-复合材料结构分析与成形原理
4_成型工艺特点
![4_成型工艺特点](https://img.taocdn.com/s3/m/2ccee6024a7302768e99394d.png)
在线 浸润
自动铺丝法 拉挤成型
预成 型体 的 液体 成型
长程流 动
RTM
厚度方 向渗透
RFI
SCRIMP
了解工艺性的意义
确定最适宜的工艺参数,制定工艺规范。
指导实际生产,控制生产过程,保证产品质量。
创造和发现新的、先进的工艺方法。
原材料与 模具准备
成形固化
检测
机加与装配 密封与喷漆
检测
复合材料结构制造基本流程
γt
---已固化树脂的比重;
G ---试样和金属丝在空气中的重量(克);g---金属丝在空气中的比重; G1---试样和金属丝在浸渍液中的重量(克)
根据树脂固化前后的比重,可由下式计算树脂在固化过程中的收缩率
树脂收缩 率的测定
体积收缩率
已固化树脂的比重 未固化树脂的比重 100%
已固化树脂的比重
密实compaction
渗透流动 infiltration flow
浸润impregnation 纤维在成型工艺中发生的物理变化
树脂基体在固化过程中的两个变化过程
线型结构 粘流态 体型结构(化学变化过程) 玻璃态(物理变化过程)
化学变化的结构往往是通过物理变化现象表现出来
对于化学变化过程而言,需要一定条件,促使反应的环境如何实 现——固化工艺解决的问题 对于物理变化过程而言,要得到一定形状的产品,是用什么样手 段——成形工艺解决的问题
成型工艺包含两个过程——成形与固化
成形 赋予构件形状
成型 工艺
Processing
form
——原材料如何制成所需结构形状(成形方法 )
固化 固定构件形状
cure ——赋予复合材料结构件力学性能(固化方法) 物理变化(流动浸润)
第五章 金属基复合材料成型技术
![第五章 金属基复合材料成型技术](https://img.taocdn.com/s3/m/046ace32227916888486d7da.png)
• 5.1概述 • 金属基复合材料制造技术是影响金属基复合 材料迅速发展和广泛应用的关键问题。金属基复 合材料的性能、应用、成本等在很大程度上取决 于其制造方法和工艺。然而,金属基复合材料的 制造相对其他基复合材料还是比较复杂和困难。 这是由于金属熔点较高,需要在高温下操作;同 时不少金属对增强体表面润湿性很差,甚至不润 湿,加上金属在高温下很活泼,易与多种增强体 发生反应。目前虽然已经研制出不少制造方法和 工艺,但仍存在一系列问题。所以开发有效的制 造方法一直是金属基复合材料研究中最重要的课 题之一。
PVD法纤维/基体复合丝原理图
5.3.5共喷沉积技术
• 共喷沉积法是制造各种颗粒增强金属基复合材料 的有效方法,1969年由A.R.E.siager发明, 随后由Ospmy金属有限公司发展成工业生产规模 的制造技术,现可以用来制造铝、铜、镍、铁、 金属间化合物基复合材料。 • 共喷沉积工艺过程,包括基体金属熔化、液态金 属雾化、颗粒加入及与金属雾化流的混合、沉积 和凝固等工序。主要工艺参数有:熔融金属温度, 惰性气体压力、流量、速度,颗粒加入速度,沉 积底板温度等。这些参数都对复合材料的质量有 重要的影响。不同的金属基复合材料有各自的最 佳工艺参数组合,必须十分严格地加以控制。
压铸工艺中,影响金属基复合材料性能的工艺因素主要有四个: ①熔融金属的温度 ②模具预热温度 ③使用的最大压力 ④加压速度 在采用预制增强材料块时,为了获得无孔隙的复合材料,一般压力不低于 50MPa,加压速度以使预制件不变形为宜,一般为1~3cm/s。对于铝基复合材 料,熔融金属温度一般为700~800℃,预制件和模具预热温度一般可控制在 500~800℃,并可相互补偿,如前者高些,后者可以低些,反之亦然。采用压 铸法生产的铝基复合材料的零部件,其组织细化、无气孔,可以获得比一般金 属模铸件性能优良的压铸件。与其他金属基复合材料制备方法相比,压铸工艺 设备简单,成本低,材料的质量高且稳定,易于工业化生产。
复合材料及其聚合物基体概论课件
![复合材料及其聚合物基体概论课件](https://img.taocdn.com/s3/m/bfca6a8d370cba1aa8114431b90d6c85ed3a8842.png)
复合材料及其聚合物基体概论课件
复合材料及其聚合物基体概论课件
3、树脂的断裂伸长率与结构的关系 1)大分子链的柔顺性:由C-C键组成的脂肪链是柔性链的代表,具有柔性链结构的树脂,伸长率较大;具有刚性链结构(苯环、萘环、联苯环等)的树脂,具有相当大的刚性,伸长率较小。 2)大分子链间的交联密度:交联密度越大,树脂的伸长率越小,呈现脆性。
复合材料及其聚合物基体概论课件
问题1 基体材料在复合材料中所起的作用是什么?
