圆心角圆周角的练习题
圆心角圆周角练习题
圆心角圆周角练习题圆心角和圆周角是圆内角的一种特殊形式,它们在几何学中具有重要的地位。
本文将介绍关于圆心角和圆周角的一些练习题,帮助读者加深对这一概念的理解。
一、选择题1. 在同一个圆中,圆心角和对应的圆周角的关系是:A. 圆心角大于对应的圆周角B. 圆心角等于对应的圆周角C. 圆心角小于对应的圆周角2. 已知在同一个圆中,圆心角的度数为56°,则对应的圆周角的度数为:A. 56°B. 112°C. 224°3. 在圆O中,∠ACB是圆心角,则它所对应的圆周角的度数为:A. 30°B. 60°C. 120°4. 若∠ACD是圆O中的圆心角,且其度数为72°,则弧AB所对应的圆周角的度数为:A. 72°B. 144°C. 288°5. 在同一个圆中,圆心角和对应的弧所对应的圆周角之间的关系是:A. 圆心角小于对应的圆周角B. 圆心角等于对应的圆周角C. 圆心角大于对应的圆周角二、填空题1. 在同一圆中,一条弧的度数等于其所对应的圆周角的度数,则这条弧所对应的圆心角的度数为________。
2. 在圆O中,已知∠ACB是圆心角,则它所对应的圆周角的度数为________。
3. 在同一个圆中,圆心角的度数等于所对应的弧所对应的圆周角的度数,则该弧所对应的圆周角的度数为________。
三、解答题1. 在同一个圆中,圆心角和对应的圆周角的关系是什么?为什么?2. 已知在同一个圆中,圆心角的度数为60°,则对应的圆周角的度数是多少?并通过计算或推理进行解答。
3. 在圆O中,∠ACB是圆心角,则它所对应的圆周角的度数是多少?并通过计算或推理进行解答。
4. 若∠ACD是圆O中的圆心角,且其度数为90°,则弧AB所对应的圆周角的度数是多少?并通过计算或推理进行解答。
总结:本文通过选择题、填空题和解答题的形式,对圆心角和圆周角的概念进行了练习和探讨。
《垂径定理-弧弦圆心角-圆周角》练习
1《圆》练习题(垂径定理, 弧、弦、圆心角, 圆周角)一、选择题1.已知在⊙O 中, 弦AB 的长为8厘米, 圆心O 到AB 的距离为3厘米, 则⊙O 的半径是( )A. 3厘米B. 4厘米C. 5厘米D. 8厘米2.半径等于12的圆中, 垂直平分半径的弦长为( )A. B. C. D.3.如图1, 在⊙O 中, ∠ABC=50°, 则∠AOC 等于( )A. 50°B. 80°C. 90°D. 100°4.如图2, AB 是⊙O 的直径, ∠ABC=30°, 则∠BAC =( )A. 90°B. 60°C. 45°D. 30°5.如图3, △ABC 内接于⊙O, 连结OA.OB, 若∠ABO =25°, 则∠C 的度数为( ).A. 55°B. 60°C. 65°D. 70°6.如图4, 四边形ABCD 内接于⊙O, 若它的一个外角∠DCE=70°, 则∠BOD=( )A. 35°B.70°C. 110°D.140°7、如图5, △ABC 内接于⊙O, AD ⊥BC 于点D, AD=2cm, AB=4cm, AC=3cm, 则⊙O 的直径是( )A. 2cmB. 4cmC. 6cmD. 8cm8、如图6, BD 是⊙O 的直径, 圆周角∠A = 30(, 则∠CBD 的度数是( )A. 30(B. 45(C. 60(D. 80(9、如图7, AB 为⊙O 的直径, C .D 是⊙O 上的两点, ∠BAC=30º, AD=CD, 则∠DAC 的度数是( )A. 30ºB. 60ºC. 45ºD. 75º10、圆内接四边形ABCD 中, ∠A ∶∠B ∶∠C ∶∠D 可以是( )A. 1∶2∶3∶4B. 1∶3∶2∶4C. 4∶2∶3∶1D. 4∶2∶1∶3AB O C图1 图2 O 30D B C A O D CBA 图3 图4图6图7图52二、填空题11.如图8, ∠A 是⊙O 的圆周角, ∠A=40°, 则∠OBC 的度数为_______.12.如图9, AB 是⊙O 的直径, 点D 在⊙O 上∠AOD=130°, BC ∥OD 交⊙O 于C, 则∠A= .13、如图10, ⊙O 的直径AB=8cm, C 为⊙O 上的一点, ∠BAC=300, 则BC= .14、如图,量角器外沿上有A 、B 两点,它们的读数分别是70°、40°,则∠1的度数为 .三、解答题: 15、.如图, AB 、CD 是⊙O 的两条弦, 延长AB 、CD 交于点P, 连结AD 、BC 交于点E . , , 求 的度数.16.如图所示, AB 是⊙O 的一条弦, OD ⊥AB , 垂足为C, 交⊙O 于点D , 点E 在⊙O 上。
圆的定义圆心角圆周角训练题(含答案)
圆的定义圆心角圆周角训练题一、单选题(共17题;共34分)1.(2020九上·江苏月考)下列说法错误的是()A. 长度相等的两条弧是等弧B. 直径是圆中最长的弦C. 面积相等的两个圆是等圆D. 半径相等的两个半圆是等弧2.(2019九上·台安期中)下列说法中,不正确的个数是()①优弧一定比劣弧长;②面积相等的两个圆是等圆;③长度相等的弧是等弧;④经过圆心的一个定点可以作无数条弦;⑤经过圆内一定点可以作无数条直径.A. 1个B. 2个C. 3个D. 4个3.(2019九上·沭阳月考)下列命题:①直径相等的两个圆是等圆;②等弧是长度相等的弧;③圆中最长的弦是通过圆心的弦;④一条弦把圆分为两条弧,这两条弧不可能是等弧.其中真命题是( )A. ①③B. ①③④C. ①②③D. ②④4.(2019九上·贾汪月考)下列说法中,错误的是()A. 半圆是弧B. 半径相等的圆是等圆C. 过圆心的线段是直径D. 直径是弦5.(2018九上·下城期末)下列命题中是真命题的为()A. 弦是直径B. 直径相等的两个圆是等圆C. 平面内的任意一点不在圆上就在圆内D. 一个圆有且只有一条直径6.(2020九上·浙江期中)如图,是的直径,,,则的度数是().A. 52°B. 57°C. 66°D. 78°7.(2019九上·柳江月考)如图,AB是⊙O的直径,,∠COD=34°,则∠AOE的度数是( )A. 51°B. 56°C. 68°D. 78°8.(2019九上·邯郸月考)如图,AB是O的直径, ,∠BOC=40°,则∠AOE的度数为()A. 30°B. 40°C. 50°D. 60°9.(2019九上·余杭期中)如图,在△ABC中,∠C=90°,的度数为α,以点C为圆心,BC长为半径的圆交AB于点D,交AC于点E,则∠A的度数为()A. 45º-αB. αC. 45º+αD. 25º+α10.(2020九下·南召月考)如图,四边形ABCD内接于⊙O,AC平分∠BAD,则下列结论正确的是()A. AB=ADB. BC=CDC.D. ∠BCA=∠DCA11.(2020九上·无锡月考)在半径为的圆中,长度等于的弦所对的弧的度数为()A. B. C. 或 D. 或12.(2020·西湖模拟)如图,已知点A,B,C,D,E是⊙O的五等分点,则∠BAD的度数是()A. 36°B. 48°C. 72°D. 96°13.(2020·衢州模拟)如图,在⊙O中,=,∠A=40°,则∠B的度数是()A. 60°B. 40°C. 50°D. 70°14.(2020·乾县模拟)如图,△ABC内接于⊙O,连接AO并延长交BC于点D,若∠B=70°,∠C=50°,则∠ADB 的度数是()A. 70°B. 80°C. 82°D. 85°15.(2019九上·龙湖期末)如图,在⊙O中,若点C是的中点,∠A=50°,则∠BOC=( )A. 40°B. 45°C. 50°D. 60°16.(2019九上·道外期末)如图,,是的直径,,若,则的度数是()A. 32°B. 60°C. 68°D. 64°17.(2019九上·光明期中)如图,已知AB是⊙O的直径,∠CBA=25°,则∠D的度数为()A. B. C. D.参考答案一、单选题1.【答案】A【解析】【解答】解:A、等弧就是指能完全重合的两段弧,所以长度相等的弧的度数不一定是等弧,故错误;B、直径是圆中最长的弦,正确;C、面积相等的两个圆是等圆,正确;D、半径相等的两个半圆是等弧,正确.故答案为:A.2.【答案】C【解析】【解答】在同圆或等圆中,优弧一定比劣弧长,所以①错误;面积相等的两个圆半径相等,则它们是等圆,所以②正确;能完全重合的弧是等弧,所以③错误;经过圆内一个定点可以作无数条弦,所以④正确;经过圆内一定点可以作无数条直径或一条直径,所以⑤错误.故答案为:C.3.【答案】A【解析】【解答】解:①直径相等的两个圆能重合,所以是等圆,①是真命题;②长度相等的弧不一定能重合,所以不一定是等弧,②是假命题;③圆中最长的弦是直径,通过圆心的弦是直径,③是真命题;④一条弦把圆分成两条弧,这两条弧可以是半圆,所以可能是等弧,④是假命题.故答案为:A.4.【答案】C【解析】【解答】解:A、半圆是弧,所以A选项的说法正确;B、半径相等的圆是等圆,所以B选项的说法正确;C、过圆心的弦为直径,所以C选项的说法错误;D、直径是弦,所以D选项的说法正确.故答案为:C.5.【答案】B【解析】【解答】解:弦不一定是直径,A是假命题;直径相等的两个圆是等圆,B是真命题;平面内的任意一点在圆上、圆内或圆外,C是假命题;一个圆有无数条直径,D是假命题;故选:B.6.【答案】C【解析】【解答】解:∵AB是⊙O的直径,,∠COD=38°,∴∠BOC=∠COD=∠DOE=38°.∴∠BOE=114°,∴∠AOE=180°-114°=66°.故答案为:C.7.【答案】D【解析】【解答】解:∵,∠COD=34°,∴∠BOC=∠COD=∠DOE=34°,∴∠AOE=180°-∠BOC-∠COD-∠DOE=180°-34°-34°-34°= 78° .故答案为:D.8.【答案】D【解析】【解答】解:∵,∠BOC=40°∴∠BOC=∠COD=∠EOD=40°∴∠BOE=120°∴∠AOE=180°-∠BOE=60°.9.【答案】A【解析】【解答】解:如图,连接CD,∵的度数为,∴∠DCE= ,∵BC=CD,∴∠CBD=∠BDC= ,∵∠C=90°,∴∠CBD+∠A=90°,∴,∴;故选择:A.10.【答案】B【解析】【解答】解:A.∵∠ACB与∠ACD的大小关系不确定,∴AB与AD不一定相等,故本选项错误;B.∵AC平分∠BAD,∴∠BAC=∠DAC,∴BC=CD,故本选项正确;C.∵∠ACB与∠ACD的大小关系不确定,∴与不一定相等,故本选项错误;D.∠BCA与∠DCA的大小关系不确定,故本选项错误。
2022-2023学年北师大版九年级数学下册《3-4圆周角与圆心角的关系》同步练习题(附答案)
2022-2023学年北师大版九年级数学下册《3.4圆周角与圆心角的关系》同步练习题(附答案)一.选择题1.如图,在⊙O中,AB为直径,∠AOC=80°.点D为弦AC的中点,点E为上任意一点.则∠CED的大小可能是()A.10°B.20°C.30°D.40°2.如图,AB是⊙O的弦,OC⊥AB交⊙O于点C,点D是⊙O上一点,∠ADC=30°,则∠BOC的度数为()A.30°B.40°C.50°D.60°3.如图,⊙P与x轴交于点A(﹣5,0),B(1,0),与y轴的正半轴交于点C.若∠ACB =60°,则点C的纵坐标为()A.+B.2+C.4D.2+24.如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为()A.50°B.60°C.80°D.90°5.如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.45°B.50°C.55°D.60°6.如图,AB是⊙O的直径,C,D是⊙O上的两点,且BC平分∠ABD,AD分别与BC,OC相交于点E,F,则下列结论不一定成立的是()A.OC∥BD B.AD⊥OC C.△CEF≌△BED D.AF=FD7.如图,BC是半圆O的直径,D,E是上两点,连接BD,CE并延长交于点A,连接OD,OE.如果∠A=70°,那么∠DOE的度数为()A.35°B.38°C.40°D.42°8.已知⊙O的半径为3,AB、AC是⊙O的两条弦,AB=3,AC=3,则∠BAC的度数是()A.75°或105°B.15°或105°C.15°或75°D.30°或90°二.填空题9.如图,点A、B、C都在⊙O上,OC⊥OB,点A在劣弧上,且OA=AB,则∠ABC=.10.如图,AB是⊙O的直径,弦CD⊥AB,垂足为P,若AP:PB=1:4,CD=8,则AB =.11.如图,四边形ABCD为⊙O的内接四边形,∠A=100°,则∠DCE的度数为.12.如图,A、B、C是⊙O上的三点,且四边形OABC是菱形.若点D是圆上异于A、B、C的另一点,则∠ADC的度数是.13.如图,四边形ABCD内接于⊙O,点E在BC的延长线上,若∠BOD=120°,则∠DCE =.14.如图,圆内接四边形ABCD两组对边的延长线分别相交于点E,F,且∠A=55°,∠E=30°,则∠F=.15.如图,在⊙O中,四边形OABC为菱形,点D在上,则∠ADC的度数是.16.已知:如图,等腰三角形ABC中,AB=AC=4,若以AB为直径的⊙O与BC相交于点D,DE∥AB,DE与AC相交于点E,则DE=.三.解答题17.如图,以△ABC的一边AB为直径的半圆与其它两边AC,BC的交点分别为D、E,且=.(1)试判断△ABC的形状,并说明理由.(2)已知半圆的半径为5,BC=12,求sin∠ABD的值.18.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.19.如图,AC是⊙O的直径,弦BD交AC于点E.(1)求证:△ADE∽△BCE;(2)如果AD2=AE•AC,求证:CD=CB.20.已知:如图.△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O 于点D,DE⊥AB于点E,且交AC于点P,连接AD.