人教版七年级数学上册竞赛试卷
2024年最新人教版七年级数学(上册)模拟试卷及答案(各版本)
![2024年最新人教版七年级数学(上册)模拟试卷及答案(各版本)](https://img.taocdn.com/s3/m/8b01e1d068dc5022aaea998fcc22bcd127ff420a.png)
2024年最新人教版七年级数学(上册)模拟试卷及答案(各版本)一、选择题(每题5分,共20分)1. 下列哪个选项是正确的数学定义?()A. 两个数的和等于它们的差B. 两个数的积等于它们的商C. 两个数的商等于它们的和D. 两个数的差等于它们的积2. 在下列四个选项中,哪个是正确的数学公式?()A. a² + b² = c²B. a² b² = c²C. a² + c² = b²D. a² c² = b²3. 下列哪个选项是正确的数学定理?()A. 平行四边形的对角线相等B. 平行四边形的对边相等C. 平行四边形的对角线互相垂直D. 平行四边形的对边互相垂直4. 下列哪个选项是正确的数学概念?()A. 正数B. 负数C. 零D. 所有实数二、填空题(每题5分,共20分)1. 一个数的平方根是它自己的数是______。
2. 一个数的立方根是它自己的数是______。
3. 一个数的倒数是它自己的数是______。
4. 一个数的相反数是它自己的数是______。
三、解答题(每题10分,共30分)1. 解答:求出下列方程的解。
x² 5x + 6 = 02. 解答:求出下列不等式的解集。
2x 3 < 73. 解答:求出下列方程组的解。
2x + 3y = 83x 2y = 5四、证明题(每题10分,共20分)1. 证明:两个角的和等于它们的补角的和。
2. 证明:两个直角三角形的斜边相等,则它们是全等的。
五、应用题(每题10分,共20分)1. 应用:小明从家出发,向东走了10米,然后向北走了5米,又向西走了3米。
问小明现在距离家有多远?2. 应用:一个长方形的长是8厘米,宽是5厘米。
求这个长方形的面积和周长。
六、附加题(每题10分,共20分)1. 附加:求出下列方程的解。
x³ 6x² + 11x 6 = 02. 附加:求出下列不等式的解集。
人教版七年级数学上册竞赛试卷.doc
![人教版七年级数学上册竞赛试卷.doc](https://img.taocdn.com/s3/m/abcad5b249649b6648d747b4.png)
21-31-第一学期人教版七年级数学竞赛试卷一、选择题(12个小题,每个小题3分,共36分。
) 1. 下列说法不正确的是( )A.分数都是有理数B.-a 是负数C.有理数不是正数就是负数D.绝对值等于本身的数是正数 2. .已知ab ≠0,则+的值不可能的是( )A . 0B .1C .2D . ﹣23.给出下列式子:0,3a ,π,错误!未找到引用源。
,1,3a 2+1,-错误!未找到引用源。
+y.其中单项式的个数是( )A.5B.1C.2D.34、计算:-2+5的结果是( )A. -7B. -3C. 3D. 7 5、2016年9月15日22时04分12秒,“天宫二号空间实验室”在酒泉卫星发射中心发射成功,它的飞行高度距离地球350千米,350千米用科学记数法表示应为( ) A. 3.5×102 B. 3.5×105 C. 0.35×104 D. 350×1036、下列各组数中,结果相等的是( )A. -22与(-2)2B. 与 ( )3C. -(-2)与-|-2|D. -12017与(-1)2017 7、已知b a m 225-和n b a -347是同类项,则2m - n 的值是( )A 、6B 、4C 、3D 、2 8.在有理数-4,0,-1,3中,最小的数是( ) A .-4 B .0 C .-1 D .39. 已知22(3)0a b -++=,则a b 的值是( )A .-6B . 6C . -9D .910.已知a ≤2,b ≥-3,c ≤5,且a -b +c =10,则a +b +c 的值等于( )。
(A )10 (B )8 (C )6 (D )411.若1x =时,式子37ax bx ++的值为4.则当1x =-时,式子37ax bx ++的值为( )A.12B.11C.10D.7 12. 8.四个图形是如图的展开图的是( )A 、B 、C 、D 、二、填空题(6个小题,每个小题4分,共24分)13、当正整数m= _________ 时,代数式的值是整数.14、(3a +2b)-2(a - )= a +4b ,则横线上应填的整式是 .15、已知(x+3)2与|y -2|互为相反数,z 是绝对值最小的有理数,则代数式(x+y)y +xyz 的值为 .16.在-2 ,-15,9, 0 ,10- 这五个有理数中,最大的数是 ,最小的数是 . 17.若23m ab +与43(2)n a b -是同类项,且它们的和为0,则mn = .18.已知3232572A x x x m =+-++,223B x mx =+-,若多项式A B +不含一次项,则多项式A B +的常数项是 .三、解答题 :(9个小题共90分) 19. (10分)计算:(1)5×(-2)+(-8)÷(-2); (2)71123627()3927-⨯-+;20.(10分)求下列未知数的值(1)x 2=25 (2)y 3= - 6421.(10分)计算:(1)8a +7b -12a -5b ; (2) 111111*********200523200422005232004⎛⎫⎛⎫⎛⎫⎛⎫+++++++-++++++⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭23 5322、(8分)在数轴上表示下列各数:321,-3,0,—1.5,并把所有的数用“<”号连接起来.23.(8分).先列式再计算: -1 减去 与 的和所得差是多少?24.(10分).先化简,再求值:(2-a 2+4a)-(5a 2-a -1),其中a =-2.25.(10分).已知x 、y 互为相反数,且|y -3|=0,求2(x 3-2y 2)-(x -3y)-(x -3y 2+2x 3)的值.26.一根长度为1米的木棍,第一次截去全长的12 ,第二次截去余下的13 ,第三次截去第二次截后余下的14 ,……,第n 次截去第(n-1)次截后余下的1n+1 。
2022-2023学年度人教版七年级数学上册第四章几何图形初步专题攻克试题(含答案及解析)
![2022-2023学年度人教版七年级数学上册第四章几何图形初步专题攻克试题(含答案及解析)](https://img.taocdn.com/s3/m/be5d0af018e8b8f67c1cfad6195f312b3169eba6.png)
人教版七年级数学上册第四章几何图形初步专题攻克考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,正方体的展开图为( )A .B .C .D .2、点M 、N 都在线段AB 上,且:2:3=AM MB ,:3:4AN NB =,若2MN =cm ,则AB 的长为( )A .60cmB .70cmC .75cmD .80cm3、将如图所示的直角三角形ABC 绕直角边AB 旋转一周,所得几何体从左面看为( ).A .B .C .D .4、已知6032α'∠=︒,则α∠的余角是( )A .2928'︒B .2968'︒C .11928'︒D .11968'︒ 5、如图,已知线段AB 上有三点,,C D E ,则图中共有线段( )A .7条B .8条C .9条D .10条6、如图,68AOB ∠=︒,OC 平分AOD ∠且15COD ∠=︒,则BOD ∠的度数为().A .28︒B .38︒C .48︒D .53︒7、如图,河道l 的同侧有,M N 两个村庄,计划铺设一条管道将河水引至,M N 两地,下面的四个方案中,管道长度最短的是( )A .B .C .D .8、永定河,“北京的母亲河”.近年来,我区政府在永定河治理过程中,有时会将弯曲的河道改直,图中A ,B 两地间的河道改直后大大缩短了河道的长度.这一做法的主要依据是( )A .两点确定一条直线B .垂线段最短C .过一点有且只有一条直线与已知直线垂直D .两点之间,线段最短9、如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么x ﹣2y +z 的值是( )A .1B .4C .7D .910、将如图所示的图形剪去两个小正方形,使余下的部分图形恰好能折成一个正方体,应剪去的两个小正方形可以是( )A .②③B .①⑥C .①⑦D .②⑥第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、用一个平面去截一个棱柱,截面的边数最多是8,则这个棱柱有____条棱2、如图所示的立体图形的名称是_____.3、如图,130∠=︒,则射线OA 表示是南偏东__________︒的方向.4、如图,直线a ∥b ,AB BC ⊥,如果148︒∠=,那么2∠=_______度.5、如图所示的三个图中,不是三棱柱的展开图的是_____.(只填序号)三、解答题(5小题,每小题10分,共计50分)1、已知∠AOB 和∠COD 均为锐角,∠AOB >∠COD ,OP 平分∠AOC ,OQ 平分∠BOD ,将∠COD 绕着点O 逆时针旋转,使∠BOC =α(0≤α<180°)(1)若∠AOB =60°,∠COD =40°,①当α=0°时,如图1,则∠POQ = ;②当α=80°时,如图2,求∠POQ 的度数;③当α=130°时,如图3,请先补全图形,然后求出∠POQ 的度数;(2)若∠AOB =m °,∠COD =n °,m >n ,则∠POQ = ,(请用含m 、n 的代数式表示).2、如图,点O 是线段AB 的中点,14cm OB =,点P 将线段AB 分为两部分,:5:2AP PB =.(1)求线段OP 的长.(2)点M 在线段AB 上,若点M 距离点P 的长度为4cm ,求线段AM 的长.3、如图,已知直线l 和直线外三点A ,B ,C ,按下列要求画图:(1)画射线AB ;(2)连接BC ,延长 BC 至点D ,使得CD=BC ;(3)在直线l 上确定点E ,使得点E 到点A ,点C 的距离之和最短.4、如图,已知点A 、B 、C 在同一直线上,M 是BC 的中点.(1)图中共有多少条线段;(2)若AC =20,BC =8.①求AB 的长;②求AM 的长.5、已知,如图150AOB ∠=,OC 是AOB ∠内的一条射线,射线OD 平分AOC ∠,射线OE 平分BOD ∠.(1)若射线OC 平分AOB ∠,求AOD ∠的度数;(2)若AOD EOC ∠=∠,求AOD ∠的度数.-参考答案-一、单选题1、A【解析】【分析】根据正方体的展开图的性质判断即可;【详解】A 中展开图正确;B 中对号面和等号面是对面,与题意不符;C 中对号的方向不正确,故不正确;D 中三个符号的方位不相符,故不正确;故答案选A .【考点】本题主要考查了正方体的展开图考查,准确判断符号方向是解题的关键.2、B【解析】【分析】根据:2:3=AM MB ,得到25AM AB =,由:3:4AN NB =,得到37AN AB =,从而得到MN AN AM =-3217535AB AB AB =-=,由此求解即可. 【详解】如图,∵:2:3=AM MB ,∴25AM AB =, ∴:3:4AN NB =, ∴37AN AB =, ∴MN AN AM =-3217535AB AB AB =-=,即3535270AB MN ==⨯=(cm ). 故选B .【考点】本题主要考查了线段的和差计算,解题的关键在于能够根据题意弄清线段之间的关系.3、C【解析】【分析】先将直角三角形旋转得到立体图形,再判断其左视图.【详解】解:将直角三角形旋转一周,所得几何体为圆锥,从左面看为等腰三角形,故选:C .【考点】本题考查了点、线、面、体,根据平面图形得到立体图形是解决问题的关键.4、A【解析】【分析】根据余角的定义、角度的四则运算即可得.和为90︒的两个角互为余角,且6032α'∠=︒,α∴∠的余角为909060322928α''︒-∠=︒-︒=︒,故选:A .【考点】本题考查了余角、角度的四则运算,熟练掌握余角的定义是解题关键.5、D【解析】略6、B【解析】【分析】根据OC 平分AOD ∠且15COD ∠=︒可得30AOD ∠=︒,再结合68AOB ∠=︒即可求得答案.【详解】解:∵OC 平分AOD ∠且15COD ∠=︒,∴230AOD COD ∠=∠=︒,又∵68AOB ∠=︒,∴38BOD AOB AOD ∠=∠-∠=︒,故选:B .【考点】本题考查了角的计算,熟练掌握角平分线的定义是解决本题的关键.7、A【分析】根据两点之间线段最短可判断方案A比方案C、D中的管道长度最短,根据垂线段最短可判断方案A 比方案B中的管道长度最短.【详解】解:四个方案中,管道长度最短的是A.故选:A.【考点】本题考查了垂线段:从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段.8、D【解析】【分析】根据线段的性质分析得出答案.【详解】由题意中改直后A,B两地间的河道改直后大大缩短了河道的长度,其注意依据是:两点之间,线段最短,故选:D.【考点】此题考查线段的性质:两点之间线段最短,掌握题中的改直的结果是大大缩短了河道的长度的含义是解题的关键.9、A【解析】【分析】将展开图还原成立体图,再结合相反数的概念即可求解.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“x”与“﹣8”是相对面,“y”与“﹣2”是相对面,“z”与“3”是相对面,∵相对面上所标的两个数互为相反数,∴x=8,y=2,z=﹣3,∴x﹣2y+z=8﹣2×2﹣3=1.故答案是:A【考点】本题主要考察正方体展开图和空间想象能力、相反数的概念,属于基础题型,难度不大.解题的关键是空间想象能力,即将展开图还原成立体图形.注意:正方体的表面展开图,相对的面之间一定相隔一个正方形.10、A【解析】【分析】利用正方体及其表面展开图的特点解题.