复合材料及其聚合物基体概论课件
基体材料在复合材料中的作用
1、粘结作用 基体材料作为连续相,把单根纤维粘成一个整体,使纤维共同承载。 2、均衡载荷、传递载荷 在复合材料受力时,力通过基体传给纤维。 3、保护纤维 在复合材料的生产与应用中,基体可以防止纤维受到磨损、遭受浸蚀。
复合材料及其聚合物基体概论课件
复合材料的分类
1、按基体材料类型分为 聚合物基复合材料(PMC) 金属基复合材料(MMC) 无机非金属基复合材料,包括陶瓷基复合材料 和水泥基复合材料(CMC)等 2、按增强材料类型分为 玻璃纤维增强复合材料;碳纤维增强复合材料 芳纶(Kevlar)纤维增强复合材料 UHMW-PE纤维增强复合材料等 3、按用途分为 结构复合材料、功能复合材料、 结构功能一体化复合材料
2)按用途分类: 纤维、橡胶、塑料(树脂)、涂料、粘结剂 3)按聚集态分类: 玻璃态、高弹态、粘流态
温度
变形
材料成型原理与工艺
![材料成型原理与工艺](https://img.taocdn.com/s3/m/52ac63a3541810a6f524ccbff121dd36a32dc4ba.png)
04
材料成求极高,需要具备轻质、高强度、 耐高温等特性。材料成型原理与工艺的发展为航空航天领域 提供了更多的选择,如钛合金、复合材料等。
这些新型材料的应用有助于减轻飞机和航天器的重量,提高 其性能和安全性。
汽车工业领域的应用
随着环保意识的提高和新能源汽车的 兴起,汽车工业对轻量化材料的需求 越来越大。
件。
锻造工艺
01
02
03
04
自由锻造
利用自由锻锤或压力机对坯料 进行锻打,形成所需形状和尺
寸的锻件。
模锻
利用模具对坯料进行锻打,使 坯料在模具中形成所需形状和
尺寸的锻件。
热锻
将坯料加热至高温后进行锻打 ,使材料易于塑性变形。
冷锻
在常温下对坯料进行锻打,适 用于塑性较差的材料。
焊接工艺
熔化焊
压力焊
材料成型原理与工艺的发展使得汽车 零部件的制造更加高效、精确,如铝 合金、镁合金等轻质材料的广泛应用 ,有助于降低汽车能耗和排放。
能源领域的应用
能源领域如核能、太阳能等需要大量的特殊材料,如耐高 温、耐腐蚀的材料。
材料成型原理与工艺的进步为能源领域提供了可靠的材料 解决方案,如高温合金、耐腐蚀涂层等,有助于提高能源 利用效率和安全性。
材料成型原理与工艺
• 材料成型原理概述 • 材料成型工艺介绍 • 材料成型原理与工艺的发展趋势 • 材料成型原理与工艺的应用前景
01
材料成型原理概述
材料成型的基本概念
材料成型是通过物理或化学手 段改变材料的形状,以达到所 需的结构和性能的过程。
材料成型涉及多种工艺和技术, 如铸造、锻造、焊接、注塑等。
泡沫金属
通过在金属基体中引入孔洞,制备 出具有轻质、高比强度的泡沫金属 材料。
复合材料结构及其成型原理
![复合材料结构及其成型原理](https://img.taocdn.com/s3/m/ecd77bd952ea551811a687a5.png)
碳纤维复合材料(西北工业大学机电学院, 陕西西安710072) 摘要:碳纤维复合材料与金属材料相比,其密度小、比强度、比模量高,具有优越的成型性和其他特性,具有极大的发展潜力。
本文介绍了碳纤维复合材料的特点及其应用,总结了碳纤维复合材料的成型工艺及每种成型工艺的特点,并从材料和成型两个方面指出了它的发展方向。
关键词:复合材料;碳纤维;成型工艺;工艺流程Carbon Fiber Reinforce Plastic(School of Mechatronics , Northwestern Polytechnical University, Xian710072, China)Abstract: Compared to metals, carbon fiber reinforce plastic has great potentialfor development with lower density, higher specific strength and modulus, and excellent moldability and other characteristics. This article describes the characteristics and applications of carbon fiber reinforce plastic and sum up the manufacturing process of carbon fiber reinforce plastic and their characteristics. Finally, this article points out the development of carbon fiber reinforce plasticfrom two aspects: material and manufacturing proces.sKey words: composites; carbon fiber; manufacturing process; process1引言纤维增强塑料是工程塑料应用的一种重要形式,而碳纤维复合材料就是其中的佼佼者,它以其所具有的低密度、高比强度、高比模量和优越的成型性和其他物理、化学特性在军事、航天、航空、电子等领域被广泛地应用,具有极大的发展潜力。
《复合材料结构设计》PPT课件
![《复合材料结构设计》PPT课件](https://img.taocdn.com/s3/m/63fea0ddde80d4d8d05a4f88.png)
传统机械按键结构层图:
按键
PCBA
开关键Байду номын сангаас
传统机械按键设计要点:
1.合理的选择按键的类型,尽量选择 平头类的按键,以防按键下陷。
2.开关按键和塑胶按键设计间隙建议 留0.05~0.1mm,以防按键死键。 3.要考虑成型工艺,合理计算累积公
差,以防按键手感不良。
§4.3 层合板与层合件设计
4.3.4 变厚度层合板设计
20
§4.2 设计选材与设计许用值确定
4.2.2 设计许用值的定义与确定原则
金属材料设计许用值以应力表示,称设计许用应力 ;复合材料 结构的设计许用值选择应变,称设计许用应变。
确定设计许用值的一般原则: ★ 结构的拉伸设计许用值主要取决于含孔试样的许用值,结
构的压缩设计许用值主要取决于含冲击损伤试样的许用值。 ★ 薄蒙皮或薄面板蜂窝夹层结构设计许用值的确定,还需根
§4.4 夹层结构设计