(1)求证:∠DAC=∠DBA;(2)求证:P是线段AF的中点;(3)若⊙O的半径为5,AF=,求tan∠ABF的值.21.如图,⊙O中,弦AB、CD相交于AB的中点E,连接AD并延长至点F,使DF=AD,连接BC、BF.(1)求证:△CBE∽△AFB;(2)当时,求的值.22.如图,在△ABC中,∠ACB=90°,D是AB的中点,以DC为直径的⊙O交△ABC的边于G,F,E点.求证:(1)F是BC的中点;(2)∠A=∠GEF.参考答案一.选择题1.解:连接BC,延长ED交⊙O于N,连接OD,并延长交⊙O于M,∵∠AOC=80°,∴的度数是80°,∵点D为弦AC的中点,OA=OC,∴∠AOD=∠COD,∴=,即M为的中点,∴和的度数都是80°=40°,∵>,∴40°<的度数<80°,∴20°<∠CED<40°,∴选项C符合题意;选项A、选项B、选项D都不符合题意;故选:C.2.解:如图,∵∠ADC=30°,∴∠AOC=2∠ADC=60°.∵AB是⊙O的弦,OC⊥AB交⊙O于点C,∴=.∴∠AOC=∠BOC=60°.故选:D.3.解:连接P A,PB,PC,过P作PD⊥AB于D,PE⊥OC于E,∵∠ACB=60°,∴∠APB=120°,∵P A=PB,∴∠P AB=∠PBA=30°,∵A(﹣5,0),B(1,0),∴AB=6,∴AD=BD=3,∴PD=,P A=PB=PC=2,∵PD⊥AB,PE⊥OC,∠AOC=90°,∴四边形PEOD是矩形,∴OE=PD=,PE=OD=2,∴CE===2,∴OC=CE+OE=2+,∴点C的纵坐标为2+,故选:B.4.解:如图,∵A、B、D、C四点共圆,∴∠GBC=∠ADC=50°,∵AE⊥CD,∴∠AED=90°,∴∠EAD=90°﹣50°=40°,延长AE交⊙O于点M,∵AO⊥CD,∴,∴∠DBC=2∠EAD=80°.故选:C.5.解:∵四边形ABCD内接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵=,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.故选:B.6.解:∵AB是⊙O的直径,BC平分∠ABD,∴∠ADB=90°,∠OBC=∠DBC,∴AD⊥BD,∵OB=OC,∴∠OCB=∠OBC,∴∠DBC=∠OCB,∴OC∥BD,选项A成立;∴AD⊥OC,选项B成立;∴AF=FD,选项D成立;∵△CEF和△BED中,没有相等的边,∴△CEF与△BED不全等,选项C不成立;故选:C.7.解:连接CD,如图所示:∵BC是半圆O的直径,∴∠BDC=90°,∴∠ADC=90°,∴∠ACD=90°﹣∠A=20°,∴∠DOE=2∠ACD=40°,故选:C.8.解:分为两种情况:①当圆心O在∠BAC的内部时,如图所示,过O作OE⊥AB于E,OD⊥AC于D,连接OA,∵OE⊥AB,OE过圆心O,AB=3,∴AE=BE=,由勾股定理得:OE===,即OE=AE,∴∠BAO=45°,∵OD⊥AB,OD过圆心O,AC=3,∴AD=CD=,∵OA=3,∴AD=OA,∴∠AOD=30°,∴∠CAO=60°,∴∠BAC=∠BAO+∠CAO=45°+60°=105°;②当O在∠BAC的外部时,由①得:∠CAO=60°,∠BAO=45°,所以∠BAC=∠CAO﹣∠BAO=60°﹣45°=15°;故选:B.二.填空题9.解:∵OA=OB,OA=AB,∴OA=OB=AB,即△OAB是等边三角形,∴∠AOB=60°,∵OC⊥OB,∴∠COB=90°,∴∠COA=90°﹣60°=30°,∴∠ABC=15°,故答案为:15°10.解:∵AB是⊙O的直径,弦CD⊥AB,CD=8,∴CP=4,根据相交弦定理得,16=AP×4AP,解得AP=2,∴AB=10.11.解:∵四边形ABCD为⊙O的内接四边形,∴∠DCE=∠A=100°,故答案为:100°12.解:连接OB,∵四边形OABC是菱形,∴AB=OA=OB=BC,∴△AOB是等边三角形,∴∠ADC=60°,∠AD′C=120°.故答案为:60°或120°.13.解:∵∠BOD=120°,∴∠A=∠BOD=60°.∵四边形ABCD是圆内接四边形,∴∠DCE=∠A=60°.故答案为:60°.14.解:∵∠A=55°,∠E=30°,∴∠EBF=∠A+∠E=85°,∵∠A+∠BCD=180°,∴∠BCD=180°﹣55°=125°,∵∠BCD=∠F+∠CBF,∴∠F=125°﹣85°=40°.故答案为40°.15.解:∵四边形ABCD内接于⊙O,∴∠B+∠D=180°,∵四边形OABC为菱形,∴∠B=∠AOC,∴∠D+∠AOC=180°,∵∠AOC=2∠D,∴3∠D=180°,∴∠ADC=60°,故答案为60°.16.解:连接AD,∵AB为直径,∴∠ADB=90°,又∵AB=AC,∴D为BC的中点,又∵DE∥AB,∴DE为△ABC的中位线,∴DE=AB=×4=2.三.解答题17.解:(1)△ABC为等腰三角形.理由如下:连接AE,如图,∵=,∴∠DAE=∠BAE,即AE平分∠BAC,∵AB为直径,∴∠AEB=90°,∴AE⊥BC,∴△ABC为等腰三角形;(2)∵△ABC为等腰三角形,AE⊥BC,∴BE=CE=BC=×12=6,在Rt△ABE中,∵AB=10,BE=6,∴AE==8,∵AB为直径,∴∠ADB=90°,∴AE•BC=BD•AC,∴BD==,在Rt△ABD中,∵AB=10,BD=,∴AD==,∴sin∠ABD===.18.解:(1)∵AB是半圆O的直径,∴∠ACB=90°,又∵OD∥BC,∴∠AEO=90°,即OE⊥AC,∠CAB=90°﹣∠B=90°﹣70°=20°,∠AOD=∠B=70°.∵OA=OD,∴∠DAO=∠ADO===55°∴∠CAD=∠DAO﹣∠CAB=55°﹣20°=35°;(2)在直角△ABC中,BC===.∵OE⊥AC,∴AE=EC,又∵OA=OB,∴OE=BC=.又∵OD=AB=2,∴DE=OD﹣OE=2﹣.19.证明:(1)如图,∵∠A与∠B是对的圆周角,∴∠A=∠B,又∵∠1=∠2,∴△ADE∽△BCE;(2)如图,∵AD2=AE•AC,∴,又∵∠A=∠A,∴△ADE∽△ACD,∴∠AED=∠ADC,又∵AC是⊙O的直径,∴∠ADC=90°,即∠AED=90°,∴直径AC⊥BD,∴=,∴CD=CB.20.(1)证明:∵BD平分∠CBA,∴∠CBD=∠DBA,∵∠DAC与∠CBD都是弧CD所对的圆周角,∴∠DAC=∠CBD,∴∠DAC=∠DBA;(2)证明:∵AB为直径,∴∠ADB=90°,∵DE⊥AB于E,∴∠DEB=90°,∴∠ADE+∠EDB=∠ABD+∠EDB=90°,∴∠ADE=∠ABD=∠DAP,∴PD=P A,∵∠DF A+∠DAC=∠ADE+∠PDF=90°,且∠ADB=90°,∴∠PDF=∠PFD,∴PD=PF,∴P A=PF,即:P是AF的中点;(3)解:∵∠DAF=∠DBA,∠ADB=∠FDA=90°,∴△FDA∽△ADB,∴=,由题意可知圆的半径为5,∴AB=10,∴===,∴在Rt△ABD中,tan∠ABD==,即:tan∠ABF=.21.(1)证明:∵AE=EB,AD=DF,∴ED是△ABF的中位线,∴ED∥BF,∴∠CEB=∠ABF,又∵∠C=∠A,∴△CBE∽△AFB.(2)解:由(1)知,△CBE∽△AFB,∴,又AF=2AD,∴.22.证明一:(1)连接DF,∵∠ACB=90°,D是AB的中点,∴BD=DC=AB,∵DC是⊙O的直径,∴DF⊥BC,∴BF=FC,即F是BC的中点;(2)∵D,F分别是AB,BC的中点,∴DF∥AC,∴∠A=∠BDF,∵∠BDF=∠GEF(圆周角定理),∴∠A=∠GEF.证明二:(1)连接DF,DE,∵DC是⊙O直径,∴∠DEC=∠DFC=90°.∵∠ECF=90°,∴四边形DECF是矩形.∴EF=CD,DF=EC.∵D是AB的中点,∠ACB=90°,∴EF=CD=BD=AB.∴△DBF≌△EFC.∴BF=FC,即F是BC的中点.(2)∵△DBF≌△EFC,∴∠BDF=∠FEC,∠B=∠EFC.∵∠ACB=90°(也可证AB∥EF,得∠A=∠FEC),∴∠A=∠FEC.∵∠FEG=∠BDF(同弧所对的圆周角相等),∴∠A=∠GEF.(此题证法较多,大纲卷参考答案中,又给出了两种不同的证法,可供参考.)。
圆周角和圆心角的关系中考题目完整版
圆周角和圆心角的关系中考题目Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】圆周角和圆心角的关系-----中考链接能力提升题一.选择题(共12小题)1.(2013?自贡)如图,在平面直角坐标系中,⊙A经过原点O,并且分别与x轴、y轴交于B、C两点,已知B(8,0),C(0,6),则⊙A的半径为()A. 3 B.4 C.5 D.82.(2013珠海)如图,ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接AE,则∠AEB的度数为()A.36°B.46°C.27°D.63°3.(2013?湛江)如图,AB是⊙O的直径,∠AOC=110°,则∠D=()A.25°B.35°C.55°D.70°4.(2013?宜昌)如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()A.B.AF=BF C.OF=CF D.∠DBC=90°5.(2013?绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为()A. 4 B.5 C.6 D.76.(2013?苏州)如图,AB是半圆的直径,点D是的中点,∠ABC=50°,则∠DAB等于()A.55°B.60°C.65°D.70°7.(2013?日照)如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是()A.BD⊥AC B.AC2=2AB?AEC.△ADE是等腰三角形D.BC=2AD8.(2013?南宁)如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=∠BOD,则⊙O的半径为()A. 4B.5 C.4 D.39.(2013?济南)如图,AB是⊙O的直径,C是⊙O上一点,AB=10,AC=6,OD⊥BC,垂足是D,则BD的长为()A. 2 B.3 C.4 D.610.(2013?临沂)如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是()A.75°B.60°C.45°D.30°11.(2013?红河州)如图,AB是⊙O的直径,点C在⊙O上,弦BD平分∠ABC,则下列结论错误的是()A. AD=DC B.C.∠ADB=∠ACB D.∠DAB=∠CBA12.(2013?黑龙江)如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,那么AB的值为()A. 3 B.2C.3D.2二.填空题(共6小题)13.(2013?淄博)如图,AB是⊙O的直径,,AB=5,BD=4,则sin∠ECB=_________ .14.(2013?黔西南州)如图所示⊙O中,已知∠BAC=∠CDA=20°,则∠ABO的度数为_________ .15.(2013?盘锦)如图,⊙O直径AB=8,∠CBD=30°,则CD= _________ .16.(2013?常州)如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则DC= _________ .17.(2012?徐州)如图,已知AB是⊙O的直径,CD是弦,且CD⊥AB,AC=8,BC=6.则sin∠ABD=_________ .18.(2012?泰安)如图,在半径为5的⊙O中,弦AB=6,点C是优弧上一点(不与A,B重合),则cosC的值为_________ .三.解答题(共4小题)19.(2013?武汉)如图,已知△ABC是⊙O的内接三角形,AB=AC,点P是的中点,连接PA,PB,PC.(1)如图①,若∠BPC=60°.求证:AC=AP;(2)如图②,若sin∠BPC=,求tan∠PAB的值.20.(2013?温州)如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连接AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC﹣AC=2,求CE的长.21.(2013?哈尔滨)如图,在△ABC中,以BC为直径作半圆O,交AB于点D,交AC于点E,AD=AE.(1)求证:AB=AC(2)若BD=4,BO=2,求AD的长.22.(2012?大庆)如图△ABC中,BC=3,以BC为直径的⊙O交AC于点D,若D是AC中点,∠ABC=120°.(1)求∠ACB的大小;(2)求点A到直线BC的距离.参考答案一.选择题(共12小题)1. C2. A.3. B.4. C.5. B.6. C.7. D.8. B.9. C.10. B.11. D.12. A.二.填空题(共6小题)13..14.50°.15. 4.16. 2.17..18..三.解答题(共4小题)19.解:(1)∵∠BPC=60°,∴∠BAC=60°,∵AB=AC,∴△ABC为等边三角形,∴∠ACB=∠ABC=60°,∴∠APC=∠ABC=60°,而点P是的中点,∴∠ACP=∠ACB=30°,∴∠PAC=90°,∴tan∠PCA==tan30°=,∴AC=PA;(2)过A点作AD⊥BC交BC于D,连结OP交AB于E,如图,∵AB=AC,∴AD平分BC,∴点O在AD上,连结OB,则∠BOD=∠BAC,∵∠BPC=∠BAC,∴sin∠BOD=sin∠BPC==,设OB=25x,则BD=24x,∴OD==7x,在Rt△ABD中,AD=25x+7x=32x,BD=24x,∴AB==40x,∵点P是的中点,∴OP 垂直平分AB,∴AE=AB=20x,∠AEP=∠AEO=90°,在Rt△AEO中,OE==15x,∴PE=OP﹣OE=25x﹣15x=10x,在Rt△APE中,tan∠PAE===,即tan∠PAB的值为.20.(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∴AC⊥BC,又∵DC=CB,∴AD=AB,∴∠B=∠D;(2)解:设BC=x,则AC=x﹣2,在Rt△ABC中,AC2+BC2=AB2,∴(x﹣2)2+x2=42,解得:x1=1+,x2=1﹣(舍去),∵∠B=∠E,∠B=∠D,∴∠D=∠E,∴CD=CE,∵CD=CB,∴CE=CB=1+.21.解:(1)连接BE,CD,∵BC是半圆O的直径,∴∠BDC=∠BEC=90°,∴∠ADC=∠AEB=90°,在Rt△ABE和Rt△ACD中,∵,∴△ABE≌△ACD,∴AB=AC.(2)∵BO=2,∴BC=4,在Rt△BDC中,CD==8,设AD=x,则AC=AB=x+4,在Rt△ADC中,82+x2=(x+4)2,解得:x=6.即AD=6.22.解:(1)连接BD,∵以BC为直径的⊙O交AC于点D,∴∠BDC=90°,∵D是AC中点,∴BD是AC的垂直平分线,∴AB=BC,∴∠A=∠C,∵∠ABC=120°,∴∠A=∠C=30°,即∠ACB=30°;(2)过点A作AE⊥BC于点E,∵BC=3,∠ACB=30°,∠BDC=90°,∴cos30°==,∴CD=,∵AD=CD,∴AC=3,∵在Rt△AEC中,∠ACE=30°,∴AE=×3=.。