【详解】A. 剪去②③后,恰好能折成一个正方体,符合题意;B. 剪去①⑥后,不能折成一个正方体,不符合题意;C. 剪去①⑦后,不能折成一个正方体,不符合题意;D. 剪去②⑥后,不能折成一个正方体,不符合题意.【考点】本题考查了正方体的展开图及学生的空间想象能力,正方体展开图规律:十一种类看仔细,中间四个成一行,两边各一无规矩;二三紧连错一个,三一相连一随意;两两相连各错一,三个两排一对齐;一条线上不过四,田七和凹要放弃.二、填空题1、18【解析】【分析】用平面去截一个棱柱时最多与所有面相交得到截面的边数与棱柱的面数相同,最少与三个面相交得三角形.因为截面的边数最多是8,所以棱柱有8个面,这是个六棱柱,一个n棱柱,其棱的数量由多边形的边数或顶点数来决定.底面多边形是n条边,则上下两个底面有棱(边)2n条,侧棱有n 条,一共有棱3n条.由此可见,六棱柱的棱数是18条.【详解】解:∵用平面去截一个棱柱时最多与所有面相交得到截面的边数与棱柱的面数相同,截面的边数最多是8,∴棱柱有8个面,是六棱柱,有18条棱.故答案为:18.【点睛】此题考查了截一个几何体,解题的关键是知道用一个平面去截一个棱柱时,截面经过棱柱的几个面,得到的截面形状就是几边形.2、三棱柱【解析】【分析】根据三棱柱的形状即可得出答案.解:∵该立体图形上面和底面都是三角形,且有三条棱,∴它的名称是三棱柱,故答案为:三棱柱.【点睛】本题主要考查立体图形的名称,关键是要牢记三棱柱的形状.3、60【解析】【分析】如图,利用互余的含义,先求解2∠的大小,再根据方向角的含义可得答案.【详解】∠=︒解:如图,130,2=90160,∴射线OA表示是南偏东60︒的方向.故答案为:60【点睛】本题考查的是互余的含义,方向角的含义,掌握“方向角的含义”是解本题的关键.4、42.【详解】∵AB⊥BC,∴∠ABC=90°,即∠1+∠3=90°,∵∠1=48°,∴∠3=42°,∵a∥b,∴∠2=∠3=42°.故答案为42.点睛:本题关键利用平行线的性质解题.5、③【解析】【分析】根据三棱柱的两底展开是在矩形两端各有一个三角形,侧面展开是三个矩形,可得答案.【详解】解:三棱柱的两底展开是在矩形两端各有一个三角形,侧面展开是三个矩形,所以不是三棱柱的展开图的是③.故答案为:③.【点睛】本题考查了几何体的展开图,注意两底面是对面,展开是两个全等的三角形,侧面展开是三个矩形.三、解答题1、(1)①50°;②50°;③130°;(2)12m°+12n°或180°-12m°-12n°【解析】【分析】(1)根据角的和差和角平分线的定义即可得到结论;(2)根据角的和差和角平分线的定义即可得到结论.【详解】解:(1)①∵∠AOB=60°,∠COD=40°,OP平分∠AOC,OQ平分∠BOD,∴∠BOP=12∠AOB=30°,∠BOQ=12∠COD=20°,∴∠POQ=50°,故答案为:50°;②解:∵∠AOB=60°,∠BOC=α=80°,∴∠AOC=140°,∵OP平分∠AOC,∴∠POC=12∠AOC=70°,∵∠COD=40°,∠BOC=α=80°,且OQ平分∠BOD,同理可求∠DOQ=60°,∴∠COQ=∠DOQ-∠DOC=20°,∴∠POQ=∠POC-∠COQ=70°-20°=50°;③解:补全图形如图3所示,∵∠AOB=60°,∠BOC=α=130°,∴∠AOC=360°-60°-130°=170°,∵OP平分∠AOC,∠AOC=85°,∴∠POC=12∵∠COD=40°,∠BOC=α=130°,且OQ平分∠BOD,同理可求∠DOQ=85°,∴∠COQ=∠DOQ-∠DOC=85°-40°=45°,∴∠POQ=∠POC+∠COQ=85°+45°=130°;(2)当∠AOB=m°,∠COD=n°时,如图2,∴∠AOC= m°+ α°,∵OP平分∠AOC,(m°+ α°),∴∠POC=12同理可求∠DOQ=12(n°+ α°),∴∠COQ=∠DOQ-∠DOC=12(n°+ α°)- n°=12(-n°+ α°),∴∠POQ=∠POC-∠COQ=12(m°+ α°)-12(-n°+ α°)=1 2m°+12n°,当∠AOB=m°,∠COD=n°时,如图3,∵∠AOB=m°,∠BOC=α,∴∠AOC=360°-m°-α°,∵OP平分∠AOC,∴∠POC=12∠AOC=180°12-(m°+ α°),∵∠COD=n°,∠BOC=α,且OQ平分∠BOD,同理可求∠DOQ=12(n°+ α°),∴∠COQ=∠DOQ-∠DOC=12(n°+ α°)-n°=12(-n°+ α°),∴∠POQ=∠POC+∠COQ=180°12-(m°+ α°)+12(-n°+ α°)=180°-12m°-12n°,综上所述,若∠AOB=m°,∠COD=n°,则∠POQ=12m°+12n°或180°-12m°-12n°.故答案为:12m°+12n°或180°-12m°-12n°.【考点】本题考查了角的计算,角平分线的定义,正确的识别图形是解题的关键.2、(1)6cm ;(2)16cm 或24cm【解析】【分析】(1)先计算出AB 的长,再计算PB ,则OP =OB -BP ;(2) 运用分类的思想计算即可.【详解】解:(1)∵点O 是线段AB 的中点,∴228cm AB BO ==,∵:5:2AP PB =, ∴28cm 7BP AB ==, ∴6cm OP OB BP =-=.(2)若M 在P 左侧,2cm OM OP MP =-=,16cm AM AO OM =+=,若M 在P 右侧,10cm OM OP MP =+=,24cm AM AO OM =+=,∴AM 的长为16cm 或24cm .【考点】本题考查了线段的中点,线段的计算,运用分类思想求解是解题的关键.3、(1)见解析;(2)见解析;(3)见解析【解析】【分析】(1)射线AB即为起点为A,方向是从A向B,由此作图即可;(2)先连接线段BC,然后沿BC方延长,最后在延长线上截取CD=BC即可;(3)连接AC,与直线l的交点即为所求.【详解】解:(1)如图所示:射线AB即为所求;(2)如图所示:连接BC并延长线段,然后截取CD=BC,点D即为所求;(3)如图所示:连接AC交直线于点E,点E即为所求.【考点】本题考查基本作图,涉及线段,射线等,理解射线的定义,掌握两点之间线段最短是解题关键.4、(1)6条;(2)①AB=12.②AM=16.【解析】【分析】(1)根据线段的定义判断即可.(2)利用线段的和差定义,线段的中点的性质即可解决问题.【详解】解:(1)图中线段有:线段AB,线段AM,线段AC,线段BM,线段BC,线段MC,共6条.(2)①∵AC=20,BC=8,∴AB=AC﹣BC=20﹣8=12.②∵点M 是BC 的中点,BC =8,∴BM =12BC =4,∴AM =AB +BM =12+4=16.【考点】本题考查两点间距离,线段的和差定义等知识,解题的关键是理解题意,属于中考常考题型.5、 (1)37.5︒(2)30【解析】【分析】(1)先利用角平分线的定义求解75,AOC 再利用角平分线的定义可得答案;(2)设,AOD EOC x 再利用角平分线的定义分别表示,,COD BOE 再利用150AOB ∠=︒列简单方程,再解方程可得答案.(1) 解: 射线OC 平分AOB ∠,150AOB ∠= 115075,2AOC BOC射线OD 平分AOC ∠,117537.5.22AOD AOC(2)解:设,AOD EOC x射线OD 平分AOC ∠,,AOD COD x=2,DOE DOC COE x射线OE 平分BOD ,2,BOE DOE x150,AOB5150,x 解得:30,x30.AOD【考点】本题考查的是角平分线的定义,角的和差运算,掌握“几何图形中角的和差关系”是解本题的关键.。
人教版七年级数学上册竞赛试卷及答案
![人教版七年级数学上册竞赛试卷及答案](https://img.taocdn.com/s3/m/2a6fcafbaff8941ea76e58fafab069dc5022473a.png)
人教版七年级数学上册竞赛试卷及答案一.选择题(共10小题,共30分)1.如果温度上升3C ︒,记作3C ︒+,那么温度下降2C ︒记作( )A .2C ︒-B .2C ︒+ C .3C ︒+D .3C ︒-2.中华民族的母亲河黄河,发源于巴颜喀拉山脉北麓,注入渤海,流域面积约为750000千米2.将750000千米2用科学记数法表示为( )A .47.510⨯千米2;B .57.510⨯千米2;C .47510⨯千米2;D .57510⨯千米23.在下列生活、生产现象中,不可以用基本事实“两点确定一条直线”来解释的有( )A .1个B .2个C .3个D .4个4.早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是( ) A .3(2)+- B .3(2)-- C .3(2)⨯- D .(3)(2)-÷-5.点A 在数轴上,点A 所对应的数用21a +表示,且点A 到原点的距离等于3,则a 的值为( )A .2-或1B .2-或2C .2-D .16.如图:CD 是直角三角形ABC 的高,将直角三角形ABC 按以下方式旋转一周可以得到右侧几何体的是( )A .绕着AC 旋转B .绕着AB 旋转C .绕着CD 旋转 D .绕着BC 旋转 7.若单项式12m a b -与212n a b 的和仍是单项式,则m n 的值是( )A .3B .6C .8D .9 8.下列结论中不能由0a b +=得到的是( )A .2a ab =-B .||||a b =C .0a =,0b =D .22a b =9.在解方程13132x x x -++=时,方程两边同时乘以6,去分母后,正确的是( ) A .2163(31)x x x -+=+ B .2(1)63(31)x x x -+=+ C .2(1)3(31)x x x -+=+ D .(1)3(1)x x x -+=+10.点C 是线段AB 的中点,点D 是线段AC 的三等分点.若线段12AB cm =,则线段BD 的长为( )A .10cmB .8cmC .10cm 或8cmD .2cm 或4cm 二.填空题(共5小题,15分)11.如图,数轴上A 、B 两点所表示的数分别是4-和2,点C 是线段AB的中点,则点C 所表示的数是 .12.某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打 折.13.往返于甲、乙两地的列车,中途需要停靠4个车站,如果每两站的路程都不相同,要准备 种不同的车票.14.请你只在“加、减、乘、除和括号”中选择使用,可以重复,将四个数2-,4,6-,8组成算式(四个数都用且每个数只能用一次),使运算结果为24,你列出的算式是 (只写一种)15.如图.在正方形ABCD 的边长为3,以A 为圆心,2为半径作圆弧.以D 为圆心,3为半径作圆弧.若图中阴影部分的面积分为1S 、2S .则12S S -= .三.解答题(共8小题,共75分)16.(8分)先化简,再求值:223(2)2(3)x xy y x y ----,其中1x =-,2y =.学校:______________ 班级:___________ 姓名:_____________ 考场_____________ 学号:___________........................... 装.......................订.........................线......................17.(9分)平面上有A ,B ,C ,D 四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池,不考虑其他因素,请你画图确定蓄水池H 的位置,使它与四个村庄的距离之和最小(A ,B ,C ,D 四个村庄的地理位置如图所示),你能说明理由吗?18.(9分)已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2,求1(1)322a b cd x+---的值. 19.(9分)先阅读理解, 再回答问题 .计算:12112()()3031065-÷-+- 解:原式的倒数为211212112()()()(30)310653031065-+-÷-=-+-⨯-203512=-+-+10=-,故原式110=-;请阅读上述材料, 选择合适的方法计算:11322()()4261437-÷-+-.20.(9分)已知有理数a 、b 、c 在数轴上的位置,(1)a b + 0;a c + 0;b c - 0;(用“>,<,=”填空) (2)试化简||||||a b a c b c +-++-.21.(10分)已知代数式231A x x =-+,马小虎同学在做整式加减运算时,误将“A B -”看成“A B +”了,计算的结果是2232x x --. (1)请你帮马小虎同学求出正确的结果;(2)x 是最大的负整数,将x 代入(1)问的结果求值. 22.(10分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元; (2)求明年改装的无人驾驶出租车是多少辆. 23.(11分)如图:A 、B 、C 、D 四点在同一直线上. (1)若AB CD =.①比较线段的大小:AC BD (填“>”、“ =”或“<” );②若34BC AC =,且12AC cm =,则AD 的长为 cm ; (2)若线段AD 被点B 、C 分成了3:4:5三部分,且AB 的中点M 和CD 的中点N 之间的距离是16cm ,求AD 的长.参考答案1.如果温度上升3C ︒,记作3C ︒+,那么温度下降2C ︒记作( ) A .2C ︒- B .2C ︒+ C .3C ︒+ D .3C ︒-【解答】解:“正”和“负”相对,如果温度上升3C ︒,记作3C ︒+, 温度下降2C ︒记作2C ︒-. 故选:A .2.中华民族的母亲河黄河,发源于巴颜喀拉山脉北麓,注入渤海,流域面积约为750000千米2.