2(Ⅰ)求证:yx y ,并指出等号成立的条件;x(Ⅱ)求函数 f (x)2 1 1 , x (0, 1 ) 的最小值,并指出此时 x 的值. x2x 234. 制作一个如图的框架(单位:米),要求所围成的总面积为 19.5 (米 2),其中 ABCD 是一个矩形, EFCD是一个等腰梯形,梯形高h= AB ,tan ∠ FED= ,设 AB=x 米, BC=y 米.( 1)求 y 关于 x 的表达式;( 2)如何设计x,y 的长度,才能使所用资料最少?。

必修五解不等式练习题

必修五解不等式练习题

必修五解不等式练习题一、一元一次不等式1. 解不等式:3x 5 > 2x + 12. 解不等式:4 2(x 3) ≤ 5x + 73. 解不等式:5 3(x + 2) > 2x 44. 解不等式:2(3x 1) 4(x + 3) < 7 x5. 解不等式:7 4(x 2) ≥ 3x + 1二、一元二次不等式1. 解不等式:x^2 5x + 6 > 02. 解不等式:2x^2 3x 2 < 03. 解不等式:x^2 4x + 4 ≤ 04. 解不等式:x^2 + 6x + 9 > 05. 解不等式:x^2 + 5x 6 < 0三、分式不等式1. 解不等式:\(\frac{1}{x2} > \frac{3}{x+1}\)2. 解不等式:\(\frac{2}{x+3} ≤ \frac{1}{x4}\)3. 解不等式:\(\frac{3}{x5} + \frac{2}{x+2} < 0\)4. 解不等式:\(\frac{4}{x+4} \frac{1}{x3} > 0\)5. 解不等式:\(\frac{5}{x1} = \frac{2}{x+5}\)四、含绝对值的不等式1. 解不等式:|2x 3| > 52. 解不等式:|3x + 4| < 73. 解不等式:|4 x| ≥ 24. 解不等式:|5x 2| ≤ 35. 解不等式:|x + 6| = 8五、综合练习1. 解不等式组:\(\begin{cases} 2x 3 > 0 \\ x + 4 < 7\end{cases}\)2. 解不等式组:\(\begin{cases} x^2 5x + 6 ≤ 0 \\ 3x +2 > 0 \end{cases}\)3. 解不等式组:\(\begin{cases} |x 2| < 3 \\\frac{1}{x+1} > 0 \end{cases}\)4. 解不等式组:\(\begin{cases} 4x 7 < 0 \\ |2x + 5| ≥ 3 \end{cases}\)5. 解不等式组:\(\begin{cases} x^2 4x + 3 > 0 \\\frac{2}{x1} ≤ 1 \end{cases}\)六、不等式的应用1. 某企业的年利润为x万元,若年利润增加1万元,则需增加投资20万元。

高中数学必修5不等式训练(含详细答案)

高中数学必修5不等式训练(含详细答案)

高中数学必修5不等式训练(含详细答案)第三章 不等式一、选择题.1. 若 a ∈R ,则下列不等式恒成立的是( ).A. a 2 + 1>aB.112+a <1C. a 2 + 9>6aD. lg (a 2 +1)>lg|2a |2. 下列函数中,最小值为 2 是( ).A. y =xx 55+,x ∈R ,且 x ≠0 B. y = lg x+x lg 1,1<x <10C. y = 3x + 3-x ,x ∈RD. y = sin x+x sin 1,2π0<<x3. 不等式组 表示的平面区域的面积等于( ).A. 28B. 16C.439 D. 1214. 不等式 lg x 2<lg 2x 的解集是( ).x ≤3 x + y ≥0 x - y + 2≥0A. ⎪⎭⎫⎝⎛11001, B. (100,+∞)C.⎪⎭⎫⎝⎛11001,∪(100,+∞)D. (0,1)∪(100,+∞)5. 不等式(x 4 - 4)-(x 2 - 2)≥0 的解集是( ).A. x ≥2,或 x ≤-2B. -2≤x ≤2C. x <-3,或 x >3D. -2<x <2 6. 若 x ,y ∈R ,且 x + y = 5,则 3x + 3y 的最小值是( ).A. 10B.C.D. 7. 若 x >0,y >0,且 281x y+=,则 xy 有( ).A. 最大值 64B. 最小值164C. 最小值12D. 最小值648. 若 ,则目标函数 z = 2x + y 的x ≤2 y ≤2x + y ≥1取值范围是( ).A. [0,6] B . [2,4] C. [3,6] D. [0,5] 9. 