高中数学 点到直线的距离公式导学案(扫描版)北师大版必修4
高中数学北师大版必修四2.7.1 教学设计 《点到直线的距离公式》
《§7.1点到直线的距离公式》“点到直线的距离”是在学生学习直线方程的基础上,进一步研究两直线位置关系的一节内容,我们知道两条直线相交后,进一步的量化关系是角度,而两条直线平行后,进一步的量化关系是距离,而平行线间的距离是通过点到直线距离来解决的。
【知识与能力目标】1掌握点到直线距离公式及其应用。
2.会用点到直线距离求两平行线间的距离。
【过程与方法目标】经历公式的形成过程,体会由实例得出公式的方法,培养学生提出问题、分析问题和解决问题的能力。
【情感态度价值观目标】通过推导公式方法的发现,培养学生观察、思考、分析、归纳等数学能力;在推导过程中,渗透数形结合、转化(或化归)等数学思想以及特殊与一般的方法;通过本节学习,引导学生用联系与转化的观点看问题,体验在探索问题的过程中获得的成功感。
【教学重点】理解点到直线的距离公式,并能进行简单应用【教学难点】会用点到直线距离求两平行线间的距离电子课件调整、相应的教具带好、熟悉学生名单、电子白板要调试好。
一、复习引入。
回顾:两点间的距离公式平面上P 1(x 1,y 1),P 2(x 2,y 2)两点间的距离公式P 1P 2=(x 2-x 1)2+(y 2-y 1)2.特别地,当x 1=x 2=0,即两点在y 轴上时,P 1P 2=|y 1-y 2|;当y 1=y 2=0,即两点在x 轴上时,P 1P 2=|x 1-x 2|。
巩固练习1.点(-2,3)到原点的距离为________。
【解析】 d =-2-2+-2=13。
【答案】 13。
2.三角形三顶点为A (-1,0),B (2,1),C (0,3),则△ABC 的三边长分别为________。
【解析】 |AB |=(2+1)2+(1-0)2=10,|AC |=(0+1)2+(3-0)2=10,|BC |=(2-0)2+(1-3)2=22。
【答案】 10,10,22。
回顾:中点坐标公式对于平面上的两点P 1(x 1,y 1),P 2(x 2,y 2),线段P 1P 2的中点是M (x 0,y 0),则⎩⎪⎨⎪⎧ x 0=x 1+x 22,y 0=y 1+y 22.。
《点到直线的距离公式》示范课教学设计【高中数学】
《点到直线的距离公式》教学设计【提出问题,探究公式】问题1:如图,已知点00(,)P x y ,直线:0(0,0)l Ax By C A B ++=≠≠,如何求P 到直线l 的距离?追问1:如何求出||PQ 的距离?答案:利用两点间距离公式,需要先求出P ,Q 点的坐标. 其中,P 点坐标已知,因此只需求出点Q 的坐标.追问2:如何求出点Q 的坐标?答案:点Q 是直线l 与垂线PQ 的交点,所以联立两条直线方程求交点坐标. 追问3:如何求垂线PQ 的方程?答案:已知一点00(,)P x y ,再求出直线PQ 的斜率,即可写出直线PQ 的点斜式方程. 追问4:如何求垂线PQ 的斜率?答案:垂线PQ 与直线l 垂直,直线l 的斜率为A B -,可得垂线PQ 的斜率B A. 由此,求得垂线PQ 方程为00()By y x x A-=-, 整理得00Bx Ay Bx Ay -=-. 解方程组:000, (1). (2)Ax By C Bx Ay Bx Ay ++=⎧⎨-=-⎩将(1)×A+(2)×B 得22200()0 A B x AC ABy B x +++-=, 整理得20022B x ABy ACx A B--=+.同理可得20022ABx A y BCy A B-+-=+,则2200002222(,)B x ABy AC ABx A y BCQ A B A B ---+-++.利用两点间距离公式22220000002222||()()B x ABy ACABx A y BCPQ x y A BA B----=-+-++,通分,原式22220000222()()()A x ABy AC ABx B y BC A B +++++=+22220000222()()()A Ax By C B Ax By C A B +++++=+22200222()()()A B Ax By C A B +++=+0022||Ax By C A B++=+.由此,求得点P 到直线l 的距离0022||Ax By C d A B++=+.追问5:如图,如果直线:0(0)l Ax By C A ++==平行于x 轴,点00(,)P x y 到直线l 的距离还满足上式吗?答案:此时,00(,)P x y 到直线l 的距离 00||||||By C C d y B B +=+=, 由0A =,d 也表示为0022||Ax By C d A B++=+.追问6:如果直线:0(0)l Ax By C B ++==垂直于x 轴,点00(,)P x y 到直线l 的距离还满足上式吗?答案:此时,00(,)P x y 到直线l 的距离00||||||Ay C C d x A A +=+=, 点到直线距离也可表示为0022||Ax By C d A B++=+.一般地,点00(,)P x y 到直线:0l Ax By C ++=的距离:0022||Ax By C d A B++=+.【反思过程,简化方法】问题2:上述推导过程思路自然,但运算较繁,反思求解过程,你能发现引起复杂运算的原因吗?答案:原因在于,求出的点Q 坐标比较复杂,再代入两点间距离公式造成了运算的复杂.追问1:能否不求出Q 的坐标,推得点到直线距离公式? 答案:设(,)Q x y ,观察两点间距离公式的结构()()2200||PQ x x y y =-+-,能否从方程组中直接写出0x x -,0y y -的表达式?由000(),Ax By C By y x x A++=⎧⎪⎨-=-⎪⎩, 得000000()()()(3)()()0, (4)A x x B y y Ax By C B x x A y y -+-=-++⎧⎨---=⎩,将(3)、(4)两边分别平方后相加可得:22222220000()()()()()A B x x A B y y Ax By C +-++-=++,所以222000022()()()Ax By C x x y y A B++-+-=+从而,22000022||||()()Ax By C PQ x x y y A B++=-+-=+.追问2:与第一种方法相比,第二种方法的计算量大大降低. 能否概述简化运算的过程吗?答案:第二种方法的推导过程,实际上是从所求表达式的结构入手,虽然“设出”点Q 的坐标,但是并不求出点Q 的坐标,通过整体代换简化了运算.“设而不求”和“整体代换”也是运算中十分常用的方法.【多方联系,探究新法】问题3:向量是解决空间距离、角度问题的有力工具,能否用向量方法求点到直线的距离呢?答案:如图,点到直线的距离||PQ 是点与直线上所有点的距离中最短的. 追问1:点P 与直线l 上任一点所成向量与向量PQ 有何关系呢? 答案:设M (x ,y )是直线l 上的任意一点,PQ 是PM 在直线PQ 方向上的投影.||||PQ PM =⋅n ,其中n 是与直线l 的方向向量垂直的单位向量.追问2:如何用坐标表示向量n ?答案:因为直线:0l Ax By C ++=的斜率为A B -,它的一个方向向量为(1,)AB-,因此,由向量的数量积运算可求得与直线l 垂直的一个方向向量为(1,)BA,由此,与直线l 垂直的单位向量()222(1,)11()BA AB B A BA==++,n由此便可计算||PQ 的长度.因为||||PQ PM =⋅n ,其中00(,)PM x x y y =--, 所以||||PQ PM =⋅n==(5)因为M (x ,y )在直线l 上,则0Ax By C ++=. 代入(5)式整理得||PQ =问题4:比较上述推导点到直线距离公式的“坐标法”和“向量法”两种方法,它们各有什么特点?答案: “坐标法”是通过寻找所求量的坐标表示,再经过一系列运算最终得到点到直线距离公式. 坐标法运算量较大,所以我们还要寻求简化运算的方法. 这里我们用到了设而不求,整体代换的手段.相比之下,“向量法”抓住了点到直线距离是点与直线上点的最短长度这一几何特征,借助投影向量、直线方向向量的概念,将向量用坐标表示,再运算求解.这种方法体现了解析几何形与数、数与形的转化,技巧性强,但是大大降低了运算量.其实“向量法”只是用到了向量的壳,本质上还是在用点的坐标运算. 我们不是常说解析几何就是用代数方法研究几何问题.这里的代数方法就是把图形放入坐标系中,用点的坐标来刻画图形间的关系,这是解析几何的本质.【分析结构,理解公式】问题5:点到直线距离公式有什么结构特征?答案:公式的分子:保留直线方程一般式的结构,只是把P 的坐标代入到了直线方程中,体现了公式与直线方程关系.特别地,如果P 在直线上,点到直线的距离为0,此时,式子中的分子为0,整个式子也等于0. 