浙教版九年级数学上册《圆心角、圆周角》练习题
2022-2023学年浙教版九年级数学上册《3.4圆心角、3.5圆周角》优生辅导综合练习题(附答案)一.选择题1.如图,AB为⊙O的直径,点C,D在⊙O上,若∠ADC=130°,则∠BAC的度数为()A.25°B.30°C.40°D.50°2.如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40°B.30°C.20°D.15°3.如图,C,D是⊙O上直径AB两侧的两点,设∠ABC=15°,则∠BDC=()A.85°B.75°C.70°D.65°4.如图,AB是⊙O的直径,∠D=32°,则∠AOC等于()A.158°B.58°C.64°D.116°5.如图,△ABC的两顶点A,B在⊙O上,点C在圆外,∠C=46°,边AC交⊙O于点D,DE∥BC经过圆心交⊙O于点E,则的度数为()A.44°B.80°C.88°D.92°6.一副学生三角板放在一个圈里恰好如图所示,顶点D在圆圈外,其他几个顶点都在圆圈上,圆圈和AD交于点E,已知AC=8cm,则这个圆圈上的弦CE长是()A.6cm B.6cm C.4cm D.cm 二.填空题7.如图,AB为⊙O的直径,点C、D在⊙O上.若∠ACD=50°,则∠BAD的大小为°.8.如图所示,在△ABC中,AB=AC,以AB为直径作半圆O,交BC于点D,交AC于点E.若∠BAC=44°,BD=2,则弧AE的度数是,DC的长为.9.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC长为半径画弧,交边AB于点D,则CD的长为.10.在半径为r的圆中,长度为r的弦所对的圆周角的度数是.11.如图,在⊙O中,∠BAC=15°,∠ADC=20°,则∠ABO的度数为.12.如图,A,B,C,D都是⊙O上的点,OA⊥BC,垂足为E,若∠OBC=20°,则∠ADC 等于度.13.如图,矩形ABCD中,AB=6,以点D为圆心,CD长为半径的圆弧与以BC为直径的半圆O相交于点E,若的度数为60°,则直径BC长为.14.如图,边长为2的正方形ABCD的顶点A、B在一个半径为2的圆上,顶点C、D在该圆内.将正方形ABCD绕点A逆时针旋转,当点D第一次落在圆上时,点C旋转到C′,则∠C′AB=°.15.如图,OA、OB是⊙O的半径且OA=OB=1,AB=,在⊙O上一点C,使BC=,则∠BAC的度数为.三.解答题16.如图,在下列4×4(边长为1)的网格中,已知△ABC的三个顶点A,B,C在格点上,请分别按不同要求在网格中描出一个格点D,并写出点D的坐标.(1)将△ABC绕点C顺时针旋转90°,画出旋转后所得的三角形,点A旋转后落点为D;(2)经过A,B,C三点有一条抛物线,请找到点D,使点D也落在这条抛物线上;(3)经过A,B,C三点有一个圆,请找到一个横坐标为2的点D,使点D也落在这个圆上,①点D的坐标为;②点D的坐标为;③点D的坐标为.17.如图,在⊙O中,B,C是的三等分点,弦AC,BD相交于点E.(1)求证:AC=BD;(2)连接CD,若∠BDC=25°,求∠BEC的度数.18.如图,AB是⊙O的直径,弦CD⊥AB于点M,连接CO,CB.(1)若AM=2,BM=8,求CD的长度;(2)若CO平分∠DCB,求证:CD=CB.19.如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E,连接AC、OC、BC.(1)求证:∠ACO=∠BCD;(2)若EB=8,CD=24,求⊙O的直径.20.如图,AB是⊙O的直径,点C,E都在⊙O上,OC⊥AB,=2,DE∥AB交OC 于点D,延长OC至点F,使FC=OC,连接EF.(1)求证:CD=OD.(2)若⊙O的直径是4,求EF的长.21.如图,AD为⊙O的直径,∠BAD=∠CAD,连接BC.点E在⊙O上,AB=BE,求证:(1)BC平分∠ACE;(2)AB∥CE.22.如图,AB是⊙O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE于点F.(1)求证:CF=BF;(2)若AD=6,⊙O的半径为5,求BC的长.23.如图,AB为⊙O的直径,C,D为⊙O上不同于A,B的两点,且OC平分∠ACD,延长AC与DB交于点E,过点C作CF⊥OC交DE于点F.(1)求证:∠A=∠E.(2)若BF=5,,求⊙O的半径.24.如图,Rt△ABC中,AC=CB,点E,F分别是AC,BC上的点,△CEF的外接圆交AB 于点Q,D.(1)如图1,若点D为AB的中点,求证:∠DEF=∠B;(2)在(1)问的条件下:①如图2,连接CD,交EF于H,AC=4,若△EHD为等腰三角形,求CF的长度.②如图2,△AED与△ECF的面积之比是3:4,且ED=3,求△CED与△ECF的面积之比(直接写出答案).(3)如图3,连接CQ,CD,若AE+BF=EF,求证:∠QCD=45°.参考答案一.选择题1.解:∵四边形ABCD是圆内接四边形,∴∠ADC+∠B=180°,∵∠ADC=130°,∴∠B=180°﹣130°=50°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC=90°﹣∠B=40°.故选:C.2.解:连接CO,如图:∵在⊙O中,=,∴∠AOC=∠AOB,∵∠AOB=40°,∴∠AOC=40°,∴∠ADC=∠AOC=20°,故选:C.3.解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠ABC=15°,∴∠CAB=75°,∴∠BDC=∠CAB=75°,故选:B.4.解:∵∠D=32°,∴∠BOC=2∠D=64°,∴∠AOC=180°﹣64°=116°.故选:D.5.解:∵DE||BC,∴∠C=∠ADE=46°,∴的度数是92°,∴的度数为180°﹣92°=88°.故选:C.6.解:作AH⊥CE于H,如图,∠ACB=90°,∠ABC=∠BAC=45°,∠BAD=30°,∴∠BCE=∠BAD=30°,∴∠ACE=60°,在Rt△ACH中,CH=AC=×8=4cm,∴AH=CH=4cm,∵∠AEC=∠ABC=45°,∴AH=HE=4cm,∴CE=CH+HE=(4+4)cm.故选:C.二.填空题7.解:连接BD,∵BD是直径,∴∠ADB=90°,∵∠ABD和∠ACD所对的弧都是,∴∠ABD=∠ACD=50°,∴∠BAD=90°﹣∠ABD=90°﹣50°=40°,故答案为:40.8.解:连接OE,AD,∵OA=OE,∠BAC=44°,∴∠BAC=∠OEA=44°,∴∠AOE=92°,∴弧AE的度数是92°,∵AB为半圆O的直径,∴∠ADB=90°,∵AB=AC,∴AD是△ABC的中线,∴BD=CD,∵BD=2,∴CD=2.故答案为:92°,2.9.解:连接CD,∵∠ACB=90°,∠A=30°,AB=4,∴∠B=60°,BC=AB=2,∵以点B为圆心,BC长为半径画弧,交边AB于点D,∴△BCD是等边三角形,∴CD=BC=2,故答案为:2.10.解:如图,作OD⊥AB,垂足为D,则由垂径定理知,点D是AB的中点,∴AD=AB=r,∴∠AOD=45°,∴∠AOB=2∠AOD=90°,∴∠ACB=∠AOB=45°,∵A、C、B、E四点共圆,∴∠ACB+∠AEB=180°,∴∠AEB=135°,故答案为:45°或135°.11.解:连接AO,CO,则∠AOC=2∠ADC,∠BOC=2∠BAC,∴∠AOB=∠BOC+∠AOC=2∠BAC+2∠ADC=2×15°+2×20°=70°,∵OA=OB,∴∠ABO=(180°﹣∠AOB)=55°,故答案为:55°.12.解:∵OA⊥BC,∴∠OEB=90°,∵∠OBC=20°,∴∠AOB=90°﹣∠OBC=70°,∴的度数是70°,∵OA⊥BC,OA过圆心O,∴=,∴的度数是70°,∴圆周角∠ADC==35°,故答案为:35.13.解:如图,连接BE,EC.∵BC是直径,∴∠BEC=90°,∵的度数=60°,∴∠BCE=×60°=30°,∵四边形ABCD是矩形,∴AB=CD=6,∠DCB=90°,∴∠DCE=90°﹣30°=60°,∵DE=DC,∴△DEC是等边三角形,∴EC=CD=6,∴BC=4.故答案为:.14.解:如图,分别连接OA、OB、OD′、OC、OC′;∵OA=OB=AB,∴△OAB是等边三角形,∴∠OAB=60°;同理可得△OAD′为等边三角形,∴∠OAD′=60°,∴∠D′AB=60°+60°=120°;∵AC′为正方形AB′C′D′的对角线,∴∠D′AC′=45°,∴∠C′AB=∠D′AB﹣∠D′AC′=120°﹣45°=75°.故答案为75.15.解:如图,作OH⊥BC于H.连接AC.∵OH⊥BC,∴BH=CH=,∴∠OBH=30°,∵OA=OB=1,AB=,∴AB2=OA2+OB2,∴∠AOB=90°,∴∠ACB=∠AOB=45°,∵∠ABC=∠ABO+∠OBC=45°+30°=75°,∴∠BAC=180°﹣75°﹣45°=60°,作点C关于直线OB的对称点C′,连接AC′,BC′,CC′,∵∠OBC=∠OBC′=30°,∴∠CBC′=60°,∵BC=BC′,∴△BCC′是等边三角形,∴∠BCC′=60°,∴∠BAC′=180°﹣60°=120°,故答案为60°或120°.三.解答题16.解:(1)如图,点B的对应点为B′,点A的对应点为点D(4,2);故①答案为:(4,2);(2)抛物线的对称轴在BC的中垂线上,则点D、A关于函数对称轴对称,故点D(3,2),故②的答案为:(3,2);(3)AB中垂线的表达式为:y=x,BC的中垂线为:x=,则圆心O为:(,),设点D(2,m),则OD=OB,()2+()2=(2﹣)2+(m﹣)2,解得:m=0或3(舍去0),故点D(2,3);故③的答案为(2,3).17.(1)证明:∵B,C是的三等分点,∴==,∴+=+,∴=,∴AC=BD;(2)解:如图,连接CD,AD,∵∠BDC=25°,==,∴∠CAD=∠BDA=∠BDC=25°,∵∠AED+∠CAD+∠BDA=180°,∴∠AED=180°﹣∠CAD﹣∠BDA=130°,∴∠BEC=∠AED=130°.18.解:(1)∵AB是⊙O的直径,弦CD⊥AB,∴CM=DM,∵AM=2,BM=8,∴AB=10,∴OA=OC=5,在Rt△OCM中,OM2+CM2=OC2,∴CM==4,∴CD=8;(2)过点O作ON⊥BC,垂足为N,∵CO平分∠DCB,∴OM=ON,∴CB=CD.19.(1)证明:∵AB⊥CD,∴,∴∠A=∠BCD,∵OA=OC,∴∠A=∠ACO,∴∠ACO=∠BCD;(2)解:设⊙O的半径为r,则OC=r,OE=OA﹣BE=r﹣8,∵AB⊥CD,∴CE=DE=CD=×24=12,在Rt△OCE中,122+(r﹣8)2=r2,解得r=13,∴⊙O的直径=2r=26.20.(1)证明:连接OE、CE,如图,∵OC⊥AB,∴∠AOC=90°,∵=2,∴∠COE=2∠AOE,∴∠COE=60°,而OE=OC,∴△OCE为等边三角形,∵DE∥AB,OC⊥AB,∴DE⊥OC,∴CD=OD;(2)解:∵⊙O的直径是4,∴OE=OC=CF=2,CD=OD=1,在Rt△ODE中,DE==,在Rt△EFD中,EF===2.21.证明:(1)∵AB=BE,∴,∴∠ACB=∠BCE,∴BC平分∠ACE;(2)连接OC、OB,∵OA、OB、OC是⊙O半径,∴OA=OB=OC,∴∠OAB=∠OBA,∠OAC=∠OCA,∵∠BAD=∠CAD,∴∠ABO=∠ACO,∵OB=OC,∴∠OBC=∠OCB,∴∠OBA+∠OBC=∠OCA+∠OCB,∴∠ABC=∠ACB,∴AB=AC,∵AB=BE,∴AC=BE,∴,∴∠ABC=∠ECB,∴AB∥CE.22.