若不等式 ax 2 + bx + c >0 的解是 0<α<x <β,则不等式 cx 2 - bx + a >0 的解为( ).A. α1<x <β1B. -β1<x <-α1C. -α1<x <-β1D. β1<x <α110. 若 a >0,b >0 ,且1a b +=,则⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-111122b a 的最小值是( ).A. 9B. 8C.7D. 6二、填空题. 1. 函数y 的定义域是 .2. 若 x ,y 满足 ,则x y 的最大值为____________________,最小值x + 2y - 5≤0x ≥1y ≥0 x + 2y - 3≥0为_________________.3. 函数y=的最大值为.4. 若直角三角形斜边长是1,则其内切圆半径的最大值是.5. 若集合A = {(x,y)| |x| + |y|≤1},B = {(x,y)|(y-x)(y+x)≤0},M = A∩B,则M的面积为___________.6. 若不等式2x - 1>m(x2 - 1)对满足-2≤m≤2 的所有m都成立,则x的取值范围是.三、解答题.1. 若奇函数f(x)在其定义域(-2,2)上是减函数,且f(1 - a)+ f(1 - a2)<0,求实数a的取值范围.2. 已知 a >b >0,求216()a b a b +-的最小值.3. 设实数 x ,y 满足不等式组 .(1)作出点(x ,y )所在的平面区域; (2)设 a >-1,在(1)所求的区域内,求f (x ,y )= y – ax 的最大值和最小值.1≤x + y ≤4y + 2≥|2x - 3|4. 某工厂拟建一座平面图形为矩形,且面积为200 m2 的三级污水处理池(平面图如右). 如果池外圈周壁建造单价为每米400 元,中间两条隔墙建筑单价为每米248 元,池底建造单价为每平方米80 元,池壁的厚度忽略不计. 试设计污水池的长和宽,使总造价最低,并求出最低造价.参考答案一、选择题. 1. A【解析】A :a 2 - a + 1 = a 2- a +4341+=221⎪⎭⎫ ⎝⎛-a +43>0. a 2 + 1>a 恒成立.B :当 a = 0 时,左 = 右.C :当 a = 3 时,左 = 右.D :当 a = ±1 时,左 = 右. 2. C【解析】A :y 没有最小值. B :∵ 1<x <10, ∴ 0<lg x <1. ∴ y ≥2.lg x =1,即x =10时,y min = 2. 此时不符合1<x <10. C :∵ 3x >0, ∴ y = 3x +x31≥2.x = 0时,y min = 2. D :∵ 0<x <2π, ∴ sin x >0. ∴ y ≥2.当 sin x =xsin 1时,此时 sin x = 1,x =2π,不符合 0<x <2π. 3. B【解析】由不等式组,画出符合条件的平面区域(下图阴影部分).解两两直线方程组成的方程组,可得 A (3,5),B (3,-3), C (-1,1).∴ S 阴 =21· |AB | · |x A - x c | = 21×8×4 = 16. 4. D 【解析】∵∴ x >0. ∵ lg x 2<lg 2x , ∴ lg 2x - 2lg x >0. ∴ lg x >2 ,或 lg x <0, ∴ x >100 ,或 0<x <1. 5. A【解析】∵(x 4 - 4)-(x 2 - 2)≥ 0,∴ x 4 - x 2 - 2≥0,∴(x 2 - 2)(x 2 + 1)≥0.x 2>0,x >0,∴ x 2≥2.∴ x ≥2,或 x ≤-2. 6. D【解析】 3x + 3y ≥2yx33⋅= 2yx +3,∴ 3x + 3y ≥2×9×3= 183,当 x = y =25时,等号成立.7. D 【解析】 yx 82+≥2yx 82⋅= 8xy 1,当yx 82=,即 时,8xy1取最大值,即 xy取最小值 64. 8. A【解析】 据不等式组画出可行域.易知 A (-1,2),B (2,2).将 y = -2x 进行平移,当直线过 A 点时,z min = 0,当直线过 B 点时,z max = 6. 9. Cx = 4, y = 16【解析】由题知, 且 a <0.∴ b = -a (α + β ), c = a (αβ ).∴ 所求不等式可代为 a (αβ )x 2 + a (α + β )x + a >0.