4.4.1 夹层结构的破 坏模式与设计 准则
(1)夹层结构破坏模式
37
§4.4 夹层结构设计
4.4.1 夹层结构的破坏模式与设计准则
(2)夹层结构设计准则
◆ 在设计载荷下,面板的面内应力应小于材料强度,或在设计载荷下,面 板应变小于设计许用应变;
◆ 芯子应有足够的厚度(高度)及刚度 ; ◆ 芯子应有足够的弹性模量和平压强度,以及足够的芯子与面板平拉强度; ◆ 面板应足够厚,蜂窝芯格尺寸应合理; ◆ 应尽量避免夹层结构承受垂直于面板的平拉或平压局部集中载荷; ◆ 胶粘剂必须具有足够的胶接强度,同时还要考虑耐环境性能和老化性能; ◆ 碳纤维层合面板与铝蜂窝芯子胶接面要注意防止电偶腐蚀问题; ◆ 对雷达罩等有特殊要求的夹层结构,面板、芯子和胶粘剂选择必须考虑 电性能、阻燃、毒性和烟雾等特殊设计要求。
复合材料的成型工艺
![复合材料的成型工艺](https://img.taocdn.com/s3/m/63ccec8d7cd184254a35355b.png)
模压制品主要用作结构件、连接件、防护件 和电气绝缘等,广泛应用于工业、农业、交通运 输、电气、化工、建筑、机械等领域。
由于模压制品质量可靠,在兵器、飞机、导 弹、卫星上也都得到应用。
26
3. 层压成型工艺
层压成型工艺,是把一定层数的浸胶布(纸) 叠在一起,送入多层液压机,在一定的温度和压 力下压制成板材的工艺。
14
15
手糊成型工艺优点
①不受产品尺寸和形状限制,适宜尺寸 大、批量小、形状复杂产品的生产;
②设备简单、投资少、设备折旧费低。
16
③工艺简单; ④易于满足产品设计要求,可以在 产品不同部位任意增补增强材料 ⑤制品树脂含量较高,耐腐蚀性好。
17
手糊成型工艺缺点
① 生产效率低,劳动强度大,劳动卫生 条件差。
连续纤维缠绕技术的优点
首先,纤维按预定要求排列的规整度和精度 高,通过改变纤维排布方式、数量,可以实现等 强度设计,因此,能在较大程度上发挥增强纤维 抗张性能优异的特点,
52
其次,用连续纤维缠绕技术所制得 的成品,结构合理,比强度和比模量高, 质量比较稳定和生产效率较高等。
53
连续纤维缠绕技术的缺点
66
③不需要或仅需要进行少量加工,生 产过程中树脂损耗少;
④制品的纵向和横向强度可任意调整, 以适应不同制品的使用要求,其长度可根 据需要定长切割。
67
拉挤制品的主要应用领域
(1)耐腐蚀领域。主要用于上、下水装置,工业 废水处理设备、化工挡板及化工、石油、造纸和冶 金等工厂内的栏杆、楼梯、平台扶手等。
21
金属对 模准备
模塑料、 颗粒树脂
短纤维
涂脱模剂
加热、加压
膜压成型 加热 冷却
树脂基复合材料成形工艺
![树脂基复合材料成形工艺](https://img.taocdn.com/s3/m/3432bbb81a37f111f1855b5a.png)
二、液态法
• 井喷沉淀法(spray co-deposition) 井喷沉淀法( )
– 金属熔化 液态金属雾化 颗粒加入、混合 金属熔化→液态金属雾化 颗粒加入、混合→ 液态金属雾化→颗粒加入 沉积→凝固 沉积 凝固 – 工艺简单,生产率高;冷却速度快,复合材料 工艺简单,生产率高;冷却速度快, 晶粒细,组织均匀;增强颗粒分布均匀; 晶粒细,组织均匀;增强颗粒分布均匀;复合 材料气孔率大→ 挤压处理→ 致密材料。 材料气孔率大 挤压处理 致密材料。 – 适用面广,多种基体和增强颗粒,可生产空心 适用面广,多种基体和增强颗粒, 锻坯和挤压锭等。 管、板、锻坯和挤压锭等。 – 制造颗粒增强金属基复合材料。 制造颗粒增强金属基复合材料。
第九章
• 本章内容: 本章内容:
复合材料的成形工艺
– 金属基复合材料的成形工艺 – 树脂基复合材料的成形工艺 – 陶瓷基复合材料的成形工艺
• 本章重点: 本章重点:
– 树脂基复合材料成形工艺
§9-1 复合材料简介
一、复合材料基本概念
复合材料( ):由两种或两 复合材料(composite material):由两种或两 ): 种以上物理化学性质不同的物质, 种以上物理化学性质不同的物质,经人工合成的 一种多相固体材料。 一种多相固体材料。 优点: 优点: 充分发挥组成材料的性能;材料优化设计。 充分发挥组成材料的性能;材料优化设计。 结构复合材料: 结构复合材料:如玻璃钢 功能复合材料: 功能复合材料:如双金属片
• 组织致密,性能好;可直接制成复杂零件;工艺简单, 组织致密,性能好;可直接制成复杂零件;工艺简单, 易控制,生产率高;但设备复杂, 易控制,生产率高;但设备复杂,成本高 • 用于铝基、铜基复合材料板材、棒材、线材生产。 用于铝基、铜基复合材料板材、棒材、线材生产。
镁基复合材料ppt课件.ppt
![镁基复合材料ppt课件.ppt](https://img.taocdn.com/s3/m/5dae0144a9114431b90d6c85ec3a87c241288a50.png)
结构、功能
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
熔体浸渗法 (Melt Infiltration Process)
将增强相预制成形,再通过压力,将熔融的基体金属渗入到预 制体间隙中,达到复合化的目的。熔体浸渗法包括压力浸渗、无压 浸渗与负压浸渗。
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
其他制备方法
薄膜冶金工艺 (Foil Metallurgy Processing) RCM法 (Rotation Cylinder Method) DMD法 (Disintegrated Melt Deposition) 重熔稀释法 (Remelting and Dilution ) 低温反应自熔 ( RSM) 混合盐反应法 ( LSM ) 放热反应法( XD) 气泡法 (Gas-bubbling Method) 反复塑性变形法(Repeated Plastic Working)
在种类、体积等其它属性相同的情况 下,形状圆润的增强体有利于复合材 料耐磨性的提高。
在体积分数较低时,镁基复合材料的 耐磨性一般随硬质增强体体积分数的 增加而提高
复合材料的磨损率随载荷的增大而增加,存 在一个磨损由轻微向剧烈转变的载荷,石墨 的加入延迟了复合材料向剧烈磨损的转变。
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