(1)证明:连接AC,如图1所示:∵C是弧BD的中点,∴∠DBC=∠BAC,在ABC中,∠ACB=90°,CE⊥AB,∴∠BCE+∠ECA=∠BAC+∠ECA=90°,∴∠BCE=∠BAC,又C是弧BD的中点,∴∠DBC=∠CDB,∴∠BCE=∠DBC,∴CF=BF.(2)解:连接OC交BD于G,如图2所示:∵AB是O的直径,AB=2OC=10,∴∠ADB=90°,∴BD===8,∵C是弧BD的中点,∴OC⊥BD,DG=BG=BD=4,∵OA=OB,∴OG是△ABD的中位线,∴OG=AD=3,∴CG=OC﹣OG=5﹣3=2,在Rt△BCG中,由勾股定理得:BC===2.23.(1)证明:由题意∠ACO=∠A=∠D.∵OC平分∠ACD,∴∠ACO=∠OCD,∴∠OCD=∠D.∴OC∥DE,∴∠E=∠ACO,∴∠E=∠A.(2)解:∵,∴设BD=3x,OB=4x,由(1)得∠E=∠A=∠CDE,OC∥DE.∵CF⊥OC,∴CF⊥DE,∴EF=DF=3x+5.∴BE=3x+10,∵∠E=∠A,∴AB=BE,即3x+10=8x,解得x=2∴半径OB=4x=8.24.(1)证明:连接CD.在Rt△ABC中,∵AC=CB,∴∠A=∠B=45°,∵CD=DB,∴∠DCB=∠B=45°,∵∠DEF=∠DCB,∴∠DEF=∠B.(2)解:①如图2﹣1中,当EH=HD,可证四边形CFDE是正方形CF=2.如图2﹣2中,当EH=ED时,∠EDH=∠EHD=67.5°,∵∠EDF=∠CDB=90°,∴∠EDH=∠BDF=67.5°,∴∠BFD=180°﹣45°﹣67.5°=67.5°,∴∠BDF=∠BFD,∴BD=BF,∵AC=BC=4,∠ACB=90°,∴AB==4,∴BD=BF=2,∴CF=4﹣2.如图2﹣3中,当DA=FH时,点E于A重合,点H与C重合,CF=0.综上所述,满足条件的CF的值为0或2或4﹣2.②如图2﹣4中,作DM⊥AC于M,DN⊥BC于N,连接DF.∵CA=CB,AD=DB,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,CD=DA=DB∴DE=DF,∵∠ADC=∠EDF=90°,∴∠ADE=∠CDF,∴△ADE≌△CDF(SAS),∴AE=CF,S△ADE=S△CDF,∵DC平分∠ACB,DM⊥AC,DN⊥BC,∴DM=DN,可得四边形DMCN是正方形,∴DM=CM=CN=DN,∵====,∴可以假设DN=3k,EC=4k,则AC=BC=6k,AE=CF=2k,∴==.(3)证明:连接OD,OQ,作ER⊥AB,OH⊥AB,FK⊥AB.∵ER∥OH∥FK,EO=OF,∴RH=HK∴OH=(ER+FK),∵ER=AE,FK=FB,∴OH=(AE+BF)=EF=OE=OQ,∴∠OQD=∠ODQ=45°,∴∠QOD=90°,∴∠QCD=45°.。
人教版 九年级数学上册 第24章 圆的概念及弧、弦、圆心角和圆周角 专题练习(含答案)
圆的概念及弧、弦、圆心角和圆周角专题练习(含答案)例1. 如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°例2. 如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE CE=1.则弧BD 的长是()B C D例3.如图,已知A,B,C在⊙O上,ACB为优弧,下列选项中与∠AOB相等的是()A.2∠C B.4∠B C.4∠A D.∠B+∠C例4. 如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.3巩固练习1.如下图,(1)若点O为⊙O的圆心,则线段__________是圆O的半径;线段________是圆O的弦,其中最长的弦是______;______是劣弧;______是半圆.(2)若∠A=40°,则∠ABO=______,∠C=______,∠ABC=______.2.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为________.3.⊙O中,∠AOB=100°,若C是AB上一点,则∠ACB等于( ).A.80°B.100°C.120°D.130°4.已知:如图,在同心圆中,大圆的弦AB交小圆于C,D两点.(1)求证:∠AOC=∠BOD;(2)试确定AC与BD两线段之间的大小关系,并证明你的结论.5. 已知:如图,AB为⊙O的直径,C,D为⊙O上的两点,且C为AD的中点,若∠BAD=20°,求∠ACO的度数6.如图,以ABCD的顶点A为圆心,AB为半径作⊙A,分别交BC、AD于E、F,交BA的延长线于G,试说明弧EF和弧FG相等.7. ⊙O中,M为AB的中点,则下列结论正确的是( ).A.AB>2AM B.AB=2AM C.AB<2AM D.AB与2AM的大小不能确定8. 如图,⊙O中,AB为直径,弦CD交AB于P,且OP=PC,试猜想AD与CB之间的关系,并证明你的猜想.9. 如图,⊙O中,直径AB=15cm,有一条长为9cm的动弦CD在ANB上滑动(点C与A,点D与B不重合),CF⊥CD交AB于F,DE⊥CD交AB于E.(1)求证:AE=BF;(2)在动弦CD滑动的过程中,四边形CDEF的面积是否为定值?若是定值,请给出证明并求这个定值;若不是,请说明理由.10.如图,若五边形ABCDE是⊙O的内接正五边形,则∠BOC=______,∠ABE=______,∠ADC=______,∠ABC=______.10题图11题图12题图11.如图,若六边形ABCDEF是⊙O的内接正六边形,则∠AED=______,∠FAE=______,∠DAB=______,∠EFA=______.12.如图,ΔABC是⊙O的内接正三角形,若P是AB上一点,则∠BPC=______;若M是BC上一点,则∠BMC=______.13.在⊙O中,若圆心角∠AOB=100°,C是AB上一点,则∠ACB等于( ).A.80°B.100°C.130°D.140°14.在圆中,弦AB,CD相交于E.若∠ADC=46°,∠BCD=33°,则∠DEB等于( ).A.13°B.79°C.38.5°D.101°15.如图,AC 是⊙O 的直径,弦AB ∥CD ,若∠BAC =32°,则∠AOD 等于( ).A .64°B .48°C .32°D .76°16.如图,弦AB ,CD 相交于E 点,若∠BAC =27°,∠BEC =64°,则∠AOD 等于( ).A .37°B .74°C .54°D .64°17.如图,四边形ABCD 内接于⊙O ,则x = 。
圆:弧弦圆心角圆周角关系经典练习
1.半径为6cm 的圆中,垂直平分半径OA 的弦长为 cm.2. 过⊙O 内一点M 的最长的弦长为6cm ,最短的弦长为4cm ,则OM 的长等于 cm3.将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为4.一个拱形石桥,跨度为8米,拱高8米,那么这拱形石桥所在圆的半径是___________米5. 某地有一座圆弧形拱桥,桥下水面宽度为7.2米,拱顶高出水面2.4米。
现有一艘宽3米、船舱顶部为方形并高出水面2米的货船要经过这里,此货船能顺利通过这座拱桥吗?1.下列说法中正确的是( ).A .相等的圆心角所对的弧相等B .等弧所对的圆心角相等C .相等的弦所对的弦心距相等D .弦心距相等,则弦相等 2. 在两个半径不同的圆中,分别有和,若和的度数相等,那么下面结论中正确的是( ). A .=B .和所对的两个圆心角相等C .所对的弦和所对的弦相等D .和所对的弦的弦心距相等3. 在⊙O 中,弦AB 所对的劣弧为圆的31,圆的半径为4cm ,则弦AB 的长是( ). A .3cmB .2cmC .32cmD .34cm4半径为4cm ,120°的圆心角所对的弦长为( ) A. 5cmB. 43cmC. 6cmD. 33cm5.如图1,AB 为⊙O 的直径,C 、D 是⊙O 上的两点,∠=︒BAC 20,AD CD ⋂=⋂,则∠DAC 的度数是( ) A. 70°B. 45°C. 35°D. 30°DA OB C6.在同圆或等圆中,如果圆心角∠BOA 等于另一个圆心角∠COD 的2倍,则下列式子中能成立的是( ) A.AB CD =2B. AB CD ⋂>⋂2C. AB CD ⋂<⋂2D. AB CD ⋂=⋂27..AB 为⊙O 的直径,C 、D 为半圆AB 上两点,且弧AC 、弧CD 、弧DB 的度数的比为3∶2∶5,则∠AOC= °,∠COD= °,∠DOB= °。
完整版)圆心角圆周角练习题
完整版)圆心角圆周角练习题知识点三:弧、弦、圆心角与圆周角1.定义圆心角为顶点在圆心的角。
2.在同圆或等圆中,弧、弦、圆心角之间的关系:两个圆心角相等,圆心角所对的弧相等(无论是优弧还是劣弧),圆心角所对的弦相等。
3.一个角是圆周角必须满足两个条件:(1)角的顶点在圆上;(2)角的两边都与圆有除顶点外的交点。
4.同一条弧所对的圆周角有两个。
5.圆周角定理:圆周角等于圆心角的一半。
6.圆周角定理的推论:(1)同弦或等弦所对的圆周角相等;(2)半圆或直径所对的圆周角相等;(3)90°的圆周角所对的弦是直径。
需要注意的是,“同弦或等弦”改为“同弧或等弧”结论就不一定成立了,因为一条弦所对的圆周角有两类,它们是相等或互补关系。
7.圆内接四边形定义为所有顶点都在圆上的多边形,圆心即为这个圆内接四边形的交点。
圆内接四边形的对角线相互垂直,且交点为对角线的中点。
夯实基础1.如果两个圆心角相等,则它们所对的弧相等,选项B正确。
2.不正确的语句为③,因为圆不一定是轴对称图形,只有圆上的任何一条直径所在直线才是它的对称轴。
3.错误的说法是D,相等圆心角所对的弦不一定相等。
4.根据圆心角的性质,∠A=2∠B,所以∠A=140°。
5.∠BAC与∠BCD互补,∠BCD与∠CBD相等,所以与∠BAC相等的角有2个,即∠CBD和∠ABD。
6.因为∠CAB为30°,所以∠ABC为60°,由正弦定理可得BC=5√3.7.根据圆周角定理,∠ACB=40°。
8.设∠A=3x,∠B=4x,∠C=6x,则∠D=360°-3x-4x-6x=120°。
9.∠DCE=∠A。
1、如图,AB是⊙O的直径,C,D是BE上的三等分点,∠AOE=60°,求证∠COE=80°。
证明:由三等分点的性质可知,BC=CD=DE,又∠AOE=60°,所以∠AOC=120°。
(完整版)圆心角圆周角的经典练习
圆心角和圆周角同步练习一、填空题: 一、填空题:1. 在同一个圆中,同弧所对的圆周角和圆心角的关系是.2. 如图1,直径AB 垂直于弦CD ,垂足为E ,130AOC ∠=o, 则弧AD 的度数为 ,CAD ∠的度数为 ,ACD ∠的度数为 .图1 图23. 如图2,CD 是半圆的直径,O 为圆心,E 是半圆上一点,且93EOD ∠=o,A 是DC 延长线上一点,AE 与半圆相交于点B ,如果AB OC =,则EAD ∠= ,EOB ∠=,ODE ∠=.4. 如图3,弧ACB 与弧ADB 的度数比是5:4,则AOB ∠= ,ACB ∠=,ADB ∠= , CAD CBD ∠+∠= .5. 如图4,△ABC 内接于圆O ,AB AC =,点E ,F 分别在弧AC 和弧BC 上,若50ABC ∠=o,则BEC ∠= BFC ∠=.图图56. 如图5,已知:圆O 是△ABC 的外接圆,50BAC ∠=o,47ABC ∠=o,则AOB ∠=__________度.1.如图1,等边三角形ABC 的三个顶点都在⊙O 上,D 是»AC 上任一点(不与A 、C 重合),则∠ADC 的度数是________.DDCBAO(1) (2) (3)2.如图2,四边形ABCD 的四个顶点都在⊙O 上,且AD ∥BC,对角线AC 与BC 相交于点E,那么图中有______对相等的角。
3.已知,如图3,∠BAC 的对角∠BAD=100°,则∠BOC=_______度.A4.如图4,A 、B 、C 为⊙O 上三点,若∠OAB=46°,则∠ACB=_______度.BAA(4) (5) (6)5.如图5,AB 是⊙O 的直径, »»BC BD =,∠A=25°,则∠BOD 的度数为________.6.如图6,AB 是半圆O 的直径,AC=AD,OC=2,∠CAB= 30 °, 则点O 到CD 的距离OE=______.二、选择题:7.如图7,已知圆心角∠BOC=100°,则圆周角∠BAC 的度数是( ) A.50° B.100° C.130° D.200°DDCBA(7) (8) (9) (10)8.如图8,A 、B 、C 、D 四个点在同一个圆上,四边形ABCD 的对角线把四个内角分成的八个角中,相等的角有( ) A.2对 B.3对 C.4对 D.5对9.如图9,D 是»AC 的中点,则图中与∠ABD 相等的角的个数是( ) A.4个 B.3个 C.2个 D.1个10.如图10,∠AOB=100°,则∠A+∠B 等于( )A.100°B.80°C.50°D.40°11.在半径为R 的圆中有一条长度为R 的弦,则该弦所对的圆周角的度数是( ) A.30° B.30°或150° C.60° D.60°或120°12.如图,A 、B 、C 三点都在⊙O 上,点D 是AB 延长线上一点,∠AOC=140°, ∠CBD 的度数是( ) A.40° B.50° C.70° D.110°三、解答题:13.如图,⊙O 的直径AB=8cm,∠CBD=30°,求弦DC 的长.BA14.如图,A 、B 、C 、D 四点都在⊙O 上,AD 是⊙O 的直径,且AD=6cm,若∠ABC= ∠CAD,求弦AC 的长.15.如图,在⊙O 中,AB 是直径,CD 是弦,AB ⊥CD.(1)P 是¼CAD上一点(不与C 、D 重合),试判断∠CPD 与∠COB 的大小关系, 并说明理由. (2)点P′在劣弧CD 上(不与C 、D 重合时),∠CP′D 与∠COB 有什么数量关系?请证明你的结论.16.在足球比赛场上,甲、乙两名队员互相配合向对方球门MN 进攻.当甲带球部到A 点时,乙随后冲到B 点,如图所示,此时甲是自己直接射门好,还是迅速将球回传给乙,让乙射门好呢?为什么?(不考虑其他因素)答案:1.120°2.3 13.160°4.44°5.50°7.A 8.C 9.B 10.C 11.B 12.C 13.连接OC 、OD,则OC=OD=4cm,∠COD=60°,故△COD 是等边三角形,从而CD= 4cm. 14.连接DC,则∠ADC=∠ABC=∠CAD,故AC=CD.∵AD 是直径,∴∠ACD=90°, ∴AC 2+CD 2=AD 2,即2AC 2=36,AC 2. 15.(1)相等.理由如下:连接OD,∵AB ⊥CD,AB 是直径,∴»»BCBD ,∴∠COB= ∠DOB. ∵∠COD=2∠P,∴∠COB=∠P,即∠COB=∠CPD.(2)∠CP′D+∠COB=180°.理由如下:连接P′P,则∠P′CD=∠P′PD,∠P′PC=∠P′DC.∴∠P′CD+∠P′DC=∠P′PD+∠P′PC=∠CPD.∴∠CP′D=180°-(∠P′CD+∠P′DC)=180°-∠CPD=180°-∠COB,从而∠CP′D+∠COB=180°.16.迅速回传乙,让乙射门较好,在不考虑其他因素的情况下, 如果两个点到球门的距离相差不大,要确定较好的射门位置,关键看这两个点各自对球门MN的张角的大小,当张角越大时,射中的机会就越大,如图所示,则∠A<MCN=∠B,即∠B>∠A, 从而B处对MN的张角较大,在B处射门射中的机会大些.。