运算结果与实际相符. 这么一来,这个公式可以表示平面内任一点到任一直线的距离.注意,因为所求的是距离,所以要加绝对值保证结果为正. 【巩固应用,解决问题】例1:求点(1,2)P -到直线:32l x =的距离.答案:教师引导学生先把直线的方程写成一般式,然后运用点到直线的距离公式求解,这是公式的直接应用.进一步,引导学生通过画图或对直线方程的观察,发现方程表示的直线很特殊,因而可以直接运用横坐标差的绝对值求解.点P 0(-1,2)到直线l :3x -2=0的距离22|3(1)2|5330d ⨯--==+. 例2 如图,已知△ABC 的三个顶点分别是A (1,3),B (3,1),C (-1,0),求△ABC 的面积.答案:如图,设边AB 上的高为h ,则S △ABC =12|AB |h . 22(31)(13)22AB =-+-=.边AB 上的高h 就是点C 到直线AB 的距离. 边AB 所在直线l 的方程为311331y x --=--, 即x +y -4=0.故点C (-1,0)到直线l :x +y -4=0的距离22|104|552=2211h -+-==+. 【回顾小结,提升认识】问题6:你能写出点到直线的距离公式吗?这个公式如何证明? 公式证明的三种方法各有特点,谈一谈你的体会?答案:“坐标法”是解析几何问题中最本质的方法,是通过点的坐标建立方程再计算获得结论.第二种“坐标法”采用了“设而不求”的想法,通过整体代换的思想简化了运算.“向量法”利用了投影向量的概念,借助向量运算获得点到直线距离公式. 这个方法十分巧妙,大大降低了运算量,但是需要熟练使用向量的相关知识.除了这三种证明方法,你还有没有其他的想法?请同学们课后思考?。
《点到直线的距离公式》教案、导学案、同步练习
《2.3.3 点到直线的距离公式》教案【教材分析】本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习点到直线的距离公式。
在前面已经研究了两点间的距离公式、直线方程、两直线的位置关系,同时也介绍了“以数论形,以形辅数”的数学思想方法.“点到直线的距离”是从初中平面几何的定性作图,过渡到了解析几何的定量计算;《点到直线的距离》的研究,又为以后直线与圆的位置关系和圆锥曲线的进一步学习奠定了基础,具有承前启后的重要作用.【教学目标与核心素养】课程目标学科素养A. 会用向量工具推导点到直线的距离公式.B.掌握点到直线的距离公式,能应用点到直线距离公式解决有关距离问题.C. 通过点到直线的距离公式的探索和推导过程,培养学生运用等价转化、数形结合等数学思想方法解决问题的能力1.数学抽象:点到直线的距离公式2.逻辑推理:点到直线的距离公式的推导3.数学运算:点到直线的距离公式的运用4.直观想象:几何中的距离问题【教学重点】:点到直线的距离公式的推导思路分析;点到直线的距离公式的应用.【教学难点】:点到直线的距离公式的推导不同方法的思路分析.【教学过程】教学过程教学设计意图一、情境导学在公路附近有一家乡村饭馆,现在需要铺设一条连接饭馆和公路的道路.请同学们帮助设计一下:在理论上怎样铺路可以使这条连接道路的长度最短?通过生活中点到直线距离的问题情境,二、探究新知思考:最容易想到的方法是什么?思路①. 定义法,其步骤为:①求l 的垂线l PQ的方程;② 解方程组;③得交点Q 的坐标;④求|P Q|的长反思:这种解法的优缺点是什么?我们知道,向量是解决距离、角度问题的有力工具。
能否用向量方法求点到直线的距离?如图,点P 到直线l 的距离,就是向量PQ⃗⃗⃗⃗⃗ 的模,设M(x,y)是直线l 上的任意一点, n 是与直线l 的方向向量垂直的单位向量,则PQ ⃗⃗⃗⃗⃗ 是PM⃗⃗⃗⃗⃗⃗ 在上n 的投影向量, |PQ ⃗⃗⃗⃗⃗ |=|PM ⃗⃗⃗⃗⃗⃗ ∙n|。
高中数学北师大版必修四2.7.1 教学课件 《点到直线的距离公式》
例1 如图2-1-12,△ABC的顶点B(3,4),AB边上的高CE所在直线 方程为2x+3y-16=0,BC边上的中线AD所在直线方程为2x-3y+1 =0,求边AC的长。
图2-1-12
北京师范大学出版社 ︱必修四
【精彩点拨】 利用直线AB,AD的方程求交点A。利用D是线段BC的中点,将 点C的坐标转化到点D上,再利用点C在直线CE上,点D在直线AD上解得点C。 然后利用两点间距离公式求AC。
∴x=17,y=-18,故 x+y=-1。
【答案】 -1
北京师范大学出版社 ︱必修四
探究新知:
点到直线的距离
阅读教材P101~P102,完成下列问题。 1.点到直线的距离公式
|Ax0+By0+C| 点P0(x0,y0)到直线l:Ax+By+C=0的距离为d=_______A_2_+__B_2______。
北京师范大学出版社 ︱必修四
巩固练习:
1.在x-y+4=0上求一点P,使点P到点M(-2,-4),N(4,6)的距离相等。
【解】 由直线 x-y+4=0 可得 y=x+4,因为点 P 在此直线上, 所以可设点 P 的坐标为(a,a+4),已知 PM=PN,由两 点间距离公式可得: [a--2]2+[a+4--4]2= a-42+a+4-62, 解得 a=-32,从而 a+4=52, 所以点 P 的坐标为-32,52。
【自主解答】 设点 A,C 的坐标分别为 A(x1,y1),C(x2,y2)
2 ∵ AB⊥CE,kCE=-3
13 ∴ kAB=-kEC=2 。∴直线 Biblioteka B 的方程为 3x-2y-1=0。
3x1-2y1-1=0,
由
得 A(1,1)。
2x1-3y1+1=0,
高中数学 1.1.6 《点到直线的距离》导学案1 苏教版必
1.1.6 点到直线的距离(1)学习目标1. 掌握点到直线的距离公式,能运用它解决一些简单问题.2. 通过对点到直线的距离公式的推导,渗透化归思想,进一步了解用代数方程研究几何问题的方法。
学习过程一 学生活动问题 我们已经证明图中的四边形ABCD 为平行四边形,如何计算它的面积?二 建构知识已知 0C By Ax :=++l (B A,不同时为0),)y , P(x 00,则P 到l 的距离为2200||B A C By Ax d +++=说明:(1)公式成立的前提需把直线l 方程写成一般式;(2)当点)y , P(x 00在直线l 上时,公式仍然成立.三 知识运用例题例1 求点P(-1,2)到下列直线的距离:(1)0102=-+y x (2)23=x (3)3=y (4)x y 2=例2 点P 在直线053=-+y x 上,且点P 到直线01=--y x 的距离等于2,求点的P坐标.例3 若)8,7(A ,)4,10(B ,)4,2(-C ,求△ABC 的面积.x巩固练习1.求下列点P 到直线l 的距离:(1))2,3(-P ,02543:=-+y x l ; (2))1,2(-P ,053:=+x l .2.直线l 经过原点,且点)0,5(M 到直线l 的距离等于3,求直线l 的方程.四 回顾小结点到直线的距离公式的推导及应用.五 学习评价双基训练1.点P 在直线350x y +-=上,且P 点到直线10x y --=2,则点P 的坐标为2.点P (2,-1)到直线2y=3的距离为3已知点)0)(2,(>a a P 到直线03:=+-y x l 的距离为1,则a 等于_____________..4. 直线l 在y 轴上截距为10,且原点到直线l 的距离是8,则直线l 的方程为__________.5.已知三角形的三个顶点分别是A (2,3),B (-2,1),C (3,2),则三角形的面积为6. 直线l 经过原点,且点)0,5(M 到直线l 的距离等于3,则直线l 的方程为__________________.7.已知点A (0,-1),B (2,5),求以A ,B 为顶点的正方形ABCD 的另另两个顶点C ,D 的坐标.拓展延伸8.若直线l 到A (1,0),B (3,4)的距离均等于1,求直线l 的方程.9.直线l 经过点A (4,2),且被平行直线x-y+1=0与x-y-1=0所截线段的中点在直线x+y-3=0上,求直线l 的方程.2.1.6 点到直线的距离(2)1.10172.343.3450,34350x y x y --=--= 4.05;d <≤5.3x-4y-17=0和3x-4y-1=0 6.230;7.(4,7),(6,1)(8,3),(6,3);x y C D C D -+=---或8. 5x-12y-5=0,5x-12y+60=0,260≤<d ,9. x+3y+7=0,3x-y-3=0和3x-y+9=0.。
数学高中点到线的距离教案
数学高中点到线的距离教案
教学重点:点到线的距离的计算方法。
教学难点:理解点到线的距离的概念。
教学准备:
1. 教师准备好教案、教材、黑板、彩色粉笔等教学工具。
2. 学生准备好尺子或者直尺等测量工具。
教学步骤:
一、导入新知识(5分钟)
1. 引导学生思考:如何理解点到线的距离?