原位反应自发浸渗工艺(Insitu Reactive Infiltration Process) 利用金属熔体自发渗入和原位放热反应直接合成增强相这2个工艺过
材料成形原理
![材料成形原理](https://img.taocdn.com/s3/m/ceec8fe56e1aff00bed5b9f3f90f76c660374c6c.png)
材料成形原理材料成形原理是指通过外部力或能量作用于材料,使其发生形状的变化,最终达到所需形态的过程。
材料成形原理主要包括塑性成形、热成形和复合成形三种。
塑性成形是指在一定温度范围内,材料受到外力作用后,经过一系列塑性变形,使材料的形状发生改变。
塑性成形主要包括锻造、挤压、拉伸、压力成形等方法。
在塑性成形过程中,材料中的晶体发生滑移、变形和晶粒疏化等过程。
滑移是指晶体原子沿晶体面壳滑动,在晶界形成位错。
材料中的位错会使晶体结构变得稀疏,从而使材料发生塑性变形。
塑性成形广泛应用于航空、汽车、机械等领域。
热成形是指通过加热材料到一定温度,使材料变得柔软,并通过外力进行变形。
在热成形过程中,材料的晶粒会发生再结晶现象,从而提高材料的塑性和韧性。
常见的热成形方法有热轧、热挤压、热拉伸等。
热成形广泛应用于冶金、造船、能源等行业。
复合成形是指通过多种成形工艺的组合使用,将不同材料进行结合形成复合材料的成形方法。
常见的复合成形方法有层积成形、注射成形、挤出成形等。
复合成形可以改善材料的机械性能、耐腐蚀性能、阻燃性能等,被广泛应用于航空航天、电子、建筑等领域。
材料成形原理的基础是塑性变形原理。
塑性变形是指材料在外力作用下,发生形状的改变,并保持新形态的能力。
塑性变形包括弹塑性和塑性。
弹塑性是指材料在外力作用下发生变形,当外力消失时,材料能够恢复原有形态。
塑性是指材料在外力作用下发生变形,即使外力消失,材料也不能恢复原有形态。
塑性变形的基础是晶体的位错理论和晶体结构的变形机制。
在材料成形原理中,还有一些重要的影响因素。
温度是影响材料成形的重要因素之一,不同温度下材料的塑性性能不同。
施加的外力大小和方向会影响材料的塑性变形。
材料的化学成分和物理性质也会对成形过程产生影响。
综上所述,材料成形原理是指通过外部力或能量作用于材料,使其发生形状的变化,最终达到所需形态的过程。
塑性成形、热成形和复合成形是常见的材料成形方法。
材料成形原理的基础是塑性变形原理,影响材料成形的因素有温度、外力、材料的化学成分和物理性质等。
复合材料热隔膜成型技术
![复合材料热隔膜成型技术](https://img.taocdn.com/s3/m/6470d3cdda38376baf1fae14.png)
过去复合材料曲面件一般都用手工铺层,但是手工铺层效率太低,压实不好,纤维有皱折,质量不易保证,而机械化铺层适用于平面或简单曲面件,对于类似钣金折弯件、引伸件和压延件则难度很大甚至无法实现。
比较可行的办法是先将预浸料通过铺带机铺成层压件(一般平面就可以),再通过热隔膜成型,然后通过热压罐支持的方法制成产品。
对“热隔模成型”一词,国外资料中有“Hot Drape forming”和“Hot Diaphragm fo rming”两种解释,事实上它们是一回事,前者应翻译为热压垂帘成型或覆盖成型,后者即直译为热隔膜成型。
因为“垂帘”的意思本身即指工作过程中隔膜像一个垂帘一样盖在产品和工装上,所以统一用热隔膜成型比较确切。
热隔膜成型概念热隔膜成型是一种复合材料成型方法,即将预浸的复合材料层压后放置于模具上,通过一种特制隔膜的辅助作用经过抽真空和加热等方法,将层压件压向模具,形成所需形状。
复合材料隔膜成型类似于金属材料的引深/压延以及折弯成型。
它不但可以成型一些形状复杂的产品,而且由于隔膜的作用,可以在成型过程中保证纤维不滑动、不起皱、无波浪,从而提高产品强度和表面质量,很适合于内设件、曲面复杂件和受力件(如一些梁和长桁等)的成型。
热隔膜成型除用于复材件热成型外,还可用于各种蜂窝的胶接和压实,包括飞机内设件的蜂窝胶接、铝合金蜂窝胶接和真空压实等。
虽然RTM、RFI等技术也可以制造成多种此类产品,但它们是通过在纤维注入或真空吸入树酯解决的,树酯的含量、分布很难达到满意的程度。
而隔膜成型用的是预浸料,其本身树酯含量是有保证的,再通过隔膜的作用使之不起皱和有序滑移,同时保证强度不会降低或不会明显降低,并保证厚度。
热隔膜成型方法可用于热塑性及热固性树脂预浸的材料,通过热压罐或不需热压罐(如蜂窝夹芯胶接)固化。
隔膜要求比较严格,可用硅橡胶代替特用的聚合隔膜以降低成本。
产品拉深的深度与其直径之比最大可达到4∶1。
用于蜂窝胶接时,一般只需在设备上抽真空压实(De-Bulking),无需进热压罐。
材料成型基本原理完整版
![材料成型基本原理完整版](https://img.taocdn.com/s3/m/c3a4c9e6b8f67c1cfad6b85b.png)
第一章:液态金属的结构与性质1雷诺数Re:当Re>2300时为紊流,Re<2300时为层流。
Re=Du/v=Duρ/η,D为直径,u 为流动速度,v为运动粘度=动力粘度η/密度ρ。
层流比紊流消耗能量大。
2表面张力:表面张力是表面上平行于切线方向且各方向大小相同等的张力。
润湿角:接触角为锐角时为润湿,钝角时为不润湿。
3压力差:当表面具有一定的曲度时,表面张力将使表面的两侧产生压力差,该压力差值的大小与曲率半径成反比,曲率半径越小,表面张力的作用越显著。
4充型能力:充型过程中,液态金属充满铸型型腔,获得形状完整轮廓清晰的铸件的能力,即液态金属充型能力。
5长程无序、近程有序:液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性,表现出长程无序特征;而相对于完全无序的气体,液体中存在着许多不停游荡着的局域有序的原子集团,液体结构表现出局域范围内的近程有序。
拓扑短程序:Sn Ge Ga Si等固态具有共价键的单组元液体,原子间的共价键并未完全消失,存在着与固体结构中对应的四面体局域拓扑有序结构。
化学短程序:Li-Pb Cs-Au Mg-Bi Mg-Zn Mg-Sn Cu-Ti Cu-Sn Al-Mg Al-Fe等固态具有金属间化合物的二元熔体中均有化学短程序的存在。
6实际液态金属结构:实际金属和合金的液体由大量时聚时散、此起彼伏游动着的原子团簇空穴所组成,同时也含有各种固态液态和气态杂质或化合物,而且还表现出能量结构及浓度三种起伏特征,其结构相对复杂。