∴(αβ )x 2 +(α + β )x + 1<0. ∴(αx + 1)(βx + 1)<0. ∵ 0<α<β,∴ -α1<-β1. ∴ -α1<x <-β1. 10. A 【解析】⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-111122b a =22221b a b a --+ 1 =22222)(b a b a b a --++ 1=ab 2+1≥222⎪⎭⎫⎝⎛+b a + 1 = 9.∴ 当 a = b=21时,原式取最小值 9.二、填空题. 1. (-8,8).【解析】∵ 64 - x 2>0 ∴ x 2<64,-8<xα + β = ab- α β = ac<8,即(-8,8).2. 2,0.【解析】 据不等式组画出可行域.由图可知,2max=⎪⎭⎫⎝⎛xy ,=⎪⎭⎫ ⎝⎛m inxy 0.3. 21. 【解析】设 x = cos , ∈[0,π]. ∴ y = cos sin =21sin 2 . ∵ ∈[0,π],∴ 2 ∈[0,2π],∴ y max =21,此时 =4π,x = cos 4π=22. 4. 21-.【解析】如图,r =21-+b a =212-+b a ≤21222-+b a =2122-=212-. 当且仅当 a = b =22时, r max =212-.5. 1.【解析】如图,M 为阴影部分. M 的面积为()2221⨯= 1.6. 271+-<x <231+. 【解析】令 f (m )= m (x 2 - 1)-(2x - 1)(x ≠±1),把它看作关于 m 的一次函数.由于 -2≤m ≤2 时,f (m )<0 恒成立,x 2 - 1>0 x 2 - 1<0 ∴ 或f (2)<0 f (-2)<0解得 1<x <231+,或271+-<x <1,又x = 1 时,亦符合题意.∴ 271+-<x <231+. 三、解答题.1. 由f (1 - a )+ f (1 - a 2)<0,得 f (1 - a )<- f (1 - a 2). 又因为函数f (x )为奇函数,所以- f (1 - a 2) = f (a 2 - 1).∴ f (1 - a )< f (a 2 - 1). 又∵ 函数 f (x ) 在其定义域(-2,2)上是减函数,1 - a >a2 – 1 -2<a <1 ∴ -2<1 - a <2 解得 -1<a <3-2<a 2 - 1<2 -3<a <3∴ a ∈(-1,1).2. 由 a >b >0 知,a - b >0,∴ b (a - b )≤4222a b a b =⎪⎭⎫⎝⎛-+.∴ a 2 +)(16b a b -≥a 2 +264a ≥22264a a ⋅= 16.当且仅当 a 2 =264a,b = a - b , 即当 a = 22,b =2时,a 2 +)(16b a b -取得最小值 16.3. (1)(-3,7) 【解析】(2) 最大值为7+3a ,最小值为4. 【解】设污水池总造价为 y 元,污水池长为 x m. 则宽为x200m ,水池外圈周壁长2x + 2 · x 200(m ),中间隔墙长2 · x200(m ),池底面积200(m 2).∴ y = 400⎪⎭⎫⎝⎛+⋅x x 20022+ 248 · x 200 · 2 + 80×200 = 800⎪⎭⎫⎝⎛+x x 324+ 16 000- 1- 2a , -1<a ≤2 1 - 3a , a >2≥1 600xx 324+ 16 000 = 44 800.当且仅当 x =x324,即 x = 18,x 200=9100时,y min = 44 800.答:当污水池长为 18 m ,宽为9100m 时,总造价最低,最低为 44 800元.。

高中数学必修5不等式精选题目(附答案)

高中数学必修5不等式精选题目(附答案)

高中数学必修5不等式精选题目(附答案)一、一元二次不等式(1)确定ax 2+bx +c >0(a >0)或ax 2+bx +c <0(a >0)在判别式Δ>0时解集的结构是关键.在未确定a 的取值情况下,应先分a =0和a ≠0两种情况进行讨论.(2)若给出了一元二次不等式的解集,则可知二次项系数a 的符号和方程ax 2+bx +c =0的两个根,再由根与系数的关系就可知a ,b ,c 之间的关系.(3)解含有参数的一元二次不等式,要注意对参数的取值进行讨论:①对二次项系数与0的大小进行讨论;②在转化为标准形式的一元二次不等式后,对判别式与0的大小进行讨论;③当判别式大于0,但两根的大小不确定时,对两根的大小进行讨论.1. (1)已知不等式ax 2+bx +2>0的解集为{x |-1<x <2},则不等式2x 2+bx +a <0的解集为( )A.