三角函数一题多解举例

合集下载

巧用三角函数解物理题(一题多解)

巧用三角函数解物理题(一题多解)

巧用三角函数解物理题数学是自然科学的皇后与奴仆。

数学中的许多知识在物理解题中都有非常广泛的应用,如三角函数知识在解力、热、光学题,特别是竞赛题时,有着十分独特的作用。

平时解题时,若能注意引导学生充分利用三角函数知识解决相关物理题,不仅会简化解题过程,而且对增强学生逻辑思维能力,提高解题速度,都大有裨益。

一、三角函数与追击中的最值问题例1.如右图所示,某人站在距公路40m 的A 处,发现公路上有一汽车从B 处以的速度沿公路匀速行驶,已知AB 相距100m ,问此人最少要以多大的速度沿什么方向奔跑才能与汽车相遇?解析:本题在审题时切莫以为只要人奔跑的速度最小,跑的路程就应最短,得出应沿与公路垂直的方向,即AO 方向奔跑的错误结论来。

因为速度的大小,不单纯地取决于路程的长短,还受到通过该路程所能用的时间的限制。

解法一:设人应沿与AB 成θ角的方向奔跑,经时间t 与汽车在C 处相遇(如右图),则:s BC v t s AC v t 车人人,====0.过B 点作BD ⊥AC ,垂足为D.因为△BCD ∽△ACO,所以B D B C A O A C=.又因为BD AB =sin θ,所以0sin v t AB BC AO AC v t θ==人,即04/sin sin v AO v m s AB θθ==人·. 显然要v 人最小,sin θ要最大,sin θθ==︒190,,此时,v m s 人min /=4。

即此人最少以4m/s 的速度沿垂直于AB 的方向奔跑,才能与汽车相遇。

解法二:设人以速度v 朝某一方向奔跑经过t 时间与汽车相遇在C 点,如右图所示。

根据题意,得010BC v t t ==,根据勾股定理得OB ==,1010(OC BC OB t t =-=-=,勾股定理222OC OA AC +=,222210(40()t vt +=,简化为关于t 的一元二次方程22(100)100000t v --+=,存在解则2224(100)1000040000(84100)v v ∆=--⨯=-+,2160v -≥,即4/v m s ≥,当以最小速度min 4/v m s =运动时,此时对应的t ===,40cos 4θ=====,即与OA成偏右arc θ=二、三角函数与杠杆中的最值问题例2.如右下图所示,一根4m 长的木杆下端用铰链固定在地面上,杆顶有一根绳子水平向左拉,拉力恒为T ,杆的右边用一根铁丝欲将杆竖直固定在地面上,铁丝长为4m ,为了使铁丝上的拉力最小,其上端A 应固定在杆上离地面多高的地方?解析:由于木杆上端所受水平向左的拉力T 一定,其力臂长也为定值(等于CD 的长),故影响铁丝上拉力F 变化的原因只有一个,就是其力臂DE 的长短,而DE 长短的变化又是受AB倾斜程度控制的,AB 的倾斜程度我们可用AB 与地面间的夹角θ的大小来衡量。

高中数学三角函数的应用举例与解析

高中数学三角函数的应用举例与解析

高中数学三角函数的应用举例与解析三角函数是高中数学中的重要内容,它在实际生活中有着广泛的应用。

在这篇文章中,我将通过一些具体的题目来说明三角函数的应用,并分析解题的方法和技巧,希望对高中生及其父母有所帮助。

一、角度的计算与应用题目一:一艘船从A点出发,以每小时30公里的速度向东航行,航行2小时后到达B点。

然后,船改变航向,以每小时40公里的速度向北航行,航行3小时后到达C点。

求船从A点到C点的直线距离。

解析:这个问题涉及到角度的计算和三角函数的应用。

首先,我们可以根据船的速度和时间计算出船从A点到B点的距离,由于船以每小时30公里的速度向东航行,航行2小时,所以A点到B点的距离为60公里(30公里/小时 × 2小时 = 60公里)。

接下来,我们需要计算船从B点到C点的距离。

由于船以每小时40公里的速度向北航行,航行3小时,所以B点到C点的距离为120公里(40公里/小时 × 3小时 = 120公里)。

最后,我们可以利用三角函数中的正弦函数来计算出船从A点到C点的直线距离。

设直线距离为x,船从A点到B点的距离为60公里,船从B点到C点的距离为120公里。

根据正弦函数的定义,我们可以得到以下等式:sin(90°) = 60/x,sin(90°) = 120/x。

由于sin(90°) = 1,所以60/x = 1,解得x = 60公里。

因此,船从A点到C点的直线距离为60公里。

二、三角函数的周期性题目二:一辆车以每小时60公里的速度匀速行驶,经过2小时后,车辆突然停下来。

问车辆在2小时内行驶的距离。

解析:这个问题涉及到三角函数的周期性。

由于车辆以每小时60公里的速度匀速行驶,经过2小时后停下来,所以车辆在2小时内行驶的距离为120公里(60公里/小时 × 2小时 = 120公里)。

三、三角函数的图像与性质题目三:已知函数f(x) = sin(x)在区间[0, π]上的图像如下所示,请问在该区间内,函数f(x)的最大值和最小值分别是多少?解析:这个问题涉及到三角函数的图像与性质。

初中三角函数知识点总结及典型习题含答案)

初中三角函数知识点总结及典型习题含答案)

初中三角函数知识点总结及典型习题含答案)初三下学期锐角三角函数知识点总结及典型题1.勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方,即a^2+b^2=c^2.2.在直角三角形ABC中,若∠C为直角,则∠A的三角函数为:正弦函数sinA=对边a/斜边c,取值范围为[0,1]。

余弦函数cosA=邻边b/斜边c,取值范围为[0,1]。

正切函数tanA=对边a/邻边b,取值范围为R(实数集)。

3.任意锐角的正弦值等于其余角的余弦值,余弦值等于其余角的正弦值,即sinA=cosB,cosA=sinB,其中A+B=90°。

4.特殊角的三角函数值:30°:sin30°=1/2,cos30°=√3/2,tan30°=1/√3.45°:sin45°=cos45°=√2/2,tan45°=1.60°:sin60°=√3/2,cos60°=1/2,tan60°=√3.6.正弦、余弦的增减性:当0°≤A≤90°时,XXX随A的增大而增大,cosA随A的增大而减小。

7.正切的增减性:当0°<A<90°时,XXX随A的增大而增大。

8.解直角三角形的方法:已知边和角(其中必有一边)→求所有未知的边和角。

依据:①边的关系:a^2+b^2=c^2;②角的关系:A+B=90°;③三角函数的定义。

9.应用举例:仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

坡度:坡面的铅直高度h和水平宽度l的比,用i=h/l表示。

方位角:从某点的指北方向按顺时针转到目标方向的水平角。

方向角:指北或指南方向线与目标方向线所成的小于90°的水平角。

例1:在直角三角形ABC中,已知∠C=90°,sinA=3/5,求XXX的值。

专题01 三角函数的实际应用(解析版)

专题01 三角函数的实际应用(解析版)

一、三角函数的实际应用知识点拨一、在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):定义边范围数量关系正弦斜边的对边A A ∠=sin c a A =sin 1sin 0<<A (∠A 为锐角)余弦斜边的邻边A A ∠=cos cb A =cos 1cos 0<<A (∠A 为锐角)B A cos sin =BA sin cos =1cos sin 22=+A A 正切的邻边的对边A tan ∠∠=A A baA =tan 0tan >A (∠A 为锐角)余切的对边的邻边A A A ∠∠=cot ab A =cot 0cot >A (∠A 为锐角)B A cot tan =B A tan cot =AA cot 1tan =(倒数)1cot tan =⋅AA 二、0°、30°、45°、60°、90°特殊角的三角函数值三角函数0°30°45°60°90°αsin 02122231αcos 12322210αtan 03313不存在αcot 不存在31330三、常见术语:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