将750000千米2用科学记数法表示为( )A .47.510⨯千米2B .57.510⨯千米2C .47510⨯千米2D .57510⨯千米2 【解答】解:数据750000用科学记数法可表示57.510⨯, 故选:B .3.在下列生活、生产现象中,不可以用基本事实“两点确定一条直线”来解释的有( )A .1个B .2个C .3个D .4个【解答】解:第一、二、三幅图中的生活、生产现象可以用基本事实“两点确定一条直线”来解释,第四幅图中利用的是“两点之间,线段最短”的知识. 故选:A .4.早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是( )A .3(2)+-B .3(2)--C .3(2)⨯-D .(3)(2)-÷- 【解答】解:.3(2)1A +-=,故A 不符合题意; .3(2)325B --=+=,故B 不符合题意; .3(2)6C ⨯-=-,故C 符合题意;D .(3)(2) 1.5-÷-=,故D 不符合题意.综上,只有C 计算结果为负. 故选:C .5.点A 在数轴上,点A 所对应的数用21a +表示,且点A 到原点的距离等于3,则a 的值为( )A .2-或1B .2-或2C .2-D .1 【解答】解:由题意得, |21|3a +=,解得,1a =或2a =-, 故选:A .6.如图:CD 是直角三角形ABC 的高,将直角三角形ABC 按以下方式旋转一周可以得到右侧几何体的是( )A .绕着AC 旋转B .绕着AB 旋转C .绕着CD 旋转 D .绕着BC 旋转【解答】解:将直角三角形ABC 绕斜边AB 所在直线旋转一周得到的几何体是,故选:B .7.若单项式12m a b -与212n a b 的和仍是单项式,则m n 的值是( )A .3B .6C .8D .9 【解答】解:单项式12m a b -与212n a b 的和仍是单项式,∴单项式12m a b -与212n a b 是同类项,12m ∴-=,2n =, 3m ∴=,2n =,8m n ∴=.故选:C .8.下列结论中不能由0a b +=得到的是( )A .2a ab =-B .||||a b =C .0a =,0b =D .22a b =【解答】解:A 、2a ab =-,即20a ab +=,即()0a a b +=,当0a b +=时,2a ab =-一定成立,故选项一定能由0a b +=得到;B 、因为a b =-,即a 与b 互为相反数,根据互为相反数的两个数的绝对值相等,得到||||a b =; C 、因为a b =-,即a 与b 互为相反数,则0a =,0b =不一定成立,故不能由0a b +=得到;D 、因为a b =-,即a 与b 互为相反数,则22a b =,一定成立,故能由0a b +=得到. 故只有C 不一定能由0a b +=得到. 故选:C .9.在解方程13132x x x -++=时,方程两边同时乘以6,去分母后,正确的是( ) A .2163(31)x x x -+=+ B .2(1)63(31)x x x -+=+ C .2(1)3(31)x x x -+=+ D .(1)3(1)x x x -+=+【解答】解:方程两边同时乘以6得:2(1)63(31)x x x -+=+,故选:B .10.点C 是线段AB 的中点,点D 是线段AC 的三等分点.若线段12AB cm =,则线段BD 的长为( )A .10cmB .8cmC .10cm 或8cmD .2cm 或4cm 【解答】解:C 是线段AB 的中点,12AB cm =, 11126()22AC BC AB cm ∴===⨯=, 点D 是线段AC 的三等分点, ①当13AD AC =时,如图,26410()3BD BC CD BC AC cm =+=+=+=; ②当23AD AC =时,如图, 1628()3BD BC CD BC AC cm =+'=+=+=.所以线段BD 的长为10cm 或8cm , 故选:C .二.填空题(共5小题)11.如图,数轴上A 、B 两点所表示的数分别是4-和2,点C 是线段AB 的中点,则点C 所表示的数是 1- .【解答】解:数轴上A ,B 两点所表示的数分别是4-和2,∴线段AB 的中点所表示的数1(42)12=-+=-. 即点C 所表示的数是1-. 故答案为:1-12.某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打 8 折. 【解答】解:设商店打x 折, 依题意,得:180********%10x⨯-=⨯, 解得:8x =. 故答案为:8.13.往返于甲、乙两地的列车,中途需要停靠4个车站,如果每两站的路程都不相同,问要准备 种不同的车票. 【解答】解:(1)如图:根据线段的定义:可知图中共有线段有AC ,AD ,AE ,AF ,AB ,CD 、CE ,CF 、CB 、DE ,DF 、DB 、EF ,EB ,FB 共15条,有15种不同的票价;因车票需要考虑方向性,如,“A C →”与“C A →”票价相同,但车票不同,故需要准备30种车票. 故答案为: 30.14.请你只在“加、减、乘、除和括号”中选择使用,可以重复,将四个数2-,4,6-,8组成算式(四个数都用且每个数只能用一次),使运算结果为24,你列出的算式是 8(6)[4(2)]24⨯-÷÷-= (只写一种) 【解答】解:8(6)[4(2)]24⨯-÷÷-= 故答案为:8(6)[4(2)]24⨯-÷÷-=.(答案不唯一) 15.如图.在正方形ABCD 的边长为3,以A 为圆心,2为半径作圆弧.以D 为圆心,3为半径作圆弧.若图中阴影部分的面积分为1S 、2S .则12S S -=1394π- .【解答】解:339S =⨯=正方形,290393604ADC S ππ⨯==扇形, 2902360EAF S ππ⨯==扇形,()129139944EAF ADC S S S S S πππ⎛⎫∴-=--=--=- ⎪⎝⎭正方形扇形扇形. 故答案为:1394π-.三.解答题(共8小题)16.先化简,再求值:223(2)2(3)x xy y x y ----,其中1x =-,2y =. 【解答】解:原式2233626x xy y x y =---+23x xy =-,把1x =-,2y =代入223(1)3(1)27x xy -=--⨯-⨯=.17.平面上有A ,B ,C ,D 四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池,不考虑其他因素,请你画图确定蓄水池H 的位置,使它与四个村庄的距离之和最小(A ,B ,C ,D 四个村庄的地理位置如图所示),你能说明理由吗?【解答】解:如答图所示,连接AC ,BD ,它们的交点是H ,点H 就是修建水池的位置,这一点到A ,B ,C ,D 四点的距离之和最小.18.已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2,求1(1)322a b cd x +---的值.【解答】解:a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2, 0a b ∴+=,1cd =,2x =±,当2x =时,111(1)32(01)31227222a b cd x +---=⨯--⨯-⨯=-;当2x =-时,111(1)32(01)312(2)222a b cd x +---=⨯--⨯-⨯-=.19.先阅读理解, 再回答问题 .计算:12112()()3031065-÷-+- 解: (方 法一) 原式12112151()[()()]()()30361053062=-÷++--=-÷-1330=-⨯110=-(方 法二) 原式的倒数为211212112()()()(30)310653031065-+-÷-=-+-⨯-203512=-+-+ 10=-故原式110=-请阅读上述材料, 选择合适的方法计算:11322()()4261437-÷-+-.【解答】解: 原式的倒数为13221()()6143742-+-÷-1322()(42)61437=-+-⨯- 79281214=-+-+=-故原式114=-.20.已知有理数a 、b 、c 在数轴上的位置,(1)a b + < 0;a c + 0;b c - 0;(用“>,<,=”填空) (2)试化简||||||a b a c b c +-++-.【解答】解:(1)由数轴可得:0c a b <<<, 0a b ∴+<,0a c +<,0b c ->,(2)0a b +<,0a c +<,0b c ->, ||||||0a b a c b c a b a c b c ∴+-++-=--+++-=.故答案为:(1)<;<;>.21.已知代数式231A x x =-+,马小虎同学在做整式加减运算时,误将“A B -”看成“A B +”了,计算的结果是2232x x --.(1)请你帮马小虎同学求出正确的结果;(2)x 是最大的负整数,将x 代入(1)问的结果求值. 【解答】解:(1)根据题意知22232(31)B x x x x =----+ 2223231x x x x =---+- 223x x =---,则22(31)(23)A B x x x x -=-+---- 223123x x x x =-++++244x x =++;(2)x 是最大的负整数, 1x ∴=-,则原式24(1)14=⨯--+414=-+ 7=.22.粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元; (2)求明年改装的无人驾驶出租车是多少辆.【解答】解:(1)50(150%)25⨯-=(万元).故明年每辆无人驾驶出租车的预计改装费用是25万元;(2)设明年改装的无人驾驶出租车是x 辆,则今年改装的无人驾驶出租车是(260)x -辆,依题意有50(260)259000x x -+=,解得160x =.故明年改装的无人驾驶出租车是160辆.23.如图:A 、B 、C 、D 四点在同一直线上. (1)若AB CD =.①比较线段的大小:AC = BD (填“>”、“ =”或“<” );②若34BC AC =,且12AC cm =,则AD 的长为 cm ; (2)若线段AD 被点B 、C 分成了3:4:5三部分,且AB 的中点M 和CD 的中点N 之间的距离是16cm ,求AD 的长.【解答】解:(1)①AB CD =, AB BC CD BC ∴+=+, 即,AC BD =, 故答案为:=;②34BC AC =,且12AC cm =, 3129()4BC cm ∴=⨯=,1293()AB CD AC BC cm ∴==-=-=, 12315()AD AC CD cm ∴=+=+=,故答案为:15; (2)如图,设每份为x ,则3AB x =,4BC x =,5CD x =,12AD x =, M 是AB 的中点,点N 是CD 的中点N , 32AM BM x ∴==,52CN DN x ==, 又16MN =, ∴3541622x x x ++=, 解得,2x =,1224()AD x cm ∴==,答:AD 的长为24cm.。
人教版七年级上册数学第三章 一元一次方程 能力提升测试卷【含答案】
![人教版七年级上册数学第三章 一元一次方程 能力提升测试卷【含答案】](https://img.taocdn.com/s3/m/b9f1653cfe00bed5b9f3f90f76c66137ee064f01.png)
七年级数学《第三章一元一次方程》能力提升卷试卷满分: 120分1、选择题(每小题3分,共30分)1、在方程,,,中一元一次方程的个数为( 23=-y x 021=-+x x 2121=x 0322=--x x ) A .1个 B .2个 C .3个 D .4个2、下列等式变形正确的是( )A.如果B.如果stv vt s ==那么,3,621==x x 那么C.如果 D.如果y x y x =-=-那么,33a b b a b a ±=±=那么,3、某件商品9折降价销售后每件商品售价为元,则该商品每件原价为( )a A. 0.9 B. 1.1 C.D.a a 9.0a 1.1a4. 某牧场放养的鸵鸟和奶牛一共70只, 已知鸵鸟和奶牛的腿数之和为196条,则鸵鸟的头数比奶牛多 ( )A. 20只B. 14只C. 15只D. 13只5. 若,则下列式子:① ② ③ ④b a =22-=-b a b a 2131=b a 4343-=-1515-=-b a 正确的有( )A. 1个B. 2个C. 3个D. 4个6. 某工厂计划每天烧煤吨,实际每天少烧吨,则吨煤可多烧( )天a b m A .- B . C .- D .-a m b m b a m -a m b a m -b a m -am7. 已知,则关于的方程的解是( )1≠a x a x a -=-1)1(A . B . C . D .无解0=x 1=x 1-=x 8. 由方程,那么这是根据( )变形的.54234253+-=--=-x x x x 变形得A .合并同类项法则 B.乘法分配率 C.移项 D.等式性质29.一个长方形的周长是22cm ,若这个长方形的长减少2cm ,宽增加3cm ,就可以成为一个正方形,则长方形的长是( )A.3cm B .6cm C.7cm D.8cm10.小丽在解关于x 的方程-x+5a=13时,误将看作,得到方程的解为,则原方程的x -x 2-=x 解为( ) A . B . C . D .3-=x 0=x 1=x 2=x 二、填空题(每题3分,共30分)11.若是1223+=-x x 的解,则103+m 的值是_________.m 12. 已知方程74)2(1=+--m xm 是关于x 的一元一次方程,则m =_________.13. 当 =_________时,代数式的值相等.x 133-+x x与14. 今年母女两人的年龄和为60岁,10年前母亲的年龄是女儿的7倍,则今年女儿的年龄为_______岁.15. 比方程的解的3倍小5的数是_________.()472=+x 16. 一件外衣的进价为200元,按标价的8折销售时,利润率为10%,求这件外衣的标价为____元17. 已知,且,则的倒数的相反数是 .3<a 63=-a 3a 18. 已知关于的方程无解,则的值为_________.x ()ax x =-+324a 19. 如果与互为相反数,则的值为_________.154m +14m +m 20. 方程的解是,那么的值等于_____________.k x x x +=--24163=x kk 12+三、解答题(共7个大题,共60分)21.解方程:(每小题4分,共16分)(1) (2)23259+=-x x 151423=+--x x (3)(4)14126110312-+=---x x x 3.02.03.0255.09.08.0-++=+x x x22、(6分)已知是方程的解,求关于的方程的解.12x =6(2)32x m m +=+y 2(12)my m y +=-23、(6分)若,,且,求的值.x A 34-=x B 45+=B A 3202+=B A 2+24、(7分)为了在学生中倡导扶危济困的良好社会风尚,营造和谐文明进步的校园环境,某校举行了“爱心永恒,情暖校园”慈善一日捐活动,在本次活动中,我校一共捐款12400元,其中八年级捐款数比七年级捐款数多400元,九年级捐款数是七年级捐款数的2倍少800元。