圆的定义、弧弦圆心角圆周角基础练习
圆的定义、圆心角、弧、弦和圆周角基础练习1、⊙O中,弦AB=12,⊙O半径为10,则O到AB的距离为.2、P为⊙O内一点,OP=4,⊙O半径为5,则过P点的最短弦长为,最长弦.3、如图1,⊙O中,弦CD⊥直径AB于E,AB=20,CD=16,则BE= .4、AB为⊙O直径,OD⊥弦AC于D,且OD=4,则弦BC= .5、如图2,将半径是2cm的圆形纸片折叠后圆弧恰好经过圆心O,则折痕AB= .6、半径为13的圆中,弦AB∥CD,且AB=10,CD=24,则AB与CD之间的距离为.7、如图3,AB为直径,B为弧BC的中点,∠A=35°,则∠BOD= .8、以等腰△ABC的腰AB为直径作⊙O交底边BC于点D,交AC于E,连接DE,若BC=8,则DE= .9、⊙O直径AB=8cm,C为⊙O上一点,∠BAC=30°,则BC= .10、如图4,⊙O半径OA⊥OB,D、E为⊙O上的点,则∠D+∠E= .11、如图5,∠ACB=20°,则∠OAB= .12、如图6,AB直径,∠BAC=20°,则∠D= .13、如图7,∠ABC=120°,则∠AOC= .14、如图8,AB为直径,∠COB=30°,则∠ADC= .15、如图9,OA⊥OB,∠A=38°,则∠F= .16、如图10,AB为直径,弦CD与AB相交于E,则∠AEC= .17、如图11,Δ ABC中,AB=AC,D是⊙O上的点,E在BD的延长线上且∠ADE=65°,则∠BOC= .18、已知⊙O是等边ΔABC 的外接圆,且⊙O半径为4,则ΔABC的边长是.19、如图12,∠BAC=30°,BC=2.4cm,则⊙O直径AB= .20、⊙O半径为10,OP=8,则点P在⊙O .(填内、上或外)21、如图13,⊙O的直径AB⊥弦CD于E,AB=10,CD=8,则BE= .22、如图14,⊙O的直径AB⊥弦CD,D=30°,CD= .23、如图15,∠ACB=45°,AB=4,⊙O的半径为.24、在ΔABC中,∠C=90°,AC=8,BC=6,则ΔABC的外接圆半径是.25、如图16,AB是⊙O的直径,CD⊥AB,∠CDB=35°,则∠CAD= .26、若AB是⊙O的弦,OA=6,∠AOB=120°,则AB= .27、如图17,∠COD=84°,AC平分∠OCD,则∠ABD+∠OCA= .28、如图18,AB为直径,∠BAC=50°,∠D= .29、如图19,AB直径,∠B=30°,OD⊥BC,∠BCD= .30、如图20,∠A=30°,OD⊥AB,则∠E= .31、如图21,∠BCD=58°,DC直径,则∠A= .CA P O DCEO AD B 32. 如图所示,OA 是圆O 的半径,弦CD ⊥OA 于点P ,已知OC=5,OP=3,则弦CD=_______。
圆心角与圆周角练习题
圆心角与圆周角练习题一、选择题(每题3分,共30分)1. 在同圆或等圆中,如果圆心角相等,那么对应的圆周角:A. 相等B. 不相等C. 无法确定D. 可能相等2. 已知圆的半径为5,圆心角为30°,求圆周角的度数:A. 15°B. 30°C. 45°D. 60°3. 在圆中,圆心角的度数是圆周角度数的:A. 2倍B. 1/2倍C. 1/4倍D. 4倍4. 如果一个圆周角的度数是60°,那么它所对的圆心角是:A. 120°B. 60°C. 30°D. 180°5. 在同圆或等圆中,圆心角和圆周角的关系是:A. 相等B. 互补C. 互余D. 没有固定关系6. 已知圆的半径为10,圆心角为45°,求圆周角的度数:A. 22.5°B. 45°C. 90°D. 无法确定7. 圆心角和圆周角的关系可以用以下哪个公式表示:A. 圆心角= 2 × 圆周角B. 圆周角= 2 × 圆心角C. 圆心角 = 圆周角D. 圆周角 = 圆心角 / 28. 如果一个圆周角的度数是90°,那么它所对的圆心角是:A. 45°B. 90°C. 180°D. 270°9. 在圆中,圆心角和圆周角的度数之和:A. 总是等于180°B. 总是等于360°C. 总是小于360°D. 总是大于360°10. 已知圆的半径为8,圆心角为60°,求圆周角的度数:A. 30°B. 60°C. 90°D. 120°二、填空题(每题2分,共20分)11. 在同圆或等圆中,如果圆心角是圆周角度数的2倍,那么圆周角的度数是圆心角的________倍。
12. 圆心角的度数是圆周角度数的________倍。
圆---圆心角与圆周角练习题
圆----圆心角与圆周角练习题1.在⊙O中,同弦所对的圆周角()A.相等 B.互补 C.相等或互补 D.都不对2.如图,在⊙O中,弦AD=弦DC,则图中相等的圆周角的对数是()A.5对 B.6对 C.7对 D.8对3.下列说法正确的是()A.顶点在圆上的角是圆周角 B.两边都和圆相交的角是圆周角C.圆心角是圆周角的2倍 D.圆周角度数等于它所对圆心角度数的一半4.下列说法错误的是()A.等弧所对圆周角相等 B.同弧所对圆周角相等C.同圆中,相等的圆周角所对弧也相等. D.同圆中,等弦所对的圆周角相等5.如图4,AB是⊙O的直径,∠AOD是圆心角,∠BCD是圆周角.若∠BCD=25°,则∠AOD= .6.如图5,⊙O直径MN⊥AB于P,∠BMN=30°,则∠AON= .7.如图6,AB是⊙O的直径,⌒BC=⌒BD,∠A=25°,则∠BOD= .8.如图7,A、B、C是⊙O上三点,∠BAC的平分线AM交BC于点D,交⊙O于点M若∠BAC=60°∠ABC=50°,则∠CBM= ,∠AMB= .9.⊙O中,若弦AB长22cm,弦心距为2cm,则此弦所对的圆周角等于.10.如图8,⊙O中,两条弦AB⊥BC,AB=6,BC=8,求⊙O的半径.11.如图9,AB是⊙O的直径,FB交⊙O于点G,FD⊥AB,垂足为D,FD交AG于E.求证:EF·DE=AE·EG.12.如图,AB 是半圆的直径,AC 为弦,OD ⊥AB ,交AC 于点D ,垂足为O ,⊙O 的半径为4,OD=3,求CD 的长.13.如图,⊙O 的弦AD ⊥BC ,垂足为E ,∠BAD=∠α,∠CAD=∠β,且sin α=53,cos β=31,AC=2,求(1)EC 的长;(2)AD 的长.。
圆周角圆心角练习题
圆周角圆心角练习题一、选择题1. 圆周角定理指出,圆周角的度数是同弧所对圆心角的度数的______。
A. 1/2B. 2倍C. 3倍D. 4倍2. 若圆心角为40°,则同弧所对的圆周角为______。
A. 20°B. 40°C. 80°D. 120°3. 在圆中,若一条弦所对的圆心角为60°,则这条弦所对的圆周角是______。
A. 30°B. 45°C. 60°D. 90°4. 圆内接四边形ABCD中,若∠A=60°,则∠B的度数为______。
A. 60°B. 120°C. 180°D. 240°5. 已知圆的半径为5,圆心角为120°,那么这个圆心角所对的弧长为______。
A. 5πB. 10πC. 15πD. 20π二、填空题6. 若圆周角为45°,则同弧所对的圆心角为______。
7. 在圆中,若弦AB所对的圆心角为100°,则弦AB所对的圆周角为______。
8. 已知圆的半径为10,圆心角为150°,则这个圆心角所对的弧长为______。
9. 圆内接四边形ABCD中,若∠A=90°,则∠B的度数为______。
10. 若圆的半径为8,圆心角为90°,则这个圆心角所对的弧长为______。
三、简答题11. 解释什么是圆周角,并说明它与圆心角的关系。
12. 给出一个圆内接四边形的例子,并说明其对角互补的性质。
13. 解释如何计算一个圆心角所对的弧长。
14. 在圆中,如果知道圆周角的度数,如何计算同弧所对的圆心角的度数?15. 圆内接四边形的对角互补性质在实际问题中有哪些应用?四、解答题16. 已知圆的半径为6,圆心角为60°,求这个圆心角所对的弧长。
17. 在圆中,若弦AB所对的圆心角为120°,求弦AB所对的圆周角的度数。
《圆周角定理典型例题及练习》
《圆周角定理典型例题及练习》圆周角定理典型例题及练
引言
圆周角定理是解决与圆相关的几何问题的重要工具之一。
本文将介绍一些典型的圆周角定理例题,并提供相关练,以帮助读者加深对圆周角定理的理解和应用。
例题
例题 1
已知圆 O 的半径为 r,圆心角为α 度,求圆周角的大小。
解答
根据圆周角定理,圆周角的大小等于圆心角的两倍,即圆周角= 2 * α 度。
例题 2
已知弧 AB 的长度为 l,圆心角为α 度,求弧 AC 的长度。
解答
根据圆周角定理,圆心角所对应的弧长与圆心角成正比。
设弧AC 的长度为 x,则根据比例关系有l / α = x / 360°。
解得 x = l * (360° / α)。
练
1. 已知圆 O 的半径为 5 cm,圆心角为 60°,求圆周角的大小。
2. 已知弧 BC 的长度为 8 cm,圆心角为 120°,求弧 AB 的长度。
请在纸上计算后,再比较答案。
总结
圆周角定理是解决与圆相关的问题的重要定理。
通过学习典型
例题和进行相关练习,可以加深对圆周角定理的理解和应用能力。
希望读者通过本文的学习,能够更好地掌握圆周角定理,并能够灵
活运用到实际问题中去。
九年级圆的垂径定理与圆心角圆周角的大题精选(含答案)
九年级圆的垂径定理与圆心角圆周角的大题精选(含答案)九年级圆的垂径定理与圆心角圆周角的大题精选(含答案)圆的性质大题一、解答题(共25小题)1.如图,⊙O中,弦CD与直径AB交于点H。
1)当∠B+∠D=90°时,求证:H是CD的中点。
证明:∠B+∠D=90°,∠B=90°-∠D,又∠ADC=90°(直径所对的角为直角),所以∠___∠B,因此三角形ADC与三角形BDC相似,所以BD/DC=DC/BD,即BD²=DC²,所以BH=HD,即H为CD的中点。
2)若H为CD的中点,且CD=2,BD=√3,求AB的长。
连接OH,由勾股定理得OH=√3,又因为H为CD的中点,所以CH=1,从而CO=√3+1,又AO=CO,所以AB=2AO=2(√3+1)。
2.如图,∠BAC=60°,AD平分∠___于点D,连接OB、OC、BD、CD。
1)求证:四边形OBDC是菱形。
证明:由角平分线定理得∠OAD=∠OBD,又∠OAB=∠OBA=30°,所以∠OBD=30°,又∠OCD=∠OAD=30°,所以∠___∠OCD,所以BD=CD,又∠___∠OCD=30°,所以∠___∠OBC,所以三角形OBD与三角形OBC全等,所以OB=OC,又∠___∠OCD=30°,所以OB=BC,所以四边形OBDC是菱形。
2)当∠BAC为多少度时,四边形OBDC是正方形?当∠BAC=90°时,∠___∠OCD=45°,所以BD=CD,又∠___∠OCD=45°,所以OB=BC,所以四边形OBDC是正方形。
3.如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OB,求∠A的度数。
由圆心角的性质得∠ACB=2∠A,又∠ACB=90°,所以∠A=45°,所以∠EAB=∠OAB-∠OAE=45°-42°=3°,又∠___∠OAB=45°,所以∠DBA=∠OBD-∠OBA=45°-3°=42°,所以∠C=180°-∠A-∠B=180°-45°-42°=93°。
圆心角与圆周角的专题练习2