对边邻边AC(2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。

用字母i 表示,即hi l =。

坡度一般写成1:m 的形式,如1:5i =等。

把坡面与水平面的夹角记作α(叫做坡角),那么tan hi l α==。

例题演练一.选择题(共20小题)1.如图,为了测量旗杆AB 的高度,小明在点C 处放置了高度为2米的测角仪CD ,测得旗杆顶端点A 的仰角∠ADE =50.2°,然后他沿着坡度为i =的斜坡CF 走了20米到达点F ,再沿水平方向走8米就到达了旗杆底端点B .则旗杆AB 的高度约为( )米.(参考数据:sin50.2°≈0.77,cos50.2°≈0.64,tan50.2°≈1.2).A .8.48B .14C .18.8D .30.8【解答】解:如图,延长AB 交水平线于M ,作FN ⊥CM 于N ,延长DE 交AM 于H .:i h l=hlα在Rt△CFN中,∵=,CF=20米,∴FN=BM=12米,CN=16米,∴DH=CM=16+8=24米,在Rt△ADH中,AH=DH•tan50.2=24×1.2=28.8米,∴AB=AM﹣BM=AH+HM=BM=28.8+2﹣12=18.8米,故选:C.2.我校兴趣小组同学为测量校外“御墅临枫”的一栋电梯高层AB的楼高,从校前广场的C 处测得该座建筑物顶点A的仰角为45°,沿着C向上走到30米处的D点.再测得顶点A 的仰角为22°,已知CD的坡度:i=1:2,A、B、C、D在同一平面内,则高楼AB的高度为( )(参考数据;sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)A.60B.70C.80D.90【解答】解:作AH⊥ED交ED的延长线于H,设DE=x米,∵CD的坡度:i=1:2,∴CE=2x米,由勾股定理得,DE2+CE2=CD2,即x2+(2x)2=(30)2,解得,x=30,则DE=30米,CE=60米,设AB=y米,则HE=y米,∴DH=y﹣30,∵∠ACB=45°,∴BC=AB=y,∴AH=BE=y+60,在Rt△AHD中,tan∠DAH=,则≈0.4,解得,y=90,∴高楼AB的高度为90米,故选:D.3.小敏利用无人机测量某座山的垂直高度AB.如图所示,无人机在地面BC上方130米的D 处测得山顶A的仰角为22°,测得山脚C的俯角为63.5°.已知AC的坡度为1:0.75,点A ,B,C,D在同一平面内,则此山的垂直高度AB约为( )(参考数据:sin63.5°≈0.89,tan63.5°≈2.00,sin22°≈0.37,tan22°≈0.40)A.146.4米B.222.9米C.225.7米D.318.6米【解答】解:如图,过点D作DH⊥AB于H,过点C作CR⊥DH于R,设AB=x米,则AH=(x﹣130)米.∵AB:BC=1:0.75,∴BC=RH=0.75x(米),BH=CR=130米,在Rt△DCR中,DR===65(米),∵tan∠ADH=,∴=0.4,解得x≈222.9,∴AB=222.9(米),故选:B.4.重庆实验外国语学校某数学兴趣小组,想测量华岩寺内七佛塔的高度,他们在点C处测得七佛塔顶部A处的仰角为45°,再沿着坡度为i=1:2.4的斜坡CD向上走了5.2米到达点D,此时测得七佛塔顶部A的仰角为37°,七佛塔AB所在平台高度EF为0.8米,则七佛塔AB的高约为( )米.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)A.20.8B.21.6C.23.2D.24【解答】解:根据题意可知:∠AHC=90°,∠ACH=45°,∴AH=HC,∵DN:NC=i=1:2.4,CD=5.2米,∴DN=2米,CN=4.8米,设DG⊥AB,垂足为G,在Rt△ADG中,∠ADG=37°,∵AG=AB﹣GB=AB﹣(DN﹣EF)=AB﹣1.2,又DG=NH=CN+HC=4.8+AH=4.8+AB+0.8=AB+5.6,∴tan∠ADG=,∴×(5.6+AB)≈AB﹣1.2,解得AB=21.6(米),答:碧津塔AB的高约为21.6米.故选:B.5.春节期间,某老师读到《行路难》中“闲来垂钓碧溪上,忽复乘舟梦日边.”邀约好友一起在江边垂钓,如图,河堤AB的坡度为1:2.4,AB长为5.2米,钓竿AC与水平线的夹角是60°,其长为6米,若钓竿AC与钓鱼线CD的夹角也是60°,则浮漂D与河堤下端B 之间的距离约为( )(参考数据:=1.732)A.2.33米B.2.35米C.2.36米D.2.42米【解答】解:如图,延长CA交DB延长线于点E,过点A作AF⊥BE于点F,则∠CED=60°,∵AB的坡比为1:2.4,∴==,设AF=5x,BF=12x,在Rt△ABF中,由勾股定理知,5.22=25x2+144x2.解得:x=0.4,∴AF=5x=2(米),BF=12x=4.8(米),由题意得:AC=6米,∠CAG=∠C=60°,AG∥DF,∴∠EAF=90°﹣60°=30°,∠AEF=∠CAG=60°,∴EF=AF=(米),AE=2EF=(米),∵∠C=∠CED=60°,∴△CDE是等边三角形,∴DE=CE=AC+AE=(6+)米,∵BD=DE﹣EF﹣BF=6+﹣﹣4.8≈2.35(米),即浮漂D与河堤下端B之间的距离约为2.35米,故选:B.6.如图,为测量观光塔AB的高度,冬冬在坡度i=1:2.4的斜坡CD的D点测得塔顶A的仰角为52°,斜坡CD长为26米,C到塔底B的水平距离为9米.图中点A,B,C,D在同一平面内,则观光塔AB的高度约为( )米.(结果精确到0.1米,参考数据:sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)A.10.5米B.16.1米C.20.7米D.32.2米【解答】解:如图,延长AB交过点D的水平面于F,作CE⊥DF于E,由题意得:CD=26米,BC=EF=9米,BF=CE,在Rt△CDE中,i=1:2.4,CD=26米,∴BF=CE=10米,ED=24米,在Rt△AFD中,∠AFD=90°,FD=EF+ED=33米,∠ADF=52°,∴AF=FD•tan52°≈33×1.28=42.24(米),∴AB=AF﹣BF=42.24﹣10≈32.2(米);即建筑物AB的高度为32.2米;故选:D.7.如图,一棵松树AB挺立在斜坡CB的顶端,斜坡CB长为52米,坡度为i=12:5,小张从与点C相距60米的点D处向上爬12米到达观景台DE的顶端点E,在此测得松树顶端点A的仰角为39°,则松树的高度AB约为( )(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81)A.16.8米B.28.8米C.40.8米D.64.2米【解答】解:延长AB交DC的延长线于H,作EF⊥AH于F,则四边形EDHF为矩形,∴FH=DE=12米,EF=DH,∵斜坡CB的坡度为t=12:5,∴设BH=12x,CH=5x,由勾股定理得,(5x)2+(12x)2=522,解得,x=4,则BH=12x=48米,CH=5x=20米,则EF=DH=DC+CH=60+20=80(米),在Rt△AEF中,tan∠AEF=,则AF=EF•tan∠AEF≈80×0.81=64.8(米),∴AB=AF+HF﹣BH=64.8+12﹣48=28.8(米),故选:B.8.小明和好朋友一起去三亚旅游,他们租住的酒店AB坐落在坡度为i=1:2.4的斜坡CD上,酒店AB高为129米.某天,小明在酒店顶楼的海景房A处向外看风景,发现酒店前有一座雕像C(雕像的高度忽略不计),已知雕像C距离海岸线上的点D的距离CD为260米,雕像C与酒店AB的水平距离为36米,他站在A处还看到远处海面上一艘即将靠岸的轮船E的俯角为27°.则轮船E距离海岸线上的点D的距离ED的长大约为( )米.(参考数据:tan27°≈0.5,sin27°≈0.45)A.262B.212C.244D.276【解答】解:如图,延长AB交ED的延长线于G,过C作CH⊥DG于H,CF⊥BG于F,则四边形CFGH是矩形,∴HG=CF=36(米),FG=CH,在Rt△CDH中,CD=260米,CH:DH=1:2.4,∴CH=100(米),DH=240(米),在Rt△BCF中,CF=36米,BF:CF=1:2.4,∴BF=15(米),FG=CH=100(米),∴DG=DH+HG=276(米),AG=AB+BF+FG=244(米),∵tan27°=≈0.5,即≈,解得:DE≈212(米),故选:B.9.保利观澜旁边有一望江公园,公园里有一文峰塔,工程人员在与塔底中心的D同一水平线的A处,测得AD=20米,沿坡度i=0.75的斜坡AB走到B点,测得塔顶E仰角为37°,再沿水平方向走20米到C处,测得塔顶E的仰角为22°,则塔高DE为( )米.(结果精确到十分位)(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,)A.18.3米B.19.3米C.20米D.21.2米【解答】解:连接DE,作BF⊥DE于F,BG⊥DA于G,如图:则DF=BG,BF=DG=AD+AG,∵AB=斜坡AB的坡度i=0.75=,∴设BG=3xm,则AG=4xm,BF=DG=20+4x(m),CF=BF+BC=20+4x+20=40+4x (m),由题意得:∠EBF=37°,∠ECF=22°,∵tan∠BEF==,tan∠ECF==,∴EF=tan37°(20+4x),EF=tan22°(40+4x),∴0.75(20+4x)=0.40(40+4x),解得:x=,∴DF=BG=3x=(m),EF=0.40(40+4x)=(m),∴DE=DF+EF=+≈19.3(m);故选:B.10.小李同学想测量广场科技楼CD的高度,他先在科技楼正对面的智慧楼AB的楼顶A点测得科技楼楼顶C点的仰角为45°.再在智慧楼的楼底B点测得科技楼楼顶C点的仰角为61°,然后从楼底B点经过4米长的平台BF到达楼梯F点,沿着坡度为i=1:2.4的楼梯向下到达楼梯底部E点,最后沿水平方向步行20米到达科技楼楼底D点(点A、B、C、D、E 、F在同一平面内,智慧楼AB和科技楼CD与水平方向垂直).已知智慧楼AB的高为24米,则科技楼CD的高约为( )米.(结果精确到0.1,参考数据:sin61°≈0.87.cos61°≈0.48,tan61°≈1.80)A.54.0B.56.4C.56.5D.56.6【解答】解:作AM⊥CD于M,FN⊥CD于N,FG⊥DE于点G,则四边形AMNB,四边形NDGF是矩形.在Rt△FEG中,FG:EG=1:2.4,设FG=5x,则EG=12x,∴FN=DG=12x+20,AB=24米,AM=BN=(24+12x)米,∵∠CAM=45°,∴AM=CM=(24+12x)米,∴CN=CM+MN=(48+12x)米,∵∠CBN=61°,∴tan∠CBN==,∴x=,∴CD=CM+MN+DN=24+12x+24+5x=24+17×+24=56.5(米).故选:C.11.某游客乘坐“金碧皇宫号游船”在长江和嘉陵江的交汇处A点,测得来福士最高楼顶点F的仰角为45°,此时他头顶正上方146米的点B处有架航拍无人机测得来福士最高楼顶点F的仰角为31°,游船朝码头方向行驶120米到达码头C,沿坡度i=1:2的斜坡CD 走到点D,再向前走160米到达来福士楼底E,则来福士最高楼EF的高度约为( )(结果精确到0.1,参考数据:sin31°≈0.52,cos31°≈0.87,tan31°≈0.60)A.301.3米B.322.5米C.350.2米D.418.5米【解答】解:如图所示:延长AC和FE交于点G,过点B作BM⊥FE于点M,作DH⊥AG于点H,得矩形ABMG、DHEG,设DH=x,则HC=2x,BM=AG=160+120+2x=280+2x.EG=DH=x,∵∠FAG=45°,∠FGA=90°,∴∠AFG=45°,∴FG=AG,EF=FG﹣EG=AG﹣EG=280+2x﹣x=280+x,∴FM=FG﹣MG=280+2x﹣146=134+2x,在Rt△FBM中,tan31°=,即=0.6,解得x=42.5,则EF=280+x=322.5.故选:B.12.如图是杨家坪步行街某天桥扶梯横截面的平面图.身高为1.5米的小明站在距离扶梯底端A处8米远的点P处,测得扶梯顶端B的仰角为18°,扶梯AB的坡度i=3:4,已知扶梯顶端B到天桥顶部的距离为2.3米,则小明所在位置点P到天桥顶部的距离是( )(参考数据:sin18°≈0.29,cos18°≈0.95,tan18°≈)A.12.3米B.9.8米C.7.9米D.7.5米【解答】解:作BC⊥PA交PA的延长线于点C,作QD⊥BC于点D,∵扶梯AB的坡度i=3:4,∴,设BC=3x米,则AC=4x米,∵AP=8米,QP=1.5米,∴DQ=(4x+8)米,BD=(3x﹣1.5)米,∵∠BQD=18°,tan∠BQD=,tan18°≈,∴≈,解得x=2.5,∴BC=3x=7.5,∵点B到顶部的距离是2.3米,∴点C到顶部的距离是2.3+7.5=9.8(米),即点P到顶部的距离是9.8米,故选:B.13.如图,在某山坡前有一电视塔.小明在山坡坡脚P处测得电视塔顶端M的仰角为60°,在点P处小明沿山坡向上走39m到达D处,测得电视塔顶端M的仰角为30°.已知山坡坡度i=1:2.4,请你计算电视塔的高度ME约为( )m.(结果精确到0.1m,参考数据:≈1.732)A.59.8B.58.8C.53.7D.57.9【解答】解:如图,作DC⊥EP延长线于点C,作DF⊥ME于点F,作PH⊥DF于点H,则DC=PH=FE,DH=CP,HF=PE,∵山坡坡度i=DC:CP=1:2.4,PD=39,设DC=5x,则CP=12x,根据勾股定理,得(5x)2+(12x)2=392,解得x=3,则DC=15,CP=36,∴DH=CP=36,FE=DC=15,设MF=y,则ME=MF+FE=y+15,在Rt△DMF中,∠MDF=30°,∴DF=y,在Rt△MPE中,∠MPE=60°,∴PE=(y+15),∵DH=DF﹣HF,∴y﹣(y+15)=36,解得y=7.5+18,∴ME=MF+EF=7.5+18+15≈53.7(m).答:电视塔的高度ME约为53.7米.故选:C.14.如图,万达广场主楼楼顶立有广告牌DE,小辉准备利用所学的三角函数知识估测该主楼的高度.由于场地有限,不便测量,所以小辉沿坡度i=1:0.75的斜坡从看台前的B处步行50米到达C处,测得广告牌底部D的仰角为45°,广告牌顶部E的仰角为53°(小辉的身高忽略不计),已知广告牌DE=15米,则该主楼AD的高度约为( )(结果精确到整数,参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)A.80m B.85m C.89m D.90m【解答】解:过C作CF⊥AE于F,CG⊥AB于G,如图所示:则四边形AFCG是矩形,∴AF=CG,∵斜坡AB的坡度i=1:0.75==,BC=50米,∴BG=30(米),AF=CG=40(米),设DF=x米.在Rt△DCF中,∠DCF=45°,∴CF=DF=x米.在Rt△ECF中,∠ECF=53°,∴EF=tan53°•CF=1.3x(米),∵DE=15米,∴1.3x﹣x=15,∴x=50,∴DF=50米,∴AD=AF+DF=40+50=90(米),故选:D.15.图中的阴影部分是某水库大坝横截面,小明站在大坝上的A处看到一棵大树CD的影子刚好落在坝底的B处(点A与大树及其影子在同一平面内),此时太阳光与地面的夹角为60°,在A处测得树顶D的俯角为15°,如图所示,已知斜坡AB的坡度i=:1,若大树CD的高为8米,则大坝的高为( )米(结果精确到1米,参考数据≈1.414 ≈1.732)( )A.18B.19C.20D.21【解答】解:如图,过点D作DP⊥AB于点P,作AQ⊥BC交CB延长线于点Q,∵∠DBC=60°、CD=8,∴BD===16,∵AB的坡度i=tan∠ABQ=,∴∠ABQ=∠EAB=60°,∴∠ABD=60°,∴PD=BD sin∠ABD=16×=8,BP=BD cos∠ABD=16×=8,∵∠EAD=15°,∴∠DAP=∠BAE﹣∠EAD=45°,∴PA=PD=8,则AB=AP+BP=8+8,∴AQ=AB cos∠ABQ=(8+8)×=4+12≈19,故选:B.16.3月中旬某中学校园内的樱花树正值盛花期,供全校师生驻足观赏.如图,有一棵樱花树AB垂直于水平平台BC,通往平台有一斜坡CD,D、E在同一水平地面上,A、B、C、D、E均在同一平面内,已知BC=3米,CD=5米,DE=1米,斜坡CD的坡度是,李同学在水平地面E处测得树冠顶端A的仰角为62°,则樱花树的高度AB约为( )(参考数据:sin62°≈0.88,cos62°≈0.47,tan62°≈1.88)A.9.16米B.12.04米C.13.16米D.15.04米【解答】解:过C作CG⊥DE交ED的延长线于G,延长AB交ED的延长线于H,如图所示:则四边形BHGC为矩形,∴BH=CG,GH=BC=3米,∵斜坡CD的坡度是=,∴设CG=3x米,则DG=4x,由勾股定理得,CD2=CG2+DG2,即52=(3x)2+(4x)2,解得:x=1,∴BH=CG=3(米),DG=4(米),∴EH=DE+DG+GH=1+4+3=8(米),在Rt△AHE中,tan∠AEH==tan62°≈1.88,∴AH≈1.88EH=1.88×8=15.04(米),∴AB=AH﹣BH≈15.04﹣3=12.04(米),故选:B.17.某数学兴趣小组在歌乐山森林公园借助无人机测量某山峰的垂直高度AB.如图所示,无人机在地面BC上方120米的D处测得山顶A的仰角为22°,测得山脚C的俯角为63.5°.已知AC的坡度为1:0.75,点A,B,C,D在同一平面内,则山峰的垂直高度AB约为( )(参考数据:sin63.5°≈0.89,tan63.5°≈2.00,sin22°≈0.37,tan22°≈0.40)A.141.4米B.188.6米C.205.7米D.308.6米【解答】解:如图,过点D作DH⊥AB于H,过点C作CR⊥DH于R,设AB=x米,则AH=(x﹣120)米.∵AB:BC=1:0.75,∴BC=RH=0.75x(米),BH=CR=120米,在Rt△DCR中,DR=≈=60(米),∵tan∠ADH=,∴=0.4,解得x≈205.7,∴AB=205.7(米),故选:C.18.小菁在数学实践课中测量路灯的高度.如图,已知她的身高AB1.2米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°.那么该路灯顶端O到地面的距离约为( )(sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2 .1)A.3.2米B.3.9米C.4.4米D.4.7米【解答】解:过点O作OE⊥AC于点E,延长BD交OE于点F,设DF=x,∴BF=BD+DF=3+x,∵tan65°=,∴OF=x tan65°,∵tan35°=,∴OF=(3+x)tan35°,∴2.1x≈0.7(3+x),∴x=1.5,∴OF=1.5×2.1=3.15(米),∴OE=3.15+1.2=4.35≈4.4(米),故选:C.19.如图,某班数学兴趣小组利用数学知识测量建筑物DEFC的高度.他们从点A出发沿着坡度为i=1:2.4的斜坡AB步行26米到达点B处,此时测得建筑物顶端C的仰角α=35°,建筑物底端D的俯角β=30°.若AD为水平的地面,则此建筑物的高度CD约为( )米.(参考数据:≈1.7,tan35°≈0.7)A.23.1B.21.9C.27.5D.30【解答】解:如图所示:过点B作BN⊥AD,BM⊥DC垂足分别为:N,M,∵i=1:2.4,AB=26m,∴设BN=x,则AN=2.4x,∴AB=2.6x,则2.6x=26,解得:x=10,故BN=DM=10m,则tan30°===,解得:BM=10,则tan35°===0.7,解得:CM≈11.9(m),故DC=MC+DM=11.9+10=21.9(m).故选:B.20.如图,某数学活动小组为测量学校旗杆AB的高度,从旗杆正前方2m处的点C出发,沿坡度l=1:2的斜坡CD前进5m到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5m,已知A,B,C,D,E在同一平面内,AB⊥BC,AB∥D E,则旗杆AB的高度是( )(参考数据:sin37°≈,cos37°≈,tan37°≈,≈1.732,≈2.236,结果保留一位小数)A.8.2B.8.4C.8.6D.8.8【解答】解:延长ED交BC的延长线于点F,作EG⊥AB于G,DH⊥AB于H,则四边形GHDE为矩形,∴GH=DE=1.5,GE=DH,设DF=x,∵斜坡CD的坡度为1:2,∴CF=2x,由勾股定理得,x2+(2x)2=52,解得,x=,则DF=,CF=2,∴GE=DH=BC+CF=2+2,在Rt△AGE中,tan∠AEG=,则AG=EG•tan∠AEG≈(2+2),∴AB=AG+GH+BH≈4.85+1.5+2.24≈8.6(米),故选:C.。