2. 导入本节课的新知识点:点到线的距离。
二、讲解点到线的距离的定义和计算方法(10分钟)
1. 讲解点到线的距离的概念。
2. 讲解点到线的距离的计算方法,包括垂直距离的计算和点到线段的距离的计算。
三、练习点到线的距离计算(15分钟)
1. 带领学生做几个简单的点到线的距离计算题。
2. 让学生自己尝试做一些练习题,巩固所学知识。
四、总结和提高(5分钟)
1. 总结本节课的重点和难点。
2. 对学生的表现进行评价,鼓励学生继续努力。
五、作业布置(5分钟)
1. 布置相关的点到线的距离计算题目作业。
2. 鼓励学生复习本节课所学内容,准备下节课的学习。
高中数学北师大版必修四2.7.1【教学课件】《点到直线的距离公式》
特别地,当x1=x2=0,即两点在y轴上时,P1P2=|y1-y2|;当y1=y2=0, 即两点在x轴上时,P1P2=|x1-x2|。
北京师范大学出版社 ︱必修四
巩固练习:
1.点(-2,3)到原点的距离为________。
【解析】 d= -2-02+3-02= 13
【答案】
13
北京师范大学出版社 ︱必修四
北京师范大学出版社 ︱必修四
巩固练习:
1.判断(正确的打“√”,错误的打“×”)
m+n-1 (1)点(m,n)到直线x+y-1=0的距离是 。 ( ×) 2
(2)连结两条平行直线上两点,即得两平行线间的距离。( × ) (3)两平行线间的距离是两平行线上两点间的最小值。( √ ) (4)两点P1(x1,y1),P2(x2,y2)间的距离公式P1P2= x1-x22+y1-y22 与两点的先后顺序无关。( √ )
【精彩点拨】 利用直线AB,AD的方程求交点A。利用D是线段BC的中点,将 点C的坐标转化到点D上,再利用点C在直线CE上,点D在直线AD上解得点C。 然后利用两点间距离公式求AC。
【自主解答】 设点 A,C 的坐标分别为 A(x1,y1),C(x2,y2) 2 ∵ AB⊥CE,kCE=- 3 3 ∴ kAB=- = 。 kEC 2 1
【答案】 -1
值为________。
北京师范大学出版社 ︱必修四
探究新知:
北师版数学高一-必修4课件 2.7.1-7.2 点到直线的距离公式 向量的应用举例
7.1 点到直线的距离公式 7.2 向量的应用举例
11
则D→M∥D→E,D→M=(x+1,y-1),D→E=(-2,-2), ∴(-2)×(x+1)-(-2)(y-1)=0, 即x-y+2=0为直线DE的方程. 同理可求,直线EF、FD的方程分别为x+5y+8=0, x+y=0.
7.1 点到直线的距公式 7.2 向量的应用举例
23
在 Rt△OEB 中,OB= OE2+BE2=150 2, sin∠BOE=OBEB=12,∴|O→B|=150 2,∠BOE=30°. 故没有风时飞机的航速为 150 2 km/h,航向为西偏北 30°.
7.1 点到直线的距离公式 7.2 向量的应用举例
2 2.
整理得 2m2-3m-2=0,解得 m=2 或 m=-21.
7.1 点到直线的距离公式 7.2 向量的应用举例
29
2.已知A(1,2),B(-2,1),以AB为直径的 圆的方程是 x2+y2+x-3y=0. 解析 设P(x,y)为圆上任一点,则 A→P=(x-1,y-2),B→P=(x+2,y-1), 由A→P·B→P=(x-1)(x+2)+(y-2)(y-1)=0,
∴|B→C|= 1+-2 32= 13.
7.1 点到直线的距离公式 7.2 向量的应用举例
21
要点三 利用向量解决物理中的问题 例3 在风速为75( 6- 2) km/h的西风中,飞机以150 km/h的 航速向西北方向飞行,求没有风时飞机的航速和航向. 解 设向量a表示风速,b表示无风时飞机的航行速度,c表 示有风时飞机的航行速度,则c=a+b. 如图,作向量O→A=a,O→B=b,O→C=c,
7.1 点到直线的距离公式 7.2 向量的应用举例
20
高中数学 3.3.2《点到直线的距离》导学案 新人教A版必修2
【学习目标】知识与技能:让学生理解点到直线距离公式的推导,掌握点到直线距离公式及其应用,会用点到直线距离求两平行线间的距离;过程与方法:培养学生观察、思考、分析、归纳等数学能力,数形结合、转化(或化归)、等数学思想、特殊与一般的方法以及数学应用意识与能力;情感态度与价值观:引导学生用联系与转化的观点看问题,了解和感受探索问题的方式方法,在探索问题的过程中获得成功的体验【重点难点】学习重点:点到直线距离公式及其应用.学习难点:发现点到直线距离公式的推导方法.【学法指导】1、先阅读教材106—108页,认真思考、独立规范作答,认真完成每一个问题,每一道习题,不会的先绕过,做好记号。
2、把学案中自己易忘、易出错的知识点和疑难问题以及解题方法规律,及时整理在解题本,多复习记忆。
(尤其两点间的距离公式及点到直线的距离公式牢记)3、A:自主学习;B:合作探究;C:能力提升4、小班、重点班完成全部,平行班至少完成A.B类题。
平行班的A级学生完成80%以上B完成70%~80%C力争完成60%以上。
【知识链接】:1.两点间的距离公式特别的:原点O与任一点P(x,y)的距离22yxOP+=2.平面内点与直线的位置关系有几种?【学习过程】自主探究A问题1:已知点P(x0,y0),直线l:A x+C=0,求点P到直线的距离.A问题2:已知点P(x0,y0),直线l:B y+C=0,求点P到直线的距离.B问题3:已知点P(x0,y0),直线l:A x+B y+C=0,求点P到直线的距离.A例1 求点P(-1,2)到直线①2x+y-10=0;②3x=2; ③2y+3=0的距离。
A问题4:两条平行直线间的距离的定义A问题5:设直线l1∥l2,如何求l1与l2之间的距离?B例2已知直线,l1:2x-7y-8=0,l2:6x-21y-l=0,l l与l2是否平行?若平行求l l与l2间的距离。
由上面的例题可知,两条平行直线间的距离可以转化为点到直线的距离,取点时可考虑取x轴上的点或y轴上的点,运算可以简便点。
2.7.1【教学设计】《点到直线的距离公式》(北师大)
《§7.1点到直线的距离公式》“点到直线的距离”是在学生学习直线方程的基础上,进一步研究两直线位置关系的一节内容,我们知道两条直线相交后,进一步的量化关系是角度,而两条直线平行后,进一步的量化关系是距离,而平行线间的距离是通过点到直线距离来解决的。
【知识与能力目标】1掌握点到直线距离公式及其应用。
2.会用点到直线距离求两平行线间的距离。
【过程与方法目标】经历公式的形成过程,体会由实例得出公式的方法,培养学生提出问题、分析问题和解决问题的能力。
【情感态度价值观目标】通过推导公式方法的发现,培养学生观察、思考、分析、归纳等数学能力;在推导过程中,渗透数形结合、转化(或化归)等数学思想以及特殊与一般的方法;通过本节学习,引导学生用联系与转化的观点看问题,体验在探索问题的过程中获得的成功感。
【教学重点】理解点到直线的距离公式,并能进行简单应用【教学难点】会用点到直线距离求两平行线间的距离电子课件调整、相应的教具带好、熟悉学生名单、电子白板要调试好。
一、复习引入。
回顾:两点间的距离公式平面上P1(x1,y1),P2(x2,y2)两点间的距离公式P1P2=(x2-x1)2+(y2-y1)2.特别地,当x1=x2=0,即两点在y轴上时,P1P2=|y1-y2|;当y1=y2=0,即两点在x轴上时,P1P2=|x1-x2|。
巩固练习1.点(-2,3)到原点的距离为________。
【解析】d=-2-2+-2=13。
【答案】13。
2.三角形三顶点为A(-1,0),B(2,1),C(0,3),则△ABC的三边长分别为________。
【解析】|AB|=(2+1)2+(1-0)2=10,|AC|=(0+1)2+(3-0)2=10,|BC|=(2-0)2+(1-3)2=22。
【答案】10,10,22。
回顾:中点坐标公式对于平面上的两点P1(x1,y1),P2(x2,y2),线段P1P2的中点是M(x0,y0),。
2.7向量应用举例2.7.1点到直线的距离公式教案北师大版必修4