⎩⎨⎧⎭⎬⎫x -1<x <12B.⎩⎨⎧⎭⎬⎫xx <-1或x >12 C .{x |-2<x <1} D .{x |x <-2或x >1}(2)解关于x 的不等式ax 2-2ax +a +3>0.1.[解析] (1)由题意知x =-1,x =2是方程ax 2+bx +2=0的根.由根与系数的关系得⎩⎪⎨⎪⎧ -1+2=-b a ,(-1)×2=2a ⇒⎩⎨⎧a =-1,b =1. ∴不等式2x 2+bx +a <0,即2x 2+x -1<0.解得-1<x <12.[答案] A(2)解:当a =0时,解集为R ;当a >0时,Δ=-12a <0,∴解集为R ;当a <0时,Δ=-12a >0,方程ax 2-2ax +a +3=0的两根分别为a +-3a a ,a --3a a ,∴此时不等式的解集为x a +-3a a <x <a --3a a. 综上所述,当a ≥0时,不等式的解集为R ;a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ a +-3a a <x <a --3a a . 注:解一元二次不等式时,当二次项系数为负时要先化为正,再根据判别式符号判断对应方程根的情况,然后结合相应二次函数的图象写出不等式的解集.2.函数f (x )=1ln (-x 2+4x -3)的定义域是( ) A .(-∞,1)∪(3,+∞) B .(1,3)C .(-∞,2)∪(2,+∞)D .(1,2)∪(2,3) 解析:选D 由题意知⎩⎨⎧ -x 2+4x -3>0,-x 2+4x -3≠1, 即⎩⎨⎧ 1<x <3,x ≠2,故函数f (x )的定义域为(1,2)∪(2,3).3.若关于x 的不等式ax 2-6x +a 2<0的解集是(1,m ),则m =________.解析:根据不等式与方程之间的关系知1为方程ax 2-6x +a 2=0的一个根,即a 2+a -6=0,解得a =2或a =-3,当a =2时,不等式ax 2-6x +a 2<0的解集是(1,2),符合要求;当a =-3时,不等式ax 2-6x +a 2<0的解集是(-∞,-3)∪(1,+∞),不符合要求,舍去.故m =2.答案:24.已知不等式ax 2-3x +6>4的解集为{x |x <1或x >b }.(1)求a ,b 的值;(2)解不等式ax 2-(ac +b )x +bc <0.解:(1)因为不等式ax 2-3x +6>4的解集为{x |x <1或x >b },所以x 1=1与x 2=b 是方程ax 2-3x +2=0的两个实数根,b >1且a >0.由根与系数的关系,得⎩⎪⎨⎪⎧ 1+b =3a ,1×b =2a .解得⎩⎨⎧a =1,b =2. (2)不等式ax 2-(ac +b )x +bc <0,即x 2-(2+c )x +2c <0,即(x -2)(x -c )<0.当c >2时,不等式(x -2)(x -c )<0的解集为{x |2<x <c };当c <2时,不等式(x -2)(x -c )<0的解集为{x |c <x <2};当c =2时,不等式(x -2)(x -c )<0的解集为∅.所以,当c >2时,不等式ax 2-(ac +b )x +bc <0的解集为{x |2<x <c };当c <2时,不等式ax 2-(ac +b )x +bc <0的解集为{x |c <x <2};当c =2时,不等式ax 2-(ac +b )x +bc <0的解集为∅.二、简单的线性规划问题1.确定二元一次不等式表示平面区域的方法与技巧确定二元一次不等式表示的平面区域时,经常采用“直线定界,特殊点定域”的方法.2.利用线性规划求最值,一般用图解法求解,其步骤是(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.5.(1)设变量x ,y 满足约束条件:⎩⎨⎧ x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =y +1x 的最小值为( )A .1B .2C .3D .4 (2)某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的23倍,且对每个项目的投资不能低于5万元.对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确规划投资后,在这两个项目上共可获得的最大利润为( )A .36万元B .31.2万元C .30.4万元D .24万元5.