能量起伏:液态金属中处于热运动的原子的能量有高有低,同一原子的能量也在随时间不停的变化,时高时低,这种现象成为能量起伏。
结构起伏:由于能量起伏,液体中大量不停游动的局域有序原子团簇时聚时散,此起彼伏而存在结构起伏。
浓度起伏:游动原子团簇之间存在着成分差异,而且这种局域成分的不均匀性随原子热运动在不时发生着变化,这一现象成为浓度起伏。
复合材料的成型工艺ppt课件
![复合材料的成型工艺ppt课件](https://img.taocdn.com/s3/m/1ed55c586d175f0e7cd184254b35eefdc8d315f3.png)
第二节 金属基复合材料(MMC)成形工艺
一、固态法
1.扩散黏结法(Diffusion Bonding) 如图9-2所示,扩散黏结是一种在较长时间、
较高温度和压力下,通过固态焊接工艺,使同类 或不同类金属在高温下互扩散而黏结在一起的工 艺方法。
2.形变法(Plastic Forming) 形变法就是利用金属具有塑性成型的工艺特点
2.复合材料的特点
(1)比强度和比刚度高 (2)抗疲劳性好 (3)高温性能好 (4)减振性能好 (5)断裂安全性高 (6)可设计性好
为 了 规 范 事 业单位 聘用关 系,建 立和完 善适应 社会主 义市场 经济体 制的事 业单位 工作人 员聘用 制度, 保障用 人单位 和职工 的合法 权益
第一节 复合材料简述
四 、 复 合 材 料 的 失 效 (Failure of Composite)
复合材料的失效一般是指其疲劳破坏过程。
1.制造加工损伤
此种损伤产生初始缺陷。,它包括:纤维铺设不 均,扭结、死扣等,树脂不均;纤维切断、错排; 固化不足;有孔隙、气泡;材质污染等。
2.使用引起的损伤
此种损伤导致缺陷发展。它包括:树脂裂纹或老 化;分层;纤维断裂;振动较大导致的纤维断裂; 温度变化较大;机加工产生内应力;碰撞等。
二、复合材料用原料
1.增强材料
(1)碳纤维(Carbon Fiber) (2)硼纤维(Boron Filament) (3)芳纶(Aramid Ring) (4)玻璃纤维(Glass Fiber) (5)碳化硅纤维(Silicon Carbide Fiber) (6)晶须(Whisker)
2.基体材料
3)基体能够很好地保护纤维表面,不产生表面 损伤、不产生裂纹。
复合材料的成型工艺
![复合材料的成型工艺](https://img.taocdn.com/s3/m/8b28894acf84b9d528ea7a34.png)
复合材料的成型工艺图1:热固性复合材料最基本的制备方法是手糊,通常包括将干层或半固化片层用手铺设到模具上,形成一个积层。
图中展示的是自由宇航公司的技术员(佛罗里达州墨尔本)正在通过手糊工艺加工一个碳/环氧预浸料,将用于制造通用航空飞机部件。
资料来源:自由宇航公司在复合材料的加工成型过程中会使用一系列模具,用来给未成形的树脂及其纤维增强材料提供一个成型的平台。
手糊(hand layup)成型是热固性复合材料最基本的制备方法,即通过人工将干层或半固化片层铺设到模具上,形成一个积层。
铺层方式分为两种:一种称为干法铺层,是先铺层后将树脂浸润(例如,通过树脂渗透方式)到干铺层上的方式,另一种方式是湿法铺层,即先浸润树脂后铺层的顺序。
现在普遍使用的固化方式可以分为以下几种:最基本的是室温固化。
不过,如果提高固化温度的话,固化进程也会相应加快。
比如通过烤箱固化,或使用真空袋(vacuum ba g)通过高压釜固化。
如果采用高压釜固化的话,真空袋内通常会包含透气膜,被放置在经手糊的半成型制品上,再连接到高压釜上,等最终固化完成后再将真空袋撤去。
在固化过程中,真空袋的作用是将产品密封在模具和真空袋之间,通过抽真空对产品均匀加压,将产品中汇总的气体排出,从而使产品更加密实、力学性能更好。
图2:热压釜独有的高温和高压条件使其成为完成热固性树脂零部件的固化的重要工具。
控制软件的改进则能够帮助经营者提高35-40%的生产量。
同时,一些新的树脂配方正在开发当中,将通过低压固化处理。
图中是Helicomb国际公司(俄克拉荷马州塔尔萨)的一名操作人员正在使用高压釜进行固化处理。
来源:Helicomb国际公司许多高性能热固性零件都需要在高热高压的条件下完成固化。
但是高压釜(Autocl aves)的设备成本和操作成本都较昂贵。
采购高压釜设备的制造商通常会一次性固化一定数量的部件。
对于高压釜的温度,压力,真空和惰性气体(inert atmosphere)等一系列参数,计算机系统能帮助实现远程甚至无人监控和检测,并最大限度地提高该技术的利用效率。
材料成形技术基础知识点总结
![材料成形技术基础知识点总结](https://img.taocdn.com/s3/m/250afa8b59f5f61fb7360b4c2e3f5727a4e9247d.png)
材料成形技术基础知识点总结1.材料成形的基本原理:材料成形是通过施加外力使材料发生形状和/或尺寸改变的过程。
常见的成形方法包括压力成形、热成形、热力复合成形等。
不同的成形方法有不同的原理和适用范围,可以选择最适合的方法进行成形。
2.压力成形技术:压力成形是指通过施加压力使材料发生形状和/或尺寸改变的成形方法。
常见的压力成形技术包括锻造、压力铸造、挤压、拉伸、冲压等。
这些技术可以用于加工金属材料和非金属材料,具有高效率和高精度的特点。
3.热成形技术:热成形是指通过加热材料使其变软,然后进行形状和/或尺寸改变的成形方法。
常见的热成形技术包括热压缩、热拉伸、热挤压、热转锻等。
热成形可以用于加工高温材料和难塑料材料,可以提高材料的可塑性和改善成形效果。
4.热力复合成形技术:热力复合成形是指通过加热和施加压力使两个或多个材料发生结合的成形方法。
常见的热力复合成形技术包括焊接、热压焊、热胶合等。
这些技术可以用于加工复合材料,可以获得更强的接合强度和更好的接合效果。
5.材料成形工艺的设计:材料成形工艺的设计是指根据产品的要求和材料的性能选择合适的成形方法,并确定合理的工艺参数。
工艺参数包括温度、压力、速度等,对成形效果和产品质量具有重要影响。
工艺设计需要考虑材料的可塑性、成形难度、成形精度等因素,可以通过实验和数值模拟来优化设计。
6.材料成形工具的设计与制造:材料成形工具是实现成形过程的重要设备,需要根据产品的形状和尺寸设计相应的工具。
工具设计包括毛坯设计、凸模设计、模具结构设计等。