七年级上册数学试卷人教版【含答案】
![七年级上册数学试卷人教版【含答案】](https://img.taocdn.com/s3/m/3de7758681eb6294dd88d0d233d4b14e84243e1b.png)
七年级上册数学试卷人教版【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么这个三角形的第三边长可能是多少厘米?A. 3厘米B. 17厘米C. 23厘米D. 25厘米3. 一个长方体的长、宽、高分别是10厘米、6厘米和4厘米,那么这个长方体的对角线长多少厘米?A. 12厘米B. 16厘米C. 18厘米D. 20厘米4. 下列哪个分数是最简分数?A. $\frac{4}{8}$B. $\frac{3}{9}$C. $\frac{5}{7}$D. $\frac{6}{12}$5. 如果一个圆的半径是5厘米,那么这个圆的周长是多少厘米?($\pi$取3.14)A. 15.7厘米B. 31.4厘米C. 47.1厘米D. 62.8厘米二、判断题(每题1分,共5分)1. 任何一个偶数都能被2整除。
()2. 一个等边三角形的三个角都是60度。
()3. 两个负数相乘的结果是正数。
()4. 1千克等于1000克。
()5. 任何一个正数都有一个正的倒数。
()三、填空题(每题1分,共5分)1. 1千米等于______米。
2. 如果一个数的因数只有1和它本身,那么这个数是______。
3. 两个数的和为9,它们的差为3,那么这两个数分别是______和______。
4. 一个正方形的边长是6厘米,那么这个正方形的面积是______平方厘米。
5. 2的平方根是______。
四、简答题(每题2分,共10分)1. 请简述勾股定理的内容。
2. 请解释什么是比例尺。
3. 请列举出三种常见的统计图表。
4. 请简述概率的意义。
5. 请解释什么是方程。
五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的周长和面积。
2. 如果一辆汽车以每小时60公里的速度行驶,那么它需要多长时间才能行驶360公里?3. 一个班级有40名学生,其中有20名男生,请计算这个班级的女生人数。
人教版七年级上册数学竞赛题(含答案)
![人教版七年级上册数学竞赛题(含答案)](https://img.taocdn.com/s3/m/e34b83836aec0975f46527d3240c844769eaa071.png)
七年级上学期数学竞赛试题七年级上学期数学竞赛试题一、填空题(每小题4分,共40分)分)1. 甲、乙、丙、丁四个数之和等于-90,甲数减-4,乙数加-4,丙数乘-4,丁数除-4彼比相等,则四个数中的最大的一个数比最小的一个数大__2.2.((-2124 +7113 ÷24113 -38 )÷)÷11512= =___。
___。
___。
3. 3. 已知已知与是同类项,则=__。
=__。
4. 4. 有理数有理数在数轴上的位置如图1所示,化简5.某班学生去参加义务劳动,其中一组到一果园去摘梨子,第一个进园的学生摘了1个梨子,第二个学生摘了2个,第三个学生摘了3个,……以此类推,后来的学生都比前面的学生多摘1个梨子,这样恰好平均每个学生摘了6个梨子,请问这组学生的人数为____. 6. 6. 小明骑车自甲地经乙地,先上坡后下坡,到达乙地后立即返回甲地,共用小明骑车自甲地经乙地,先上坡后下坡,到达乙地后立即返回甲地,共用34分钟,已知上坡速度是400米/分,下坡速度是450米/分,则甲地到乙地米/分,则甲地到乙地的路程是__米。
的路程是__米。
7. 学校开运动会,班长想分批买汽水给全班50名师生喝,喝完的空瓶根据商店规定每5个空瓶又可换一瓶汽水,则至少要买 瓶汽水,才能保证每人喝上一瓶汽水. 8. 8. 有这样一个衡量体重是否正常的简单算法。
一个男生的标准体重(以公斤为有这样一个衡量体重是否正常的简单算法。
一个男生的标准体重(以公斤为单位)是其身高(以厘米为单位)减去110110。
正常体重在标准体重减。
正常体重在标准体重减。
正常体重在标准体重减 标准体重的1010%和加标准体重的%和加标准体重的10之间。
已知甲同学身高161厘米,体重为W ,如果他的体重正常,则W 的公斤数的取值范围是的公斤数的取值范围是_____. _____.9. m 9. m、、n 、l 都是385385,则,则m+n+l 的最大值是__。
【新教材】人教版(2024)七年级上册数学第四章 整式的加减 综合素质评价试卷(Word版,含答案)
![【新教材】人教版(2024)七年级上册数学第四章 整式的加减 综合素质评价试卷(Word版,含答案)](https://img.taocdn.com/s3/m/23066957bfd5b9f3f90f76c66137ee06eff94e22.png)
【新教材】人教版(2024)七年级上册数学第四章整式的加减综合素质评价试卷时间:90分钟满分:120分一、选择题(每题3分,共30分)1.x2y3-3xy2-2的次数和项数分别是()A.5,3 B.5,2 C.2,3 D.3,32.下列各式中,成立的是()A.x2+x3=x5B.2x+x=3x C.a2+a2=a4D.2x+3y=5xy3.[2024南阳模拟]下列判断:(1)-xy2π不是单项式;(2)x-y3是多项式;(3)0不是单项式;(4)1+xx是整式,其中正确的有()A.1个B.2个C.3个D.4个4.下列去括号正确的是()A.-3(b-1)=-3b-3 B.2(2-a)=4-aC.ab-5(-a+3)=ab+5a-3 D.x2-2(2x-y+2)=x2-4x+2y-45.若-12x m+3y与2x4y n+3是同类项,则(m+n)2 026的值为()A.-2 B.-4 C.-1 D.16.[新考法整体代入法]已知x2-2x-3=0,则2x2-4x的值为()A.-6 B.6 C.-2或6 D.-2或307.已知长方形的长为a,宽为a-b(a>2b),周长为C1,正方形的边长为a+b2,周长为C2,则C1-C2等于()A.2a B.2a-b C.2a-2b D.2a-4b 8.[2024重庆开州区模拟]若多项式8x2-3x+5与多项式3x3+(m-4)x2-5x+7相加后,结果不含二次项,则常数m的值是()A.2 B.-4 C.-2 D.-89.[新考法作差法]已知M=-2a2+4a+1,N=-3a2+4a-1,则M与N的大小关系是()A.M>N B.M<N C.M=N D.以上都有可能10.[2024石家庄二模]三个完全相同的小长方形不重叠地放入大长方形ABCD中,如图,将两个空白小长方形分别记为S1,S2,则以下结论中正确的是()A . a +2b =mB . S 1的周长为a +m -bC . S 1与S 2的周长和恰好等于长方形ABCD 的周长 D .只需知道a 和m 的值,即可求出S 1与S 2的周长和 二、填空题(每题4分,共24分) 11.如果-2x 2y n3是七次单项式,那么n 的值为 .12.当k = 时,(k -1)a 2-5a +3是关于a 的一次多项式.13.在横线上填上适当的单项式或多项式:a 2-2ab -b 2- =-2a 2-ab -3b 2. 14.[2024北京海淀区月考]单项式34x 2y n 与-34x m y 4的差仍是单项式,则m -2n = . 15.如图,规定:上方相邻两数之和等于这两数下方箭头共同指向的数,则m +n +y = .(第15题)16.[教材P 103习题T 10变式]如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…则第n (n 为正整数)个图案由 个▲组成.(第16题)三、解答题(共66分)17.(6分)[教材P 102习题T 3变式]计算:(1)2ab -(2a -b )+(-2ab +3a ); (2)3x 2-[7x -12(4x -3)−2x 2].。
人教版七年级上册数学一元一次方程应用题(比赛积分问题)专题训练
![人教版七年级上册数学一元一次方程应用题(比赛积分问题)专题训练](https://img.taocdn.com/s3/m/453bde713069a45177232f60ddccda38376be1ee.png)
人教版七年级上册数学一元一次方程应用题(比赛积分问题)专题训练1.在学完“有理数的运算”后,数学老师组织了一次计算能力竞赛.竞赛规则是:每人分别做50道题,答对一题得3分,不答或答错一题倒扣1分.(1)如果参赛学生小红最后得分142分,那么小红答对了多少道题?(2)参赛学生小明能得145分吗?请简要说明理由.2.某校积极推进“阳光体育”工程,本学期在九年级11个班中开展篮球单循环比赛(每个班与其它班分别进行一场比赛,每班需进行10场比赛).比赛规则规定:每场比赛都要分出胜负,胜一场得3分,负一场得-1分.如果某班在所有的比赛中只得14分,那么该班胜负场数分别是多少?3.某校积极推进“阳光体育”工程,本学期在七年级11个班中开展篮球单循环比赛(每个班与其它班分别进行一场比赛,每班需进行10场比赛).比赛规则规定:每场比赛都要分出胜负胜一场得3分,负一场得﹣1分.(1)如果某班在所有的比赛中只得14分,那么该班胜负场数分别是多少?(2)假设比赛结束后,甲班得分是乙班的3倍,甲班获胜的场数多于乙班1次,请你求出甲班、乙班各胜了几场.4.足球比赛的规则为:胜场得3分,平场得1分,负一场得0分,一支球队在某个赛季共需比赛14场,现已经赛了8场,输了一场,得17分,请问:(1)前8场比赛中胜了几场?(2)这支球队打满14场后最高得多少分?(3)若打14场得分不低于29分,则在后6场比赛中这个球队至少胜几场?5.足球比赛的计分规则是胜一场得3分,平一场得1分,负一场得0分”,一支足球队在某个赛季中共比赛16场,现已比赛了10场,负3场,共得17分,问:(1)前10场比赛中这支足球队共胜多少场?(2)这支足球队打满16场比赛,最高能得多少分6.为提高学生的运算能力,我县某学校七年级在元旦之前组织了一次数学速算比赛.速算规则如下:速算试题形式为计算题,共20道题,答对一题得5分,不答或错一题倒扣1分.梓萌同学代表班级参加了这次比赛,请解决下列问题:(1)如果梓萌同学最后得分为76分,那么她计算对了多少道题?(2)梓萌同学的最后得分可能为85分吗?请说明理由.7.足球比赛的记分规则为:胜一场得3分,平一场得1分,输一场得0分、一支足球队在某一赛季共需比赛14场,现已经比赛了8场,输了一场,得了17分.请问:(1)前8场比赛中,这支球队共胜了几场?(2)请你分析一下,这支球队在后面的6场比赛中,至少要胜几场比赛,才能使总得分不低于29分?8.某中学举行“我爱祖国”知识竞答比赛,规定每个选手共要答20道题,每答对一题得5分,不答或答错一题扣2分.(1)设选手小明答对x题,则小明不答或答错共___________题(用含x的代数式表示);(2)若小明最终的成绩为65分,求小明答对了多少道题?9.某篮球联赛规则规定:胜一场得2分,负一场得1分.某篮球队赛了12场,共得20分. 该篮球队负了多少场?请按照下列步骤解决这个问题:(1)设该篮球队胜了x场,则负了_________场,根据题意列出一个一元一次方程:_________;(2)解(1)中所得的方程,并回答:该篮球队负了多少场?10.为丰富校园文化生活,某学校在元旦之前组织了一次百科知识竞赛.竞赛规则如下:竞赛试题形式为选择题,共50道题,答对一题得3分,不答或错一题倒扣1分.小明代表班级参加了这次竞赛,请解决下列问题:(1)如果小明最后得分为142分,那么他回答对了多少道题?(2)小明的最后得分可能为136分吗?请说明理由.11.某班一次数学检测中,共出了20道题,总分为100分,现从中抽出5份试卷进行分析.如图表所示:(1)某同学得了70分,他答对了试卷多少道题?(2)有一同学H他得了76分,另一同学G说他得了72分,谁说的对了?为什么?12.在学完“有理数的运算”后,我县某中学七年级每班各选出5名学生组成一个代表队,在数学老师的组织下进行一次知识竞赛.竞赛规则是:每队都必须回答50道题,答对一题得4分,不答或答错一题倒扣1分.(1)如果七年级一班代表队最后得分为190分,那么七年级一班代表队回答对了多少道题?(2)七年级二班代表队的最后得分有可能为142分吗?请说明理由.13.某校学生会为积极响应武汉市文明创建活动,组织有关方面的知识竞赛,共设有20道选择题,各题分值相同,每题必答,下表记录了3个参赛者的得分情况.(1)参赛者答对一题得______分,答错一题得______分;(2)参赛者小红得了70分,她答对了几道题?(3)参赛者小明说他得了84分,你认为可能吗?为什么?17.2022年卡塔尔世界杯已于12月19日完美落下帷幕,在欧洲区预选赛中某小组某队以不败的战绩踢完12场积了18分.(1)已知足球积分为胜一场积3分,平一场积1分,则该队现在胜、平各几场?(2)为了鼓励该队获得好成绩,该队的赞助商制定了一个奖励机制,每位球员胜一场获得15000欧元奖励,平一场获得7000欧元奖励,则该队一位球员能获得多少报酬?18.某校组织科技知识竞赛,共有25道选择题,各题分值相同.每题必答,答对得分,答错倒扣分.下表记录了5个参赛者的得分情况.(1)填空:每答对一道题得______分,每答错一道题扣______分.(2)参赛者F说他得76分,他答对了多少道题?(3)参赛者G说他得80分,你认为可能吗?为什么?参考答案: 1.(1)48;(2)不能得145分.2.胜6场,负4场3.(1)胜:6场,负:4场 (2)甲:4场,乙:3场4.(1)前8场比赛中胜了5场;(2)这支球队打满14场后最高得35分;(3)在后6场比赛中这个球队至少胜3场.5.(1)前10场比赛中这支足球队共胜5场;(2)这支足球队打满16场比赛,最高能得35分.6.(1)16道;(2)不能,7.(1)5场(2)至少胜3场8.(1)()20x -(2)159. (1)(12)x - ,2x+(12-x)=20;(2)410.(1)48;(2)不可能.11.(1)他答对了试卷15道题;(2)同学H 说得对,同学G 说的不对,12.(1)48道;(2)不可能,13.(1)5,﹣1;(2)参赛者E 说他得80分,是不可能的,14.(1)答对1题得5分,答错1题扣1分;(2)她答对16道题.15.(1)1,2;(2)不可能胜场总积分能等于负场总积分16.(1)5,1-(2)参赛者小红答对了15道题(3)参赛者小明不可能得84分,17.(1)胜3场,平9场;(2)108000欧元18.(1)4;2(2)参赛者F答对了21道题;(3)参赛者G不可能得80分.。