2.7.1 点到直线的距离公式整体设计教学分析1.按教材的安排,本大节是想让学生熟悉向量在数学和物理学中的广泛应用,理解向量的工具性,明确向量处于知识网络的交汇点.从高考角度看,向量与三角函数、解析几何等知识综合起来的题目频频出现在全国各地市的高考试卷上.这种与向量交汇的题目新颖别致,活力四射,正逐渐成为高考的新宠.但教材的处理是:点到直线的距离公式的向量证明作为一节,几何应用与物理应用放在一节.这不利于学生的理解掌握,因此在本教案设计时稍作调整,把点到直线的距离的向量证明及几何中的应用统一到向量在数学中的应用上,另一节专门探究向量在物理中的应用.2.本节的目的是让学生加深对向量的认识,更好地体会向量这个工具的优越性.向量在数学中有着广泛的应用,就思路而言,几何中的向量方法完全与几何中的代数方法一致,不同的只是用“向量和向量运算”来代替“数和数的运算”.这就是把点、线、面等几何要素直接归结为向量,对这些向量借助于它们之间的运算进行讨论,然后把这些计算结果翻译成关于点、线、面的相应结果.代数方法的流程图可以简单地表述为:则向量方法的流程图可以简单地表述为:这就是本节给出的用向量方法解决几何问题的“三步曲”,也是本节的重点.3.用向量方法解决解析几何中的问题,其方法与用向量方法解决几何问题是一致的.本质上是把解析几何中的几何问题转化成向量运算,并且这种向量运算简单明快,令人耳目一新.有些平面几何问题,利用向量方法求解比较容易.使用向量方法要点在于用向量表示线段或点,根据点与线之间的关系,建立向量等式,再根据向量的线性相关与无关的性质,得出向量的系数应满足的方程组,求出方程组的解,从而解决问题.使用向量方法时,要注意向量起点的选取,选取得当可使计算过程大大简化.三维目标1.通过平行四边形这个几何模型,归纳总结出用向量方法解决平面几何问题的“三步曲”.2.通过点到直线的距离的向量证明方法,了解向量在解析几何中的应用.3.通过本节学习,让学生深刻理解向量在处理有关平面几何、解析几何问题中的优越性,活跃学生的思维,发展学生的创新意识,激发学生的学习积极性,并体会向量在几何和现实生活中的意义.教学中要求尽量引导学生使用信息技术这个现代化手段.重点难点教学重点:用向量方法解决平面几何问题、解析几何问题.教学难点:如何将几何等实际问题化归为向量问题.课时安排1课时教学过程导入新课思路 1.(直接导入)向量的概念和运算都有着明确的物理背景和几何背景,当向量和平面坐标系结合后,向量的运算就完全可以转化为代数运算.这就为我们解决物理问题和几何研究带来了极大的方便.本节专门研究平面几何中的向量方法.思路2.(情境导入)由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何、解析几何图形的许多性质,如平移、全等、相似、长度、夹角等都可以由向量的线性运算及数量积表示出来,因此,可用向量方法解决平面几何中的一些问题.下面通过几个具体实例,说明向量方法在平面几何中的运用. 推进新课 新知探究 提出问题图1①你能用向量的知识证明数学2中学习过的点到直线的距离公式吗?②平行四边形是表示向量加法和减法的几何模型,如图1,你能观察、发现并猜想出平行四边形对角线的长度与两邻边长度之间有什么关系吗?③你能利用所学知识证明你的猜想吗?能利用所学的向量方法证明吗?试一试可用哪些方法?④你能总结一下利用平面向量解决平面几何问题的基本思路吗? 活动:①教师引导学生画出直线,点.如图2所示,M(x 0,y 0)是直线外一定点,P(x,y)是直线上任意一点,由直线l:ax+by+c=0,可以取它的方向向量v=(b,-a).一般地,称与直线的方向向量垂直的向量为该直线的法向量. 设n =(a,b),因为n ·v =(a,b)·(b,-a)=ab-ab=0,所以n ⊥v ,故称n 为直线l 的法向量,与n 同向的单位向量为 n 0=),(||2222ba b b a a n n ++=.于是,点M(x 0,y 0)到直线l:ax+by+c=0的距离等于向量PM 在n 0方向上射影的长度: d=|PM ·n 0|=|(x 0-x,y 0-y)·(|),2222ba b ba a ++.|)(||)()(|22002200ba by ax by ax ba y yb x x a ++-+=+-+-=又因为P(x,y)为l 上任意一点,所以c=-(ax+by).②教师引导学生猜想平行四边形对角线的长度与两邻边长度之间有什么关系.利用类比的思想方法,猜想平行四边形有没有相似关系.指导学生猜想出结论:平行四边形两条对角线的平方和等于四条边的平方和.③教师引导学生探究证明方法,并点拨学生对各种方法分析比较,平行四边形是学生熟悉的重要的几何图形,在平面几何的学习中,学生得到了它的许多性质,有些性质的得出比较麻烦,有些性质的得出比较简单.让学生体会研究几何可以采取不同的方法,这些方法包括综合方法、解析方法、向量方法. 证明:方法一:如图3.图3作CE⊥AB于E,DF⊥AB于F,则Rt△ADF≌Rt△BCE.∴A D=BC,AF=BE由于AC2=AE2+CE2=(AB+BE)2+CE2=AB2+2AB·BE+BE2+CE2=AB2+2AB·BE+BC2.BD2=BF2+DF2=(AB-AF)2+DF2=AB2-2AB·AF+AF2+DF2=AB2-2AB·AF+AD2=AB2-2AB·BE+BC2.∴AC2+BD2=2(AB2+BC2).方法二:如图4.图4以AB所在直线为x轴,A为坐标原点建立直角坐标系.设B(a,0),D(b,c),则C(a+b,c).∴|AC|2=(a+b)2+c2=a2+2ab+b2+c2,|BD|2=(a-b)2+(-c)2=a2-2ab+b2+c2.∴|AC|2+|BD|2=2a2+2(b2+c2)=2(|AB|2+|AD|2).用向量方法推导了平行四边形的两条对角线与两条邻边之间的关系.在用向量方法解决涉及长度、夹角的问题时,常常考虑用向量的数量积.通过以下推导学生可以发现,由于向量能够运算,因此它在解决某些几何问题时具有优越性,它把一个思辨过程变成了一个算法过程,学生可按一定的程序进行运算操作,从而降低了思考问题的难度,同时也为计算机技术的运用提供了方便.教学时应引导学生体会向量带来的优越性.因为平行四边形对边平行且相等,考虑到向量关系=-,=+,教师可点拨学生设=a,=b,其他线段对应向量用它们表示,涉及长度问题常常考虑向量的数量积,为此,我们计算||2与||2.因此有了方法三.方法三:设AB=a,AD=b,则=a+b,DB=a-b,|AB|2=|a|2,|AD|2=|b|2.∴||2=·=(a+b)·(a+b)=a·a+a·b+b·a+b·b=|a|2+2a·b+|b|2.①同理|DB|2=|a|2-2a·b+|b|2.②观察①②两式的特点,我们发现,①+②得||2+||2=2(|a|2+|b|2)=2(||2+||2),即平行四边形两条对角线的平方和等于两条邻边平方和的两倍.④至此,为解决重点问题所作的铺垫已经完成,向前发展可以说水到渠成.教师充分让学生对以上各种方法进行分析比较,讨论认清向量方法的优越性,适时地引导学生归纳用向量方法处理平面几何问题的一般步骤.由于平面几何经常涉及距离(线段长度)、夹角问题,而平面向量的运算,特别是数量积主要涉及向量的模以及向量之间的夹角,因此我们可以用向量方法解决部分几何问题.解决几何问题时,先用向量表示相应的点、线段、夹角等几何元素.然后通过向量的运算,特别是数量积来研究点、线段等元素之间的关系.最后再把运算结果“翻译”成几何关系,得到几何问题的结论.这就是用向量方法解决平面几何问题的“三步曲”,即 (1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题; (3)把运算结果“翻译”成几何关系. 这个“三步曲”用流程图表示为:讨论结果:①能.②能想出至少三种证明方法. ③略. 应用示例例1 求点P(1,2)到直线l:2x+y+1=0的距离.活动:本例是直接应用点到直线的距离公式.由学生自己完成. 解:由点到直线的距离公式,得d=512|12112|22=++⨯+⨯,所以点P(1,2)到直线l 的距离为5.点评:通过此题让学生归纳用向量方法解决解析几何问题的思路. 变式训练(2007广东梅州)若将函数y=f(x)的图像按向量a 平移,使图像上点的坐标由(1,0)变为(2,2),则平移后的图像的解析式为( )A.y=f(x+1)-2B.y=f(x-1)-2C.y=f(x-1)+2D.y=f(x+1)+2解析:由已知,得⎩⎨⎧==⎩⎨⎧+=+=,2,1,02,12k h k h 即平移公式为⎩⎨⎧+=+=,2',1'y y x x即⎩⎨⎧-=-=,2',1'y y x x 代入y=f(x),得y′-2=f(x′-1), 即y′=f(x′-1)+2.∴平移后的图像的解析式为y=f(x-1)+2. 答案:C例2 如图5,ABCD 中,点E 、F 分别是AD 、DC 边的中点,BE 、BF 分别与AC 交于R 、T 两点,你能发现AR 、RT 、TC 之间的关系吗?图5活动:为了培养学生的观察、发现、猜想能力,让学生能动态地发现图形中AR 、RT 、TC 之间的相等关系,教学中可以充分利用多媒体,作出上述图形,测量AR 、RT 、TC 的长度,让学生发现AR=RT=TC,拖动平行四边形的顶点,动态观察,发现AR=RT=TC 这个规律不变,因此猜想AR=RT=TC.事实上,由于R 、T 是对角线AC 上的两点,要判断AR 、RT 、TC 之间的关系,只需分别判断AR 、RT 、TC 与AC 的关系即可.又因为AR 、RT 、TC 、AC 共线,所以只需判断AR ,AT 与之间的关系即可.探究过程对照用向量方法解决平面几何问题的“三步曲”很容易地可得到结论.第一步,建立平面几何与向量的联系,用向量表示问题中的几何元素,将平面几何问题转化为向量问题;第二步,通过向量运算,研究几何元素之间的关系;第三步,把运算结果“翻译”成几何关系:AR=RT=TC.解:如图5,设AB =a ,AD =b ,AR =r ,则AC =a +b . 由于与AC 共线,所以我们设r=n(a +b ),n∈R . 又因为=-=(a -21b ),与共线, 所以我们设=m =m(a -21b ). 因为=+,所以r=21b +m(a -21b ), 因此n(a +b )=21b +m(a -21b ),即(n-m)a +(n+21-m )b =0. 由于向量a ,b 不共线,要使上式为0,必须⎪⎩⎪⎨⎧=-+=-.021,0m n m n . 解得n=m=31.所以AR =31.同理,=31. 于是=31.所以AR=RT=TC. 点评:教材中本例重在说明是如何利用向量的办法找出这个相等关系的,因此在书写时可简化一些程序.