(完整版)高考三角函数经典解答题及答案

(完整版)高考三角函数经典解答题及答案

(完整版)高考三角函数经典解答题及答案1. 在△ABC 中,角 A、B、C 所对的边分别是 a、b、c,且 a²+c²-b²=(1) 求 sin²(2A+C)+cos²B 的值;(2) 若 b=2,求△ABC 面积的最大值。

解:(1) 由余弦定理:cosB=(a²+ c²- b²)/(2ac)=4/√115,得sinB=√(1-cos²B)=3√(23)/23。

由正弦定理sin²(2A+C)+cos²B=4sin²B+cos²B=13/23。

2. 在△ABC 中,角 A、B、C 的对边分别为 a、b、c,且bcosC=3acosB-ccosB。

(I) 求 cosB 的值;(II) 若 BA·BC=2,且b=√2,求 a 和 c·b 的值。

解:(I) 由正弦定理得 a=2RsinA,b=2RsinB,c=2RsinC,则 2RsinBcosC=6RsinAcosB-2RsinCcosB,故sinBcosC=3sinAcosB-sinCcosB,可得sinBcosC+sinCcosB=3sinAcosB,即 sin(B+C)=3sinAcosB,可得 sinA=3sinAcosB/sinB。

又sinA≠0,因此 cosB=1/3。

3. 已知向量 m=(sinB,1-cosB),向量 n=(2,k),且 m 与 n 所成角为π/3,其中 A、B、C 是△ABC 的内角。

(1) 求角 B 的大小;(2) 求 sinA+sinC 的取值范围。

解:(1) ∠m与∠n所成角为π/3,且 m·n=2sinB+ k(1-cosB)=2√3/2cosB+k√(1-cos²B),又 m·n=2cosB+k(1-cosB),解得 k=4/3。

高中数学三角函数经典例题及详解

高中数学三角函数经典例题及详解

高中数学三角函数经典例题及详解高中数学三角函数专题复考试要求:三角函数是一类最典型的周期函数。

本单元的研究可以帮助学生在用锐角三角函数刻画直角三角形中边角关系的基础上,借助单位圆建立一般三角函数的概念,体会引入弧度制的必要性。

同时,我们可以利用几何直观和代数运算的方法研究三角函数的周期性、奇偶性(对称性)、单调性和最大(小)值等性质;探索和研究三角函数之间的一些恒等关系;并且利用三角函数构建数学模型,解决实际问题。

内容包括:角与弧度、三角函数概念和性质、同角三角函数的基本关系式、三角恒等变换、三角函数应用。

1)角与弧度了解任意角的概念和弧度制,能进行弧度与角度的互化,体会引入弧度制的必要性。

2)三角函数概念和性质①借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义,能画出这些三角函数的图象,了解三角函数的周期性、奇偶性、最大(小)值。