2024年最新人教版七年级数学(上册)期末试卷及答案(各版本)
![2024年最新人教版七年级数学(上册)期末试卷及答案(各版本)](https://img.taocdn.com/s3/m/0d046741ae45b307e87101f69e3143323968f59d.png)
2024年最新人教版七年级数学(上册)期末试卷一、选择题(每小题2分,共20分)1. 下列数中,最小的正整数是()A. 1B. 2C. 3D. 42. 下列数中,最大的负整数是()A. 1B. 2C. 3D. 43. 下列数中,是正分数的是()A. 3/4B. 3/4C. 3/2D. 3/24. 下列数中,是负分数的是()A. 3/4B. 3/4C. 3/25. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/26. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/27. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/28. 下列数中,是分数的是()A. 3/4B. 3/4C. 3/2D. 3/29. 下列数中,是正整数的是()A. 3/4B. 3/4D. 3/210. 下列数中,是负整数的是()A. 3/4B. 3/4C. 3/2D. 3/2二、填空题(每小题2分,共20分)11. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/212. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/213. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/214. 下列数中,是分数的是()B. 3/4C. 3/2D. 3/215. 下列数中,是正整数的是()A. 3/4B. 3/4C. 3/2D. 3/216. 下列数中,是负整数的是()A. 3/4B. 3/4C. 3/2D. 3/217. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/218. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/219. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/220. 下列数中,是分数的是()A. 3/4B. 3/4C. 3/2D. 3/2三、解答题(每小题5分,共25分)21. 解答:请计算下列各式的值。
人教版七年级上册试卷第一学期七年级学科竞赛试卷数学.docx
![人教版七年级上册试卷第一学期七年级学科竞赛试卷数学.docx](https://img.taocdn.com/s3/m/660281a94b73f242326c5f05.png)
第一学期七年级学科竞赛试卷数学一.填空题(每题3分,共30分)1)、在-|-3|3,-(-3)3,(-3)3,-33中,最大的是_____________2)、计算:()()=+----⨯-1233113_____________ 3)、计算(-1)2016+(-1)2015÷|-1|=_____________4)、两个有理数-12.43和-12.45中,较大的数减较小的数所得的差是__________5)、在数-5,-3,-1,2,4,6中任取三个不同的数相乘,所得最大的积是6)、如果□3)23(-⨯=1,则“□”内应填的有理数是__________.7)、按下面程序计算:输入x= -3,则输出的答案是__________. 8)、计算2016-{2015-[2016-(2015-2016)]}的值等于__________9)、计算13.67×125+136.7×12.25-1367×1.475的值=_________10)、计算 =________二.计算题(一)(每题3分,共30分,要求写出必要的解答过程)11)、90-(-3)+(-6)-11 12)、-0.5-(-341)+2.75-(+721) 解:原式= 解:原式=)100011)(99911()511)(411)(311)(211(10201970198019902000-------++-+-ΛΛ13)、 ()()()12757⎛⎫-⨯-⨯+⨯- ⎪⎝⎭14)、 8﹣(﹣15)+(﹣2)×3 解:原式= 解:原式=15)、 326543210-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛--- 16)、 )2.5(3.4)6.3(4.15.1-+---+- 解:原式=解:原式=17)、 )6543311(12+--⨯18)、 )16(9449)81(-÷⨯÷- 解:原式=解:原式=19)、 45)2131(56÷--⨯20)、﹣32﹣(﹣2)3÷4. 解:原式=解:原式=三.计算题(二)(每题5分,共40分,要求写出必要的解答过程)21)、 32(6)8(2)(4)5-⨯----⨯ 22)、 ()34187.5213772⎛⎫⎛⎫⎛⎫-+-+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭解:原式= 解:原式=23)、)61121197()361(+-÷- 24)、)21(2)4(23)2()5(20161-÷--⎥⎦⎤⎢⎣⎡+-⨯-+- 解:原式= 解:原式=25)、)13(]12)1216532(30[-÷⨯-+- 26)、()])2(22[15.3141415.39103-⨯+-⨯÷ 解:原式= 解:原式=27)、]5.5)2119321(75.1[)]533(15.66.318585.4[41-+⨯--⨯--÷⨯ 解:原式=28)、 411300122000)30012999(851000+--- 解:原式=四.解答题(共14分) 29)、(6分)现定义两种运算“※”和“#”,对于整数a 、b ,a ※b= a+b+1 ,a #b= ab-1, 求(-2)#[(6※8)※(2#5)]的值。
人教版数学七年级上册第一章《有理数》检测试试题(含答案)
![人教版数学七年级上册第一章《有理数》检测试试题(含答案)](https://img.taocdn.com/s3/m/c27f15206c85ec3a87c2c579.png)
人教版数学七年级上册第一章《有理数》检测试题一、选择题1.-1的相反数是( )A.-1B.0C.1D.-1或12.计算(-1)2020的结果是( )A.-1B.1C.-2020D.20203.若x =-(-2)×3,则x 的倒数是( )A.-16B.16C.-6D.64.已知有理数a 、b 在数轴上对应点如图所示,则下列式子正确的是( )A .ab >0B .︱a ︱>︱b ︱C .a -b >0D .a +b >05.比较-12,-13,14的大小,下列选项中正确的结果是( ) A.-12<-13<14 B.-12<14<-13C.14<-13<-12D.-13<-12<14 6.有以下两个结论:①任何一个有理数和它的相反数之间至少有一个有理数;②如果一个有理数有倒数,则这个有理数与它的倒数之间至少有一个有理数.则( )A.①,②都不对B.①对,②不对C.①,②都对D.①不对,②对7.若a +b <0,ab <0,则( )A.a >0,b >0B.a <0,b <0C.a ,b 两数一正一负,且正数的绝对值大于负数的绝对值D.a ,b 两数一正一负,且负数的绝对值大于正数的绝对值8.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg ,(25±0.2)kg ,(25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差( )BA.0.8kgB.0.6kgC.0.5kgD.0.4kg9.一根1m 长的小棒,第一次截去它的13,第二次截去剩下的13,如此截下去,第五次后剩下的小棒的长度是( )C A.513⎛⎫ ⎪⎝⎭m B.[1-513⎛⎫ ⎪⎝⎭]m C.523⎛⎫ ⎪⎝⎭m D.[1-523⎛⎫ ⎪⎝⎭]m 10.若ab ≠0,则a a +b b的取值不可能是( ) A.0 B.1C.2D.-2 二、填空题11.-15的绝对值是_______;立方等于-8的数是_______. 12.一种商品原价120元,按八折(即原价的80%)出售,则现售价应为_______元. 0 1 -1 b a13.对于式子-(-4),下列理解:①可表示-4的相反数;②可表示-1与-4的乘积;③可表示-4的绝对值;④运算结果等于4.其中理解错误的有_______个.14.数轴距离原点3个单位的点有_______个,他们分别表示数是_______.15.比-312大而比213小的所有整数的和为_______.16.多伦多与北京的时间差为-12小时(正数表示同一时刻比北京时间早的时数),如果北京时间是10月1日14:00,那么多伦多时间是_______.17.某校师生在为某地地震灾区举行的爱心捐款活动中总计捐款18.49 万元.把18.49 万用科学记数法表示并保留两个有效数字为_______.18.规定a※b=5a2+2b-1,则(-4)※6的值为_______.19.大家知道5=50-,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离.又如式子63-,它在数轴上的意义是表示6的点与表示3的点之间的距离.类似地,式子5a+在数轴上的意义是_______.20.为了求1+2+22+23+…+22020的值,可令S=1+2+22+23+…+22020,则2S=2+22+23+24+…+22021,因此2S-S=22021-1,所以1+2+22+23+24+…+22020=22021-1,仿照以上推理计算出1+5+52+53+…+52020的值是_______.三、解答题21.计算:(1)-9÷3+(12-23)×12+32;(2)713×(-9)+713×(-18)+713;(3)-691516×8.22.一条小虫沿一根东西方向放着的长杆向东以2.5米/分的速度爬行4分钟后,又向西爬行6分钟.问此时它距出发点的距离是多少?23.马虎同学在做题时画一条数轴,数轴上原有一点A,其表示的数是-2,由于一时粗心把数轴上的原点标错了位置,使A点正好落在-2的相反数的位置,请你帮帮马虎同学,借助于这个数轴要把这个数轴画正确,原点应向哪个方向移动几个单位长度.24.我们常用的数是十进制数,如4657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?25.若1+2+3+…+31+32+33=17×33,试求1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值.26.我国古代有一道有趣的数学题,“井深10米,一只蜗牛从井底向上爬,白天向上爬2米,夜间又滑下1米,问小蜗牛几天可以爬出深井?”27.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向(1)求收工时距A地多远?(2)在第几次纪录时距A地最远?(3若每km耗油0.3升,问共耗油多少升?参考答案:一、1.C;2.B;3.A;4.C.点拨:由数轴上a、b对应点的位置可知0<a<1,b<-1,故a、b异号,即ab<0,否定A选项;又︱a︱<1,︱b︱>1,即︱a︱<︱b︱,选项B 错误;因为a>0>b,所以a-b>0,选项C正确;由︱a︱<︱b︱且a>0,b<0,得a+b<0,选项D错误;5.A.点拨:因为正数大于一切负数,所以三个数中14最大.又因为︱-1 2︱=12=36,︱-13︱=13=26,︱-12︱>︱-13︱,所以-12<-13,即-12<-13<14;6.A.点拨:①中的说法我们可以想象在一条数轴上原点的两边如±1,±2,…这样的两个非零有理数之间存在“间隙”,也就是说它们之间一定有另外的有理数.但是0的相反数是0,0和它的相反数0之间就没有“间隙”了,所以①错;②中按照①的分析方法,如果一个数的倒数等于它本身,那么说法②就是错的,我们知道1的倒数是1,-1的倒数是-1,显然②这种说法也不对;7.D;8.B;9.C;10.B.