[解析] (1)不等式组所表示的平面区域如图中的△ABC ,目标函数的几何意义是区域内的点与点P (0,-1)连线的斜率,显然图中AP 的斜率最小.由⎩⎨⎧x +y =3,2x -y =3解得点A 的坐标为(2,1),故目标函数z =y +1x 的最小值为1+12=1.(2)设对项目甲投资x 万元,对项目乙投资y 万元, 则⎩⎪⎨⎪⎧ x +y ≤60,x ≥23y ,x ≥5,y ≥5.目标函数z =0.4x +0.6y .作出可行域如图所示,由直线斜率的关系知目标函数在A 点取最大值,代入得z max =0.4×24+0.6×36=31.2,所以选B.[答案] (1)A (2)B注:(1)求目标函数最值的一般步骤为:一画、二移、三求.其关键是准确作出可行域,理解目标函数的意义.(2)在约束条件是线性的情况下,线性目标函数只有在可行域的顶点或者边界上取得最值.在解答选择题或者填空题时也可以根据可行域的顶点直接进行检验.6.不等式组⎩⎨⎧ 2x +y -6≤0,x +y -3≥0,y ≤2表示的平面区域的面积为( ) A .4B .1C .5D .无穷大解析:选B 不等式组⎩⎨⎧ 2x +y -6≤0,x +y -3≥0,y ≤2表示的平面区域如图所示(阴影部分),△ABC 的面积即为所求.求出点A ,B ,C 的坐标分别为(1,2),(2,2),(3,0),则△ABC 的面积为S =12×(2-1)×2=1.7.已知实数x ,y 满足⎩⎨⎧ x ≥0,y -x +1≤0,y -2x +4≥0,若z =y -ax 取得最大值时的最优解(x ,y )有无数个,则a =________. 解析:依题意,在坐标平面内画出题中的不等式组表示的平面区域,如图所示.要使z =y -ax 取得最大值时的最优解(x ,y )有无数个,则直线z =y -ax 必平行于直线y -x +1=0,于是有a =1.答案:18.某公司用两种机器来生产某种产品,第一种机器每台需花3万日元及人民币50元的维护费;第二种机器则需5万日元及人民币20元的维护费.第一种机器的年利润每台有9万日元,第二种机器的年利润每台有6万日元,但政府核准的外汇日元为135万元,并且公司的总维护费不得超过1 800元,为了使年利润达到最大值,第一种机器应购买________台,第二种机器应购买________台.解析:设第一种机器购买x 台,第二种机器购买y 台,总的年利润为z 万日元,则⎩⎨⎧ 3x +5y ≤135,50x +20y ≤1 800,x ,y ∈N ,目标函数为z=9x +6y . 不等式组表示的平面区域如图阴影部分中的整点.当直线z =9x +6y 经过点M ⎝ ⎛⎭⎪⎫63019,13519,即到达l 1位置时,z 取得最大值,但题目要求x ,y 均为自然数,故进行调整,调整到与M 邻近的整数点(33,7),此时z =9x +6y 取得最大值,即第一种机器购买33台,第二种机器购买7台获得年利润最大.答案:33 7三、基本不等式基本不等式的常用变形(1)a +b ≥2ab (a >0,b >0),当且仅当a =b 时,等号成立;(2)a 2+b 2≥2ab ,ab ≤⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R),当且仅当a =b 时,等号成立; (3)b a +a b ≥2(a ,b 同号且均不为零),当且仅当a =b 时,等号成立;(4)a +1a ≥2(a >0),当且仅当a =1时,等号成立;a +1a ≤-2(a <0),当且仅当a =-1时,等号成立.9.(1)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( )A.245B.285 C .5 D .6(2)若正数x ,y 满足4x 2+9y 2+3xy =30,则xy 的最大值是( )A.43B.53 C .2 D.54[解析] (1)由x +3y =5xy 可得15y +35x =1,∴3x +4y =(3x +4y )⎝ ⎛⎭⎪⎫15y +35x =95+45+3x 5y +12y 5x ≥135+125=5当且仅当3x 5y =12y 5x ,即x =1,y =12时,等号成立, ∴3x +4y 的最小值是5.(2)由x >0,y >0,得4x 2+9y 2+3xy ≥2×(2x )×(3y )+3xy (当且仅当2x =3y 时等号成立),∴12xy +3xy ≤30,即xy ≤2,∴xy 的最大值为2.