指导学生在今后的训练中,不必列出三个步骤. 变式训练如图6,AD 、BE 、CF 是△ABC 的三条高.求证:AD 、BE 、CF 相交于一点.图6证明:设BE 、CF 相交于点H,并设AB =b ,=c ,AH =h ,则=h -b ,CH =h -c ,BC =c -b . 因为BH ⊥,⊥AB , 所以(h -b )·c =0,(h -c )·b =0, 即(h -b )·c =(h -c )·b . 化简,得h ·(c -b )=0. 所以AH ⊥.所以AH 与AD 共线,即AD 、BE 、CF 相交于一点H.例3 如图7,已知在等腰△ABC 中,BB′、CC′是两腰上的中线,且BB′⊥CC′,求顶角A 的余弦值.图7活动:教师可引导学生思考探究,上例利用向量的几何法简捷地解决了平面几何问题.可否利用向量的坐标运算呢?这需要建立平面直角坐标系,找出所需点的坐标.如果能比较方便地建立起平面直角坐标系,如本例中图形,很方便建立平面直角坐标系,且图形中的各个点的坐标也容易写出,是否利用向量的坐标运算能更快捷地解决问题呢?教师引导学生建系、找点的坐标,然后让学生独立完成.解:建立如图7所示的平面直角坐标系,取A(0,a),C(c,0),则B(-c,0),OA =(0,a),BA =(c,a),OC =(c,0),BC =(2c,0).因为BB′、CC′都是中线,所以'BB =21(+BA )=21[(2c,0)+(c,a)]=(2,23a c ). 同理,'CC =(-2,23ac ). 因为BB′⊥CC′,所以-44922a c +=0,a 2=9c 2.所以5499||||22222222=+-=+-=c c c c ca c a AC AB . 点评:比较是最好的学习方法.本例利用的方法与例题1有所不同,但其本质是一致的,教学中引导学生仔细体会这一点,比较两例的异同,找出其内在的联系,以达到融会贯通、灵活运用之功效. 变式训练(2004湖北高考)如图8,在Rt△ABC 中,已知BC=a.若长为2a 的线段PQ 以点A 为中点,问:与的夹角θ取何值时,·的值最大?并求出这个最大值.图8解:方法一,如图8.∵⊥,∴·=0.∵AP =-AQ ,BP =AP -AB ,CQ =AQ -, ∴·=(-)·(-) =·-·AC -·+·AC =-a 2-AP ·+AB ·AP =-a 2+AP ·(AB -)=-a 2+21PQ ·BC =-a 2+a 2cos θ. 故当cos θ=1,即θ=0,与的方向相同时,·最大,其最大值为0. 方法二:如图9.图9以直角顶点A 为坐标原点,两直角边所在的直线为坐标轴,建立如图所示的平面直角坐标系.设|AB|=c,|AC|=b,则A(0,0),B(c,0),C(0,b),且|PQ|=2a,|BC|=a. 设点P 的坐标为(x,y), 则Q(-x,-y).∴BP =(x-c,y),CQ =(-x,-y-b),=(-c,b),PQ =(-2x,-2y). ∴BP ·CQ =(x-c)(-x)+y(-y-b)=-(x 2+y 2)+cx-by.∵cos θ2a bycx -=, ∴cx-by=a 2cos θ. ∴·=-a 2+a 2cos θ.故当cos θ=1,即θ=0,PQ 与的方向相同时,BP ·CQ 最大,其最大值为0. 知能训练1.如图10,已知AC 为⊙O 的一条直径,∠ABC 是圆周角. 求证:∠ABC=90°.图10证明:如图10. 设AO =a ,OB =b ,则=a +b ,=a ,BC =a -b ,|a |=|b |. 因为AB ·=(a +b )·(a -b )=|a |2-|b |2=0, 所以AB ⊥BC .由此,得∠ABC=90°.点评:充分利用圆的特性,设出向量.2.D 、E 、F 分别是△ABC 的三条边AB 、BC 、CA 上的动点,且它们在初始时刻分别从A 、B 、C 出发,各以一定速度沿各边向B 、C 、A 移动.当t=1时,分别到达B 、C 、A.求证:在0≤t≤1的任一时刻t 1,△DEF 的重心不变.图11证明:如图11.建立如图所示的平面直角坐标系,设A 、B 、C 坐标分别为(0,0),(a,0),(m,n).在任一时刻t 1∈(0,1),因速度一定,其距离之比等于时间之比,有111||||||||||||t t FA CF EC BE DB AD -====λ,由定比分点的坐标公式可得D 、E 、F 的坐标分别为(at 1,0),(a+(m-a)t 1,nt 1),(m-mt 1,n-nt 1).由重心坐标公式可得△DEF 的重心坐标为(3,3nm a +). 当t=0或t=1时,△ABC 的重心也为(3,3nm a +), 故对任一t 1∈[0,1],△DEF 的重心不变.点评:主要考查定比分点公式及建立平面直角坐标系,只要证△ABC 的重心和时刻t 1的△DEF的重心相同即可.课堂小结1.由学生归纳总结本节学习的数学知识有哪些:平行四边形向量加、减法的几何模型,用向量方法解决解析几何及平面几何问题的步骤,即“三步曲”.特别是这“三步曲”,要提醒学生理解领悟它的实质,达到熟练掌握的程度.2.本节都学习了哪些数学方法:向量法,向量法与几何法、解析法的比较,将平面几何问题转化为向量问题的化归的思想方法,深切体会向量的工具性这一特点.作业课本习题2—7 A组1,2.设计感想1.本节设计的指导思想是:充分使用多媒体这个现代化手段,引导学生展开观察、归纳、猜想、论证等一系列思维活动.本节知识方法容量较大,思维含量较高,教师要把握好火候,恰时恰点地激发学生的智慧火花.2.由于本节知识方法在高考大题中得以直接的体现,特别是与其他知识的综合更是高考的热点问题.因此在实际授课时,注意引导学生关注向量知识、向量方法与三角知识、解析几何知识等的交汇,提高学生综合解决问题的能力.3.平面向量的运算包括向量的代数运算与几何运算.相比较而言,学生对向量的代数运算要容易接受一些,但对向量的几何运算往往感到比较困难,无从下手.向量的几何运算主要包括向量加减法的几何运算,向量平行与垂直的充要条件及定比分点的向量式等,它们在处理平面几何的有关问题时,往往有其独到之处,教师可让学有余力的学生课下继续探讨,以提高学生的思维发散能力.备课资料一、利用向量解决几何问题的进一步探讨用平面向量的几何运算处理平面几何问题有其独到之处,特别是处理线段相等,线线平行,垂直,点共线,线共点等问题,往往简单明了,少走弯路,同时避免了复杂,烦琐的运算和推理,可以收到事半功倍的效果.现举几例以供教师、学生进一步探究使用.1.简化向量运算例1 如图12所示,O为△ABC的外心,H为垂心,求证:OH=++.图12证明:如图12,作直径BD,连接DA,DC,有=-,且DA⊥AB,DC⊥BC,AH⊥BC,CH⊥AB,故CH∥DA,AH∥DC,得四边形AHCD是平行四边形.从而AH=DC.又DC=OC-OD=OC+OB,得=OA+AH=OA+DC,即OH =++.2.证明线线平行例 2 如图13,在梯形ABCD 中,E,F 分别为腰AB,CD 的中点.求证:EF∥BC,且||=21(||+|BC |).图13证明:连接ED,EC,∵AD∥BC,可设=λ(λ>0), 又E,F 是中点,∴EA +EB =0, 且EF =21(ED +). 而+EC =+++ =+=(1+λ),∴=21λ+.EF 与BC 无公共点, ∴EF∥BC.又λ>0, ∴||=21(|BC |+|λBC |)=21(||+|BC |). 3.证明线线垂直例3 如图14,在△ABC 中,由A 与B 分别向对边BC 与CA 作垂线AD 与BE,且AD 与BE 交于H,连接CH,求证:CH⊥AB.图14证明:由已知AH⊥BC,BH⊥AC, 有·=0,·AC =0. 又AH =+CH ,BH =BC +CH ,故有(+)·BC =0,且(BC +)·=0,两式相减,得CH ·(CB -CA )=0,即CH ·AB =0,∴CH ⊥AB . 4.证明线共点或点共线例4 求证:三角形三中线共点,且该点到顶点的距离等于各该中线长的32.图15解:已知:△ABC 的三边中点分别为D,E,F(如图15).求证:AE,BF,CD 共点,且CD CG BF BG AE AG ===32. 证明:设AE,BF 相交于点G,AG =λ1, 由定比分点的向量式有BG =111111λλλ+=++BA +)1(211λλ+, 又F 是AC 的中点,BF =21(BA +), 设BG =λ2BF , 则111λ++)1(211λλ+=22λ+22λ,∴⎪⎪⎩⎪⎪⎨⎧=+=+.2)1(2,21121121λλλλλ ∴.32,32,2)1(21121111====⇒+=+BF BG AF AG 即λλλλλ 又=CE CA 32)(2132)2(31111=+∙=+=++λλ, ∴C,G,D 共线,且32===CD CG BF BG AE AG . 二、备用习题1.有一边长为1的正方形ABCD,设AB =a ,=b ,=c,则|a -b +c |=___________.2.已知|a |=2,|b|=2,a 与b 的夹角为45°,则使λb -a 与a 垂直的λ=____________.3.在等边△ABC 中,AB =a ,BC =b ,CA =c ,且|a |=1,则a ·b +b ·c +c ·a =__________.4.已知三个向量=(k,12),OB =(4,5),OC =(10,k),且A,B,C 三点共线,则k=__________.5.