借助单位圆的对称性,利用定义推导出诱导公式(α±π,α±π的正弦、余弦、正切)。

②借助图象理解正弦函数在[0,2π]上、余弦函数在[0,2π]上、正切函数在(-π/2,π/2)上的性质。

③结合具体实例,了解y=Asin(ωx+φ)的实际意义;能借助图象理解参数ω,φ,A的意义,了解参数的变化对函数图象的影响。

3)同角三角函数的基本关系式理解同角三角函数的基本关系式sinx+cosx=4)三角恒等变换①经历推导两角差余弦公式的过程,知道两角差余弦公式的意义。

②能从两角差的余弦公式推导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系。

③能运用上述公式进行简单的恒等变换(包括推导出积化和差、和差化积、半角公式,这三组公式不要求记忆)。

5)三角函数应用会用三角函数解决简单的实际问题,体会可以利用三角函数构建刻画事物周期变化的数学模型。

经典题型:一、求值化简型这类问题常常用到的公式包括三角函数定义、同角三角函数关系式、诱导公式、和差倍公式、降幂公式、辅助角公式。

高中三角函数习题解析含详细解答

高中三角函数习题解析含详细解答

三角函数题解1.2003上海春;15把曲线y cos x +2y -1=0先沿x 轴向右平移2π个单位;再沿y 轴向下平移1个单位;得到的曲线方程是A.1-y sin x +2y -3=0B.y -1sin x +2y -3=0C.y +1sin x +2y +1=0D.-y +1sin x +2y +1=02.2002春北京、安徽;5若角α满足条件sin2α<0;cos α-sin α<0;则α在 A.第一象限 B.第二象限 C.第三象限 D.第四象限3.2002上海春;14在△ABC 中;若2cos B sin A =sinC;则△ABC 的形状一定是 A.等腰直角三角形 B.直角三角形 C.等腰三角形 D.等边三角形4.2002京皖春文;9函数y =2sin x 的单调增区间是 A.2k π-2π;2k π+2πk ∈ZB.2k π+2π;2k π+23πk ∈Z C.2k π-π;2k πk ∈Z D.2k π;2k π+πk ∈Z5.2002全国文5;理4在0;2π内;使sin x >cos x 成立的x 取值范围为 A.4π;2π∪π;45πB.4π;π C.4π;45πD.4π;π∪45π;23π6.2002北京;11已知fx 是定义在0;3上的函数;fx 的图象如图4—1所示;那么不等式fx cos x <0的解集是A.0;1∪2;3B.1;2π∪2π;3图4—1C.0;1∪2π;3D.0;1∪1;37.2002北京理;3下列四个函数中;以π为最小正周期;且在区间2π;π上为减函数的是 A.y =cos 2xB.y =2|sin x |C.y =31cos xD.y =-cot x8.2002上海;15函数y =x +sin|x |;x ∈-π;π的大致图象是9.2001春季北京、安徽;8若A 、B 是锐角△ABC 的两个内角;则点P cos B -sin A ;sin B -cos A 在A.第一象限B.第二象限C.第三象限D.第四象限10.2001全国文;1tan300°+cot405°的值是 A.1+3B.1-3C.-1-3D.-1+311.2000全国;4已知sin α>sin β;那么下列命题成立的是 A.若α、β是第一象限角;则cos α>cos β B.若α、β是第二象限角;则tan α>tan β C.若α、β是第三象限角;则cos α>cos β D.若α、β是第四象限角;则tan α>tan β12.2000全国;5函数y =-x cos x 的部分图象是13.1999全国;4函数fx =M sin ωx +ϕω>0;在区间a ;b 上是增函数;且fa =-M ;fb =M ;则函数gx =M cos ωx +ϕ在a ;b 上A.是增函数B.是减函数C.可以取得最大值-D.可以取得最小值-m14.1999全国;11若sin α>tan α>cot α-2π<α<2π);则α∈A.-2π;-4π B.-4π;0C.0;4πD.4π;2π15.1999全国文、理;5若fx sin x 是周期为π的奇函数;则fx 可以是 A.sin x B.cos x C.sin2x D.cos2x16.1998全国;6已知点P sin α-cos α;tan α在第一象限;则在0;2π内α的取值范围是 A.2π;43π∪π;45πB.4π;2π∪π;45π C.2π;43π∪45π;23πD.4π;2π∪43π;π 17.1997全国;3函数y =tan 3121-x π在一个周期内的图象是18.1996全国若sin 2x >cos 2x ;则x 的取值范围是 A.{x |2k π-43π<x <2k π+4π;k ∈Z } B.{x |2k π+4π<x <2k π+45π;k ∈Z }C.{x |k π-4π<x <k π+4π;k ∈Z }D.{x |k π+4π<x <k π+43π;k ∈Z }19.1995全国文;7使sin x ≤cos x 成立的x 的一个变化区间是A.-43π;4πB.-2π;2πC.-4π;43πD.0;π20.1995全国;3函数y =4sin3x +4π+3cos3x +4π的最小正周期是A.6πB.2πC.32πD.3π21.1995全国;9已知θ是第三象限角;若sin 4θ+cos 4θ=95;那么sin2θ等于 A.322 B.-322 C.32D.-32 22.1994全国文;14如果函数y =sin2x +a cos2x 的图象关于直线x =-8π对称;那么a 等于A.2B.-2C.1D.-123.1994全国;4设θ是第二象限角;则必有 A.tan2θ>cot 2θ B.tan2θ<cot 2θC.sin2θ>cos 2θ D.sin2θ-cos 2θ 24.2002上海春;9若fx =2sin ωx 0<ω<1)在区间0;3π上的最大值是2;则ω= .25.2002北京文;13sin 52π;cos 56π;tan 57π从小到大的顺序是 .26.1997全国;18︒︒-︒︒︒+︒8sin 15sin 7cos 8sin 15cos 7sin 的值为_____.27.1996全国;18tan20°+tan40°+3tan20°·tan40°的值是_____.28.1995全国理;18函数y =sin x -6πcos x 的最小值是 .29.1995上海;17函数y =sin 2x +cos 2x在-2π;2π内的递增区间是 .30.1994全国;18已知sin θ+cos θ=51;θ∈0;π;则cot θ的值是 .31.2000全国理;17已知函数y =21cos 2x +23sin x cos x +1;x ∈R .1当函数y 取得最大值时;求自变量x 的集合;2该函数的图象可由y =sin xx ∈R 的图象经过怎样的平移和伸缩变换得到32.2000全国文;17已知函数y =3sin x +cos x ;x ∈R .1当函数y 取得最大值时;求自变量x 的集合;2该函数的图象可由y =sin xx ∈R 的图象经过怎样的平移和伸缩变换得到33.1995全国理;22求sin 220°+cos 250°+sin20°cos50°的值. 34.1994上海;21已知sin α=53;α∈2π;π;tan π-β=21; 求tan α-2β的值.35.1994全国理;22已知函数fx =tan x ;x ∈0;2π;若x 1、x 2∈0;2π;且x 1≠x 2;证明21fx 1+fx 2>f 221x x +.36.已知函数12()log (sin cos )f x x x =-⑴求它的定义域和值域; ⑵求它的单调区间; ⑶判断它的奇偶性; ⑷判断它的周期性.37. 求函数f x =121log cos()34x π+的单调递增区间38. 已知fx =5sin x cos x -35cos 2x +325x ∈R ⑴求fx 的最小正周期; ⑵求fx 单调区间;⑶求fx 图象的对称轴;对称中心..39若关于x 的方程2cos 2π + x - sin x + a = 0 有实根;求实数a 的取值范围..参考答案1.答案:C解析:将原方程整理为:y =x cos 21+;因为要将原曲线向右、向下分别移动2π个单位和1个单位;因此可得y =)2cos(21π-+x -1为所求方程.整理得y +1sin x +2y +1=0.评述:本题考查了曲线平移的基本方法及三角函数中的诱导公式.如果对平移有深刻理解;可直接化为:y +1cos x -2π+2y +1-1=0;即得C 选项.2.答案:B解析:sin2α=2sin αcos α<0 ∴sin αcos α<0 即sin α与cos α异号;∴α在二、四象限; 又cos α-sin α<0 ∴cos α<sin α由图4—5;满足题意的角α应在第二象限3.答案:C解析:2sin A cos B =sin A +B +sin A -B 又∵2sin A cos B =sin C ; ∴sin A -B =0;∴A =B 4.答案:A解析:函数y =2x 为增函数;因此求函数y =2sin x 的单调增区间即求函数y =sin x 的单调增区间.5.答案:C解法一:作出在0;2π区间上正弦和余弦函数的图象;解出两交点的横坐标4π和45π;由图4—6可得C 答案.图4—6 图4—7解法二:在单位圆上作出一、三象限的对角线;由正弦线、余弦线知应选C.如图4—7 6.答案:C图4—5解析:解不等式fx cos x <0⎪⎩⎪⎨⎧<<><⎪⎩⎪⎨⎧<<<>⇒300cos 0)(300cos 0)(x x x f x x x f 或∴⎩⎨⎧<<<<⎪⎩⎪⎨⎧<<<<1010231x x x x 或ππ ∴0<x <1或2π<x <3 7.答案:B解析:A 项:y =cos 2x =22cos 1x+;x =π;但在区间2π;π上为增函数.B 项:作其图象4—8;由图象可得T =π且在区间2π;π上为减函数.C 项:函数y =cos x 在2π;π区间上为减函数;数y =31x 为减函数.因此y =31cos x 在2π;π区间上为增函数.D 项:函数y =-cot x 在区间2π;π上为增函数. 8.答案:C解析:由奇偶性定义可知函数y =x +sin|x |;x ∈-π;π为非奇非偶函数. 选项A 、D 为奇函数;B 为偶函数;C 为非奇非偶函数. 9.答案:B解析:∵A 、B 是锐角三角形的两个内角;∴A +B >90°; ∴B >90°-A ;∴cos B <sin A ;sin B >cos A ;故选B. 10.答案:B 解析:tan300°+cot405°=tan360°-60°+cot360°+45°=-tan60°+cot45°=1-3.11.答案:D解析:因为在第一、三象限内正弦函数与余弦函数的增减性相反;所以可排除A 、C;在第二象限内正弦函数与正切函数的增减性也相反;所以排除B.只有在第四象限内;正弦函数与正切函数的增减性相同.12.答案:D解析:因为函数y =-x cos x 是奇函数;它的图象关于原点对称;所以排除A 、C;当 x ∈0;2π时;y =-x cos x <0.13.答案:C图4—8解法一:由已知得M >0;-2π+2k π≤ωx +ϕ≤2π+2k πk ∈Z ;故有gx 在a ;b 上不是增函数;也不是减函数;且当ωx +ϕ=2k π时gx 可取到最大值M ;答案为C.解法二:由题意知;可令ω=1;ϕ=0;区间a ;b 为-2π;2π;M =1;则gx 为cos x ;由基本余弦函数的性质得答案为C.评述:本题主要考查函数y =A sin ωx +ϕ的性质;兼考分析思维能力.要求对基本函数的性质能熟练运用正用逆用;解法二取特殊值可降低难度;简化命题. 14.答案:B解法一:取α=±3π;±6π代入求出sin α、tan α、cot α之值;易知α=-6π适合;又只有-6π∈-4π;0;故答案为B.解法二:先由sin α>tan α得:α∈-2π;0;再由tan α>cot α得:α∈-4π;0评述:本题主要考查基本的三角函数的性质及相互关系;1995年、1997年曾出现此类题型;运用特殊值法求解较好.15.答案:B解析:取fx =cos x ;则fx ·sin x =21sin2x 为奇函数;且T =π. 评述:本题主要考查三角函数的奇偶与倍角公式. 16.答案:B解法一:P sin α-cos α;tan α在第一象限;有tan α>0; A 、C 、D 中都存在使tan α<0的α;故答案为B.解法二:取α=3π∈2,4ππ;验证知P 在第一象限;排除A 、C;取α=65π∈43π;π;则P 点不在第一象限;排除D;选B.解法三:画出单位圆如图4—10使sin α-cos α>0是图中阴影部分;又tan α>0可得24παπ<<或π<α<45π;故选B. 评述:本题主要考查三角函数基础知识的灵活运用;突出考查了转化思想和转化方法的选择;采用排除法不失为一个好办法.17.答案:A解析:y =tan 3121-x π=tan 21x -32π;显然函数周期为T =2π;且x =32π时;y =0;故选A.评述:本题主要考查正切函数性质及图象变换;抓住周期和特值点是快速解题的关键.18.答案:D解析一:由已知可得cos2x =cos 2x -sin 2x <0;所以2k π+2π<2x <2k π+23π;k ∈Z .解得k π+4π<x <k π+43π;k ∈Z 注:此题也可用降幂公式转化为cos2x <0. 解析二:由sin 2x >cos 2x 得sin 2x >1-sin 2x ;sin 2x >21.因此有sin x >22或sin x <-22.由正弦函数的图象或单位圆得2k π+4π<x <2k π+43π或2k π+45π<x <2k π+47πk ∈Z ;2k π+45π<x <2k π+47π可写作2k +1π+4π<x <2k +1π+43π;2k 为偶数;2k +1为奇数;不等式的解可以写作n π+4π<x <n π+43π;n ∈Z . 评述:本题考查三角函数的图象和基本性质;应注意三角公式的逆向使用. 19.答案:A 解法一:由已知得:2 sin x -4π≤0;所以2k π+π≤x -4π≤2k π+2π;2k π+45π≤x ≤2k π+49π;令k =-1得-43π≤x ≤4π;选A. 解法二:取x =32π;有sin 2132cos ,2332-==ππ;排除C 、D;取x =3π;有sin3π=213cos ,23=π;排除B;故选A. 解法三:设y =sin x ;y =cos x .在同一坐标系中作出两函数图象如图4—11;观察知答案为A.解法四:画出单位圆;如图4—12;若sin x ≤cos x ;显然应是图中阴影部分;故应选A.评述:本题主要考查正弦函数、余弦函数的性质和图象;属基本求范围题;入手容易;方法较灵活;排除、数形结合皆可运用.20.答案:C图4—12图4—11解析:y =4sin3x +4π+3cos3x +4π=554sin3x +4π+53cos3x +4π=5sin3x +4π+ϕ其中tan ϕ=43所以函数y =sin3x +4π+3cos3x +4π的最小正周期是T =32π. 故应选C.评述:本题考查了a sin α+b cos α=22b a +sin α+ϕ;其中sinϕ=22ba b +;cos ϕ=22ba a +;及正弦函数的周期性.21.答案:A解法一:将原式配方得sin 2θ+cos 2θ2-2sin 2θcos 2θ=95 于是1-21sin 22θ=95;sin 22θ=98;由已知;θ在第三象限; 故2k π+π<θ<2k π+23π从而4k π+2π<2θ<4k π+3π 故2θ在第一、二象限;所以sin2θ=322;故应选A. 解法二:由2k π+π<θ<2k π+23π;有4k π+2π<4k π+3πk ∈Z ;知sin2θ>0;应排除B 、D;验证A 、C;由sin2θ=322;得2sin 2θcos 2θ=94;并与sin 4θ+cos 4θ=95相加得sin 2θ+cos 2θ2=1成立;故选A.评述:本题考查了学生应用正余弦的平方关系配方的能力及正弦函数值在各象限的符号的判别.22.答案:D解析:函数y =sin2x +a cos2x 的图象关于直线x =-8π对称;表明:当x =-8π时;函数取得最大值12+a ;或取得最小值-12+a ;所以有sin -4π+a ·cos -4π2=a 2+1;解得a =-1.评述:本题主要考查函数y =a sin x +b cos x 的图象的对称性及其最值公式.23.答案:A解法一:因为θ为第二象限角;则2k π+2π<θ<2k π+πk ∈Z ;即2θ为第一象限角或第三象限角;从单位圆看是靠近轴的部分如图4—13;所以tan2θ>cot 2θ. 解法二:由已知得:2k π+2π<θ<2k π+π;k π+4π<2θ< k π+2π;k 为奇数时;2n π+45π<2θ<2n π+23πn ∈Z ; k为偶数时;2n π+4π<2θ<2n π+2πn ∈Z ;都有tan 2θ>cot 2θ;选A.评述:本题主要考查象限角的概念和三角函数概念;高于课本.24.答案:43 解析:∵0<ω<1 ∴T =ωπ2>2π ∴fx 在0;3π区间上为单调递增函数∴fx max =f3π即2sin23=ωπ又∵0<ω<1 ∴解得ω=4325.答案:cos56π<sin 52π<tan 57π 解析:cos56π<0;tan 57π=tan 52π ∵0<x <2π时;tan x >x >sin x >0 ∴tan 52π>sin 52π>0 ∴tan 57π>sin 52π>cos 56π26.答案:2-3解析:︒︒︒︒=︒︒-︒-︒︒︒+︒-︒=︒︒-︒︒︒+︒8cos 15cos 8cos 15sin 8sin 15sin )815cos(8sin 15cos )815sin(8sin 15sin 7cos 8sin 15cos 7sin图4—133230sin 30cos 115tan -=︒︒-=︒=.评述:本题重点考查两角差的三角公式、积化和差公式、半角公式等多个知识点.27.答案:3解析:tan60°=︒︒-︒+︒40tan 20tan 140tan 20tan ;∴tan20°+tan40°=3-3tan20°tan40°;∴tan20°+tan40°+3tan20°tan40°=3.28.答案:-43 解析:y =sin x -6πcos x =21sin2x -6π-sin 6π=21sin2x -6π-21当sin2x -6π=-1时;函数有最小值;y 最小=21-1-21=-43. 评述:本题考查了积化和差公式和正弦函数有界性或值域.29.答案:2,23ππ-解析:y =sin2x +cos 2x =2sin 42π+x ;当2k π-2π≤2x +4π≤2k π+2πk ∈Z 时;函数递增;此时4k π-23π≤x ≤4k π+2πk ∈Z ;只有k =0时;-23π;2π-2π;2π. 30.答案:-43 解法一:设法求出sin θ和cos θ;cot θ便可求了;为此先求出sin θ-cos θ的值. 将已知等式两边平方得1+2sin θcos θ=251 变形得1-2sin θcos θ=2-251;即sin θ-cos θ2=2549 又sin θ+cos θ=51;θ∈0;π 则2π<θ<43π;如图4—14 所以sin θ-cos θ=57;于是 sin θ=54;cos θ=-53;cot θ=-43. 解法二:将已知等式平方变形得sin θ·cos θ=-2512;又θ∈0;π;有cos θ<0<sin θ;且cos θ、sin θ是二次方程x 2-51x -2512=0的两个根;故有cos θ=-53; sin θ=54;得cot θ=-43. 评述:本题通过考查三角函数的求值考查思维能力和运算能力;方法较灵活. 31.解:1y =21cos 2x +23sin x cos x +1=412cos 2x -1+41+432sin x cos x +1 =41cos2x +43sin2x +45=21cos2x ·sin 6π+sin2x ·cos 6π+45=21sin2x +6π+45y 取得最大值必须且只需2x +6π=2π+2k π;k ∈Z ;图4—14即x =6π+k π;k ∈Z .所以当函数y 取得最大值时;自变量x 的集合为{x |x =6π+k π;k ∈Z }.2将函数y =sin x 依次进行如下变换: ①把函数y =sin x 的图象向左平移6π;得到函数y =sin x +6π的图象;②把得到的图象上各点横坐标缩短到原来的21倍纵坐标不变;得到函数 y =sin2x +6π的图象;③把得到的图象上各点纵坐标缩短到原来的21倍横坐标不变;得到函数 y =21sin2x +6π的图象;④把得到的图象向上平移45个单位长度;得到函数y =21sin2x +6π+45的图象;综上得到函数y =21cos 2x +23sin x cos x +1的图象.评述:本题主要考查三角函数的图象和性质;考查利用三角公式进行恒等变形的技能以及运算能力.32.解:1y =3sin x +cos x =2sin x cos6π+cos x sin6π=2sin x +6π;x ∈Ry 取得最大值必须且只需x +6π=2π+2k π;k ∈Z ;即x =3π+2k π;k ∈Z .所以;当函数y 取得最大值时;自变量x 的集合为{x |x =3π+2k π;k ∈Z }2变换的步骤是:①把函数y =sin x 的图象向左平移6π;得到函数y =sin x +6π的图象;②令所得到的图象上各点横坐标不变;把纵坐标伸长到原来的2倍;得到函数 y =2sin x +6π的图象;经过这样的变换就得到函数y =3sin x +cos x 的图象.评述:本题主要考查三角函数的图象和性质;利用三角公式进行恒等变形的技能及运算能力.33.解:原式=211-cos40°+211+cos100°+21sin70°-sin30° =1+21cos100°-cos40°+21sin70°-41=43-sin70°sin30°+21sin70° =43-21sin70°+21sin70°=43. 评述:本题考查三角恒等式和运算能力.34.解:由题设sin α=53;α∈2π;π; 可知cos α=-54;tan α=-43又因tan π-β=21;tan β=-21;所以tan2β=34tan 1tan 22-=-ββtan α-2β=2471134432tan tan 12tan tan =++-=+-βαβα 35.证明:tan x 1+tan x 2=2121212211cos cos sin cos cos sin cos sin cos sin x x x x x x x x x x +=+ 2121cos cos )sin(x x x x +=)cos()cos()sin(2212121x x x x x x -+++=因为x 1;x 2∈0;2π;x 1≠x 2;所以2sin x 1+x 2>0;cos x 1cos x 2>0;且0<cos x 1-x 2<1; 从而有0<cos x 1+x 2+cos x 1-x 2<1+cos x 1+x 2; 由此得tan x 1+tan x 2>)cos(1)sin(22121x x x x +++;所以21tan x 1+tan x 2>tan 221x x +即21fx 1+fx 2>f 221x x +.36.解1x 必须满足sin x -cos x >0;利用单位圆中的三角函数线及52244k x k ππππ+<<+;k ∈Z ∴函数定义域为)45k 2,4k 2(π+ππ+π;k ∈Z ∵sin cos )4x x x π--∴当x ∈5(2,2)44k k ππππ++时;0sin()14x π<-≤∴0sin cos x x <-∴121log 2y -≥∴ 函数值域为+∞-,213∵()f x 定义域在数轴上对应的点关于原点不对称;∴()f x 不具备奇偶性4∵ fx+2π=fx ∴ 函数fx 最小正周期为2π 注;利用单位圆中的三角函数线可知;以Ⅰ、Ⅱ象限角平分线为标准;可区分sin x -cos x 的符号;以Ⅱ、Ⅲ象限角平分线为标准;可区分sin x +cos x 的符号37.解:∵f x =121log cos()34x π+令431π+=x t ;∴y=t cos log 21;t 是x 的增函数;又∵0<21<1;∴当y=t cos log 21为单调递增时;cost 为单调递减 且cost>0;∴2k π≤t<2k π+2πk ∈Z;∴2k π≤431π+x <2k π+2π k ∈Z ;6k π-43π≤x<6k π+43π k ∈Z;∴f x =)431cos(log 21π+x 的单调递减区间是6k π-43π;6k π+43πk ∈Z38.解: 1T=π 2增区间k π-12π;k π+125π;减区间k π+]1211k ,125π+ππ 3对称中心62k π+π;0;对称轴π+π=1252k x ;k ∈Z39.解:原方程变形为:2cos 2x - sin x + a = 0 即 2 - 2sin 2x - sin x + a = 0;∴817)41(sin 22sin sin 222-+=-+=x x x a ;∵- 1≤sin x ≤1 ;∴81741sin m in -=-=a x 时,当; 11sin m ax ==a x 时,当; ∴a 的取值范围是1,817-。

