线性空间与度量空间
矩阵分析引论--第一章 线性空间与线性变换-线性空间的概念、 基变换与坐标变换
复数集的一个非空子集,含非零数,对和、差、 积、商(除数不为零)运算封闭.
• 性质:
必包含0与1; 有理数域是最小的数域.
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
2、线性空间
定义1-1(线性空间) 设V是一非空集合,P是一数域,若
(1)在V上定义了一个二元运算(称为加法, a与b 的和记为a+b), 且 a , b V,有 a b V ;
(2)在P与V的元素之间还定义了一种运算(称为
数乘, k与a的数乘记为ka),
且 a V ,k P, 有 ka V ;
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
(3)加法与数乘满足以下八条规则:
(ⅰ) a b b a; (ⅱ) (a b ) a (b );
第一章第一二节 线性空间的概念、基变换与坐标变换
第一节 线性空间的概念
一、线性代数回顾
★ n维向量:有序数组 ★ 线性运算:加法、数乘 ★ 运算律(八条) ★ 向量关系:线性相关、线性无关 ★ 向量空间 ★ 子空间 ★基
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
(ⅲ) a 0 a;
(ⅳ) a (a ) 0;
(ⅴ) 1a a;
(ⅵ) k(la ) (kl)a;
(ⅶ) (k l)a ka la ;(ⅷ) k(a b ) ka kb .
则称集合V为数域P上的线性空间或向量空间.
目录 上页 下页 返回 结束
第一章第一二节 线性空间的概念、基变换与坐标变换
又若向量 b k1a1 k2a2 knan , 则b 也称为向量 a1,a2,,an 的线性组合,或称 b 可以由向量 a1,a2,,an 线性表示.
几何空间的线性结构与度量结构(解几)知识点整理
几何空间的线性结构与度量结构(解几) 1.向量的内积1)射影与分量(有一个已知单位分量)●内射影:平行于已知分量●外射影:垂直于已知分量●实数u记作a在已知向量上的分量,记作∏e (a)●夹角<a,e>●性质:∏e(a+b)=∏e(a)+∏e(b)●∏e(ua)=u∏e(a)2)内积:定义:a.b=ⅠaⅠⅠbⅠcos<a,b>●线性性质1.ua.b=u(a.b)●2.(a+ c).b=a.b+a.c●两向量乘积等于对应坐标乘积之和●度量参数:仿射坐标系(基向量)d1,d2,d3的乘积,九个数3)方向角与方向余弦●方向角:向量与基向量d1,d2,d3,所成的角●方向余弦:方向角的余弦值,三个方向叫的余弦值的平方之和等于12.向量的外积(仍为向量)1)定义:(大小)Ⅰa× bⅠ=ⅠaⅠⅠbⅠsin<a,b>2)方向:与a, b构成的平面垂直,成右手系3)几何意义:以a, b为邻边的平行四边形的面积4)运算规则:1.当a≠0时a× b= a×b2(b2为b沿着a下的外射影)●2.反交换律:a× b=-bxa●3.(ua)× b= u(a×b)= (ub)×a●4.左分配律:a×( b+c)= a× b+ a×c●5.右分配律:(b+c)× a=b× a+c×a●用坐标计算向量的外积:详见书上36页5)二重外积●a×(b×c)= (a.c)b-(a.b)c●雅可比公式:a×(b×c)+ b×(a×c)+ c×(bxa)=0●若(a×b)× c= a×(b×c)则ac平行或共线●海伦公式:S三角形=√p(p-a)(p-b)(p-c)3.向量的混合积1)定义:a×b.c(几何意义:表示以a,b,c为棱的平行六面体的体积)记作(a,b,c)2)性质●1. a× b. c=0abc共面●2.(a,b,c)=(b,c,a)=(c,a,b)●3. a× b.c>0则a,b, c呈右手系3)运算:见40-434)共轭向量组:(axb,bxc,cxa)=(a,b,c)∧25)拉格朗日恒等式:(axb).(cxd)●推论:(axb)∧26)柯西不等式:(a.b)∧2= a∧2+ b∧2(a, b共线时等号成立)4.向量以及线性运算1)分类:●1.自由向量\非自由向量●2.零向量,单位向量2)若存在非零实数c, d使得ca+ db=0则两向量共线3)三角不等式:Ⅰa+bⅠ≦ⅠaⅠ+ⅠbⅠ4)共面共线定理:●线性组合:一组向量组的系数●共线●三点共线:aOA+ bOB+cOC=0(且abc不全为零)●a, b共线,唯一的数f使得b=fa●M在线段A B上,有OM= fOA+ gOB且f+ g=1●axb=0●共面●三向量线性相关,系数不全为零●axb.c=05.几何空间的线性结构1)位置向量,有固定起点,非自由向量2)仿射标架\仿射坐标系:任意一个点O和一个基,d1,d2,d3,称为几何空间的~●性质:●可表性●唯一性●形式【O;d1,d2,d3,】(四元组)3)三点或两向量共线:16-18一定要详见4)线段的定比分点:●AC=fCB点c分线段AB成定比f ●门内劳斯定理:20.三点共线●切瓦定理:21三线共点。