点拨:本题可利用分析的方法考虑.因为ab≠0,所以ab>0或ab<0.若ab>0,则可能有两种情况:a>0,b>0或a<0,b<0.当a>0,b>0时,aa+bb=1+1=2;当a<0,b<0时,aa+bb=-1-1=-2;若ab<0,则可能有两种情况:a>0,b<0或a<0,b>0;当a>0,b<0时,aa+bb=1-1=0;当a<0,b>0时,aa+bb=-1+1=0.可能出现的结果有0,2,-2,所以应选B.二、11.15、-2;12.96;13.2.点拨:②和③理解错误;14.2个、+3和-3;15.-3;16.2:00;17.1.8×105.点拨:因为18.49万=184900,所以用科学记数可表示为1.849×105,保留两个有效数字在8后的数要舍去为1.8×105;18.61.点拨:因为a※b=2a2+5b-1,所以(-4)※6=2×(-4)2+5×6-1=61;19.表示a的点与表示-5的点之间的距离;20.4152021-.点拨:不妨模仿条件中的求解方法,设S=1+5+52+53+…+52020,再在两边同乘以5,得5S=5+52+53+…+52021,两式相减,得5S-S=52021-1,即S=4152021-.三、21.(1)-9÷3+(12-23)×12+32=-3+12×12-23×12+9=-3+6-8+9=4.(2)7 13×(-9)+713×(-18)+713=713×(-9-18+1)=713×(-26)=-14.(3)-691516×8=-(70-116)×8=-(70×8-116×8)=-55912.点拨:(1)中涉及有理数的加、减、乘、除与乘方,用运算法则进行运算,其中可以运用分配律简化运算,(12-23)×12=12×12-23×12=6-8=-2;(2)中各部分含有相同因数713,所以可想到逆用分配律计算;(3)题先确定符号,然后把绝对值691516化成(70-116)再与8相乘比较简便.解:评析:在进行有理数的计算时,切记要灵活.在拿到题目之前先要看看题目的特点,选择恰当的运算性质,尤其是分配律的正向和反向应用,正确应用运算律会起到事半功倍的效果.22.设向东速度为2.5米/分,向西为-2.5米/分.2.5×4+(-2.5)×6=10-15=-5(米).答:它在距出发点西边5米的地方.点拨:我们一般规定向东为正,即向东速度为2.5米/分;向西为负,即向西速度为-2.5米/分.评析:本题是一道有理数乘法与数轴知识综合运用的应用题,可以利用数轴的直观性使问题变得简单.23.向左移动4个单位长度.24.101011=1×25+0×24+1×23+0×22+1×21+1×20=32+0+8+0+2+1=43.25.1-3+2-6+3-9+4-12+…+31-93+32-96+33-99=(1+2+3+…+31+32+33)+(-3-6-9-…-99)=17×33-3(1+2+3+…+31+32+33)=17×33-3×17×33=-2×17×33.26.把向上爬记为正数,向下滑记为负数,由蜗牛一天爬1米;蜗牛最后一天可以爬出井,在此之前它要爬10-2=8(米);所以蜗牛要先爬8天,加上最后一天,总共是9天.答:蜗牛要9天可以爬出深井.点拨:如果把向上爬记为正数,向下滑记为负数,则蜗牛一天爬(2+(-1)=1)米,那么蜗牛爬了8天,就爬8米,剩下2米,第9天就可以爬出来了.27.(1)因为(-4)+(+7)+(-9)+(+8)+(+6)+(-5)+(-2)=+1,所以收工时距A 地1 km.(2)五.(3)因为一天中共行驶的路程=4-+7++9-+8++6++5-+2-发=41(km ),而41×0.3=12.3(升),所以共耗油12.3升.。
2024-2025学年人教版七年级数学上册期末质量检测复习试题(二)(含答案)
![2024-2025学年人教版七年级数学上册期末质量检测复习试题(二)(含答案)](https://img.taocdn.com/s3/m/f421cd79640e52ea551810a6f524ccbff121ca98.png)
2024—2025年度第一学期人教版七年级数学期末质量检测复习试题(二)(考试时间:120分钟 试卷满分:150分)1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
一、选择题(本大题共12小题,每小题3分,满分36分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.(本题3分)的相反数是( )A .2024B .C.D .2.(本题3分)点A 在数轴上的位置如图所示,若将点A 向左移动4个单位长度得到点B ,则点B 表示的数是( )A .5B .4C .D .3.(本题3分)2024年6月6日,嫦娥六号在距离地球约384000000米外上演“太空牵手”,完成月球轨道的交会对接,数据384000000用科学记数法表示为( ).A .B .C .D .4.(本题3分)当时,代数式的值为( )A .1B .C .D .5.(本题3分)已知单项式与的和是单项式,那么的值是( )A .B .C .D .6.(本题3分)已知关于x 的方程的解是,则a 的值为( )A .6B .7C .8D .97.(本题3分)如图,,,若平分,则( )A .B .C .30°D .8.(本题3分)把,,,0用“”号连接,正确的是( )A .B .C .D .9.(本题3分)我国古代流传这样一个问题:今有四人共车,一车空;二人共车,八人步,问人与车各几何,意思是:今有若干人乘车,每4人共乘一车,恰好剩余1辆车无人坐;若每2人共乘一车,最终剩余8个人无车乘,问有多少人、多少辆车.如果设有辆车,那么总人数可表示为( )A .B .C .D .10.(本题3分)如图,点C 是线段上的点,点M 、N 分别是的中点,若,则线段的长度是( )A .B .C .D .11.(本题3分)已知,,若的值与a 的取值无关,则b 的值为20242024-1202412024-3-4-73.8410⨯83.8410⨯93.8410⨯838.410⨯5m =6m -1-1111-22m x y -335n x y ()n m -99-66-250x a -+=2x =75AOD ∠=︒30COD ∠=︒OB AOC ∠AOB ∠=22.5︒25︒ 3.5︒()1--23-45-->()420531--->>->-()240351->>-->--()240351->>---->()420531>>-->---x ()41x -()41x +28x -()28x +AB AC BC 、5cm MN =AB 6cm 7cm 8cm 10cm2231A a ab a =+--235B a ab =--+2A B +( )A .B .C .D .12.(本题3分)如图:第1个图案中,内部“△”的个数为1个,外侧边上“●”的个数为3个;第2个图案中,内部“△”的个数为3个,外侧边上“●”的个数为6个;第3个图案中,内部“△”的个数为6个,外侧边上“●”的个数为9个;依此类推,当内部“△”的个数是外侧边上“●”的个数的3倍时,的值为( )A .16B .17C .18D .19二、填空题(本大题共4小题,每小题4分,满分16分)13.(本题4分)若,且,则 .14.(本题4分)计算: .15.(本题4分)若多项式是关于的五次三项式,则的值为 .16.(本题4分)如图是一个正方体的表面展开图,在正方形、、内分别填入适当的数,,,使其折叠成正方体后,相对面上的两个数互为倒数,则 .三、解答题(本大题共9小题,满分98分.解答应写出文字说明,证明过程或演算步骤)17.(本题10分)把下列各数分别填在相应的集合内.2024,,,,3.1415926,0,,,,(1)正有理数集合:{ …};(2)负分数集合:{ …};(3)整数集合:{ …}.18.(本题10分)计算:(1); (2)19.(本题10分)计算(1)(2)20.(本题10分)先化简,再求值;(1),其中; (2),其中34-14-35-15-n 0a <2=a a =20239920242024⨯=||328(2)m x x m x +-+-x m A B C a b c 23a b c -+=1- 2.3-1634-5%90-0.3- ()()3233524-+⨯--÷525203333⎛⎫⎛⎫⎛⎫⎛⎫-⨯-+-⨯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()3126x --=123123x x ---=22225432a a a a a -++--12a =()()22222432314x y xy xy x y x y ----112,x y ==-21.(本题10分)如图,已知轮船在灯塔的北偏西的方向上,轮船在灯塔的南偏东的方向上.(1)求从灯塔看两轮船的视角(即)的度数;(2)轮船在的平分线上,则轮船在灯塔的什么方向上?22.(本题12分)王老师购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示,根据图中的数据(单位:),解答下列问题:(1)写出用含、的整式表示的地面总面积;(2)若,,铺地砖的平均费用为元,求铺地砖的总费用为多少元?23.(本题12分)甲班分两次共购买苹果80千克(第二次多于第一次),共付185元,乙班则一次性购买苹果80千克.购买苹果数不超过30千克30千克以上但不超过50千克50千克以上每千克价格3元2.5元2元(1)乙班比甲班少付多少元?(2)甲班第一次、第二次分别购买苹果多少千克?A P 20︒B P 80︒P APB ∠C APB ∠C P m x y 4m x = 1.5m y =21m 8024.(本题12分)某学校有一块长方形花园,长12米、宽10米.花园中间欲铺设横纵各一条道路(图①空白部分),且它们互相垂直.若横向道路的宽是纵向道路的宽的2倍,设纵向道路的宽是米.(提示:)(1)如图①,横向道路的宽是_____米,花园道路的面积为_____平方米;(用含的代数式表示)(2)若把纵向道路的宽改为原来的2倍,横向道路的宽改为原来的(如图②所示).设图①与图②中花园的面积(阴影部分)分别为,,试比较与的大小.25.(本题12分)综合与实践问题情境在一次数学实践活动课上,同学们利用一张边长为的正方形纸板开展了“长方体纸盒的制作”实践活动.如图1,勤学小组的同学先在纸板四角剪去四个同样大小边长为的小正方形,再沿虚线折合起来,制成了一个无盖的长方体纸盒.如图2,善思小组的同学先在纸板四角剪去两个同样大小边长为的小正方形和两个同样大小的小长方形,再沿虚线折合起来,制成了一个有盖的长方体纸盒.问题解决(1)图1中的长方体纸盒的底面积为 ;(2)图2中的长方体纸盒的长为 :拓展延伸(3)现有两张边长均为的正方形纸板,分别按勤学小组和善思小组的方法制作成无盖和有盖的两个长方体纸盒,若剪去部分的小正方形边长为,求无盖纸盒的体积是有盖纸盒体积的多少倍.x 2x x x ⋅=x 121S 2S 1S 2S 20cm 5cm 3cm 2cm cm 30cm 5cm2024—2025年度第一学期人教版七年级数学期末质量检测复习题(二)参考答案一、选择题(本大题共12小题,每小题3分,满分36分.在每个小题给出的四个选项中,只有一项符合题目要求的)题号12345678910答案B C B B A D A C A D 题号1112 答案CB二、填空题(本大题共4小题,每小题4分,满分16分)13.―214.15.16.三、解答题(本大题共9小题,满分98分.解答应写出文字说明,证明过程或演算步骤)17.(1)解:正有理数:2024,,3.1415926,,故答案为:2024,,3.1415926,;(2)解:负分数:,故答案为:;(3)解:整数:.故答案为:.18.(1)解:;(2).19.(1)解:,去括号得:,移项,合并同类项得:,系数化为1得:;(2)解:,去分母得:,去括号得:,移项,合并同类项得:,系数化为1得:.20.解:(1)2023992-16165%165%332.3,,40.--- 332.3,,40.--- 2024,1,0,90--2024,1,0,90--()()3233524-+⨯--÷()()393524=-+⨯--÷()6584=-⨯--÷()302=---302=-+=28-525203333⎛⎫⎛⎫⎛⎫⎛⎫-⨯-+-⨯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭5220333⎛⎫=-⨯-+ ⎪⎝⎭563=-⨯10=-()3126x --=3126x -+=2631x =-+2x =123123x x ---=()()312236x x ---=33466x x --+=3x -=3x =-22225432a a a a a -++--,当时,原式.(2),当时,原式.21.(1)解:如图所示,因为轮船在灯塔的北偏西的方向上,轮船在灯塔的南偏东的方向上,所以 .(2)解:因为平分,所以,所以,所以轮船在灯塔的北偏东方向上.22.(1)解:如图,由题意知,长方形的长为,宽为,长方形的长为,宽为,∴地面总面积,∴用含、的整式表示地面总面积为;(2)解:当,时,,∵(元),()()22223542a a a a a =+-+-+-2a =--12a =15222=--=-()()22222432314x y xy xy x y x y----222221246214x y xy xy x y x y=--+-210xy =-112,x y ==-21510122⎛⎫=-⨯⨯-=- ⎪⎝⎭A P 20︒B P 80︒APB APM MPN BPN ∠=∠+∠+∠()20909080=︒+︒+︒-︒120=︒PC APB ∠111206022APC APB ∠=∠=⨯︒=︒CPM APC APM ∠=∠-∠602040=︒-︒=︒C P 40︒ABCD ()224m x x ++=+6m CEFG 2m ()633m y y --=-=()()()264231862m ABCD CEFG S S x y x y -=+--=++长方形长方形x y ()21862m x y ++4m x = 1.5m y =2186218642 1.545m x y ++=+⨯+⨯=4580360⨯=∴铺地砖的总费用为元.23.