三角函数典型题一题多解与多题一解

三角函数典型题一题多解与多题一解
解法五: (卢杨提供)
5 cos 2 x sin 2 x sin 2 x ;cos x sin x 2 2 4 4 13 sin 2 x 2sin x cos x cos 2 x 4 4 4 2 cos x 24 4 13 cos x cos x sin x 4 4 4
2
由此得到 sin 2 x 进而得到 cos 2 x .
50 50 1 2sin x cos x 169 169
cos 2 x cos 2 x sin 2 x 13 24 cos x sin x cos x sin x 5 5 13 思路(3) cos x 13 4
三角函数一题多解解法探究
典例题目:已知 sin
cos 2 x 5 x , x 0, ,求 4 13 4 cos x 4
解法一: (卢奕冰提供)
12 x 0, x , 0 cos x ① 4 4 4 4 13
cos 2 x 24 5 cos x sin x 13 4 4 13 cos x 4
解法二: (曾荟源提供) 由解法一①可知: sin
5 2 5 x cos x sin x ③ 13 4 13
解法六: (王敏提供)
cos 2 x cos 2 x sin 2 x 24 2 cos x sin x 2 cos x 4 13 2 cos x cos x sin x 4 2

高考数学三角函数知识点及典型例题讲解

高考数学三角函数知识点及典型例题讲解

――概念、方法、题型、易误点及应试技巧总结三角函数1、角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。

按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。

射线的起始位置称为始边,终止位置称为终边。

2、象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。

如果角的终边在坐标轴上,就认为这个角不属于任何象限。

3. 终边相同的角的表示:(1)α终边与θ终边相同(α的终边在θ终边所在射线上)⇔2()k k αθπ=+∈Z ,注意:相等的角的终边一定相同,终边相同的角不一定相等.如与角 1825-的终边相同,且绝对值最小的角的度数是___,合___弧度。

(答:25-;536π-)(2)α终边与θ终边共线(α的终边在θ终边所在直线上) ⇔()k k αθπ=+∈Z . (3)α终边与θ终边关于x 轴对称⇔2()k k αθπ=-+∈Z . (4)α终边与θ终边关于y 轴对称⇔2()k k απθπ=-+∈Z . (5)α终边与θ终边关于原点对称⇔2()k k απθπ=++∈Z .(6)α终边在x 轴上的角可表示为:,k k Z απ=∈;α终边在y 轴上的角可表示为:,2k k Z παπ=+∈;α终边在坐标轴上的角可表示为:,2k k Z πα=∈.如α的终边与6π的终边关于直线x y =对称,则α=____________。

(答:Z k k ∈+,32ππ)4、α与2α的终边关系:由“两等分各象限、一二三四”确定.如若α是第二象限角,则2α是第_____象限角 (答:一、三)5.弧长公式:||l R α=,扇形面积公式:211||22S lR R α==,1弧度(1rad)57.3≈. 如已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积。

三角函数一题多解举例.doc

三角函数一题多解举例.doc

所以函数尸鵲仏I 的值域为占,分厂cos —°,可看成点 sin& —(一2)A(sin&,cos0)与B(-2,0)连线的斜率,而一l-2sin&(2 + sin^)2 三角函数一题多解举例例1:求函数)U (&G /?)的值域。