线性空间的基本内容
(3)线性变换将线性相关的向量组变为线性相关的向量组
注意:线性无关的向量组经过线性变换后可能会变成线性相关的向量组,如零变换
3、线性变换的矩阵
(1) 定义 教材P133定义3.11
(2) 求线性变换一组基下的矩阵 教材P134例8---例11。
(2) 正交基与标准正交基 教材P145定义3.17
对一组正交基进行单位化,就得到一组标准正交基
(3) 在标准正交基下,向量坐标可用内积简单表示:见教材P145 定理3.11
在标准正交基下,内积也有特别简单的表达式:设 ,在 的标准正交基 下,有 , ,则
(4)第二章中施密特正交化方法可以推广到一般的欧氏空间 教材P146定理3.12
② 两个等价的线性无关的向量组一定含有相同个数的向量。
(4)基 教材P122定义3.5
(5)坐标 教材P122定义3.6
注意:
① 若是 为 维线性空间 的一组基,则它们线性无关,并且对于任意 , 线性相关。
② 向量在一组基下的坐标唯一。
4、基变换与坐标变换 教材P125定理 3.4
本章小结
线性空间是线性代数最基本的概念之一,也是我们碰到的第一个抽象的概念。在线性空间中,元素之间的联系是通过映射来实现的,而通常将线性空间到自身的映射称为变换。线性变换是其中最基本也是最重要的变换,它是线性代数的主要研究对象之一。本章重点介绍了两方面的内容:线性空间的概念、性质,线性空间的基与坐标;线性变换的定义,线性变换的矩阵。最后简要介绍了欧氏空间。
(3) 线性变换的像 与 的坐标之间的关系 教材P137定理3.7
4、线性变换与矩阵的一一对应关系
泛函分析部分知识总结
泛函分析单元知识总结与知识应用一、单元知识总结第七章、 度量空间和赋范线性空间 §1 度量空间§1.1定义:若X 是一个非空集合,:dX X R ⨯→是满足下面条件的实值函数,对于,x y X ∀∈,有(1)(,)0d x y =当且仅当xy =;(2)(,)(,)d x y d y x =;(3)(,)(,)(,)d x y d x z d y z ≤+,则称d 为X 上的度量,称(,)X d 为度量空间。
例:1、设X 是一个非空集合,,x y X ∀∈,当1,(,)0,=x y d x y x y≠⎧=⎨⎩当当,则(,)X d 为离散的度量空间。
2、序列空间S ,i =1i |-|1(,)21+|-|i ii i d x y ξηξη∞=∑是度量空间 3、有界函数全体()B A ,(,)sup|(t)-(t)|t Ad x y x y ∈=是度量空间4、连续函数[a,b]C ,(,)max|(t)-(t)|a t bd x y x y ≤≤=是度量空间5、空间2l ,122=1(,)[(-)]kki d x y y x ∞=∑是度量空间§2 度量空间中的极限,稠密集,可分空间 §2.1收敛点列:设{}n x 是(,)X d 中点列,如果∃x X ∈,使n lim (,)=0n d x x →∞,则称点列{}n x 是(,)X d 中的收敛点列。
例:1、nn x R ∈,{}n x 按欧氏距离收敛于x 的充要条件为1,i n ∀≤≤各点列依分量收敛。
2、[a,b]C 中(,)0k d x y x x →⇔→(一致)3、可测函数空间()M X 中点列(,)0n n d f f f f→⇔⇒(依测度)稠密子集与可分空间:设X 是度量空间,E 和M 是X 中两个子集,令M M M ⊂表示的闭包,如果E ,那么称集M 在集E 中稠密,当E=X 时,称M 为X 的一个稠密子集,如果X 有一个可数的稠密子集,则称X 是可分空间。
泛函分析第2章度量空间与赋范线性空间
泛函分析第2章度量空间与赋范线性空间泛函分析是数学中的一个重要分支,研究函数空间上的函数和运算的性质。
在泛函分析中,度量空间和赋范线性空间是两个基本的概念。
本文将介绍这两个概念以及它们的性质。
度量空间是一个集合X,其中定义了一个度量函数d:X×X→R,满足以下条件:1.非负性:对于任意的x,y∈X,有d(x,y)≥0,且当且仅当x=y时,d(x,y)=0;2.对称性:对于任意的x,y∈X,有d(x,y)=d(y,x);3.三角不等式:对于任意的x,y,z∈X,有d(x,y)≤d(x,z)+d(z,y)。
度量函数d可以看作是度量空间X中点之间的距离,由其性质可以推导出许多重要结论。