(1)解: (元).答:乙班比甲班少付25元.(2)解:设甲班第一次购买了千克苹果,则第二次购买了千克苹果.①若两次购买量都在30千克与50千克之间,则,无解;②若第一次购买量在0千克与30千克之间,第二次购买量在30千克与50千克之间,则,解得,不合题意,舍去;③若第一次购买量在0千克与30千克之间,第二次购买量在50千克以上,则,解得,符合题意,此时.答:甲班第一次购买了25千克苹果,第二次购买了55千克苹果.24.(1)解:横向道路的宽是x 米,且纵向道路的宽是横向道路的宽的2倍,纵向道路的宽是米,由题意,图①中花园道路的面积为:平方米;(2)解:由题意得,题图①中花园的面积平方米,题图②中花园的面积.平方米,则.因为,所以,所以.25.解:(1)图1中的长方体纸盒的底面积为;故答案为:(2)图2中的长方体纸盒的长为,故答案为:14(3)无盖纸盒的体积为:,有盖纸盒体积为:∵,∴无盖纸盒的体积是有盖纸盒体积的2倍36018528025-⨯=x ()80x -2.5 2.5(80)185x x +-=3 2.5(80)185x x +-=30x =-32(80)185x x +-=25x =8055x -=∴2x ()2101222342x x x x x +⨯-⋅=-)()2211210(342120342S x xx x =⨯--=-+21210(12102S x x x =⨯-+⨯-()22)120322x x x =-+()()22121203421203222S S x x x x x -=-+--+=-0x >20x -<12S S <()()()22052205c 0m 210-⨯⨯-⨯=100()203214cm -⨯=()()()3305230525202052000cm -⨯⨯-⨯⨯=⨯⨯=()()3305230525201051000cm 2-⨯⎛⎫-⨯⨯⨯=⨯⨯= ⎪⎝⎭200010002÷=。
【新教材】人教版(2024)七年级上册数学第三章 代数式 综合素质评价试卷(Word版,含答案)
![【新教材】人教版(2024)七年级上册数学第三章 代数式 综合素质评价试卷(Word版,含答案)](https://img.taocdn.com/s3/m/3f972833793e0912a21614791711cc7930b77844.png)
【新教材】人教版(2024)七年级上册数学第三章代数式 综合素质评价试卷时间:90分钟 满分:120分一、选择题(每题3分,共30分)1.下列数与式子:①2x -y +1;②1a +1b ;③2x +1=3;④ 3>2;⑤ a ;⑥ 0,其中是代数式的有( ) A .2个B .3个C .4个D .6个2.如果a ÷b =c ,那么当a 一定时,b 与c ( ) A .成正比例 B .成反比例 C .不成比例 D .无法确定比例关系 3.代数式x -y 2的意义是( )A . x 与y 的一半的差B . x 的一半与y 的差C . x 与y 的差的一半D .以上答案均不对4.如果某种药降价40%后的价格是a 元,那么此药的原价是( ) A .(1+40%)a 元B .(1-40%)a 元C .a1+40%元 D .a1-40%元5.下列表示图中阴影部分面积的代数式是( )(第5题)A . ad +bcB . c (b -d )+d (a -c )C . ad +c (b -d )D . ab -cd6.[情境题 生活应用]某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( ) A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x )7.[2024烟台莱州市期末]有长为l 的篱笆,利用它和房屋的一面墙围成如图所示的长方形园子,园子的宽为t ,则所围成的园子面积为( )(第7题)A .(l -2t )tB .(l -t )tC . (l2-t)tD . (l -t2)t8.[新考法 整体代入法]若代数式2x 2+3x 的值是5,则代数式4x 2+6x -9的值是( )A .10B .1C .-4D .-89.如果|5-a |+(b +3)2=0,那么代数式1a(1-2b )的值为( ) A .57B .58C .75D .8510.[新视角 规律探究题 2024 北京西城区月考]如图为手的示意图,在各个手指间标记字母A ,B ,C ,D ,请你按图中箭头所指方向(即A ⇒B ⇒C ⇒D ⇒C ⇒B ⇒A ⇒B ⇒C ⇒…)从A 开始数连续的正整数1,2,3,4,…,当字母C 第2 024次出现时,恰好数到的数是( )(第10题)A .6 072B .6 071C .6 065D .6 066二、填空题(每题4分,共24分) 11.[2024锦州凌海市期中]下列书写:①1y ;②123x 2y ;③7m 2n 3;④n 23;⑤2 024×a ×b ;⑥m+3千克,其中正确的是 (填序号). 12.写出7(a -3)的意义: .13.一台电脑原价为a 元,降价20%后,又降低m 元,现售价为 元.14.[2024佛山顺德区期中]某地海拔高度h (km)与温度T (℃)的关系可用T =20-6h 来表示,则该地某海拔高度为2 000 m 的山顶上的温度为 .15.[教材P7习题T10变式 2024泰州兴化市期中]一个两位数x ,还有一个两位数y ,若把x 放在y 前面,组成一个四位数,则这个四位数为 (用含x ,y 的代数式表示). 16.[新视角 程序计算题]按如图所示的程序流程计算,若开始输入的值为x =3,则最后输出的结果是 .三、解答题(共66分)17.(6分)表中的两个量是否成比例关系,成什么比例关系? (1)每支圆珠笔的价钱/元 3 2 1.5 1.2 购买圆珠笔的支数10152025(2)每天的运货量/吨 100 120 150 200 需要的天数60504030(3)。
人教版七年级上册数学试卷【含答案】
![人教版七年级上册数学试卷【含答案】](https://img.taocdn.com/s3/m/7009d9782bf90242a8956bec0975f46527d3a70c.png)
人教版七年级上册数学试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 25D. 272. 一个等腰三角形的底边长为8厘米,腰长为5厘米,那么这个三角形的周长是?A. 18厘米B. 20厘米C. 22厘米D. 24厘米3. 下列哪个数是偶数?A. 101B. 102C. 103D. 1044. 一个长方形的长是10厘米,宽是5厘米,那么这个长方形的面积是?A. 15平方厘米B. 25平方厘米C. 35平方厘米D. 45平方厘米5. 下列哪个数是合数?A. 31B. 32C. 33D. 34二、判断题(每题1分,共5分)1. 两个质数相乘,其结果一定是合数。
()2. 一个等边三角形的三个角都是60度。
()3. 0是偶数。
()4. 一个长方形的长和宽相等,那么这个长方形就是正方形。
()5. 两个奇数相加,其结果一定是偶数。
()三、填空题(每题1分,共5分)1. 1千米等于______米。
2. 一个等腰三角形的底边长为10厘米,腰长为13厘米,那么这个三角形的周长是______厘米。
3. 5的倍数中,最小的偶数是______。
4. 一个长方形的长是8厘米,宽是4厘米,那么这个长方形的面积是______平方厘米。
5. 下列哪个数是9的倍数?______四、简答题(每题2分,共10分)1. 请写出前五个质数。
2. 请写出前五个偶数。
3. 请写出前五个奇数。
4. 请写出前五个合数。
5. 请写出前五个立方数。
五、应用题(每题2分,共10分)1. 一个长方形的长是12厘米,宽是5厘米,那么这个长方形的面积是多少平方厘米?2. 一个等腰三角形的底边长为8厘米,腰长为5厘米,那么这个三角形的周长是多少厘米?3. 一个数的平方是49,那么这个数是多少?4. 一个数的立方是64,那么这个数是多少?5. 一个长方形的长是10厘米,宽是6厘米,那么这个长方形的面积是多少平方厘米?六、分析题(每题5分,共10分)1. 请分析一个等边三角形的三个角的特点。
人教版七年级上册数学试卷全册
![人教版七年级上册数学试卷全册](https://img.taocdn.com/s3/m/22f2111eb52acfc789ebc951.png)
人教版七年级数学上册第一章有理数单元测试题姓名 得分一、精心选一选:(每题2分、计18分)1、a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是 ( ) (A)a+b<0 (B)a+c<0(C)a -b>0 (D)b -c<0 a b 0 c 2、若两个有理数的和是正数,那么一定有结论( )(A )两个加数都是正数; (B )两个加数有一个是正数;(C )一个加数正数,另一个加数为零; (D )两个加数不能同为负数 3、654321-+-+-+……+2005-2006的结果不可能是: ( ) A 、奇数 B 、偶数 C 、负数 D 、整数 4、、两个非零有理数的和是0,则它们的商为: ( )A 、0B 、-1C 、+1D 、不能确定5、有1000个数排一行,其中任意相邻的三个数中,中间的数等于它前后两数的和,若第一个数和第二个数都是1,则1000个数的和等于( )(A)1000 (B)1 (C)0 (D)-16每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为15000000千米,将150000000千米用科学记数法表示为( )A .0.15×910千米B .1.5×810千米C .15×710千米D .1.5×710千米 *7.20032004)2(3)2(-⨯+- 的值为( ). A .20032- B .20032C .20042- D .20042*8、已知数轴上的三点A 、B 、C 分别表示有理数a ,1,1-,那么1+a 表示( ). A .A 、B 两点的距离 B .A 、C 两点的距离C .A 、B 两点到原点的距离之和D . A 、C 两点到原点的距离之和*9.3028864215144321-+-+-+-+-+-+- 等于( ).A .41B .41-C .21D .21-二.填空题:(每题3分、计42分)1、如果数轴上的点A 对应的数为-1.5,那么与A 点相距3个单位长度的点所对应的有理数为_______。
2024-2025学年人教版七年级上册 第一次月考数学模拟试卷(含答案)
![2024-2025学年人教版七年级上册 第一次月考数学模拟试卷(含答案)](https://img.taocdn.com/s3/m/89537570443610661ed9ad51f01dc281e53a569e.png)
2024-2025学年人教版七年级上册第一次月考数学模拟试卷(范围:第一章~第二章)一、选择题1. −4的倒数是( )A.14B.−14C.4D.−42. 下列各数中是有理数的是( )A.π2B.πC.12D.0.1010010001⋯3. 《九章算术》中注“今两算得失相反,要令正负以名之”,意思是:有两数若其意义相反,则分别叫做正数和负数.若气温为零上10∘C记作+10∘C,则−2∘C表示气温为( )A.零上8∘C B.零下8∘C C.零上2∘C D.零下2∘C4. −114的倒数乘14的相反数,其结果是( )A.5B.−5C.15D.−155. 在下列各数:−(+2),−32,(−13)4,−225,−(−1)2023,−∣−3∣中,负数的个数是( )A.2个B.3个C.4个D.5个6. 如图,数轴上A,B两点所表示的两数的关系不正确的是( )A.两数的绝对值相等B.两数互为相反数C.两数互为倒数D.两数的平方相等7. 已知点A在数轴上,点A所对应的数用2a+1表示,且点A到原点的距离等于3,则a的值为( )A.−2或1B.−2或2C.−2D.18. 已知两个有理数a,b,如果ab<0,且a+b<0,那么( )A.a>0,b<0B.a<0,b>0C.a−b<0D.a,b异号,且负数的绝对值较大9. 式子∣x−1∣−3取最小值时,x等于( )A.1B.2C.3D.410. 已知a,b,c为非零的实数,且不全为正数,则a∣a∣+ab∣ab∣+ac∣ac∣+bc∣bc∣的所有可能结果的绝对值之和等于( )A.4B.6C.8D.10二、填空题11. 南海海域面积约为3500000 km2,该面积用科学记数法应表示为km2.12. 用>,<,=号填空.−(+34)−∣−23∣,−227−3.14,−(−0.3)∣−13∣.13. 近似数2.30万精确到位.14. 若a,b互为相反数,c,d互为倒数,则a+b2+2cd=.15. 你会玩“二十四点”游戏吗?现有“2,−3,−4,5,”四个数,每个数用且只用一次进行加、减、乘、除,使其结果为24,写出你的算式(只写一个即可):=24.16. 检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数,得到的结果依次是−2,−3,3,5,从轻重的角度看,最接近标准的工件是第个.17. 点M表示的有理数是−1,点M在数轴上移动5个单位长度后得到点N,则点N表示的有理数是.18. 如图,将一个边长为1的正方形纸片分割成7个部分,部分①是边长为1的正方形纸片面积的一半,部分②是部分①面积的一半,部分③是部分②面积的一半,依此类推,求出12+14+18+⋯+126的值.三、解答题(共5题)19. 观察下列各数,按要求完成下列各题5,−12,(−2)2,−5,∣−1.5∣,+(−2),0,−∣−0.5∣,−(−72)2(1) 将下列各数填在相应的括号里.