2 + sin&解法一:利用合一公式 y = 2'°" => 2y = -y sin 0 + cos & =y? sin(& + 0),所以sin(0 + 0)= I 2丁,又|sin(0 + 0)|Wl, Jl + F叫少'解得兴解法二:斜率法(sin&,cos&)在圆 F + y 2 =1 上,当AB 与圆相切时分别取到最值,结合图形易得函数尸鼎伍R )的值域为[芈孚解法三:导数法y'= 0 得 sin& =-*,cos& = ± 专,从而 - ¥,¥, 令 2:对任意xe /?,<7cosx + /?cos2x>-ltii 成立,求a + b 的最大值. 例解法一:特值法,特别快2^^] | ® 6zcosx + /?cos 2x > -1 中取兀=—— 得 d(——) + /?(——)> -1, a + h <2, 3 2 24 2 4 2 4 2 2当 a =—,b =—时,a cos x + b cos 2x = — cos x + — cos 2x = — cos x + — (2 cos x-1) 3 3 3 3 3 34 1 . 一=—(cos x H —)~ —in —1 ,所以 d + b 的最大值为 2. 3 2解法二:构造二次函数原不等式即^cosx + /?(2cos 2x-1)>-1 即2/?cos 2x + acosx-b + 1 >0 ,⑵由一扩I 】 b-a+l>0得 a < 一4b 或 a > 4b ( /I + V8 丿当且仅当< /+8@_丄)2=2 2 6Z = 8(/?-—) 2 即< 4 a =—彳时取等号,此时满足 b = - 3性二斗[―1,1]・4h 2(3)由?令 f(t) = 2br +血一b + l,/ = cos 兀w [-1,1],(1) 当b<o 时,/(”的图象是开口向下的抛物线或者直线,所以只要+ +比"+丄1<2I /(l) = 2b + a —b + 120b>0若 a < —4b :则 a + b v —3b < 0 < 2 ;若 a>4b,则由 Z? + tz + l>0W4/?<6/<H-/?=>ft<-,故 Q + bG + 2bv2v2.b>0得小(十2,A = «2 2-4X 2/?(-/? + 1)<09 1由 柯西不 等式,2X ->[6/2+8(Z?一一)2] 8 2 综上,a + b 的最大值为2. 例 3:设0e [0,—] , cos 2 0 + 2msin 3-2m-2<0 fa 成立,求加的取值范围.2 解法1 (分离参数,构造函数,利用导数):不等式等价于 1 -sin 2 6 + 2msin 0-2m — 2<0 ,一sin? & + 2加sin&-2加一 1 <0 , zn(2sin &一 2) v sin 2 0 + 1.V 0e [0,-] , sin % [0,1]. 2(1) 当sin& = l 吋,不等式显然成立.2 3 a + b ——< —^> a + b<2 ,n (d + b-丄尸,故2(X-1)2-2 U-l)2<0,⑵当讪3)时,不等式等价于Q宁需11X + 1令sin 0 =兀,/(x) = ---------- (xe [0,1)),2x-1/(尢)是减函数,/(x)m;tx = /(0) = 一]••:航> 综上5的取值范围是(-+)・解法2 (利用二次函数的性质):不等式等价于]-sii?0 + 2/nsin0-2加一2<0 ,即一sin? & + 2加sin&-2"?-l <0 ,即sin2 0 - 2wsin 6 + 2m +1 >0.令sin & =兀,则x2 - 2nvc + 2m + 1 >0.令fM = 一2加:+ 2加 + 1 = (x-m)2 -m2 +2加 + 1,兀w [0,1].(1)当加>1时,/(Q斷二/(D = 2>0,符合题意.(2)当0 < m < 1 W , /(X)min =f (加)=一+ 2加 + 1 = -(/?? 一1)2 + 2 > 0,符合题意.(3)当加v0时,f(x)min = f(0) = 2m +1 >0, <m<0.综上,加的取值范围是(--,+oo).2解法3(分离参数,再分离常数,一般可以利用基本不等式,但是本题中利用基本不等式时等号不成立,于是仍然利用函数的单调性):不等式等价于1 - sin2 ^4-2msin0-2m-2<0 ,即- sin2 0 + 2/77sin 0一2m一1 v 0 ,即m(2sin 0 - 2) < sin20 + 1.V [0,-] , sin&w[0,l].2(1)当sin& = l吋,不等式显然成立.(2)当sin[0,1)时,不等式等价于加〉丄•也 "*' ,2 sin & -1设sin&-l =兀,则xe [-1,0),且丄.泄空丄(兀+ 1)2+1显心+ 2十2),2 sin^-1 2 x 2 x1 2 1 2^/U) = -.(x + - + 2),贝'J/Z(x) = -.(1-—)<0,2 x 21? I 1・•・ /(尢)是减函数,/(^)inax =-*(-l + —+ 2) = --. A m>-~.2—1 2 2综上,加的取值范围是(-丄,+<-)・2解法4(利用函数的图象):不等式等价于1 -sin26 + 2m sin0-2m-2<0 ,即一sin,& + 2加sin&-2加一1 <0 ,即sin20 > 2/?? sin 0 - 2m,令sin0 =兀,则x2 > 2/n(x-1)-1, xe [-1,0].在同一个坐标系中作出函数/(x) = 和g(x) = 2m(x-\)-\的图象,注意到g(兀)=2加(兀-1)-1的图象是以(1,-1)为端点的线段,由图象可知只要/(0)>g(0),即0 >-2加一1 , m>-—.即加的取值范围是(-丄,2).2解法5(直接求导法,注意分类讨论,实际上与解法2类似,只是没有换元):令/(〃) = cos20 + 2m sin O-2m-2 ,/'(&) = 一2cos 0sin & + 2mcos0 = -2cos &(sin & —加).•・・&G [0,-],・・・sin&w[0,l], cos6>G [0,1],2(1)当加>1 时,> 0 , /(&), &w[0,彳]是增函数, /(叽=/(彳)=-2<0,符合题意.(2)当0<m<l时,sin&5 时,f\0) >0 , sin0> 加时,f(0) <0 ,= 1 - fn2 + 2/n2 - 2m- 2 = m2 - 2m -1 = (m-1)2 - 2 < 0 ,符合题意.(3)当/nvO时,/(x)min = /(0) = 2m +1 >0, A --<m<0.2综上,加的取值范围是2。

解三角形一题多解举例

解三角形一题多解举例

解三角形一题多解举例例1:△ABC 的三边,,a b c 满足2a b c +≥,求证:60C ≤ .证法一:由余弦定理,222222()2cos 22a b a b a b c C ab ab++-+-=≥ 2233()214242222ab ab a b ab ab ab +-⨯-=≥=,又0180C << ,所以60C ≤ .证法二:由正弦定理,sin sin 2sin a b c A B C +≥⇒+≥2sin cos 22sin cos 2222A B A B C C +-⇒≥⨯,又sincos 022A B C +=>, 所以1cos 2sin 22A B C -≥≥, 所以1sin 22C ≤,又0902C << , 所以302C ≤ ,所以60C ≤ . 例2:在△ABC 中,2AB AC =,AD 是角平分线,且AD kAC =,求k 的取值范围.解法一:几何法,构造直角三角形设E 为AB 的中点,因为AB=2AC ,所以AE=AC ,连接CE 交AD 于F . 因为AD 平分∠BAC ,所以AD ⊥CE ,且F 为CE 的中点,过E 作EG ∥AD 交BC 于G ,则D 为CG 的中点,于是11DF=GE GE=AD 22,,所以1DF=AD 4,所以33k AF=AD=44AC ,又△ACF 为直角三角形, 则3,4k AF AC AC =<于是403k <<,所以k 的取值范围是4(0,)3. 解法二:利用余弦定理设,AC x =2AB x =,AD kx =,设12A θ∠=,由余弦定理 22222(2)()22cos (44cos )BD x kx x kx x k k θθ=+-=+- ,22222()2cos (12cos )DC x kx x kx x k k θθ=+-=+- ,又由三角形内角平分线性质定理,::2BD DC AB AC ==,所以224BD DC =,即2222(44cos )4(12cos )x k k x k k θθ+-=+-,所以4cos 3k θ=,又(0,)2πθ∈,所以4(0,)3k ∈.: 例3:已知ABC ∆,2()a b b c =+,求证:2A B =.证明:法一(直接化角,充分利用角変换):因为2sin ,2sin ,2sin ,a R A b R B c R C ===所以2222()sin sin (sin sin )sin sin sin sin a b b c A B B C A B B C =+⇒=+⇒=+ 1cos 21cos 2sin sin cos 2cos 22sin sin 22A B B C A B B C --⇒=+⇒-=-+cos 2cos 22sin sin B A B C⇒-=cos[()()]cos[()()]2sin sin A B A B A B A B B C ⇒+---++-=cos[()()]cos[()()]2sin sin A B A B A B A B B C ⇒+---++-=2sin()sin()2sin sin A B A B B C ⇒+-=,因为sin()sin 0A B C +=≠,所以sin()sin A B B -=,又,0,A B B πππ-<-<<<所以A B B -=,即2.A B =法二:(分析法)考虑先证明sin sin 2A B =,只要证明sin 2sin cos A B B =,只要证明22222a c b a b ac+-= , 只要证2222()a c b a c b =+-,注意到由已知22a b bc -=,只要证22()a c b bc c =+, 只要证2()a b b c =+,由已知此式成立,所以sin sin 2A B =成立,所以2A B =或2A B π+=,由2A B π+=结合A B C π++=可得B C b c =⇒=,又2()a b b c =+,所以222a b c =+, 所以2A π=,4B C π==,所以2A B =,综上2A B =.法三:可以把法二的分析法改为综合法,但是稍微变通一下,就是从角B 的余弦定理写起:因为2()a b b c =+, 所以2222sin cos 22222sin a c b c bc b c a A B ac ac a b B+-++=====, 所以sin sin 2A B =,所以2A B =或2A B π+=,由2A B π+=结合A B C π++=可得B C b c =⇒=,又2()a b b c =+,所以222a b c =+, 所以2A π=,4B C π==,所以2A B =,综上2A B =.。

高中数学技巧方法突破-例析三角函数式化简求值中的一题多解 (1)

高中数学技巧方法突破-例析三角函数式化简求值中的一题多解 (1)

例析三角函数式化简求值中的一题多解化简三角函数式是为了更清楚地显示式中所含量之间的关系,以便于某种要求的应用.一般从函数名、角、运算三方面进行差异分析,遵循化繁为简、清除差异的原则,常用的方法技巧有:切割化弦,降幂,用三角公式转化出现特殊角,异角化同角,异名化同名,高次化低次等.一、三角函数式的求值例1.已知3sin α+4cos α=5,求tan α.解析:法一:由题意得3sin α=5-4cos α,两边平方,得9sin 2α=25-40cos α+16cos 2α,则25cos 2α-40cos α+16=0,解得cos α=45,则sin α=35,故tan α=34. 法二:把等式两边平方,整理得9sin 2α+24sin αcos α+16cos 2α=25(sin 2α+cos 2α),两边同时除以cos 2α,整理得16tan 2α-24tan α+9=0,解得tan α=34. 法三:把等式3sin α+4cos α=5两边平方,整理得9sin 2α+24sin αcos α+16cos 2α=25,即αα2222cos sin α16cos +α αcos 24sin +α9sin +=25,分子分母同时除以cos 2α,整理得16tan 2α-24tan α+9=0,解得tan α=34. 点评:已知部分三角函数值(或关系)求其他三角函数值的解题思路一般童年过建立方程组求解,一般思路是:(1)将等式变形后结合cos 2α+sin 2α=1减少变量,变形为关于cos α或sin α的方程,通过解方程求解;(2)逆用cos 2α+sin 2α=1,化为cos α,sin α的齐次式,利用“弦化切”,得关于tan α的方程,解方程得结论.例2.已知α是三角形的内角,且sin α+cos α=15,求tan α的值 解析:(1)法一:联立方程⎩⎪⎨⎪⎧sin α+cos α=15, ①sin 2 α+cos 2 α=1, ②由①得 cos α=15-sin α, 将其代入②,整理得25sin 2 α-5sin α-12=0.∵α是三角形内角, ∴⎩⎨⎧ sin α=45,cos α=-35,∴tan α=-43. 法二:∵sin α+cos α=15, ∴(sin α+cos α)2=⎝⎛⎭⎫152,即1+2sin αcos α=125, ∴2sin αcos α=-2425,∴(sin α-cos α)2=1-2sin αcos α=1+2425=4925. ∵sin αcos α=-1225<0且0<α<π, ∴sin α>0, cos α<0, sin α-cos α >0.∴sin α-cos α=75.由⎪⎩⎪⎨⎧=-=+,57cos sin ,51cos sin αααα得⎪⎩⎪⎨⎧==,53cos ,54sin αα ∴tan α=-43. 点评:已知sin α±cos α的值,求三角函数值,一般思路是将该等式平方求得sin αcos α,建立方程组⎩⎨⎧=-=+,cos sin ,1cos sin 22b αααα或⎩⎨⎧=-=+,cos sin ,cos sin b a αααα求解. 二、三角函数式的化简三角函数式化简的基本规律:“一角二名三结构”,即:一看“角”,这是最重要的一环,通过角之间的差别与联系,把角进行合理地拆分,从而正确使用公式;二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“弦切互化”; 三看“结构特征”,分析结构特征,找到变形的方向,常见的有“遇到分式要通分”,“遇根式化被开方式为完全平方式”等.最后需注意的是根式的化简常常需要升幂去根号,在化简过程中注意角的范围,以确定三角函数值的正负.例2.化简:1-cos 4α-sin 4α1-cos 6α-sin 6α. 解析:法一:原式=(cos 2α+sin 2α)2-cos 4α-sin 4α(cos 2α+sin 2α)3-cos 6α-sin 6α=2cos 2α·sin 2α3cos 2αsin 2α(cos 2α+sin 2α)=23. 法二:原式=1-(cos 4α+sin 4α)1-(cos 6α+sin 6α)=1-[(cos 2α+sin 2α)2-2cos 2α·sin 2α]1-(cos 2α+sin 2α)(cos 4α-cos 2α·sin 2α+sin 4α)=1-1+2cos 2α·sin 2α1-[(cos 2α+sin 2α)2-3cos 2α·sin 2α]=2cos 2α·sin 2α3cos 2α·sin 2α=23. 法三:原式=(1-cos 2α)(1+cos 2α)-sin 4α(1-cos 2α)(1+cos 2α+cos 4α)-sin 6α=sin 2α(1+cos 2α-sin 2α)sin 2α(1+cos 2α+cos 4α-sin 4α)=2cos 2α1+cos 2α+(cos 2α+sin 2α)(cos 2α-sin 2α)=2cos 2α1+cos 2α+cos 2α-sin 2α=2cos 2α3cos 2α=23. 点评:以上三种解法虽然思路不同,但是关键都是应用公式:sin 2α+cos 2α=1,解法二和解法三都是顺用公式,而解法一则是逆用公式,从此例的解法中我们还可以看到,公式sin 2α+cos 2α=1具有“降幂”的作用,当然如果逆用公式则有“升幂”的作用,故该公式可作为升、降幂公式用.三、三角函数式的证明恒等式证明的形式有化繁为简,左右归一,变更论证等.其基本原则是从消去等式两端的差异去思考,或“从左证到右”,或“从右证到左”,或“从两边到中间”地具体操作.例3.求证:cos α1-sin α=1+sin αcos α. 证明:证法一:左边=cos 2αcos α(1-sin α)=1-sin 2αcos α(1-sin α)=(1+sin α)(1-sin α)cos α(1-sin α)=1+sin αcos α=右边,等式成立. 证法二:右边=(1+sin α)(1-sin α)cos α(1-sin α)=1-sin 2αcos α(1-sin α)=cos 2αcos α(1-sin α)=cos α1-sin α=左边,等式成立.证法三:左边=cos 2α(1-sin α)cos α, 右边=(1+sin α)(1-sin α)(1-sin α)cos α=1-sin 2α(1-sin α)cos α=cos 2α(1-sin α)cos α,∴左边=右边,∴等式成立. 证法四:∵cos α1-sin α-1+sin αcos α =cos 2α-(1+sin α)(1-sin α)(1-sin α)cos α=cos 2α-cos 2α(1-sin α)cos α=0. ∴等式成立.证法五:左边=cos α1-sin α=cos α(1+sin α)(1-sin α)(1+sin α)=cos α(1+sin α)1-sin 2α=1+sin αcos α=右边. 证法六:∵(1-sin α)(1+sin α)=1-sin 2α=cos 2α, ∴cos α1-sin α=1+sin αcos α. 证法七:若证cos α1-sin α=1+sin αcos α成立, 只需证cos α·cos α=(1-sin α)(1+sin α),即证cos 2α=1-sin 2α,此式成立,∴原等式cos α1-sin α=1+sin αcos α成立. 点评:关于三角恒等式的证明,证明方法策略有:(1)从一边开始,证得它等于另一边,一般由繁到简.如法1、法2(2)左右归一法:即证明左右两边都等于同一个式子.如法3(3)凑合方法:即针对题设与结论间的差异,有针对性地变形,以消除其差异的方法,简言之,即化异为同的方法.如法5.(4)比较法:即设法证明“左边-右边=0”或“左边右边=1”.如法4. (5)分析法:从被证的等式出发,逐步地探求使等式成立的充分条件,一直到已知条件或明显的事实为止,就可以断定原等式成立.如法6,法7。