[答案] (1)C (2)C注:条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.10.已知2x +2y =1(x >0,y >0),则x +y 的最小值为( )A .1B .2C .4D .8解析:选D ∵x >0,y >0,∴x +y =(x +y )·⎝ ⎛⎭⎪⎫2x +2y =4+2⎝ ⎛⎭⎪⎫x y +y x ≥4+4 x y ·yx =8.当且仅当x y =y x ,即x =y =4时取等号.11.设x ,y ∈R ,且xy ≠0,则⎝ ⎛⎭⎪⎫x 2+1y 2⎝ ⎛⎭⎪⎫1x 2+4y 2的最小值为________. 解析:⎝ ⎛⎭⎪⎫x 2+1y 2⎝ ⎛⎭⎪⎫1x 2+4y 2=5+1x 2y 2+4x 2y 2≥5+21x 2y 2·4x 2y 2=9,当且仅当x 2y 2=12时“=”成立.答案:912.某种商品原来每件售价为25元,年销售8万件. (1)据市场调查,若价格每提高1元,销售量将相应减少2 000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x 元.公司拟投入16(x 2-600)万元作为技改费用,投入50万元作为固定宣传费用,投入15x 万元作为浮动宣传费用.试问:当该商品明年的销售量a 至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时每件商品的定价.解:(1)设每件定价为t 元,依题意,有[8-(t -25)×0.2]t ≥25×8,整理得t 2-65t +1 000≤0,解得25≤t ≤40.因此要使销售的总收入不低于原收入,每件定价最多为40元.(2)依题意,x >25时,不等式ax ≥25×8+50+16(x 2-600)+15x 有解,等价于x>25时,a≥150x+16x+15有解.∵150x+16x≥2150x·16x=10(当且仅当x=30时,等号成立),∴a≥10.2.因此当该商品明年的销售量a至少应达到10.2万件时,才可能使明年的销售收入不低于原收入与总投入之和,此时该商品的定价为每件30元.巩固练习:1.若1a<1b<0,则下列不等式不正确的是()A.a+b<ab B.ba+ab>0C.ab<b2D.a2>b2解析:选D由1a<1b<0,可得b<a<0,故选D.2.已知不等式x2-2x-3<0的解集为A,不等式x2+x-6<0的解集为B,不等式x2+ax+b<0的解集是A∩B,那么a+b等于()A.-3 B.1C.-1 D.3解析:选A由题意:A={x|-1<x<3},B={x|-3<x<2}.A∩B={x|-1<x<2},由根与系数的关系可知:a=-1,b=-2,∴a+b=-3.3.函数y=x2+2x-1(x>1)的最小值是()A.23+2 B.23-2 C.2 3 D.2解析:选A∵x>1,∴x-1>0.∴y=x2+2x-1=x2-2x+2x+2x-1=x2-2x+1+2(x-1)+3x-1=(x-1)2+2(x-1)+3x-1=x -1+3x -1+2≥23+2当且仅当x -1=3x -1,即x =3+1时等号成立. 4.(2017·浙江高考)若x ,y 满足约束条件⎩⎨⎧ x ≥0,x +y -3≥0,x -2y ≤0,则z =x +2y 的取值范围是( )A .[0,6]B .[0,4]C .[6,+∞)D .[4,+∞) 解析:选D 作出不等式组所表示的平面区域如图中阴影部分所示,由z =x +2y ,得y =-12x +z 2,∴z 2是直线y =-12x +z 2在y 轴上的截距,根据图形知,当直线y =-12x +z 2过A 点时,z 2取得最小值.由⎩⎨⎧ x -2y =0,x +y -3=0,得x =2,y =1,即A (2,1),此时,z =4,∴z =x +y 的取值范围是[4,+∞).5.已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎨⎧ x +y -7≤0,x -y +3≥0,y ≥0.若圆心C∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29C .37D .49解析:选C 由已知得平面区域Ω为△MNP 内部及边界.∵圆C 与x 轴相切,∴b =1.显然当圆心C 位于直线y=1与x +y -7=0的交点(6,1)处时,a max =6.∴a 2+b 2的最大值为62+12=37.故选C.6.