如图16所示,已知矩形ABCD,AC 是对角线,E 是AC 的中点,过点E 作MN 交AD 于点M,交BC 于点N,试运用向量知识证明AM=CN.图166.已知四边形ABCD 满足|AB |2+|BC |2=|AD |2+|DC |2,M 为对角线AC 的中点.求证:||=||.7.求证:如果一个角的两边平行于另一个角的两边,那么这两个角相等或互补. 参考答案: 1.2 2.2 3.-23 4.-2或11 5.证明:建立如图17所示的平面直角坐标系,设BC=a,BA=b,则C(a,0),A(0,b),E(2,2b a ).图17又设M(x 2,b),N(x 1,0),则=(x 2,0),CN =(x 1-a,0). ∵∥EN ,=(2a -x 2,-2b ),EN =(x 1-2a ,-2b ), ∴(2a -x 2)×(-2b )-(x 1-2a )×(-2b )=0. ∴x 2=a-x 1. ∴||=22x =|x 2|=|a-x 1|=|x 1-a|.而|CN |=21)(a x =|x 1-a|, ∴|AM |=||,即AM=CN.6.证明:设AB =a ,BC =b ,=c ,DA =d ,∵a +b +c +d =0,∴a +b =-(c +d ).∴a 2+b 2+2a ·b =c 2+d 2+2c ·d .① ∵||2+|BC |2=||2+||2, ∴a 2+b 2=(-d )2+(-c )2=c 2+d 2.②由①②,得a ·b =c ·d .图18∵M 是AC 的中点,如图18所示, 则=21(d -c ),=21(b -a ). ∴||2=BM 2=41(b 2+a 2-2a ·b ), ||2=2=41(d 2+c 2-2c ·d ). ∴|MB |2=|MD |2. ∴||=||.7.解:已知OA∥O′A′,OB∥O′B′.求证:∠AOB=∠A′O′B′或∠AOB+∠A′O′B′=π.证明:∵OA∥O′A′,OB∥O′B′, ∴OA =λ''O (λ∈R ,λ≠0),OB =μ''B O (μ∈R ,μ≠0). , |||||||||||||||''||''|OB OA OB OA OB OA B O A O ===λμμλ 当与''O ,OB 与''B O 均同向或反向时,取正号,即cos∠AOB=cos∠A′O′B′.∵∠AOB,∠A′O′B′∈(0,π),∴∠AOB=∠A′O′B′. 当与''O ,OB 与''B O 只有一个反向时,取负号,即cos∠AOB=-cos∠A′O′B′=cos(π-∠A′O′B′). ∵∠AO B,π-∠A′O′B′∈(0,π),∴∠AOB=π-∠A′O′B′.∴∠AOB+∠A′O′B′=π.∴命题成立.。
点到直线的距离第一课时+导学案 高二上学期数学人教B版(2019)选择性必修第一册
二、预习自测
判断正误(正确的打“√”,错误的打“×”)
1.点(m,n)到直线x+y-1=0的距离是 .()
2.连接两条平行直线上两点,即得两平行线间的距离.()
3.两平行线间的距离是两平行线上两点间距离的最小值.()
4.点P(x0,y0)到直线y=kx+b的距离为 .()
2.已知原点O(0,0),则点O到直线x+y+2=0的距离等于()
A.1B.2C. D.
3.(2021·许昌月考)已知点(a,1)到直线x-y+1=0的距离为1,则a的值为()
A.1B.-1C. D.±
4.(2021·广州检测)直线x-2y-1=0与直线x-2y-C=0的距离为2,则C的值为()
A年级
时间
年 月 日
课题
2.2.4点到直线的距离
课型
新授课
课时
第1课时
主备教师
学习
目标
探索并掌握平面上点到直线的距离公式,会求两条平行直线间的距离.
一、知识填空:
1.点到直线的距离
(1)定义:平面内点到直线的距离,等于.
(2)图示:
(3)公式:d=.
注意:(1)运用此公式时要注意直线方程必须是一般式,若给出其他形式,应先化成一般式再用公式.
(1)d的变化范围;
(2)当d取最大值时两条直线的方程.
四、课堂检测:
1.(1)已知P,Q分别是直线3x+4y-5=0与6x+8y+5=0上的动点,则|PQ|的最小值为()
A.3B. C. D.
(2)(2021·岳阳统测)若动点A,B分别在直线l1:x+y-7=0和l2:x+y-5=0上,则AB的中点M到原点的距离的最小值为.
高中数学必修4北师大版 点到直线的距离公式 向量的应用举例 课件(47张)
方法归纳 用向量解决平面几何问题的两种常见思路 (1)向量的线性运算法 选取基底 ― → 把所求问题用基底线性表示 ― → 利用向量的线性运算或数量积找相应关系 ― → 把向量问题几何化 (2)向量的坐标运算法 建立适当的平面直角坐标系 ― → 把相关向量坐标化 ― → 向量的坐标运算找相应关系 ― → 把向量问题几何化
1.直线 l: Ax+ By+ C= 0 的法向量 垂直 的向量称为该直线的法向 (1)与直线的方向向量 ____________ 量. (2)若直线 l 的方向向量 v=(B,- A),则直线 l 的法向量 n= (A,B) ____________ . n (3)与直线 l 的法向量 n 同向的单位向量 n0= = |n| A , B 2 2 2 2 A +B A +B ___________________________ .
→ 1→ 所以PD= CD . 7 → → → 1→ 4→ 所以BP=BC+CP= BC+ BA, 7 7 → 2→ → CD = BA- BC. 3 → → 1 → 4 → 2 → → 所以BP·CD = 7BC+ 7BA · 3BA-BC
8 2 1 2 10 2 = a - a - a cos 60°=0. 21 7 21 所以由向量垂直的等价条件知 BP⊥ DC.
3.两个大小相等的共点力 F1,F2,当它们间的夹角为 90° 时 合力大小为 20 N,则当它们的夹角为 120° 时,合力的大小为 10 2 ________N.
解析:根据题意,当 F1, F2 夹角为 90° 时, |F1|2+ |F2|2= 202, 因为|F1|= |F2|,所以|F1|= |F2|= 10 2, → 则当 F1, F2 夹角为 120° 时,它们的合力大小为|AC|=10 2.
2022-2021学年高一数学北师大版必修4学案:2.7.1 点到直线的距离公式 Word版含答案
7.1 点到直线的距离公式明目标、知重点 1.理解直线方向向量和法向量的含义.2.能应用直线的法向量推导点到直线的距离公式.3.能应用直线的方向向量、法向量解决有关问题.1.直线的法向量(1)直线l :ax +by +c =0 (a 2+b 2≠0)的一个方向向量是(b ,-a ),它的一个法向量是(a ,b ). (2)直线l :y =kx +b 的一个方向向量是(1,k ),它的一个法向量是(k ,-1). 所以,一条直线的法向量有很多多个,它们都是共线向量. 2.点到直线的距离公式设点M (x 0,y 0)为平面内任一点,则点M 到直线l :ax +by +c =0 (a 2+b 2≠0)的距离d =|ax 0+by 0+c |a 2+b 2.3.两平行线间距离直线l 1:ax +by +c 1=0与直线l 2:ax +by +c 2=0 (a 2+b 2≠0且c 1≠c 2)的距离d =|c 1-c 2|a 2+b 2.4.两直线的位置关系设直线l 1:a 1x +b 1y +c 1=0,直线l 2:a 2x +b 2y +c 2=0的法向量依次为n 1,n 2.则: (1)l 1⊥l 2⇔n 1·n 2=0⇔a 1a 2+b 1b 2=0;(2)l 1与l 2重合或平行⇔n 1∥n 2⇔a 1b 2-a 2b 1=0.探究点一 直线的方向向量与两直线的夹角导引1 直线y =kx +b 的方向向量:假如向量v 与直线l 共线,则称向量v 为直线l 的方向向量. 对于任意一条直线l :y =kx +b ,在它上面任取两点A (x 0,y 0),B (x ,y ),则向量AB →=(x -x 0,y -y 0)与直线l共线,即AB →为直线l 的方向向量.由于(x -x 0,y -y 0)=1x -x 0(1,y -y 0x -x 0)=1x -x 0(1,k ),所以向量(x -x 0,y -y 0)与向量(1,k )共线,从而向量(1,k )是直线y =kx +b 的一个方向向量. 导引2 直线Ax +By +C =0的方向向量当B ≠0时,k =-AB ,所以向量(B ,-A )与(1,k )共线,所以向量(B ,-A )是直线Ax +By +C =0的一个方向向量;当B =0时,A ≠0,直线x =-CA 的一个方向向量为(0,-A ),即(B ,-A ).综上所述,直线Ax +By +C =0的一个方向向量为v =(B ,-A ). 思考1 已知直线l :2x -y +1=0和下列向量:①v 1=(1,2);②v 2=(2,1);③v 3=⎝⎛⎭⎫-12,-1;④v 4=(-2,-4).其中能作为直线l 方向向量的有________. 答 ①③④导引3 应用直线的方向向量求两直线的夹角已知直线l 1:y =k 1x +b 1与直线l 2:y =k 2x +b 2,它们的方向向量依次为v 1=(1,k 1),v 2=(1,k 2).