整数集合:{ };分数集合:{ };正数集合:{ };负数集合:{ }.(2) 在数轴上表示出所有的分数.(3) 用“<”把各负数连接起来.20. 计算.(1) −20−(+14)+(−18)−(−13).(2) (14+16−12)×(−12).(3) −12024−6÷(−2)×∣−13∣.(4) [2−(1−0.5×23)]×[7+(−1)3].21. 阅读材料:计算 130÷(23−110+16−25).分析:利用通分计算 23−110+16−25 的结果很麻烦,可以采用以下方法进行计算.解:原式的倒数是: =(23−110+16−25)÷130=(23−110+16−25)×30=23×30−110×30+16×30−25×30=10.故 原式=110.请你根据对所提供材料的理解,选择合适的方法计算:148÷(112−316+524+23).22. 某高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米):+17,−9,+7,−15,−3,+11,−6,−8,+5,+6.(1) 养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2) 养护过程中,最远处离出发点有多远?(3) 若汽车耗油量为 0.5 升/千米,则这次养护共耗油多少升?23. 如图,数轴上A,B两点分别对应有理数a,b;A,B两点之间的距离表示为AB,在数轴上A,B两点之间的距离AB=∣a−b∣,如:∣5−(−2)∣实际上可理解为数轴上表示5与−2的两点之间的距离.利用数形结合思想回答下列问题.(1) ∣8−(−1)∣=.(2) 写出所有符合条件的整数x,使∣x+2∣+∣x−1∣=3成立.(3) 根据以上探索猜想,对于任何有理数x,∣x−3∣+∣x−8∣是否有最小值?如果有,指出当x满足什么条件时∣x−3∣+∣x−8∣取得最小值,并写出最小值,如果没有,请说明理由.答案一、选择题1. B2. C3. D4. C5. C6. C7. A8. D9. A10. C二、填空题11. 3.5×10612. <;<;<13. 百14. 215. 答案不唯一16. 117. −6或418. 6364三、解答题19.(1) 5,−12,(−2)2,+(−2),0;−5,∣−1.5∣,−(−72);25,(−2)2,∣−1.5∣,−(−72);−12,−52,+(−2),−∣−0.5∣(3) ∵∣−12∣=1,∣−52∣=52,∣+(−2)∣=2,∣−∣−0.5∣∣=0.5,∴∣−∣−0.5∣∣<∣−12∣<∣+(−2)∣<∣−52∣,∴−∣−0.5∣>−12>+(−2)>−52,∴−52<+(−2)<−12<−∣−0.5∣.20.(1) 原式=−20−14−18+13=−39.(2) 原式=−3−2+6=1.(3) 原式=−1+3×13=−1+1=0.(4) 原式=(2−1+13)×6=6+2=8.21. 原式的倒数是:(1 12−316+524+23)÷148=(112−316+524+23)×48 =4−9+10+32=37.故原式=137.22.(1) 17+(−9)+7+(−15)+(−3)+11+(−6)+(−8)+5+6=5(千米).答:养护小组最后到达的地方在出发点的北方距出发点5千米.(2) 第一次17千米,第二次17+(−9)=8,第三次8+7=15,第四次15+(−15)=0,第五次0+(−3)=−3,第六次−3+11=8,第七次8+(−6)=2,第八次2+(−8)=−6,第九次−6+5=−1,第十次−1+6=5.答:最远距出发点17千米.(3) (17+∣−9∣+7+∣−15∣+∣−3∣+11+∣−6∣+∣−8∣+5+6)×0.5=87×0.5=43.5(升).答:这次养护共耗油43.5升.23.(1) 9(2) ∵∣x+2∣+∣x−1∣=3,∴x=−2,−1,0,1.(3) 对于任何有理数x,∣x−3∣+∣x−8∣有最小值.当3≤x≤8时,原式可以取得最小值,最小值为5.。
2024年人教版PEP七年级数学上册阶段测试试卷547
![2024年人教版PEP七年级数学上册阶段测试试卷547](https://img.taocdn.com/s3/m/023e825a3868011ca300a6c30c2259010202f329.png)
2024年人教版PEP七年级数学上册阶段测试试卷547考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共9题,共18分)1、已知下列方程,①3x-2=6;②x-1=y;③+1.5x=8;④3x2-4x=10;⑤x=0;⑥=3.其中一元一次方程的个数有()A. 3B. 4C. 5D. 62、-12004和(-1)2005的值分别是()A. -1和-1B. 1和-1C. -1和1D. 1和13、化简:=()A. 2B. 4C. 8aD. 2a2+24、有下列长度(cm)的三条小木棒,如果首尾顺次连接,能钉成三角形的是()A. 10、14、24B. 12、16、32C. 16、6、4D. 8、10、125、如图,在△ABC中,CD⊥AB于点D,CE平分∠ACB交AB边于E,且∠BAC=130°,∠ABC=20°,则∠DCE的大小是()A. 50°B. 55°C. 60°D. 65°6、下列调查中,适宜采用全面调查(普查)方式的是()A. 了解我市中学生视力情况B. 了解一沓钞票中有没有假钞C. 了解一批西瓜是否甜D. 调查普宁《商城聚焦》栏目的收视率7、某种奖券的中奖率是1%,小花买了100张奖券,下列说法正确的是()A. 小花一定会中奖B. 小花一定不中奖C. 小花中奖的可能性较大D. 小花中奖的可能性很小8、【题文】第六次人口普查的标准时间是2010年11月1日零时.普查登记的大陆31个省、自治区、直辖市和现役军人的人口共1 339 724 852人.这个数用科学记数法表示为(保留三个有效数字)A.B.C.D.9、下列运算中;正确的是()A. x3•x2=x6B. 2x3÷x2=2xC. x+x2=x3D. ()3=评卷人得分二、填空题(共7题,共14分)10、把一个学生使用的三角板以一条直角边为轴旋转成的形状是____体形状,其侧面展开图是____.11、将点P(-1,5)向左平移2个单位,再向上平移1个单位得到P′,则点P′的坐标是____.12、如果a+6和2a鈭�15是一个数的平方根,则这个数为 ______ .13、有一个数值转换器;原理如下:当输入x为64时,输出的y的值是 ______ .14、把-4m写成分式的形式,若分母是-2mn2,那么分子是____.15、列方程:5减x的差的2倍等于1:____.16、【题文】国家投资建设的泰州长江大桥开工,据泰州日报报道,大桥预算总造价是9370000000元人民币,用科学计数法表示为____元.评卷人得分三、判断题(共7题,共14分)17、判断题(判断对错)(1)的系数是7;____(2)与没有系数;____(3)的次数是0+3+2;____(4)的系数是-1;____(5)的次数是7;____(6)的系数是.____.18、在△ABC中,∠A=∠B=∠C,则这个三角形是直角三角形.____(判断对错)19、52x3y3的次数是8.____.20、全等三角形面积相等.()21、如图,两个三角形全等,则∠A=∠E.()22、因为“三内角对应相等的两个三角形全等”是假命题,所以它的逆命题也是假命题.23、﹣x2(2y2﹣xy)=﹣2xy2﹣x3y.________.(判断对错)评卷人得分四、计算题(共3题,共24分)24、【题文】(8分)计算25、分解因式:(1)3x2-6x(2)4x2-16(3)(x2+4)2-16x2(4)x3+2x2y+xy2(5)3x(a-b)-6y(b-a)(6)(x2+y2)2-4x2y2.26、计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
清水中学2012-2013学年度第一学期竞赛试卷
七年级 数学(满分:150分)
一、填空题(每空3分,共57分)
1、-1
4的倒数是__________,-3的相反数是__________,
绝对值大于2而小于4的整数有,
2、某地一周内每天最高与最低气温如下表,则温差最大的一天是星期_______.
3、
20082008)5.0()2(-⨯-=, 4、已
知:
+
+2)2(a │5-b │=0, 则=-b a
5、关于x 的方程4x - 1=1与2x - a - 3a =0的解相同, 则a =_______.
6、若x P +4x 3-qx 2-2x +5是关于x 的五次四项式,则q -p=。
7、5960000用科学记数法表示为_____________..
8、 比较大小:7
5-3
2-; (填“<”、“=”或“>”).
9、 规定一种新运算:1+--⋅=∆b a b a b a ,如1434343+--⨯=∆,请比较大小:()()34 43-∆∆-(填“<”、“=”或“>”).
10、 小明在求一个多项式减去x 2—3x+5时,误认为加上x 2—3x+5,得到的答案是5x 2
—2x+4,则正确的答案是_______________.
11、(a -2)x |a|-1+2=0是关于x 的一元一次方程,则a=____,方程的解为________. 12、如果x +y=5,则3-x -y=;如果x -y=4
3,则8y -8x=。
13、观察下列单项式:x,-3x 2,5x 3,-7x 4,9x 5
,…按此规律,可以得到第2008个单项式是______.
第n 个单项式是________
14、a 、b 、c 在数轴上表示的点如图所示,则化简|b|+|a+b|-|a-c|=_____________. 二、选择题(每题3分,共21分) 15、下列说法不正确的有 ( )
①1是绝对值最小的数 ②3a -2的相反数是-3a+2 ③25R π的系数是5④一个有理数不是整数就是分数 ⑤343x 是7次单项式 A.1个 B.2个 C.3个 D.4个
16、校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米, 张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置在( )
A.在家
B.在学校
C.在书店
D.不在上述地方 17、已知b a m 225-和n b a -347是同类项,则2m - n 的值是( )
A 、6
B 、4
C 、3
D 、2
18、当2=x 时, 整式13++qx px 的值等于2002,那么当2-=x 时,整式13++qx px 的
值为( )
A 、2001
B 、-2001
C 、2000
D 、-2000 19、已知有理数x 的近似值是5.4,则x 的取值范围是()
A. 5.35<x<5.44
B.5.35<x ≤5.44
C.5.35≤x<5.45
D.5.35≤x ≤5.45 20、x 2 +ax-2y+7- (bx 2 -2x+9y-1)的值与x 的取值无关,则a+b 的值为( )
A.-1;
B.1;
C.-2
D.2
21、若0<m<1, m 、m 2、
1
m
的大小关系是( ) A.m<m 2<1m ; B.m 2<m<1m ; C.1m <m<m 2; D.1
m
<m 2<m
三、解答题(共72分) 22、计算:(共16分)
c
b a
(1)(5分)33.1-10.7-(-22.9)-10
23-
(2)(5分)-23÷181
32)31()41
2(2+-
-⨯-- (3)(6
分)(-83+127)÷(-241)+
431
167-÷-()(+87)
23、(8分)化简求值:(x 3-2y 3-3 x 2y )-[3(3x 3-2y 3)-4x 2y ],其中x= -2, y= -1
24、(8分) 已知2
222539,822y xy x B x y xy A -+=+-=,
求(1)B A -;(2)B A 23+-。
25、(8分)课堂上李老师给出了一道整式求值的题目,李老师把要求的整式(7 a 3
-6 a 3b +3 a 2b )-(-3 a 3-6 a 3b +3 a 2b +10 a 3-3)写完后,让王红同学顺便给出一组a 、b 的值,老师自己说答案,当王红说完:“a=65,b=-2005”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”,亲爱的同学你相信吗?你能说出其中的道理吗? 26、(8分)已知
m n n m
-=-,且
4m =,
3
n =,求 的值
27、(8分)已知:有理数m 所表示的点到点3距离4个单位,a 、b 互为相反数,且都不为零,c 、d
互为倒数。
求:m
cd b a
b a --++)3(22的值
28、某农户2007年承包荒山若干亩,投资7800元改造后,种果树2000棵.今年水果总产量为18000千克,此水果在市场上每千克售a 元,在果园每千克售b 元(b <a ).该农户将水果拉到市场出售平均每天出售1000千克,需8人帮忙,每人每天付工资25元,农用车运费及其他各项税费平均每天100元. (1)分别用a ,b 表示两种方式出售水果的收入?
(2)若a =1.3元,b =1.1元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好.
(3)该农户加强果园管理,力争到明年纯收入达到15000元,而且该农户采用了(2)中较好的出售方式出售,那么纯收入增长率是多少(纯收入=总收入-总支出))?
29、(8分)探索规律:
观察下面由※组成的图案和算式,解答问题: 1+3=4=22
1+3+5=9=32
1+3+5+7=19=42
1+3+5+7+9=25=52
(1)请猜想1+3+5+7+9+ … +29= ;(2分)
(2)请猜想1+3+5+7+9+ … +(2n-1)+(2n+1) =;(3分)
(3)请用上述规律计算:(3分) 41+43+45+ …… +77+79
35791※※※※※※※※※※※
※※
※
※※※※※※※※※※※2
()m n +=。