高考三角函数一题多解

高考三角函数一题多解

一道高考题的解析引发的深思(2013全国新课标I 卷)理科15,文科16题。

题目:设当θ=x 时,函数x x x f cos 2sin )(-=取得最大值,则_____cos =θ 法一:直接使用辅助角公式解: )cos 52sin 51(5cos 2sin )(x x x x x f -=-= ∴取52sin ,51cos ==ϕϕ(三角替换,辅助角公式中ϕ由来) 即)sin(5)(ϕ-=x x f θ=x 时,函数值最大1)sin(=-∴ϕθ,,即Z k k ∈+=,22-ππϕθ(找到θ与ϕ的关系)所以55252sin )22cos(cos -=-=-=++=ϕπϕπθk 此法少见的接触到了辅助角求值问题法二:借用辅助角公式(避开辅助角)解: )sin(5)(ϕ-=x x f (求最值) 5)(max =∴x f当θ=x 时,函数求得最大值 5cos 2sin )(=-=∴θθθf 联立1cos sin 22=+θθ,解方程组∴消正弦得,1cos )cos 25(22=++θθ即04cos 54cos 52=++θθ解得552cos -=θ 思考:此刻你在想什么呢?庆幸解唯一,还是当心解不唯一怎么处理呢?能不能一开始就可以确定θ角的位置呢?观察函数,正弦应该取正,而余弦取负才可能有最大值,满足此要求的角在第二象限,是不是免去你的后照顾之忧呢。

法三:利用∆判别式——————(尴尬!!!!汗颜!!!!!)解:令x x y cos 2sin -=则x y x cos 2sin +=消正弦带入1cos sin 22=+x x 得1cos )cos 222=++x x y ( 化简得01cos 4cos 522=-++y x y x (将余弦视作一个整体,这是一元二次方程) 有解得0)1(54)4(22≥-⨯-=∆y y即有55≤≤-y ,函数最大值是5 (为么要这么费劲呢?)所以y 取最大值5时,有04cos 54cos 52=++x x (明白了吗) θcos 552cos =-=x 解得 法四:数形结合为了运算的简洁,令xx m cos 2sin -= 再联想到1cos sin 22=+x x 可以试试寻找几何意义1sin cos cos 2sin 22=++=x x m x x 如果按照一般习惯将正弦视作纵坐标,余弦视作横坐标 即1222=++=y x mx y 联立表示要相交 ! 求直线的最大纵截距(相切时最大或最小如图)5.0tan =∠AOB ,运用几何知识A 点坐标为),(55552- 横坐标为余弦,即552cos -=θ 法五:不等式法解:)cos 2sin 1cos 2sin )(x x x x x f -⨯+⨯=-=( 若函数值最大,则正弦为正,余弦为负 使用柯西不等式有5)21()cos sin )cos 2sin 12222=+⨯+≤-⨯+⨯x x x (( 所以5)(≤x f 当且仅当x x cos sin 2-=取到等号。

三角函数典型例题分析

三角函数典型例题分析

三角函数典型例题分析目录0°~360°间的三角函数.典型例题分析 (3)弧度制.典型例题分析 (3)任意角的三角函数.典型例题分析一 (5)任意角的三角函数.典型例题精析二 (7)同角三角函数的基本关系式.典型例题分析 ............................. 诱导公式.典型例题分析............................................. 用单位圆中的线段表示三角函数值.典型例题分析 ....................... 三角公式总表....................................................... 正弦函数、余弦函数的图象和性质.典型例题分析 (28)函数y=Asin(wx+j)的图象·典型例题分析............................... 正切函数、余切函数的图象和性质·典型例题分析 ....................... 已知三角函数值求角·典型例题分析 ................................... 全章小结........................................................... 高考真题选讲.......................................................0°~360°间的三角函数·典型例题分析例1已知角α的终边经过点P(3a,-4a)(a<0,0°≤α≤360°),求解α的四个三角函数.解如图2-2:∵x=3a,y=-4a,a<0例2求315°的四个三角函数.解如图2-3,在315°角的终边上取一点P(x,y)设OP=r,作PM垂直于x轴,垂足是M,可见∠POM=45°注:对于确定的角α,三角函数值的大小与P点在角α的终边上的位置无关,如在315°的角的终边上取点Q(1,-1),计算出的结果是一样的.弧度制·典型例题分析角度与弧度的换算要熟练掌握,见下表.例2将下列各角化成2kπ+α(k∈Z,0≤α<2π)的形式,并确定其所在的象限。

浅析一题多解与一题多变在高中数学教学中的应用

浅析一题多解与一题多变在高中数学教学中的应用

2024年2月上半月㊀学习指导㊀㊀㊀㊀浅析一题多解与一题多变在高中数学教学中的应用◉江苏东海高级中学㊀冯月华㊀㊀在高中数学教学中,一题多解与一题多变教学是常用的方法,以期通过多角度分析达到夯实基础,培养学生创新能力和探究能力,提高学生发现㊁提出㊁分析和解决问题能力的目的[1].下面笔者以两道典型的三角函数题为例,谈谈对一题多解与一题多变教学的一些粗浅认识,供参考!1一题多解,培养思维的发散性例1㊀已知t a n(α2+π4)=-3,求1+s i nα的值.本题主要考查二倍角公式㊁和角的正切公式㊁ 1 的灵活转化等知识点,解题方法不唯一.根据预设可以看出,学生对 1 的转化比较熟悉,例如1+s i n x=s i n x2+c o s x2,1-s i n x=s i n x2-c o s x2.教师先让学生独立解题,然后与学生共同交流.师:谁来说一说,你是如何求解例1的?生1:因为t a n(α2+π4)=-3,根据两角和的正切公式,易求出t a nα2=2,所以α2的终边在第一或第三象限.由同角三角函数的基本关系式,进一步可求出s i nα2=255,c o sα2=55,或s i nα2=-255,c o sα2=-55,则都有1+s i nα=s i nα2+c o sα2=355,所以1+s i nα=355.师:很好!生1从已学习过的知识出发,利用1+s i nα=s i nα2+c o sα2解决了问题.我们知道三角函数形式是灵活多变的,还有没有其他的方法呢?生2:我在此基础上做了改进.由t a n(α2+π4)=-3,可以得到s i n(α2+π4)=ʃ31010,所以可得s i nα2+c o sα2=2s i n(α2+π4)=355,即1+s i nα=355.师:很好!生2从问题出发,灵活运用有关三角恒等变换公式,将已知和问题建立了联系,真正体现了知识的活学活用.学生给出预设的两种解法后,教师准备开始其他问题的探究,但生3又提出了新思路.生3:可从已知条件出发,因为t a n(α2+π4)=-3,利用二倍角公式得t a n(α+π2)=34,所以t a nα=-43,则s i nα=ʃ45,解得1+s i nα=355或55.我感觉自己的思路和过程没有问题,但是却和前面两位同学的结果不一致.生3给出的方法超出了教师的预设,教师一时不知如何回答.不过该方法是学生的真实想法,且具有一定的科学性和探究性,为此选择与学生共同探索,挖掘答案不一致的真正原因.师:生3的答案和之前两位同学的答案不一致,是前面两位同学的结果不够完善,还是生3的结果存在增根呢?这个确实是一个非常有价值的问题.问题到底出现在哪里呢?生4:我感觉生3的解题思路和计算过程没有问题,已知条件仅给出了t a n(α2+π4)=-3,没有给出α的范围,所以很难确定α的终边在哪一个象限.师:条件中确实没有给出α的范围,那么α的范围真的没有办法确定吗生5:可以将t a n(α2+π4)与特殊角的三角函数比较,逐步缩小角的范围.由t a n(α2+π4)=-3<-3,得kπ-π2<α2+π4<kπ-π3,所以2kπ-3π2<α<2kπ-7π6(kɪZ),由此可知,α在第二象限.师:分析得非常有道理!那么是什么原因使生3解题时出现了增根呢95学习指导2024年2月上半月㊀㊀㊀生6:问题应该出现在 由t a n(α2+π4)=-3,利用二倍角公式得t a n (α+π2)=34这一步的变换上,变换时扩大了α的范围,从而出现了增根.对于同一题,思考的角度不同,其解决方法也会有所不同,不过最终的结果是一致的.在日常教学中,教师应鼓励学生尝试从不同角度探索解决问题的方法,这样可以有效激活学生的原认知,提高分析和解决问题的能力.2一题多变,培养思维的灵活性例2㊀已知α是三角形的内角,且s i n α+c o s α=15,求t a n α的值.例2考查同角三角函数基本关系式及其应用,难度不大,教师先让学生独立求解,然后师生互动交流.师:对于例2,大家是怎么想的?生1:我是用方程的思想方法求解的,由s i n α+c o s α=15和s i n 2α+c o s 2α=1,解得s i n α=-35,c o s α=45,或s i n α=45,c o s α=-35.又α是三角形的内角,所以s i n α=45,c o s α=-35.所以t a n α=-43.师:非常好!根据同角三角函数的基本关系式,运用方程的思想方法顺利解决了问题.对于该题,大家还有其他解题思路吗生2:由(s i n α+c o s α)2=1+2s i n αc o s α=125,得2s i n αc o s α=-2425<0.又α是三角形的内角,所以α为钝角,则s i n α>0,c o s α<0.又(s i n α-c o s α)2=4925,所以s i n α-c o s α=75,将其与s i n α+c o s α=15联立,求得s i n α=45,c o s α=-35,所以t a n α=-43.师:很好!根据角的范围判断三角函数的符号往往是解三角函数问题的关键,解题时切勿忘记.学生顺利完成例2的解答后,教师给出如下变式问题:变式㊀若t a n θ=2,求s i n 2θ+s i n θc o s θ-2c o s 2θ.此变式同样考查 s i n 2θ+c o s 2θ=1的灵活运用,将原式变为s i n 2θ+s i n θc o s θ-2c o s 2θs i n 2θ+c o s 2θ,将此式的分子分母同时除以c o s 2θ,转化为关于t a n θ的式子,进而将已知条件代入即可求得答案.例2及变式求解后,教师引导学生对以上解题方法进行归纳总结,从而提高学生解决一类问题的能力.在此基础上,教师继续提出新问题:(1)变式的条件还可以做怎样的变形?如果将t a n θ=2变为t a nθ2=2或3s i n θ+c o s θ=0或s i n (3π+θ)=2s i n (3π2+θ),该如何求解?(2)变式的问题还可以做哪些变形?如果是2s i n θ-c o s θs i n θ+2c o s θ,1c o s 2θ+2s i n 2θ,s i n 2θ-c o s 2θ1+c o s 2θ,又该如何求解?通过以上变式,引导学生体会该类题型考查的核心内容是s i n 2θ+c o s 2θ=1,t a n θ=s i n θc o s θ与 1的灵活应用,题目虽然形式不同,但是所用的知识㊁思路与方法基本相同.这样通过一题多变既能加深对相关知识㊁方法的理解,又能增强学生解题信心,提高学生解决问题的能力.数学题目千变万化,更换一个条件或结论就会成为一道新题.为了帮助学生跳出 题海 ,教学中应注重对一些典型例题进行变式教学,这样既能加深相关知识的理解,又能激发学生的探究欲望,提高学生的思维能力和学习能力,从而让学生逐渐爱上数学学习[2].3结束语在实际教学中,教师要通过一题多解与一题多变为学生提供更多的自主探究空间,以此帮助学生加深对所学知识的理解,培养良好的学习习惯和独立的个性.学生是课堂的主体.教学过程中,教师要尊重学生㊁相信学生,提供时间和空间让学生主动参与课堂,切实提高教学有效性和学生数学能力.在实际教学中,教师既要进行充分的预设,又要及时捕捉精彩的课堂生成,以平等对话的态度了解学生的真实想法,共同研究解决问题的策略,激发学生参与课堂的积极性,促成深度学习.总之,在解题教学中,教师切勿越俎代庖,应该充分发挥学生的主体价值,通过一题多解㊁一题多变教学提炼解题规律和解题方法,培养学生的创新㊁探究能力,提升教学有效性.参考文献:[1]郭靖.基于核心素养的引导探究教学模式的探索与实践 高中新教材不等式性质的教学案例[J ].中文科技期刊数据库(全文版)教育科学,2021(6):168G170.[2]陈光建,郑日锋.一花一世界一题一天地 一节高考二轮复习的教学设计及反思[J ].中小学数学(高中版)2013(4):20G22.Z06。