当v 1⊥v 2,即v 1·v 2=1+k 1k 2=0时,l 1⊥l 2,夹角为直角;当k 1k 2≠-1时,v 1·v 2≠0,直线l 1与l 2的夹角为θ(0°<θ<90°).不难推导利用k 1、k 2表示cos θ的夹角公式: cos θ=|v 1·v 2||v 1||v 2|=|1+k 1k 2|1+k 21·1+k 22.思考2 直线x -2y +1=0与直线2x +y -3=0的夹角为________;直线2x -y -1=0与直线3x +y +1=0的夹角为________. 答 90° 45°探究点二 直线的法向量与两直线的位置关系导引 (1)直线Ax +By +C =0的法向量:假如向量n 与直线l 垂直,则称向量n 为直线l 的法向量.因此若直线的方向向量为v ,则n ·v =0.从而对于直线Ax +By +C =0而言,其方向向量为v =(B ,-A ),则由于n ·v =0,于是可取n =(A ,B ),这时由于(B ,-A )·(A ,B )=AB -AB =0.直线的法向量也有很多个.(2)直线法向量的简洁应用:利用直线的法向量推断两直线的位置关系:对于直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,它们的法向量分别为n 1=(A 1,B 1),n 2=(A 2,B 2). 当n 1∥n 2时,l 1∥l 2或l 1与l 2重合.即A 1B 2-A 2B 1=0⇔l 1∥l 2或l 1与l 2重合; 当n 1⊥n 2时,l 1⊥l 2.即A 1A 2+B 1B 2=0⇔l 1⊥l 2.思考 直线l 1:(a +2)x +(1-a )y -3=0与直线l 2:(a -1)·x +(2a +3)y +2=0垂直,则a 的值为________. 答案 ±1解析 n 1=(a +2,1-a ),n 2=(a -1,2a +3), ∵l 1⊥l 2,∴n 1·n 2=(a +2)(a -1)+(1-a )(2a +3) =(a -1)(-a -1)=0, ∴a =±1.例1 已知直线l 1:ax +2y +6=0与l 2:x +(a -1)y +a 2-1=0平行,求实数a 的值. 解 直线l 1的法向量n 1=(a,2), 直线l 2的法向量n 2=(1,a -1), ∵l 1∥l 2,∴n 1∥n 2,∴a (a -1)-1×2=0,解得:a =-1或a =2. 当a =-1时,l 1:x -2y -6=0,l 2:x -2y =0, ∴l 1∥l 2.当a =2时,l 1:x +y +3=0,l 2:x +y +3=0. ∴l 1与l 2重合,则a =2(舍去). 综上所述,a =-1.反思与感悟 由n 1∥n 2解出参数a 的值后要留意检验,由n 1·n 2=0推断两直线垂直,则不需要检验. 跟踪训练1 已知直线l 1:(m +3)x +(m -1)y -5=0与直线l 2:(m -1)x +(3m +9)y -1=0相互垂直,求实数m 的值.解 l 1的法向量n 1=(m +3,m -1),l 2的法向量n 2=(m -1,3m +9),∵l 1⊥l 2,∴n 1⊥n 2. ∴n 1·n 2=(m +3)(m -1)+(m -1)(3m +9) =(m -1)(4m +12)=0.∴m =1或m =-3. 探究点三 直线的法向量与点到直线的距离公式思考1 如何应用直线l :ax +by +c =0的法向量推导点M (x 0,y 0)到直线l 的距离公式. 答 设P (x 1,y 1)是直线l :ax +by +c =0上任一点,n 是直线l 的一个法向量,不妨取n =(a ,b ).则M (x 0,y 0)到直线l :ax +by +c =0的距离d 等于向量PM →在n 方向上射影的长度,如图所示:设PM →与n 的夹角为θ, d =|PM →|·|cos θ| =|PM →·n ||n |=|(x 0-x 1,y 0-y 1)·(a ,b )|a 2+b 2=|a (x 0-x 1)+b (y 0-y 1)|a 2+b 2=|ax 0+by 0-(ax 1+by 1)|a 2+b2. ∵点P (x 1,y 1)在直线l 上,∴ax 1+by 1+c =0,∴ax 1+by 1=-c , ∴d =|ax 0+by 0+c |a 2+b 2.思考2 利用直线的法向量推导两条平行线之间的距离公式.答 设P 1(x 1,y 1),P 2(x 2,y 2)分别为直线l 1:ax +by +c 1=0,直线l 2:ax +by +c 2=0上任意两点,取直线l 1,l 2的一个法向量n =(a ,b ),则P 1P 2→=(x 2-x 1,y 2-y 1)在向量n 上的射影的长度,就是两平行线l 1、l 2的距离. 设P 1P 2→与n 的夹角为θ, d =|P 1P 2→||cos θ| =|P 1P 2→·n ||n |=|(x 2-x 1,y 2-y 1)·(a ,b )|a 2+b 2=|a (x 2-x 1)+b (y 2-y 1)|a 2+b 2=|(ax 2+by 2)-(ax 1+by 1)|a 2+b 2=|c 1-c 2|a 2+b 2. 例2 求点P 0(-1,2)到直线l :2x +y -10=0的距离. 解 方法一 取直线l 的一个法向量为n =(2,1), 在直线l 上任取一点P (5,0),∴PP 0→=(-6,2),∴点到直线l 的距离d 就是PP 0→在法向量n 上的射影. 设PP 0→与n 的夹角为θ. ∴d =|PP 0→||cos θ|=|PP 0→|·|PP 0→·n ||PP 0→|·|n |=|PP 0→·n ||n |=|-12+25|=2 5.故点P 0到直线l 的距离为2 5. 方法二 由点到直线的距离公式得d =|Ax 0+By 0+C |A 2+B 2=|2×(-1)+1×2+(-10)|5=2 5.反思与感悟 求点到直线的距离公式时,既可以利用向量法,也可以直接带入点到直线的距离公式计算.利用向量法时留意公式d =|P 0P →·n ||n |中每个符号的含义.跟踪训练2 求两条平行线l 1:3x +4y -2=0与l 2:6x +8y -3=0之间的距离. 解 取直线l 2的一个方向向量为(-8,6). 则直线l 2的一个法向量为n =(6,8),分别在直线l 1和l 2上任取一点M (0,12)和P (12,0).则PM →=(-12,12),设PM →与n 的夹角为θ.∴点M 到直线l 2的距离 d =|PM →|·|cos θ|=|PM →|·|PM →·n |PM →|·|n ||=|PM →·n ||n |=|-3+410|=110.又∵两条平行线间的距离处处相等,∴点M 到直线l 2的距离即为两平行线l 1与l 2间的距离,∴两平行线l 1:3x +4y -2=0与l 2:6x +8y -3=0之间的距离为110.例3 已知△ABC 的三个顶点A (0,-4),B (4,0),C (-6,2),点D 、E 、F 分别为边BC 、CA 、AB 的中点. (1)求直线DE 、EF 、FD 的方程;(2)求AB 边上的高线CH 所在的直线方程.解 (1)由已知得点D (-1,1),E (-3,-1),F (2,-2). 设点M (x ,y )是直线DE 上任意一点,则DM →∥DE →,DM →=(x +1,y -1),DE →=(-2,-2), ∴(-2)×(x +1)-(-2)×(y -1)=0, 即x -y +2=0为直线DE 的方程.同理可求,直线EF ,FD 的方程分别为x +5y +8=0,x +y =0. (2)设点N (x ,y )是CH 所在直线上任意一点, 则CN →⊥AB →,∴CN →·AB →=0. 又CN →=(x +6,y -2),AB →=(4,4), ∴4(x +6)+4(y -2)=0,即x +y +4=0为所求直线CH 所在的直线方程.反思与感悟 对于解析几何中有关直线平行与垂直的问题,经常可以转而考虑与直线相关的向量的共线与垂直,这样就将形的问题转化为相关数的问题,从而更简洁将问题解决. 跟踪训练3 已知M (x 0,y 0)为直线l :Ax +By +C =0 (AB ≠0)外一点. (1)求过点M 与直线l 垂直的直线l 1; (2)求过点M 与直线l 平行的直线l 2. 解 (1)设P (x ,y )为直线l 1上任一点. 由MP →·(B ,-A )=0,得(x -x 0,y -y 0)·(B ,-A )=0, ∴B (x -x 0)-A (y -y 0)=0.(2)设P (x ,y )为直线l 2上任一点,由MP →·(A ,B )=0. ∴(x -x 0,y -y 0)·(A ,B )=0.∴A (x -x 0)+B (y -y 0)=0.1.已知A (1,2),B (-2,1),以AB 为直径的圆的方程是__________________. 答案x 2+y 2+x -3y =0解析 设P (x ,y )为圆上任一点,则 AP →=(x -1,y -2),BP →=(x +2,y -1), 由AP →·BP →=(x -1)(x +2)+(y -2)(y -1)=0, 化简得x 2+y 2+x -3y =0.2.已知直线l 1:ax +2y -1=0,l 2:x +(a +1)y +4=0.若l 1∥l 2,则a =________. 答案 -2或1解析 l 1的法向量n 1=(a,2),l 2的法向量n 2=(1,a +1). ∵l 1∥l 2,∴a (a +1)-2=0.