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z 取得最大值时,2x +1y -2z 的最大值为( )A .0B .1C.94 D .3 解析:选B 由x 2-3xy +4y 2-z =0,得z =x 2-3xy +4y 2, ∴xy z =xy x 2-3xy +4y 2=1x y +4yx -3. 又x ,y ,z 为正实数,∴x y +4y x ≥4,即xy z ≤1,当且仅当x =2y 时取等号,此时z =2y 2.∴2x +1y -2z =22y +1y -22y2 =-⎝ ⎛⎭⎪⎫1y 2+2y =-⎝ ⎛⎭⎪⎫1y -12+1, 当1y =1,即y =1时,上式有最大值1.7.若x ,y 满足约束条件⎩⎨⎧ x -1≥0,x -y ≤0,x +y -4≤0,则y x 的最大值为________.解析:画出可行域如图阴影部分所示, ∵y x 表示过点(x ,y )与原点(0,0)的直线的斜率,∴点(x ,y )在点A 处时y x 最大.由⎩⎨⎧ x =1,x +y -4=0,得⎩⎨⎧ x =1,y =3.∴A (1,3).∴y x 的最大值为3.答案:38.设正数a ,使a 2+a -2>0成立,若t >0,则12log a t ________log a t +12(填“>”“≥”“≤”或“<”).解析:因为a 2+a -2>0,所以a <-2或a >1,又a >0,所以a >1,因为t >0,所以t +12≥ t ,所以log a t +12≥log a t =12log a t .答案:≤9.(2017·全国卷Ⅲ)若x ,y 满足约束条件⎩⎨⎧ x -y ≥0,x +y -2≤0,y ≥0,则z =3x -4y 的最小值为________.解析:作出约束条件表示的可行域如图中阴影部分所示,作出直线l :3x -4y =0,平移直线l ,当直线z =3x -4y 经过点A (1,1)时,z 取得最小值,最小值为3-4=-1.答案:-110.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5 min ,生产一个骑兵需7 min ,生产一个伞兵需4 min ,已知总生产时间不超过10 h .若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)用每天生产的卫兵个数x 与骑兵个数y 表示每天的利润W (元).(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?解:(1)依题意每天生产的伞兵个数为100-x -y ,所以利润W =5x +6y +3(100-x -y )=2x +3y +300.(2)约束条件为:⎩⎨⎧ 5x +7y +4(100-x -y )≤600,100-x -y ≥0,x ∈N ,y ∈N ,整理得⎩⎨⎧ x +3y ≤200,x +y ≤100,x ∈N ,y ∈N ,目标函数为W =2x +3y +300,如图所示,作出可行域.初始直线l 0:2x +3y =0,平移初始直线经过点A 时,W 有最大值,由⎩⎨⎧x +3y =200,x +y =100,得⎩⎨⎧x =50,y =50.最优解为A (50,50),所以W max =550(元).故每天生产卫兵50个,骑兵50个,伞兵0个时利润最大,为550元.11.某外商到一开发区投资72万美元建起一座蔬菜加工厂,第一年各种经费12万美元,以后每年增加4万美元,每年销售蔬菜收入50万美元.设f (n )表示前n 年的纯利润总和.(注:f (n )=前n 年的总收入-前n 年的总支出-投资额)(1)从第几年开始获利?(2)若干年后,外商为开发新项目,有两种处理方案:①年平均利润最大时以48万美元出售该厂;②纯利润总和最大时,以16万美元出售该厂;问哪种方案最合算?为什么?解:由题意知,每年的经费是以12为首项,4为公差的等差数列,∴f (n )=-2n 2+40n -72.(1)获利就是要求f (n )>0,所以-2n 2+40n -72>0,解得2<n <18.由n ∈N 知从第三年开始获利.(2)①年平均利润=f (n )n =40-2⎝ ⎛⎭⎪⎫n +36n ≤16. 当且仅当n =6时取等号.故此方案共获利6×16+48=144(万美元),此时n =6.②f (n )=-2(n -10)2+128.当n =10时,f (n )max =128.故第②种方案共获利128+16=144(万美元),故比较两种方案,获利都是144万美元.