圆周角和圆心角的练习题一、选择题1.圆周角是24°,那么它所对的弧是________ A.12°;B.24°;C.36°;D.48°.2.在⊙O中,∠AOB=84°,那么弦AB所对的圆周角是________A.42°;B.138°;C.84°;D.42°或138°.3.如图,圆内接四边形ABCD的对角线AC,BD把四边形的四个角分成八个角,这八个角中相等的角的对数至少有___________.〔〕A.1对;B.2对;C.3对;D.4对.4.如图,AC是⊙O的直径,AB,CD是⊙O的两条弦,且AB∥C D.如果∠BAC=32°,那么∠AOD=___[ ] A.16°;B.32°;C.48°;D.64°.二、计算题6.如图,AD是△ABC外接圆的直径,AD=6cm,∠DAC=∠AB C.求AC的长.7.:△DBC和等边△ABC都内接于⊙O,BC=a,∠BCD=75°〔如图〕.求BD的长.8.如图,半圆的直径AB =13cm ,C 是半圆上一点,CD ⊥AB 于D ,并且CD =6cm .求AD 的长.、9.如图,圆内接△ABC 的外角∠MAB 的平分线交圆于E ,EC =8cm .求BE 的长.10.:如图,AD 平分∠BAC ,DE ∥AC ,且AB =a .求DE 的长.11.如图,在⊙O 中,F ,G 是直径AB 上的两点,C ,D,E 是半圆上的三点,如果弧AC 的度数为60°,弧BE 的度数为20°,∠CFA =∠DFB ,∠DGA =∠EG B .求∠FDG 的大小. 12.如图,⊙O 的内接正方形ABCD 边长为1,P 为圆周上与A ,B ,C ,D 不重合的任意点.求PA 2+PB 2+PC 2+PD 2的值.13.如图,在梯形ABCD 中,AD ∥BC ,∠BAD =135°,以A 为圆心,AB 为半径作⊙A 交AD ,BC 于E ,F 两14.如图,⊙O 的半径为R ,弦AB =a ,弦BC ∥OA ,求AC 的长.15.如图,在△ABC 中,∠BAC ,∠ABC ,∠BCA 的平分线交△ABC 的外接圆于D ,E 和F ,如果,,分别为m °,n °,p °,求△ABC 的三个内角.16.如图,在⊙O 中,BC ,DF 为直径,A ,E 为⊙O 上的点,AB =AC ,EF =21DF .求∠ABD +∠CBE 的值.17.如图,等腰三角形ABC 的顶角为50°,AB =AC ,以数.第二页18.如图,AB是⊙O的直径,AB=2cm,点C在圆周上,且∠BAC=30°,∠ABD=120°,CD⊥BD于D.求BD的长.19.如图,△ABC中,∠B=60°,AC=3cm,⊙O为△ABC的外接圆.求⊙O的半径.20.以△ABC的BC边为直径的半圆,交AB于D,交AC于E,EF⊥BC于F,AB=8cm,AE=2cm,BF∶FC=5∶1〔如图〕.求CE的长.21.等腰三角形的腰长为13cm,底边长为10cm,求它的外接圆半径.22.如图,△ABC中,AD是∠BAC的平分线,延长AD交△ABC的外接圆于E,AB=a,BD=b,BE=c.求AE的长.23.如图,△ABC中,AD是∠BAC的平分线,延长AD交△ABC的外接圆于E,AB=6cm,BD=2cm,BE=2.4cm.求DE的长.24.如图,梯形ABCD内接于⊙O,AB∥CD,的度数为60°,∠B=105°,⊙O的半径为6cm.求BC的长.25.:如图,AB是⊙O的直径,AB=4cm,E为OB的中点,弦CD⊥AB于E.求CD 的长.26.如图,AB为⊙O的直径,E为OB的中点,CD为过E点并垂直AB的弦.求∠ACE 的度数.27.:如图,在△ABC 中,∠C =90°,∠A =38°,以C 为圆心,BC 为半径作圆,交AB 于D ,求的度数.第三页28.如图,△ABC 内接于圆O ,AD 为BC 边上的高.假设AB =4cm ,AC =3cm ,AD =2.5cm ,求⊙O 的半径.29.设⊙O 的半径为1,直径AB ⊥直径CD ,E 是OB 的中点,弦CF 过E 点〔如图〕,求EF 的长.30.如图,在⊙O 中直径AB ,CD 互相垂直,弦CH 交AB 于K ,且AB =10cm ,CH =8cm .求BK ∶AK 的值.31.如图,⊙O 的半径为40cm ,CD 是弦,A 为的中点,弦AB 交CD 于F .假设AF =20cm ,BF =40cm ,求O 点到弦CD 的弦心距.32.如图,四边形ABCD 内接于以AD 为直径的圆O ,且AD =4cm ,AB =CB =1cm ,求CD 的长. 三、证明题33.如图,△ABC 内接于半径为R 的⊙O ,A 为锐角. 求证:ABCsin =2R34.:如图,在△ABC中,AD,BD分别平分∠BAC和∠ABC,延长AD交△ABC的外接圆于E,连接BE.求证:BE=DE.35.如图,D为等边三角形ABC外接圆上的上的一点,AD交BC边于E.求证:AB为AD和AE的比例中项.36.:如图,在△ABC中,AB=AC,以AB为直径的圆交BC于D.求证:D为BC的中点.第四页37.:如图,⊙O是△ABC的外接圆,AD⊥BC于D,AE平分∠BAC交⊙O于E.求证:AE平分∠OA D.38.:如图,△ABC的AB边是⊙O的直径,另两边BC和AC分别交⊙O于D,E两点,DF⊥AB,交AB于F,交BE于G,交AC的延长线于H.求证:DF2=HF·GF.39.:如图,圆内接四边形ABCD中,BC=C D.求证:AB·AD+BC2=AC2.40.:如图,AB是半圆的直径,AC是一条弦,D是中点,DE⊥AB于E,交AC于F,DB交AC于G.求证:AF=FG.41.如图,AB是⊙O的弦,P是AB所对优弧上一点,直径CD⊥AB,PB交CD于E,延长AP交CD的延长线于F.求证:△EPF∽△EO A.42.:如图,AB是⊙O的直径,弦CD⊥AB于E,M为上一点,AM的延长线交DC于F.求证:∠AMD=∠FM C.43.:如图,AB,AC分别为⊙O的直径与弦,CD⊥AB于D,E为⊙O外一点,且AE=AC,BE交⊙O于F,连结ED,CF.求证:∠ACF=∠AE D.44.如图,⊙O的半径OD,OE分别垂直于弦AB和AC,连结DE交AB,AC于F,G.求证:AF2=AG2=DF·GE.45.如图,△ABC内接于圆,D是AB上一点,AD=AC,E是AC延长线上一点,AE=AB,连接DE交圆于F,延长ED交圆于G.求证:AF=AG.第五页46.:如图,⊙O的两条直径AB⊥CD,E是OD的中点,连结AE,并延长交⊙O于M,连结CM,交AB于F.求证:OB=3OF.47.:如图,△ABC是等边三角形,以AC为直径作圆交BC于D,作DE⊥AC交圆于E.〔1〕求证:△ADE是等边三角形;〔2〕求S△ABC∶S△ADE.48.:如图,半径都是5cm的两等圆⊙O1和⊙O2相交于点A,B,过A作⊙O1的直径AC与⊙O2交于点D,且AD∶DC=3∶2,E为DC的中点.〔1〕求证:AC⊥BE;〔2〕求AB的长.一、填空题:1,等边三角形ABC 的三个顶点都在⊙O 上,D 是AC 上任一点(不与A 、C 重合),那么∠ADC 的度数是________.DCBAO(1) (2) (3)2,四边形ABCD 的四个顶点都在⊙O 上,且AD ∥BC,对角线AC 与BC 相交于点E,那么图中有_________对全等三角形;________对相似比不等于1的相似三角形. 3.,如图3,∠BAC 的对角∠BAD=100°,那么∠BOC=_______度. 4,A 、B 、C 为⊙O 上三点,假设∠OAB=46°,那么∠ACB=_______度.BAA(4) (5) (6)5,AB 是⊙O 的直径, BC BD ,∠A=25°,那么∠BOD 的度数为________.第六页 6,AB 是半圆O 的直径,AC=AD,OC=2,∠CAB= 30 °, 那么点O 到CD 的距离OE=______. 二、选择题: 7,圆心角∠BOC=100°,那么圆周角∠BAC 的度数是( ) A.50° B.100° C.130° D.200°DCBA(7) (8) (9) (10)8,A 、B 、C 、D 四个点在同一个圆上,四边形ABCD 的对角线把四个内角分成的八个角中,相等的角有( )9,D 是AC 的中点,那么图中与∠ABD 相等的角的个数是( )10,∠AOB=100°,那么∠A+∠B 等于( ) A.100° B.80° C.50° D.40°11.在半径为R 的圆中有一条长度为R 的弦,那么该弦所对的圆周角的度数是( )A.30°B.30°或150°C.60°D.60°或120°12.如图,A、B、C三点都在⊙O上,点D是AB延长线上一点,∠AOC=140°, ∠CBD 的度数是( )A.40°B.50°C.70°D.110°三、解答题:13.如图,⊙O的直径AB=8cm,∠CBD=30°,求弦DC的长.A14.如图,A、B、C、D四点都在⊙O上,AD是⊙O的直径,且AD=6cm,假设∠ABC= ∠CAD,求弦AC的长.15.如图,AB为半圆O的直径,弦AD、BC相交于点P,假设CD=3,AB=4,求tan∠BPD的值.16.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P是CAD上一点(不与C、D重合),试判断∠CPD与∠COB的大小关系, 并说明理由.(2)点P′在劣弧CD上(不与C、D重合时),∠CP′D与∠COB有什么数量关系?请证明你的结论.第七页17.在足球比赛场上,甲、乙两名队员互相配合向对方球门MN进攻.当甲带球部到A点时,乙随后冲到B,如下图,此时甲是自己直接射门好,还是迅速将球回传给乙,让乙射门好呢?为什么?(不考虑其他因素) 18.钳工车间用圆钢做方形螺母,现要做边长为a的方形螺母, 问下料时至少要用直径多大的圆钢?。
初三数学圆周角和圆心角的关系试题
初三数学圆周角和圆心角的关系试题1.已知,如图,∠BAC的对角∠BAD=100°,则∠BOC=_______度.【答案】160°【解析】由∠BAD=100°可得∠BAC的度数,再根据圆周角定理即可求得结果.∵∠BAD=100°∴∠BAC=80°∴∠BOC=160°.【考点】邻补角定理,圆周角定理点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.2.如图,AB是半圆O的直径,AC="AD,OC=2,∠CAB=30°," 则点O到CD的距离OE=____.【答案】【解析】由AC=AD,∠CAB=30°可得∠CDO的度数,即可得到∠EOD、∠COE的度数,判断出△COE的形状再结合勾股定理即可求得结果.∵AC=AD,∠CAB=30°,OA=OC∴∠CDO=75°,∠COD=60°∴∠EOD=15°∴∠COE=45°∴△COE为等腰直角三角形∵OC=2∴OE=.【考点】三角形内角和定理,勾股定理点评:特殊三角形的性质的应用是初中数学平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.3.如图,已知圆心角∠BOC=100°,则圆周角∠BAC的度数是( )A.50°B.100°C.130°D.200°【答案】A【解析】圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.∵∠BOC=100°∴∠BAC=50°故选A.【考点】圆周角定理点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.4.如图,A、B、C、D四个点在同一个圆上,四边形ABCD的对角线把四个内角分成的八个角中,相等的角有( )A.2对B.3对C.4对D.5对【答案】C【解析】圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.相等的角有∠ADB=∠ACB,∠BAC=∠BDC,∠CAD=∠CBD,∠ACD=∠ABC4对,故选C.【考点】圆周角定理点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.5.如图,D是弧AC的中点,则图中与∠ABD相等的角的个数是( )A.4个B.3个C.2个D.1个【答案】B【解析】圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.∵D是弧AC的中点∴∠ABD=∠ACD=∠CBD=∠CAD故选B.【考点】圆周角定理点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.6.如图, ,则∠A+∠B等于( )A.100°B.80°C.50°D.40°【答案】C【解析】连接CO并延长交圆于点D,根据圆周角定理即可得到结果.连接CO并延长交圆于点D由图可得∠A+∠B=∠AOD+∠BOD=∠AOB=50°故选C.【考点】圆周角定理点评:辅助线问题是初中数学学习中的难点,能否根据具体情况正确作出恰当的辅助线往往能够体现一个学生对图形的理解能力,因而这类问题在中考中比较常见,在各种题型中均有出现,一般难度较大,需多加关注.7.在半径为R的圆中有一条长度为R的弦,则该弦所对的圆周角的度数是( )A.30°B.30°或150°C.60°D.60°或120°【答案】B【解析】根据圆的性质可得这条弦与半径围成的三角形为等边三角形,再根据圆周角定理即可求得结果.由题意得这条弦与半径围成的三角形为等边三角形则该弦所对的圆周角的度数是30°或150°故选B.【考点】圆周角定理点评:特殊三角形的性质的应用是初中数学平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.8.如图,A、B、C三点都在⊙O上,点D是AB延长线上一点,∠AOC="140°," ∠CBD的度数是( )A.40°B.50°C.70°D.110°【答案】C【解析】先求得弧ABC所对的圆周角的度数,再根据圆内接四边形的对角互补可得∠ABC的度数,即可求得结果.∵∠AOC=140°∴弧ABC所对的圆周角的度数为70°∴∠ABC=110°∴∠CBD=70°故选C.【考点】圆周角定理,圆内接四边形的性质点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.9.如图,⊙O的直径AB=8cm,∠CBD=30°,求弦DC的长.【答案】4cm【解析】连接OC、OD,根据圆周角定理可得∠COD=60°,即可得到△COD是等边三角形,根据等边三角形的性质即可求得结果.连接OC、OD,则OC=OD=4cm,∠COD=60°,故△COD是等边三角形,从而CD=4cm.【考点】圆周角定理,等边三角形的判定和性质点评:辅助线问题是初中数学学习中的难点,能否根据具体情况正确作出恰当的辅助线往往能够体现一个学生对图形的理解能力,因而这类问题在中考中比较常见,在各种题型中均有出现,一般难度较大,需多加关注.10.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P是上一点(不与C、D重合),试判断∠CPD与∠COB的大小关系, 并说明理由.(2)点P′在劣弧CD上(不与C、D重合时),∠CP′D与∠COB有什么数量关系?请证明你的结论.【答案】(1)相等;(2)∠CP′D+∠COB=180°【解析】(1)连接OD,根据垂径定理可得∠COB=∠DOB,再结合圆周角定理即可得到结果;(2)连接P′P,则可得∠P′CD=∠P′PD,∠P′PC=∠P′DC.即可得∠P′CD+∠P′DC=∠CPD,从而可以得到结果.从而∠CP′D+∠COB=180°.(1)连接OD,∵AB⊥CD,AB是直径,∴,∴∠COB= ∠DOB.∵∠COD=2∠P,∴∠COB=∠P,即∠COB=∠CPD.(2)连接P′P,则∠P′CD=∠P′PD,∠P′PC=∠P′DC.∴∠P′CD+∠P′DC=∠P′PD+∠P′PC=∠CPD.∴∠C P′D=180°-(∠P′CD+∠P′DC)=180°-∠CPD=180°-∠COB,从而∠CP′D+∠COB=180°.【考点】垂径定理,圆周角定理点评:辅助线问题是初中数学学习中的难点,能否根据具体情况正确作出恰当的辅助线往往能够体现一个学生对图形的理解能力,因而这类问题在中考中比较常见,在各种题型中均有出现,一般难度较大,需多加关注.。