解得a =-2或a =1.经检验,都符合题意.3.已知直线l 1:3x +y -2=0与直线l 2:mx -y +1=0的夹角为45°,则实数m 的值为________. 答案 2或-12解析 设直线l 1,l 2的法向量为n 1,n 2, 则n 1=(3,1),n 2=(m ,-1). 由题意: cos 45°=|n 1·n 2||n 1|·|n 2|=|3m -1|10·1+m 2=22. 整理得:2m 2-3m -2=0, 解得:m =2或m =-12.4.已知三点A (-1,2),B (3,4),C (-2,5),求符合下列条件的直线l . (1)经过点A ,且平行BC ; (2)经过点A ,且垂直BC .解 BC →=(-5,1),设P (x ,y )为直线l 上任一点.(1)当l ∥BC 时,P A →=(x +1,y -2),P A →∥BC →, ∴(x +1)-(-5)×(y -2)=0,化简得x +5y -9=0.(2)当l ⊥BC 时,P A →=(x +1,y -2),P A →⊥BC →. ∴(x +1)×(-5)+1×(y -2)=0, 化简得5x -y +7=0. [呈重点、现规律]1.利用向量方法可以解决平面几何中的平行、垂直、夹角、距离等问题.利用向量解决平面几何问题时,有两种思路:一种思路是选择一组基底,利用基向量表示涉及的向量,一种思路是建立坐标系,求出题目中涉及到的向量的坐标.这两种思路都是通过向量的计算获得几何命题的证明.2.在直线l :Ax +By +C =0(A 2+B 2≠0)上任取两点P 1(x 1,y 1),P 2(x 2,y 2),则P 1P 2→(λ∈R 且λ≠0)也是直线l 的方向向量.所以,一条直线的方向向量有很多多个,它们都共线.同理,与直线l :Ax +By +C =0(A 2+B 2≠0)垂直的向量都叫直线l 的法向量.一条直线的法向量也有很多多个.熟知以下结论,在解题时可以直接应用. ①y =kx +b 的方向向量v =(1,k ),法向量为n =(k ,-1).②Ax +By +C =0(A 2+B 2≠0)的方向向量v =(B ,-A ),法向量n =(A ,B ).一、基础过关1.点(1,-1)到直线x -y +1=0的距离是( ) A.12 B.32 C.22D.322答案 D2.已知三点A (-2,-3),B (19,4),C (-1,-6),则△ABC 是( ) A .以A 为直角顶点的直角三角形 B .以B 为直角顶点的直角三角形 C .以C 为直角顶点的直角三角形 D .锐角三角形或钝角三角形 答案 A3.已知直线l 1:(m +2)x +3my +1=0与直线l 2:(m -2)x +(m +2)y -3=0相互垂直,则实数m 的值是( )A .-2 B.12 C .-2或12D .-12或2答案 C解析 (m +2)(m -2)+3m (m +2)=(m +2)(4m -2)=0, ∴m =-2或12.4.过点A (4,a )和点B (5,b )的直线与直线y =x +m 平行,则|AB |的值为________. 答案25.过点A (-2,1)且平行于向量a =(3,1)的直线方程为________________. 答案 x -3y +5=0解析 设P (x ,y )是所求直线上的任一点,AP →=(x +2,y -1).∵AP →∥a .∴(x +2)×1-3(y -1)=0. 即所求直线方程为x -3y +5=0.6.在△ABC 中,∠C =90°,AB →=(k,1),AC →=(2,3),则k 的值是________. 答案 5解析 ∵BC →=AC →-AB →=(2,3)-(k,1)=(2-k,2),AC →=(2,3),∴BC →·AC →=2(2-k )+6=0,∴k =5. 7.已知直线l 1:3x +4y -12=0,l 2:7x +y -28=0,求直线l 1与l 2的夹角θ. 解 设l 1、l 2的方向向量为v 1、v 2,则 v 1=(4,-3),v 2=(1,-7), ∴|cos θ|=|v 1·v 2||v 1|·|v 2|=255×52=22. ∴l 1与l 2的夹角θ为45°. 二、力气提升8.已知直线l 1的方向向量为a =(1,3),直线l 2的方向向量为b =(-1,k ),若直线l 2过点(0,5),且l 1⊥l 2,则直线l 2的方程是( ) A .x +3y -5=0 B .x +3y -15=0 C .x -3y +5=0 D .x -3y +15=0答案 B解析 ∵l 1⊥l 2,∴a ⊥b ,∴a ·b =-1+3k =0,∴k =13,∴l 2的方程为y =-13x +5,即x +3y -15=0.故选B.9.过点(1,2)且与直线3x -y +1=0垂直的直线的方程是____________. 答案 x +3y -7=0解析 设P (x ,y )是所求直线上任一点, 直线3x -y +1=0的方向向量为(1,3), 由(x -1,y -2)·(1,3)=0得x +3y -7=0.10.在直角坐标系xOy 中,已知点A (0,1)和点B (-3,4),若点C 在∠AOB 的平分线上且|OC →|=2,则OC →=_____________________________________________________. 答案 ⎝⎛⎭⎫-105,3105解析 已知A (0,1),B (-3,4), 设E (0,5),D (-3,9), ∴四边形OBDE 为菱形.∴∠AOB 的角平分线是菱形OBDE 的对角线OD . 设C (x 1,y 1),|OD →|=310, ∴OC →=2310OD →.∴(x 1,y 1)=2310(-3,9)=⎝⎛⎭⎫-105,3105,即OC →=⎝⎛⎭⎫-105,3105.11.若两平行线3x -2y -1=0,6x +ay +c =0之间的距离为21313,求c 的值.解 ∵3x -2y -1=0与6x +ay +c =0平行, ∴36=-2a ≠-1c , ∴a =-4,且c ≠-2. 由d =|c +2|62+a 2=|c +2|62+(-4)2=21313,化简得:|c +2|=4, ∴c =-6或c =2.12.已知直线l 1:mx +8y +n =0,直线l 2:2x +my -1=0,l 1∥l 2,两平行直线间距离为5,而过点A (m ,n )(m >0,n >0)的直线l 被l 1、l 2截得的线段长为10,求直线l 的方程. 解 ∵l 1∥l 2,∴m 2-16=0得m =±4. ∵m >0,∴m =4.故l 1:4x +8y +n =0,l 2:4x +8y -2=0. 又l 1与l 2间距离为5,∴|n +2|42+82=5,解得n =18或n =-22(舍). 故A 点坐标为(4,18).再设l 与l 1的夹角为θ,斜率为k ,l 1斜率为-12,∵sin θ=22, ∴θ=π4,tan π4=1=⎪⎪⎪⎪k -(-12)⎪⎪⎪⎪1+(-12)k ,解得k =13或k =-3.∴直线l 的方程为y -18=13(x -4)或y -18=-3(x -4).即x -3y +50=0或3x +y -30=0.三、探究与拓展13.已知向量c =(0,1),i =(1,0),经过原点O 以c +λi 为方向向量的直线与经过定点A (0,1),以i -2λc 为方向向量的直线交于点P ,其中λ∈R ,求点P 的轨迹方程. 解 设P 点坐标为(x ,y ), ∵i =(1,0),c =(0,1),∴c +λi =(λ,1),i -2λc =(1,-2λ),直线OP 与AP 的方程分别为λy =x 和y -1=-2λx , 消去参数λ,所求的轨迹方程为2x 2+y 2-y =0.。
高级中学高中数学(北师大版)必修二点到直线的距离公式教案word版
三维目标
知识与能力掌握点到直线距离的公式的推导及其运用
过程与方法培养学生观察、思考、分析、归纳等数学能力,数形结合、转化(或化归)、等数学思想、特殊与一般的方法以及数学应用意识与能力;
情感态度与价值观
1.学生体验数学活动充满着探索和创造,培养学生勤于思考,勇于探索的精神。
2.让学生学会用运动联系观点观察事物,了解事物之间从一般到特殊、从特殊到一般的辨证关系,渗透辩证唯物主义认识论的思想。
教学重难点
教学重点:点到直线的距离公式的推导思路分析
点到直线的距离公式的应用
教学难点:点到直线的距离公式的推导思路和算法分析
江南中学数学学科教学设计
课题
§4.2点到直线的距离公式
授课人
课时安排
1
课型
新授
授课时间
第4周
课标依据
通过实例,回顾并掌握点到直线的运算,并理解其意义,以及用向量证明公式,在此基础上会用向量的坐标表示解决相关问题。
教材分析
点到直线的距离”是高中课本必修2的内容:点到直线的距离公式的推导及应用。
在此之前,学生已经学习了两点间的距离公式、定比分点公式、直线方程、两直线的位置关系,同时也学习了用代数方程研究曲线性质的“以数论形,数形结合”的数学思想方法。点到直线的距离公式是解决理论和实际问题的重要工具,它使学生对点与直线的位置关系的认识从定性的认识上升到定量的认识。抛物线的方程等等。
教师活动:还有没有其他别的方法解决此问题呢?利用几何画板与学生共同探讨解决此问题的其他方法——直角三角形等面积的方法
学生活动:在老师的引导下,通过类比联想找到如何构造Rt△来推导公式。