材料成形工具的制造需要精密的加工工艺和高质量的材料,可以采用数控加工、电火花等先进技术来提高工具的精度和寿命。
7.材料成形过程的监测与控制:材料成形过程需要对温度、压力、力量、速度等进行监测和控制,以确保成形效果和产品质量的稳定。
常用的监测和控制技术包括传感器、自动控制系统等。
这些技术可以实时监测成形过程的参数,并根据需求调整工艺参数,以达到最佳的成形效果。
复合材料夹层结构分析
![复合材料夹层结构分析](https://img.taocdn.com/s3/m/f88b6bf16edb6f1afe001f99.png)
按照曲面形状热成形。但是,线性PVC的力学性能、化学稳定性〔耐苯〕和热变形性能 和交联的PVC泡沫相比,在一样的密度条件下,相对要低一些。
交联PVC的硬度和脆性较高。在高温下,不容易变软或发生蠕变。常见的交联PVC 产品有 Herex C系列泡沫、DivinycellH和HT泡沫以及 POlimex Klegecell和 Termanto 的PVC泡沫。
夹层构造; • 用玻璃钢薄板,木质胶合板和无机复合材料板做
蒙皮,用玻璃钢蜂窝、纸蜂窝及泡沫塑料做夹芯 材料,那么称为非金属材料夹层构造。
• 目前,以玻璃钢薄板做蒙皮、玻璃钢蜂窝和泡沫 塑料做芯材的夹层构造应用最广。
夹层构造的特点
• 1)具有大的弯曲刚度/重量比,弯曲强度/重量比 • 2)具有良好的吸声,隔声,隔热性能 • 3)具有大的屈曲临界载荷 • 4)对湿热环境敏感,设计时要防潮密封 • 5)面板对低能冲击敏感 • 6)修补困难
A sandwich panel (12 mm thickness) with an aluminium foam core and two
steel faceplates
Sweden
(a) The Beech Starship
(b)
Voyager
一 夹层构造的原理
•
在航空、风力发电机叶片、体育运动器材、船
• 尽管PVC泡沫是可燃材料,但是燃类型的PVC泡沫可 以在具有防火严格要求的构造中,例如列车。
• PVC泡沫耐苯,所以能够和聚酯树脂共同使用。 • • PVC泡沫主要用在一些不需要压力罐的工艺中。在选择
固化工艺方法时,需要注意PVC泡沫在温度升高时会释放 孔隙气体。
第四章 非金属材料及复合材料成型方法简介
![第四章 非金属材料及复合材料成型方法简介](https://img.taocdn.com/s3/m/ba03090852ea551810a68726.png)
非金属材料及复合材料成型方法简介第四章第二篇材料成形工艺基础西北工业大学电子教案成型方法⏹塑料件成型⏹陶瓷件成型⏹复合材料成型⏹成型、机械加工、修配和装配⏹挤出成型(挤塑):利用挤出机将热塑性塑料加热、连续挤出成型为各种断面的制品。
应用:生产塑料板材、棒材、片材、异型材、电缆护层等⏹成型、机械加工、修配和装配⏹注射成型(注塑):利用注塑机将熔化的塑料快速注入闭合模具型腔内固化成型。
应用:各种塑料制品(电器、设备、民用)⏹成型、机械加工、修配和装配⏹压延成型:使加热塑化的热塑性塑料通过两个以上的相对旋转的滚筒间隙而连续变形的成型方法。
应用:生产连续片状材料返回⏹配料、成型、烧结⏹干压成型:利用冲头对装入模具内的粉末施加压力而成型。
应用:生产形状简单、尺寸↓的制品⏹配料、成型、烧结⏹等静压成型:利用液体和橡胶等对陶瓷坯体施压(受等静压)而成型。
应用:生产性能要求高的电子元件和其他高性能塑料⏹配料、成型、烧结⏹注浆成型:将悬浮着陶瓷颗粒的液体注入多孔模具中,沥干液体后即成型为坯体。
应用:形状复杂、大型薄壁制品⏹配料、成型、烧结⏹热压成型:将具有流动性的料浆,在热压铸机中压缩空气的作用下注入金属模,冷却凝固后成型。
应用:成型复杂制品⏹配料、成型、烧结⏹注射成型:在注射成型机中将粒状粉料注射入金属模具中,冷却后将坯体脱脂后按常规烧结。
应用:复杂零件的大规模生产返回复合材料成型通用方法:颗粒、晶须、短纤维增强复合材料混合→制坯→ 成型纤维增强体增强复合材料增强体预成型→复合⏹金属基复合材料成型⏹树脂基复合材料成型⏹陶瓷基复合材料成型⏹C/C复合材料成型液态金属浸润法:金属基体呈熔融状态时与增强材料浸润结合,凝固成型。
常用方法:常压铸造、液体金属搅拌、真空压力浸渍法、挤压铸造、液态浸渗挤压等•扩散黏结法:在长时间高温和压力下,使固态金属与增强材料(预制坯)的接触面通过原子间相互扩散黏结而成。
粉末冶金法:根据要求将不同金属粉末与陶瓷颗粒、晶须或短纤维均匀混合,放入模具中高温、高压成型。
成型法的加工原理
![成型法的加工原理](https://img.taocdn.com/s3/m/5184cae5c67da26925c52cc58bd63186bceb92cf.png)
成型法的加工原理材料成形方法是零件设计的重要内容,也是加工过程中的关键因素,除了机加工外,金属注射成型、塑性成型以及近年兴起的3D打印都是主要技术,下面就来细数一下这些金属成形工艺的特点。
铸造液态金属浇注到与零件形状、尺寸相适应的铸型型腔中,待其冷却凝固,以获得毛坯或零件的生产方法,通常称为金属液态成形或铸造。
工艺流程:液体金属→充型→凝固收缩→铸件工艺特点:1、可生产形状任意复杂的制件,特别是内腔形状复杂的制件。
2、适应性强,合金种类不受限制,铸件大小几乎不受限制。
3、材料来源广,废品可重熔,设备投资低。
4、废品率高、表面质量较低、劳动条件差。
铸造分类:(1)砂型铸造(sand casting)在砂型中生产铸件的铸造方法。
钢、铁和大多数有色合金铸件都可用砂型铸造方法获得。
工艺流程:技术特点:1、适合于制成形状复杂,特别是具有复杂内腔的毛坯;2、适应性广,成本低;3、对于某些塑性很差的材料,如铸铁等,砂型铸造是制造其零件或,毛坯的唯一的成形工艺。
应用:汽车的发动机气缸体、气缸盖、曲轴等铸件(2)熔模铸造(investmentcasting)通常是指在易熔材料制成模样,在模样表面包覆若干层耐火材料制成型壳,再将模样熔化排出型壳,从而获得无分型面的铸型,经高温焙烧后即可填砂浇注的铸造方案。
常称为“失蜡铸造”。
工艺流程:优点:1、尺寸精度和几何精度高;2、表面粗糙度高;3、能够铸造外型复杂的铸件,且铸造的合金不受限制。
缺点:工序繁杂,费用较高应用:适用于生产形状复杂、精度要求高、或很难进行其它加工的小型零件,如涡轮发动机的叶片等。
(3)压力铸造(die casting)利用高压将金属液高速压入一精密金属模具型腔内,金属液在压力作用下冷却凝固而形成铸件。