《圆心角与圆周角》练习题及答案
《圆心角与圆周角》练习题1.下列说法中,正确的是( )A .等弦所对的弧相等 B. 等弧所对的弦相等C. 圆心角相等,它们所对的弦相等D. 弦相等,它们所对的圆心角相等2.如图,在⊙O 中,若C 是AB ︵的中点,∠A =50°,则∠BOC 的度数为( )A .40°B .45°C .50°D .60°(第2题) (第3题) (第4题)3.如图,在三个等圆上各自有一条劣弧AB ︵,CD ︵,EF ︵,如果AB ︵+CD ︵=EF ︵,那么AB +CD 与EF 的大小关系是( )A .AB +CD =EF B .AB +CD >EFC .AB +CD <EF D .不能确定4.如图,AB 为半圆O 的直径,C ,D ,E 为半圆弧上的点,CD ︵=DE ︵=EB ︵,若∠BOE =55°,则∠AOC 的度数为___.5.如图所示,AB ,CD ,EF 都是⊙O 的直径,且∠1=∠2=∠3,则⊙O 的弦AC ,BE ,DF 的大小关系是_______(第5题) (第6题) (第7题) (第8题)6.如图所示,在⊙O 中,AB ︵=AC ︵,∠B =70°,则∠A 的度数为________.7.如图,AB 是⊙O 的直径,AC ,CD ,DE ,EF ,FB 都是⊙O 的弦,且AC =CD =DE =EF =FB ,则∠AOC =________°,∠COF =________°.8.如图,AD ︵=BC ︵,若AB =3,则CD =________.9.如图,AB 是⊙O 的直径,C 、D 、E 是⊙O 上的点,则∠1+∠2等于( )A .90°B .45°C .180°D .60°(第9题) (第10题) (第11题) (第12题) (第13题)10.如图,在⊙O中,若C是BD的中点,则图中与∠BAC相等的角有()A.1个B.2 个C.3个D.4个11.如图,AB是⊙O的直径,∠ABC=30°,则∠BAC的度数为( )A.90°B.60°C.45°D.30°12.如图,在⊙O中,AB是直径,AC是弦,连接OC,若∠ACO=30°,则∠BOC的度数是()A.30°B.45°C.55°D.60°13.如图,OA、OB是⊙O的半径,点C在⊙O上,连接AC、BC,若∠A=20°,∠B=70°,则∠ACB的度数为()A.50° B.55° C.60° D.65°14.如图,AB、CD是⊙O的两条弦,连接AD、BC,若∠BAD=60°,则∠BCD的度数为()A.40°B.50°C.60°D.70°(第14题)(第15题)(第16题)(第17题)(第18题)15.如图,在△ABC中,AB为⊙O 的直径,∠B=60°,∠BOD=100°,则∠C的度数为()A.50° B.60° C.70° D.80°16.如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于()A.12.5° B.15° C.20° D.22.5°17.如图,⊙O中,弦AB,CD相交于点P,∠A=42°,∠APD=77°,则∠B的大小是()A.43°B.35°C.34°D.44°18.如图,已知EF是⊙O的直径,把∠A为60°的直角三角板ABC的一条直角边BC放在直线EF上,斜边AB与⊙O 交于点P,点B与点O重合.将三角板ABC沿OE方向平移,使得点B与点E重合为止.设∠POF=x°,则x的取值范围是( )A.30≤x≤60 B.30≤x≤90 C.30≤x≤120 D.60≤x≤12019.已知△ABC的三个顶点在⊙O上,∠BAC=50°,∠ABC=47°, 则∠AOB= .(第19题)(第20题)(第21题)(第22题)(第23题)20.如图,已知点E 是圆O 上的点,B ,C 是AD ︵的三等分点,∠BOC =46°,则∠AED 的度数为________.21.已知如图,四边形ABCD 内接于⊙O ,若∠A =60°,则∠DCE = .22.如图,在⊙O 中,AB=AC ,∠ABC=70°.∠BOC=________.23.如图,在⊙O 中,∠AOB 的度数为m ,C 是ACB ︵上一点,D ,E 是AB ︵上不同的两点(不与A ,B 两点重合),则∠D +∠E 的度数为24.如图,DC 是⊙O 的直径,弦AB ⊥CD 于点F ,连接BC ,DB ,则下列结论错误的是( )A. AD ︵=BD ︵ B .AF =BF C .OF =CF D .∠DBC =90°(第24题) (第25题) (第26题) (第27题) (第29题)25.已知AB ,CD 是⊙O 的两条直径,∠ABC =30°,那么∠BAD =( )A .45°B .60°C .90°D .30°26.如图,BC 是⊙O 的直径,A 是⊙O 上的一点,∠OAC =32°,则∠B 的度数是( )A .58°B .60°C .64°D .68°27.如图,已知BD 是⊙O 的直径,点A ,C 在⊙O 上,AB ︵=BC ︵,∠AOB =60°,则∠BDC 的度数是( )A .20°B .25°C .30°D .40°28.在⊙O 中,∠AOB =160°,则弦AB 所对的圆周角是( )A .80°B .320°C .160°D .80°或100°29.如图,▱ABCD 的顶点A ,B ,D 在⊙O 上,顶点C 在⊙O 的直径BE 上,连接AE ,∠E =36°,则∠ADC 的度数是( )A .44°B .54°C .72°D .53°30. 如图,已知⊙O 的半径为5,弦AB ,CD 所对的圆心角分别是∠AOB ,COD ,若∠AOB 与∠COD 互补,弦CD =6,则弦AB 的长为( )A .6B .8C .5 2D .53(第30题) (第31题) (第32题) (第33题) (第34题)31.如图是以△ABC 的边AB 为直径的半圆O ,点C 恰好在半圆上,过C 作CD ⊥AB 交AB 于点D.已知cos ∠ACD =35,BC =4,则AC 的长为( ) A .1 B.203 C .3 D.16332.如图,B ,C 是⊙A 上的两点,AB 的垂直平分线与⊙A 交于E ,F 两点,与线段AC 交于D 点.若∠BFC =20°,则∠DBC =( )A .30°B .29°C .28°D .20°33. 如图,在△ABC 中,∠ACB =90°,过B ,C 两点的⊙O 交AC 于点D ,交AB 于点E ,连接EO 并延长交⊙O 于点F ,连接BF ,CF ,若∠EDC =135°,CF =2 ,则AE 2+BE 2的值为( )A .8B .12C .16D .2034.如图,⊙O 的直径CB 的延长线与弦ED 的延长线交于点A ,∠A =20°,且CE ︵=BE ︵,则∠C 的度数是______.35.如图,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =55°,则∠BCD 的度数为________.(第35题) (第36题) (第37题) (第38题) (第39题)36.如图,△ABC 是⊙O 的内接三角形,AD 是⊙O 的直径,∠ABC =45°,AC =2 cm ,则AD =______cm.37. 如图,四边形ABCD 内接于⊙O ,DA =DC ,∠CBE =50°,则∠DAC 的大小为_________.38.如图,AB 为⊙O 的直径,C ,D 为⊙O 上的点,=.若∠CAB =40°,则∠CAD =________.39.如图,点A ,B ,C ,D 在⊙O 上,O 点在∠D 的内部,四边形OABC 为平行四边形,则∠OAD +∠OCD =_________.40.如图,在⊙O 中,CD ⊥AB 于E ,若∠B =60°,则∠A =________.(第40题) (第41题) (第42题) (第43题) (第44题)41.如图,点A ,B ,C 在⊙O 上,∠BAC =120°,AB =AC ,BD 为⊙O 的直径,AD =6,则DC =_________.42.如图,已知点A ,B ,C 在⊙O 上,ACB 为优弧,下列选项中与∠AOB 相等的是( )A .2∠CB .4∠BC .4∠AD .∠B +∠C43.如图,△ABC 的顶点A ,B ,C 均在⊙O 上,若∠ABC +∠AOC =90°,则∠AOC 的大小是( )A .30°B .45°C .60°D .70°44. 如图,⊙O 中,弦BC 与半径OA 相交于点D ,连接AB ,OC.若∠A =60°,∠ADC =85°,则∠C 的度数是( )A .25°B .27.5°C .30°D .35°45.如图,⊙O 的直径CD 过弦EF 的中点G ,∠DCF =20°,则∠EOD 等于( )A .10°B .20°C .40°D .80°(第45题) (第46题) (第47题) (第48题) (第49题)46. 如图,点A ,B ,C 均在⊙O 上,若∠A =66°,则∠OCB 的度数是( )A .24°B .28°C .33°D .48°47. 如图,⊙O 是△ABC 的外接圆,∠B =60°,⊙O 的半径为4,则AC 的长等于( )A .4 3B .6 3C .2 3D .848.如图,在⊙O 中,OC ⊥AB ,∠ADC =32°,则∠OBA 的度数是( )A .64°B .58°C .32°D .26°49. 如图,AB 是⊙O 的弦,OC ⊥AB ,交⊙O 于点C ,连接OA ,OB ,BC ,若∠ABC =20°,则∠AOB 的度数是( )A .40°B .50°C .70°D .80°50.如图,在⊙O 中,弦AC ∥半径OB ,∠BOC =50°,则∠OAB 的度数为( )A .25°B .50°C .60°D .30°(第50题) (第51题) (第52题) (第53题) (第54题)51.如图所示,AB 是⊙O 的直径,C ,D ,E 三点在⊙O 上,则∠1+∠2=__ __度.52.如图,正方形ABCD 内接于⊙O ,P 是AD ︵上任意一点,则∠ABP +∠DCP =_______.53. 如图,已知AB 是⊙O 的弦,半径OC 垂直AB ,点D 是⊙O 上一点,且点D 与点C 位于弦AB 两侧,连接AD ,CD ,OB ,若∠BOC =70°,则∠ADC =_________度.54.如图,在⊙O 的内接五边形ABCDE 中,∠CAD =35°,则∠B +∠E =_________°.55.如图,AB 是⊙O 的直径,BC ︵=CD ︵=DE ︵,∠COD =34°,则∠AOE 的度数是( )A .51°B .56°C .68°D .78°56.下列四个命题:其中正确的命题有( )①圆心角是顶点在圆心的角; ②两个圆心角相等,它们所对的弦也相等;③两条弦相等,它们所对的弧也相等; ④等弧所对的圆心角相等.A .1个B .2个C .3个D .4个57.如图,在⊙O 中,AB ︵=AC ︵,∠A =30°,则∠B =( )A .150°B .75°C .60°D .15°(第57题) (第58题) (第60题) (第61题) (第62题)58.如图,在⊙O 中,若点C 是 AB ︵的中点,∠A =50°,则∠BOC =( )A .40°B .45°C .50°D .60°59. 在同圆中,下列四个命题:①圆心角是顶点在圆心的角;②两个圆心角相等,它们所对的弦也相等;③两条弦相等,它们所对的弧也相等;④等弧所对的圆心角相等.其中真命题有( )A .①②③④B .①②④C .②③④D .②④60.如图,AB ,CD 分别为⊙O 的两条弦,OM ⊥AB 于点M ,ON ⊥CD 于点N ,且OM =ON ,则A .AB =CD B .∠AOB =∠COD C.AB ︵=CD ︵ D .以上结论都对61.如图,已知A ,B ,C ,D 是⊙O 上的点,∠1=∠2,则下列结论中正确的有( )①AB ︵=CD ︵;②BD ︵=AC ︵;③AC =BD ;④∠BOD =∠AOC.A .1个B .2个C .3个D .4个62.如图,AB ,CD 是⊙O 的直径,AE ︵=BD ︵,若∠AOE =32°,则∠COE 的度数是( )A .32°B .60°C .64°D .68°63.