但第①种方案只需6年,而第②种方案需10年,故选择第①种方案最合算.12.已知α,β是方程x 2+ax +2b =0的两根,且α∈[0,1],β∈[1,2],a ,b ∈R ,求b -3a -1的最大值和最小值. 解:设f (x )=x 2+ax +2b ,由题意f (x )在[0,1]和[1,2]上各有一个零点,∴⎩⎨⎧ f (0)≥0,f (1)≤0,f (2)≥0,即⎩⎨⎧ b ≥0,a+2b +1≤0,a +b +2≥0,建立平面直角坐标系aOb ,则上述不等式组表示的平面区域如图.由⎩⎨⎧ a +2b +1=0,a +b +2=0,解得⎩⎨⎧ a =-3,b =1,即C (-3,1).令k =b -3a -1,可以看成动点P (a ,b )与定点A (1,3)的连线的斜率.又B (-1,0),C (-3,1),则k AB =32,k AC =12,∴12≤b -3a -1≤32.故b -3a -1的最大值是32,最小值是12.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本不等式练习题
一、单项选择
1. 已知0x >,函数4y x x
=+的最小值是( ) A . 4 B .5 C . 6 D .8
3. 在下列函数中,最小值为2的是( )
A x
x y 1+= B x x y -+=33 C )101(lg 1lg <<+=x x x y D )2
0(sin 1sin π<<+=x x x y 4. 已知)0,0(135>>=+y x y
x ,则xy 的最小值是 ( ) A .15 B .6
C .60
D .1 5. 已知 1,1x y >> 且16xy =,则22log log x y ⋅( )
A .有最大值2
B .等于4
C .有最小值3
D .有最大值4
6. 若R b a ∈,,且0>ab ,则下列不等式中恒成立的是( )
A .ab b a 222>+
B .ab b a 2≥+
C .ab
b a 211>+ D .2≥+b a a b 7. 若正数b a 、满足3++=b a ab ,则b a +的取值范围是( )
A .),9[+∞ B.),6[+∞ C .]9,0( D .)6,0(
8. 已知正项等比数列{}n a 满足7652a a a =+.若存在两项,m n a a 使得14m n a a a =,则
19m n +的最小值为( )
A 83
B 114
C 145
D 176
9.设0<b <a <1,则下列不等式成立的是( )
10.知)0,(22>=+b a b a ,则ab 的最大值为( )
① b a ab ab +>2,② b b a a -->,③ 22234b ab b a ->+,④ 22>+ab
ab 恒成立的序号为 23.(,)x y 在直线23x y +=上移动,则24x y +的最小值为
24.知0,0,8x y x y xy >>++=,则x y +的最小值是__________.
25.)21(,2
10x x x -<<则的最大值是_________. 26.>0,则=
y 24x x +的最大值是___________. 27.实数,x y 满足2244x y x y +=+,则88x y +的取值范围是________
28.知b a ,都是正实数,函数b ae y x +=2的图像过点(0,1),则b
a 11+的最小值是 . 29.实数,a
b 满足221a b +=且
c a b <+,恒成立,则c 的取值范围是____________.
30.若x 、y 为正整数,且满足4161x y
+=,则x y +的最小值为_________; 31.)0,0(1>>=+b a b a ,则
b a 11+的最小值为 32.y x ,均为正实数,且33122x y
+=++,则xy 的最小值为 . 三、解答题
33.知,a b 是不相等的正常数,实数,(0,)x y ∈+∞.
(Ⅰ)求证:222
()a b a b x y x y
++≥+,并指出等号成立的条件; (Ⅱ)求函数211(),(0,)122
f x x x x =+∈-的最小值,并指出此时x 的值. 34.制作一个如图的框架(单位:米),要求所围成的总面积为19.5(米2),其中ABCD 是一个矩形,EFCD 是一个等腰梯形,梯形高h=AB ,tan ∠FED=,设AB=x 米,BC=y 米.
(1)求y关于x的表达式;(2)如何设计x,y的长度,才能使所用材料最少?。

相关文档
最新文档