工艺流程:优点:1、压铸时金属液体承受压力高,流速快2、产品质量好,尺寸稳定,互换性好;3、生产效率高,压铸模使用次数多;4、适合大批大量生产,经济效益好。
第四章 4.3复合材料加工原理--纤维增强复合材料的制备工艺
![第四章 4.3复合材料加工原理--纤维增强复合材料的制备工艺](https://img.taocdn.com/s3/m/c0a7e1ea19e8b8f67c1cb926.png)
4.3.2 纤维增强金属基复合材料的制备方法
3.液态金属浸渍法 3.液态金属浸渍法 液态金属浸渍法是通过纤维或纤维预制件浸渍熔融态金 液态金属浸渍法是通过纤维或纤维预制件浸渍熔融态金 属而制成金属基复合材料的方法。 属而制成金属基复合材料的方法。 熔浸方法有两种,一 熔浸方法有两种, 种是在上部真空炉中熔化 金属后, 金属后,浇入下部放有预 成形体的型中进行熔浸; 成形体的型中进行熔浸; 另一种是将真空熔化的金 属浇入放有顶成形体的型 内后, 内后,用压缩空气或惰性 气体加压实现强制熔浸, 气体加压实现强制熔浸, 叫加压熔浸。 叫加压熔浸。
4.3.2 纤维增强金属基复合材料的制备方法
7.电镀法 7.电镀法 利用电解沉积的原理在纤维表面附着一层金属 而制成金属基复合材料。如:将液态金属放置在电 而制成金属基复合材料。 镀液槽中,在液态金属中放置一卷轴, 镀液槽中,在液态金属中放置一卷轴,在卷轴与液 态金属之间接一直流电源,以金属为阳极, 态金属之间接一直流电源,以金属为阳极,卷轴为 阴极,在金属不断电解的同时, 阴极,在金属不断电解的同时,卷轴以一定速度卷 集附着金属层的纤维。 集附着金属层的纤维。将电镀后的纤维按一定方式 层叠、热压,制成复合材料。 层叠、热压,制成复合材料。
4.3.2 纤维增强金属基复合材料的制备方法
6.等离子喷涂法 6.等离子喷涂法 利用等离子弧向增强材料喷射金属微粒子,从 利用等离子弧向增强材料喷射金属微粒子, 而制备金属基纤维增强复合材料。 而制备金属基纤维增强复合材料。如:将碳化硅连 续纤维缠绕在滚筒上, 续纤维缠绕在滚筒上,用等离子喷涂的方法将铝合 金喷溅在纤维上,然后将碳化硅/ 金喷溅在纤维上,然后将碳化硅/铝合金复合材料 切片堆叠,加压后制成铝基复合材料。 切片堆叠,加压后制成铝基复合材料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
树脂基复合材料缠绕成型工艺的研究与应用姓名:刘伟萍(西北工业大学机电学院, 陕西西安710072)摘要:随着我国航空事业的发展,先进材料方面的需求越来越急迫,复合材料各方面的优秀性能使得它在飞机上的应用越来越广泛。
现阶段我国在复合材料方面虽然取得了一定进展,但在成型工艺方面与欧美等国家还存在一定差距。
复合材料的成型工艺方法很多,本文主要介绍了树脂复合材料缠绕成型工艺的特点、工艺流程、及现阶段还存在的一些问题和相应的解决办法。
关键字:树脂基复合材料缠绕成型工艺流程The Research and Application of Winding And Forming Process of Polymer CompositesAbstract:With the development of Chinese aviation industry,the demand in the spects of advanced materials become more urgent.Because of the excellent properties of composites,it is applied more and more widely in the aircraft.Nowadays,China has made some progress in terms of composite materials ,But in terms of composites forming process,there is still a gap between China and westen developed countries like America and UN.There is A lot of methods in c omposites and winding forming process,this paper describes the characteristics、forming process of polimer composites,it also introduces some problems and corresponding solutions.Keyword:Polymer Composites Winding And Forming Process technological process1 绪论1.1复合材料的应用与研究复合材料,是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。
各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。
复合材料具有质量轻、比强度、比模量高,较好的延展性、抗腐蚀、隔热、隔音、耐高温、性能可设计性等特点,因此被大量用于航空航天等军事领域和民用领域,是制造飞机、火箭、航天飞行器等的理想材料。
在航空工业中,复合材料的应用越来越广泛,而且成为衡量飞机性能的重要参数。
复合材料成型技术在应用过程中不断积累应用经验,提高技术水平, 完善配套技术, 从非承力构件整流蒙皮逐渐发展到承力构件尾翼、机翼, 从简单结构层合壁板, 逐渐发展到整体复合材料结构尾翼和机翼。
先进树脂基复合材料在飞机上的应用可以实现15% ~30%减重, 可有效降低飞机的结构重量, 提高飞机的机动性能和有效载荷等。
飞机结构复合材料化已经成为趋势, 先进树脂基复合材料已经成为不可缺少的关键航空结构材料。
从上世纪90 年代开始, 先进战斗机大量使用先进树脂基复合材料, 如F - 22飞机复合材料的用量达到约25% , F - 35 复合材料用量达到35% ,主要应用包括机翼、机身、尾翼等主要承力构件。
先进树脂基复合材料在民用飞机的应用从2003 年用量得到了跨越发展, 空客公司的A380宽体客机复合材料的用量增加到24% , 波音公司的B787飞机复合材料用量达到约50% , 空客公司在研究的A350XWB复合材料用量将达到52%。