如图,在⊙O 中,AB ︵=CD ︵,则下列结论:①AB =CD ;②AC =BD ;③∠AOC =∠BOD ;④AC ︵=BD ︵中,正确的有A .1个B .2个C .3个D .4个(第63题) (第64题) (第65题) (第66题)64.如图,AB 为⊙O 的直径,C ,D 分别为OA ,OB 的中点,CF ⊥AB ,DE ⊥AB ,下列结论:①CF =DE ;②AF ︵=FE ︵=EB ︵;③AE =2CF ;④四边形CDEF 为正方形.其中正确的是( )A .①②③B .①②④C .②③④D .①③④65.如图,点A 、B 、C 在⊙O 上,D 是的中点,若∠ACD =20°,则∠AOB 的度数为( ) A .60° B .70° C .80° D .90°66.如图,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =58°,则∠BCD 等于( )A .116°B .32°C .58°D .64°67.如图,AB 是⊙O 的直径,点E 是半径OA 的中点,过点E 作DC ⊥AB ,交⊙O 于点C 、D ,过点D 作直径DF ,连接AF ,则∠DF A 的大小为( )A .25°B .30°C .35°D .40°(第67题) (第68题) (第69题) (第70题)68.如图,在平面直角坐标系中,⊙A 经过原点O ,并且分别与x 轴、y 轴交于B 、C 两点,已知B (8,0),C (0,6),则⊙A 的半径为( )A .3B .4C .5D .869.如图,⊙O 的半径为1,AB 是⊙O 的一条弦,且AB =,则弦AB 所对圆周角的度数为( )A .30°B .60°C .30°或150°D .60°或120° 70.如图A ,B ,C 是⊙O 上的三个点,若∠AOC =100°,则∠ABC 等于( )A .50°B .80°C .100°D .130°71.如图,AB 是⊙O 的弦,AB =10,点C 是⊙O 上的一个动点,且∠ACB =45°,若点M 、N 分别是BC 、AB 的中点,则MN 长的最大值是( )A .10B .5C .10D .2072.如图,⊙A 过原点O ,分别与x 轴、y 轴交于点C 和点D ,点B 在⊙A 上,已知∠B =30°,⊙A 的半径为2,则圆心A 的坐标是( )A .(,1)B .(1,)C .(,1)D .(1,)73.如图,AB ,CD 是⊙O 的弦,AB ⊥CD ,BE 是⊙O 的直径.若AC =3,则DE 的长是( )A .3B .3.5C .2D .1.5(第71题) (第72题) (第73题) (第74题)74.如图,点A ,B ,C ,D 为⊙O 上的四个点,AC 平分∠BAD ,AC 交BD 于点E ,CE =4,CD =6,则AE 的长为( )A .4B .5C .6D .775如图,点A ,B ,C 在⊙O 上,CO 的延长线交AB 于点D ,∠A =50°,∠B =30°,则∠ADC 的度数为 .(第75题) (第76题) (第77题) (第78题)76.如图,圆内接四边形ABCD 中两组对边的延长线分别相交于点E ,F ,且∠A =45°,∠E =30°,则∠F = .77.如图,⊙O 中两条弦AB 、CD 相交于点P ,已知P A =3,PB =4,PC =2,那么PD 长为 .78.如图,AB 是⊙O 的直径,E 是OB 的中点,过E 点作弦CD ⊥AB ,G 是弧AC 上任意一点,连结AG 、GD ,则∠G = .79.已知,如图:AB 为⊙O 的直径,AB =AC ,BC 交⊙O 于点D ,AC 交⊙O 于点E ,∠BAC =45°.给出以下四个结论:①∠EBC =22.5°;②BD =DC ;③劣弧是劣弧 的2倍;④AE =BC .其中正确结论的序号是 .80.已知⊙O 的直径为10,点A 、点B 、点C 在⊙O 上,∠CAB 的平分线交⊙O 于点D .(1)如图①,若BC 为⊙O 的直径,AB =6,求AC 、BD 、CD 的长;(2)如图②,若∠CAB =60°,求BD 的长.答案1.B2.[解析] A ∵∠A =50°,OA =OB ,∴∠OBA =∠A =50°,∴∠AOB =180°-50°-50°=80°.∵C 是AB ︵的中点,∴∠BOC =12∠AOB =40°. 3.B 4.15 5.AC =BE =DF6.[答案] 40°[解析] ∵在⊙O 中,AB ︵=AC ︵,∴AB =AC.又∵∠B =70°,∴∠C =∠B =70°,∴∠A =180°-∠B -∠C =40°.7.36 108 8.39.A 10.C 11.B 12.D 13.A 14.C 15.C 16.B 17.B 18.A19.166° 20.690 21.600 22.800 23.1800-2m 24--28 CDACD 29--33 BBDAC34. 25° 35. 35° 36. 2 37.65° 38. 25° 39. 60° 40. 30° 41. 23 42--50 ACDC AADDA51. 90 52. 45° 53. 35 54. 21555--64 DBDAA DDCDA65--74. C .B .B .C .D .D .A .A .AB .75. 110°.76. 60°.77. 6.78. 60°.79.①②③.80.解:(1)如图①,∵BC 是⊙O 的直径,∴∠CAB =∠BDC =90°.∵在直角△CAB 中,BC =10,AB =6,∴由勾股定理得到:AC ===8. ∵AD 平分∠CAB ,∴=,∴CD =BD .在直角△BDC 中,BC =10,CD 2+BD 2=BC 2,∴易求BD =CD =5; (2)如图②,连接OB ,OD ,∵AD 平分∠CAB ,且∠CAB =60°,∴∠DAB =∠CAB =30°, ∴∠DOB =2∠DAB =60°.又∵OB =OD ,∴△OBD 是等边三角形,∴BD =OB =OD .∵⊙O 的直径为10,则OB =5,∴BD =5.。
垂径定理---圆心角---圆周角练习(专题经典).
垂径定理圆心角圆周角练习1.如图.⊙O中OA⊥BC,∠CDA=25o,则∠AOB的度数为_______.2.如图.AB为⊙O的直径,点C、D在⊙O上,∠BAC=50o.则∠ADC=_______.第1题第2题第3题3.如图,点A、B、C都在⊙O上,连结AB、BC、AC、OA、OB,且∠BAO=25°,则∠ACB的大小为___________.第4题第5题4.已知:如图,四边形ABCD是⊙O的内接四边形,∠BOD=140°,则∠DCE=.5、如图,AB是⊙O的直径,C,D,E都是⊙O上的点,则∠1+∠2=.6、⊙O中,若弦AB长22cm,弦心距为2cm,则此弦所对的圆周角等于.7、已知AB是⊙O的直径,AC,AD是弦,且AB=2,AC=2,AD=1,则圆周角∠CAD的度数是()A.45°或60°B.60°C.105°D.15°或105°8、如图,AB是⊙的直径,弦CD垂直平分OB,则∠BDC=()A.20°B.30°C.40°D.50°9、如图,点A、B、C为圆O上的三个点,∠AOB=的度数.13∠BOC,∠BAC=45°,求∠ACB 10、如图,AD是∆ABC的高,AE是∆ABC的外接圆的直径.试说明狐B E CF。
DF11、如图,AB,AC是⊙O的两条弦,且AB=AC.延长CA到点D.使AD=AC,连结DB并延长,交⊙O于点E.求证:CE是⊙O的直径.12、已知:如图,AB为⊙O的直径,AB=AC,B C交⊙O于点D,AC交⊙O于点E,∠BAC=45°.(1)求∠EBC的度数;(2)求证:BD=CD.△13.如图所示,ABC为圆内接三角形,A B>AC,∠A的平分线AD交圆于D,作D E⊥AB于E,D F⊥AC于F,求证:BE=CFAEB CFD△14.如图所示,在ABC中,∠BAC与∠ABC的平分线AE、BE相交于点E,延长AE交△ABC的外接圆于D点,连接BD、CD、CE,且∠BDA=60°(1)求证△BDE是等边三角形;(2)若∠BDC=120°,猜想BDCE是怎样的四边形,并证明你的猜想。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年垂径定理、弦、弧、圆心角、圆周角练习
1.已知:AB交圆O于C、D,且AC=BD.你认为OA=OB吗?为什么?
2. 如图所示,是一个直径为650mm的圆柱形输油管的横截面,若油面宽AB=600mm,求油面的最大深度。
600
3. 如图所示,AB是圆O的直径,以OA为直径的圆C与圆O的弦AD相交于点E。
你认为图中有哪些相等的线段?为什么?
A
D
B
O
C
E
4.如图所示,OA是圆O的半径,弦CD⊥OA于点P,已知OC=5,OP=3,则弦CD=____________________。
5.如图所示,在圆O中,AB、AC为互相垂直且相等的两条弦,OD⊥AB,OE
C
A P O D
C
E O
A D B
⊥AC ,垂足分别为D 、E ,若AC=2cm ,则圆O 的半径为____________cm 。
6. 如图所示,AB 是圆O 的直径,弦CD ⊥AB ,E 为垂足,若AB=9,BE=1,则CD=_________________。
7. 如图所示,在△ABC 中,∠C =90°,AB =10,AC =8,以AC 为直径作圆与斜边交于点P ,则BP 的长为________________。
8. 如图所示,四边形ABCD 内接于圆O ,∠BCD=120°,则∠BOD=____________度。
9. 如图所示,圆O 的直径为10,弦AB 的长为6,M 是弦AB 上的一动点,则线段的OM 的长的取值范围是( ) A. 3≤OM ≤5 B. 4≤OM ≤5 C. 3<OM <5 D. 4<OM <5
10. 下列说法中,正确的是( )
A. 到圆心的距离大于半径的点在圆内
B. 圆的半径垂直于圆的切线
C. 圆周角等于圆心角的一半
D. 等弧所对的圆心角相等
11. 若圆的一条弦把圆分成度数的比为1:3的两条弧,则劣弧所对的圆周角等于( )
A. 45°
B. 90°
C. 135°
D. 270°
12. 如图所示,A 、B 、C 三点在圆O 上,∠AOC=100°,则∠ABC 等于( ) A. 140° B. 110° C. 120° D. 130°
13. △ABC 中,∠C=90°,AB=cm 4,BC=cm 2,以点A 为圆心,以cm 5.3长为半径画圆,则点C 在圆A___________,点B 在圆A_________;
14. 圆的半径等于cm 2,圆内一条弦长23cm ,则弦的中点与弦所对弧的中点的距离等于_____________;
15. 如图所示,已知AB 为圆O 的直径,AC 为弦,OD ∥BC 交AC 于D ,OD=cm 2,求BC 的长;
A B
16. 如图所示,破残的圆形轮片上,弦AB 的垂直平分线交弧AB 于点C ,交
弦AB 于点D 。
已知:AB cm 24=,CD cm 8=。
(1)求作此残片所在的圆(不写作法,保留作图痕迹); (2)求(1)中所作圆的半径。
17. 已知:如图所示,Rt △ABC 的两直角边BC=3cm ,AC=4cm ,斜边AB 上的高为CD ,若以C 为圆心,分别以r 1=2cm ,r 2=2.4cm ,r 3=3cm ,为半径作圆,试判断点D 与这三个圆的位置关系。
B
18. 在△ABC 中,∠C=90°,AC=BC=4cm ,D 是AB 边的中点,以点C 为圆心,4cm 为半径作圆。
则A 、B 、C 、D 四点在圆内有_____________。
19. 等腰三角形ABC 中,B 、C 为定点,且AC=AB ,D 为BC 中点,以BC 为直径作圆D 。
(1)顶角A 等于多少度时,A 在圆D 上? (2)顶角A 等于多少度时,A 在圆D 内部?
(3)顶角A等于多少度时,A在圆D外部?
20. 在半径为5cm的圆中,弦AB∥CD,AB=6cm,CD=8cm,求弦AB与CD 之间的距离。
21. 如图所示,圆O的直径AB和弦CD交于E,已知AE=6cm,EB=2cm,∠CEA=30°,求CD。
A B
22. 圆O中若直径为25cm,弦AB的弦心距10cm,求弦长。
23.若圆的半径2cm,圆中一条弦长1cm,则此弦中点到此弦所对劣弧中点之间的距离?
24.圆内一条弦与直径的交角为30°,且分直径为1cm和5cm两段,求弦心距,弦长?
25.半径为5cm的圆O中有一点P,OP=4,则过P的最短弦长_________,最长弦是__________,
26. 如图所示,已知O是∠EPF的平分线上的一点,以O为圆心的圆心角的两边分别交于点A、B、C、D求证:PB=PD,若角的顶点P在圆上或圆内,上述还成立吗?请说明。
参考答案
1. 过点O 作OE CD ⊥于E ∴=CE ED
∴=∴≅∴=AD DB AOE BOE AO OB ∆∆
2. 175mm
3. 略
4. 8
5. 2
6. 42
7. 3.6
8. 120
9. B
10. D
11. A 12. D
13. 内部、外部
14. 13cm cm 或
15. BC=4cm 16. (1)图略
(2)13cm
17. 外、上、内 18. C 、D
19. (1)∠=A 90°;
(2)∠A 为钝角; (3)∠A 为锐角。
20. 71cm cm 或
21. CD cm =215()22. 15cm
23. 415
2-cm
24. 142cm cm ;
25. 610cm cm ,
26. (1)证明:过O 作OE PB E OF PD F ⊥⊥于,于
OP EPF OE OF PE PF AB CD BE DF
PE BE PF DF PB PD 平分,,则∠∴==∴==∴+=+∴=
(2)上述结论仍成立: 如下图所示
证明略。
A A
E E
P O P O
F F
C C
PA=PC PA=PC。