三角恒等变形中的一题多解

三角恒等变形中的一题多解

三角恒等变形中的一题多解三角恒等变形中的题目变换非常多,解题思路很广,下面就两道题谈一谈它的几种解法。

例1:设角α∈(0,π),sinα+cosα=■,则cos2α的值是()A. ■B. -■C. -■D. ■或-■这道题如果不认真分析,从题目中给的条件α∈(0,π),从而2α∈(0,2π),所以cos2α就应该有两个值。

答案选D,那就错了。

但在课堂上,学生的思路还是很清楚的,有学生很快就上黑板展示了他的方法。

方法一:由sinα+cosα=■,平方得2sinαcosα=-■,所以可得到α∈(■,π),进而α∈(■,■),所以2α∈(π,■),所以cos2α=-■=-■。

方法二:因为cos2α=cos2α-sin2α=(cosα+sinα)(cosα-sinα)只需求出cosα-sinα的值,由sinα+cosα=■,平方得2sinαcosα=-■,所以可得到α∈(■,π),所以cosα-sinα=-■=-■=-■=-■。

方法三:由sinα+cosα=■,得■sin(α+■)=■,所以sin(α+■)=■,由α∈(■,π),得α+■∈(■,■),cos(α+■)=-■=-■,c os2α=sin(2α+■)=sin[2(α+■)]=2sin (α+■)cos(α+■)=2×■×(-■)=-■。

例2:求y=tan20°+4sin20°的值。

分析1:运用切割化弦,通过通分化简后,若不考虑将和式转化为积式,而是对角进行变换,观察到运算的式子中出现的两角为20°,40°,与特殊角比较则会有60°-40°=20°,变角后再应用两角差的正弦公式展开进行化简。

分析2:我们在运用“切割化弦”时,若不利用商数关系tanθ■,而是将tan20°利用半角公式tan■=■进行化弦,也能进行求值。

解法2:点评:本题利用综合法求得了tan20°+4sin20°的值,在这里首先进行角的变换,然后利用两角差的正弦公式展开,合并同类项后,再进行弦化切割,从而得到所要求的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数一题多解举例
例1:求函数cos 2sin y θθ
=+(R θ∈)的值域。

解法一:利用合一公式
cos 2sin cos )2sin y y y θθθθφθ
=⇒=-+=++, 所以
sin()θφ+=|sin()|1θφ+≤,
1≤,解得y ≤≤,
所以函数cos 2sin y θθ
=
+(R θ∈)的值域为[,33-。

解法二:斜率法 cos 0sin (2)
y θθ-=--,可看成点(sin ,cos )A θθ与(2,0)B -连线的斜率,而(sin ,cos )θθ在圆221x y +=上,
当AB 与圆相切时分别取到最值,结合图形易得函数cos 2sin y θθ=+(R θ∈)的
值域为[33
-. 解法三:导数法
212sin (2sin )
y θθ--'=+,令0y '=得1sin ,cos 2θθ=-=,从而[y ∈. 例2:对任意,cos cos 21x R a x b x ∈+≥-恒成立,求a b +的最大值. 解法一:特值法,特别快
在cos cos21a x b x +≥-中取23x π=得11()()122
a b -+-≥-,∴2a b +≤, 当42,33a b ==时,24242cos cos 2cos cos 2cos (2cos 1)3333
a x
b x x x x x +=+=+- 241(cos )1132x =+-≥-,所以a b +的最大值为2. 解法二:构造二次函数
原不等式即2
cos (2cos 1)1a x b x +-≥-即22cos cos 10b x a x b +-+≥,
令2
()21,cos [1,1]f t bt at b t x =+-+=∈-,
(1)当0b ≤时,()f t 的图象是开口向下的抛物线或者直线, 所以只要(1)2102112(1)210f b a b a b b f b a b -=--+≥⇒+≤+≤<⎧⎨=+-+≥⎩
(2)由0[1,1]41010b a b b a b a >⎧⎪⎪-∉-⎪⎨⎪-+≥⎪++≥⎪⎩得44a b a b <->或
若4,a b <-则302a b b +<-<<;
若4,a b >则由10b a ++≥得1413b a b b <≤+⇒<,故51223
a b b +≤+<<. (3)由20[1,1]442(1)0b a b a b b >⎧⎪⎪-∈-⎨⎪∆=-⨯-+≤⎪⎩得2218()22a b +-≤, 由柯西不等式
,222229112[8()]1()822a b a b ⎛⎫ ⎪⨯≥+-+≥+- ⎪⎝⎭
,故13222
a b a b +-≤⇒+≤, 当且仅当2218()2218()2a b a b ⎧+-=⎪⎪⎨⎪=-⎪⎩即4323
a b ⎧=⎪⎪⎨⎪=⎪⎩时取等号,此时满足1[1,1]42a b -=-∈-. 综上,a b +的最大值为2. 例3:设[0,]2
π
θ∈,且2cos 2sin 220m m θθ+--<恒成立,求m 的取值范围. 解法1(分离参数,构造函数,利用导数):
不等式等价于21sin 2sin 220m m θθ-+--<,
2sin 2sin 210m m θθ-+--<,
2(2sin 2)sin 1m θθ-<+. ∵[0,]2
π
θ∈,sin [0,1]θ∈. (1)当sin 1θ=时,不等式显然成立.
(2)当sin [0,1)θ∈时,不等式等价于21sin 12sin 1
m θθ+>⋅-, 令sin ,x θ=211()([0,1))21
x f x x x +=⋅∈-,则221(1)2()02(1)x f x x --'=⋅<-, ()f x 是减函数, max 1()(0).2f x f ==-∴1.2
m >- 综上,m 的取值范围是1(,)2
-+∞.
解法2(利用二次函数的性质):
不等式等价于21sin 2sin 220m m θθ-+--<,
即2sin 2sin 210m m θθ-+--<,
即2sin 2sin 210m m θθ-++>.
令sin x θ=,则22210x mx m -++>.
令222()221()21,[0,1].f x x mx m x m m m x =-++=--++∈
(1)当1m >时,min ()(1)20f x f ==>,符合题意.
(2)当01m ≤≤时,22min ()()21(1)20,f x f m m m m ==-++=--+>符合题意.
(3)当0m <时,min ()(0)210,f x f m ==+>∴1
0.2
m -<< 综上,m 的取值范围是1
(,)2
-+∞.
解法3(分离参数,再分离常数,一般可以利用基本不等式,但是本题中利用基本不等式时等号不成立,于是仍然利用函数的单调性):
不等式等价于21sin 2sin 220m m θθ-+--<, 即2sin 2sin 210m m θθ-+--<,即2(2sin 2)sin 1m θθ-<+. ∵[0,]2
π
θ∈,sin [0,1]θ∈. (1)当sin 1θ=时,不等式显然成立.
(2)当sin [0,1)θ∈时,不等式等价于21sin 12sin 1
m θθ+>⋅-, 设sin 1x θ-=,则[1,0)x ∈-, 且221sin 11(1)112(2)2sin 122x x x x
θθ+++⋅=⋅=⋅++-, 令12()(2)2f x x x =⋅++,则212()(1)02f x x
'=⋅-<, ∴()f x 是减函数, ∴max 121()(12).212f x =⋅-++=--∴1.2
m >- 综上,m 的取值范围是1(,)2
-+∞.
解法4( 利用函数的图象):
不等式等价于21sin 2sin 220m m θθ-+--<,
即2sin 2sin 210m m θθ-+--<,即2sin 2sin 21m m θθ>--,
令 sin x θ=,则22(1)1x m x >--,[1,0]x ∈-.
在同一个坐标系中作出函数2()f x x =和()2(1)1g x m x =--的图象, 注意到()2(1)1g x m x =--的图象是以(1,1)-为端点的线段,
由图象可知只要(0)(0),f g >即021m >--,∴1
.2
m >- 即m 的取值范围是1
(,)2
-+∞. 解法5(直接求导法,注意分类讨论,实际上与解法2类似,只是没有换元) : 令2()cos 2sin 22f m m θθθ=+--,
()2cos sin 2cos 2cos (sin )f m m θθθθθθ'=-+=--. ∵[0,]2
π
θ∈,∴sin [0,1]θ∈,cos [0,1]θ∈, (1)当1m >时,()0f θ'>,(),f θ[0,]2
π
θ∈是增函数, max ()()20,2
f f πθ==-<符合题意. (2)当01m ≤≤时,sin m θ<时,()0f θ'>,sin m θ>时,()0f θ'<, 2222max ()122221(1)20f m m m m m m θ=-+--=--=--< ,符合题意.
(3)当0m <时,min ()(0)210,f x f m ==+>∴10.2m -<<
综上,m 的取值范围是1
(,)2-+∞.。

相关文档
最新文档