随着国内先进树脂基复合材料性能的提高, 制造技术的不断成熟, 配套无损检测和装配等技术的完善, 国内先进树脂基复合材料在直升机、歼击机和大型飞机得到相当的应用。
歼击机复合材料的用量已经达到6% ~9% , 主要包括机翼、平尾、垂尾、前机身、鸭翼、襟副翼、腹鳍等; 直升机复合材料用量达到25% ~33% ,主要包括旋翼系统和机身结构。
先进树脂基复合材料机翼、平尾、垂尾、鸭翼、直升机机身、尾段等复合材料构件已经实现批量生产。
1.2树脂基复合材料的应用现状复合材料按其基体材料的不同可分为聚合物复合材料、金属基复合材料和无机非金属基复合材料,我们通常所说的树脂基复合材料属于聚合物复合材料,现阶段复合材料的应用以它最广,占所有复合材料总量的90%以上。
所以本文主要讲述了树脂基复合材料的成型工艺。
先进复合材料主要指热固性树脂或热塑性树脂为基体、高性能连续纤维为增强体的一类材料,对于飞机承力结构而言,尤其以碳纤维/环氧树脂基复合材料和碳纤维/双马树脂基复合材料用量最大。
先进复合材料是通过一定的工艺方法由树脂和纤维复合而成的,与传统的金属材料不同,树脂基复合材料工艺过程具有材料形成和构件成型同时完成的特点,即复合材料形成时其结构尺寸与构件基本一致,只需少量的后加工便可使用。
这个特点一方面使得一些对于传统材料难以加工的构件成为了可能,另一方面也决定了工艺过程对于复合材料性能和成本的重要性。
目前,随着复合材料工业的迅速发展,树脂基复合材料正凭借其本身固有的轻质高强、成型方便、不易腐蚀、质感美观等优点,越来越受到人们的青睐。
1.3树脂基复合材料成型工艺树脂复合材料的成型方法主要包括两部分:热塑性树脂复合材料成型和热固性树脂复合材料成型。
热塑性树脂基复合材料的成型方法包括树脂传递模塑成型法、模压成型法、注射成型法、拉挤成型法、弹性体储存成型法和纤维缠绕成型法等:热固性树脂基复合材料成型方法主要包括层压成型法、模压成型法、手糊成型法、拉挤成型法和缠绕成型法等。
1.4 本文研究方向本文着重介绍了树脂基复合材料缠绕成型工艺及其应用,主要包括缠绕成型的原材料、工艺流程、影响制品的因素、制品容易产生的缺陷和解决办法。
2.树脂基复合材料缠绕成型工艺2.1树脂基复合材料缠绕成型工艺定义缠绕成型工艺是一种连续化制备复合材料的方法,将浸过树脂胶液的连续纤维(或布带、预浸纱)按照一定规律缠绕到芯模上,然后经固化、脱模,获得制品。
2.2缠绕成型工艺方法分类根据纤维缠绕成型时树脂基体的物理化学状态不同,分为干法缠绕、湿法缠绕和半干法缠绕三种。
(1)干法缠绕干法缠绕是采用经过预浸胶处理的预浸纱或带,在缠绕机上经加热软化至粘流态后缠绕到芯模上。
由于预浸纱(或带)是专业生产,能严格控制树脂含量(精确到2%以内)和预浸纱质量。
因此,干法缠绕能够准确地控制产品质量。
干法缠绕工艺的最大特点是生产效率高,缠绕速度可达100~200m/min,缠绕机清洁,劳动卫生条件好,产品质量高。
其缺点是缠绕设备贵,需要增加预浸纱制造设备,故投资较大此外,干法缠绕制品的层间剪切强度较低。
(2)湿法缠绕湿法缠绕是将纤维集束(纱式带)浸胶后,在张力控制下直接缠绕到芯模上。
湿法缠绕的优点为:①成本比干法缠绕低40%;②产品气密性好,因为缠绕张力使多余的树脂胶液将气泡挤出,并填满空隙;③纤维排列平行度好;④湿法缠绕时,纤维上的树脂胶液,可减少纤维磨损;⑤生产效率高(达200m/min)。
湿法缠绕的缺点为:①树脂浪费大,操作环境差;②含胶量及成品质量不易控制;③可供湿法缠绕的树脂品种较少。
(3)半干法缠绕半干法缠绕是纤维浸胶后,到缠绕至芯模的途中,增加一套烘干设备,将浸胶纱中的溶剂除去,与干法相比,省却了预浸胶工序和设备;与湿法相比,可使制品中的气泡含量降低。
三种缠绕方法中,以湿法缠绕应用最为普遍;干法缠绕仅用于高性能、高精度的尖端技术领域。
2.3缠绕成型工艺特点纤维缠绕成型的优点①能够按产品的受力状况设计缠绕规律,使能充分发挥纤维的强度;②比强度高:一般来讲,纤维缠绕压力容器与同体积、同压力的钢质容器相比,重量可减轻40~60%;③可靠性高:纤维缠绕制品易实现机械化和自动化生产,工艺条件确定后,缠出来的产品质量稳定,精确;④生产效率高:采用机械化或自动化生产,需要操作工人少,缠绕速度快(240m/min),故劳动生产率高;⑤成本低:在同一产品上,可合理配选若干种材料(包括树脂、纤维和内衬),使其再复合,达到最佳的技术经济效果。
缠绕成型的缺点①缠绕成型适应性小,不能缠任意结构形式的制品,特别是表面有凹的制品,因为缠绕时,纤维不能紧贴芯模表面而架空;②缠绕成型需要有缠绕机,芯模,固化加热炉,脱模机及熟练的技术工人,需要的投资大,技术要求高,因此,只有大批量生产时才能降低成本,才能获得较的的技术经济效益。
2.4缠绕成型工艺的原材料复合材料缠绕工艺所用的原材料主要有增强材料和基体树脂材料两大类。
(1)增强材料缠绕成型工艺对增强材料的要求是:有较高的强度和模量;对粘结剂有较好的浸润性;成型过程中不起毛、不断头。
常用的增强材料有:玻璃纤维、碳纤维、芳纶纤维、超高相对分子质量聚乙烯纤维等。
可根据制品的性能要求选择。
(2)基体树脂对基体树脂的要求是:能满足制品的性能要求(如力学性能、耐热性能、耐老化性能、介电性能等);对增强材料有良好的浸润和粘接性,有较低的固化温度。
常用的树脂有:不饱和聚酯树脂、环氧树脂、酚醛树脂和聚酰亚胺树脂等。
在干法缠绕成型工艺中采用浸渍无纬带作为原材料。
2.5缠绕成型工艺流程缠绕成型工艺流程图如下图所示其工艺过程有如下工序组成:胶液配制、纤维烘干及热处理、芯模或内衬制造、浸胶、缠绕、固化、检验、修正、成品。
选择合理的缠绕工艺参数,是充分发挥原材料特性、制造高质量缠绕玻璃钢制品的重要条件。
影响缠绕玻璃钢制品性能的主要工艺参数包括玻璃纤维的烘干和热处理、玻璃纤维浸胶、缠绕速度和环境温度等。
这些因素彼此之间存在有机联系,因此将他们结合在一起研究。
(1)纤维的烘干和热处理玻璃纤维表面含有水分,不仅影响树脂基材和玻璃纤维之间的粘结性能,同时将引起应力腐蚀,并使微裂纹等缺陷进一步扩展,从而使制品强度和耐老化行下降。
因此,玻璃纤维在使用前最好经过烘干处理。
当用石蜡型浸润剂的纤维缠绕时,使用前应先除蜡,以便提高纤维和树脂基材之间的粘结性能。
(2)玻璃纤维浸胶含量的分布在玻璃纤维的生产和应用过程中,浸润剂起着不可替代的关键作用。
浸润剂含量是玻璃纤维成品纱中一项重要的理化指标,它不仅直接影响成品纱的外观质量,而且更会影响成品纱的性能质量。