例如,由三角不等式的性质可以得出X中点列的收敛性质,即对于度量空间X中的点列{x_n},如果存在x∈X,使得对于任意的ε>0,存在正整数N,当n≥N时,有d(x_n,x)<ε,那么称{x_n}收敛于x。
赋范线性空间是一个向量空间V,其中定义了一个范数函数∥·∥:V→R,满足以下条件:1.非负性:对于任意的x∈V,有∥x∥≥0,且当且仅当x=0时,∥x∥=0;2. 齐次性:对于任意的x∈V和实数a,有∥ax∥=,a,∥x∥;3.三角不等式:对于任意的x,y∈V,有∥x+y∥≤∥x∥+∥y∥。
范数函数∥·∥可以看作是赋范线性空间V中向量的长度或大小,具有度量空间的部分性质,如非负性和齐次性。
范数函数还满足一条重要的性质,即∥x+y∥≥,∥x∥-∥y∥,这被称为三角不等式强化定理。
度量空间和赋范线性空间都具有一些不同的性质和概念。
例如,度量空间中存在序列的收敛性质,而赋范线性空间中存在序列的收敛性质以及序列的Cauchy性质。
同时,度量空间和赋范线性空间都可以构建拓扑结构,使其成为一个拓扑空间。
在拓扑空间中,点列的收敛性质和序列的Cauchy性质是等价的。
此外,度量空间和赋范线性空间都是完备的,即满足序列的Cauchy 性质的序列都收敛于空间中的一些点。
信号与系统——泛函分析初步
再如,若一个能量有限信号可以分解成无穷多个分量,即其各分量 平方可和
可证明,按内积构成的内积空间,也是一个Hilbert空间。 Cauchy-Schwarz不等式:为内积空间,,有
定义(和、直和,Sum、Direct sum):
设是的线性子空间,称为子空间的和。如果,即p个子空间彼此无 交集,则这些子空间的和称为直和,记为:。
定理:设是的线性子空间,则 (1)子空间的交也是的子空间; (2)子空间的和也是的子空间; (3)是直和 对于,可唯一表示成
,其中。
§2.3 距离空间(度量空间)
其中,为定义域,为值域。
图2-1 算子的映射作用 定义(数域,Number field):包括0、1且对四则运算封闭 的数集。 定义(泛函,Functional):值域是实/复数域的算子称为 泛函。 注:定积分,距离,范数,内积,函数(第三种定义),(普 通)函数均为泛函。 定义(线性算子):为线性空间,,若对,
Hilbert第六问题:任何物理学理论、物理定 律、实验结论,都可以从一组数学公理出发通
过演绎得到。
希尔伯特第六问题,体现了一种对于统一的追求。
泛函分析:属于基于公理的分析体系,不在于计算,
而着眼于概念演绎,更普适、更一般、更深刻地理
解、解释数学物理问题。
1. 内积空间:
定义(内积,Inner product):设为实或复线性空间,若对 (复数域),均有一实数或复数与之对应,记为,满足:
注意2:满足三条公里的距离定义可以有多种。因此,同一个集合
与不同定义的距离结合,构成不同的度量空间。
泛函分析中的八大空间
泛函分析中的八大空间泛函分析绪论总结参考教材是孙炯老师的《泛函分析》❞泛函分析学习目标1、了解和掌握空间理论(距离、赋范、内积空间)和线性算子理论(线性算子空间、线性算子谱分析)中基本概念和理论。
2、运用全新的、现代数学的视点审视、处理数学基础课程中的一些问题。
3、将分析中的具体问题抽象到一种更加纯粹的代数、拓扑形式中加以研究,综合运用分析、代数、几何手段处理问题。
❞泛函分析研究对象与方法泛函分析综合分析、代数、几何的观点和方法来研究无穷维空间上的函数、算子和极限理论,处理和解决数学研究中最关心的一些基本问题。
泛函分析的特点是把古典分析的基本概念和方法一般化、并将这些概念和方法几何化。
解析几何的创立,将代数问题几何化、几何问题代数化,那么这种模式可类比的推广到泛函分析的研究中。
❞(1)建立一个新的空间框架,空间中元素包括函数、运算。
「注」:空间中的元素?空间的结构(距离、范数、内积)(2)在新的空间框架下,研究解决分析、代数、几何中的问题,把分析中的问题结合几何、代数的方法加以处理。
「注」:泛函分析主要研究无穷维空间到无穷维空间的映射、运算,因此关注无穷维空间的性质,收敛性问题(如加法与无穷级数的区别)一些个人思考在三维实向量空间中进行了坐标分解,这样可以更清楚的表示这个向量的相关一些信息,那么空间的几何结构变得非常明了;另外将一个矩阵映射进行了分解,那么它的作用效果,也变得很明了。
所以自然联想到,无穷维空间能否有这样的几何结构(坐标系、正交性、元素能否分解?)、其中的映射又能否分解?但是在这其中就会遇到新的问题,也就是无穷项相加,就会有收敛性的问题。
❞泛函分析主要内容(1)空间、极限的概念,讨论他们的性质.包括:距离空间、赋范空间、内积空间、Hilbert空间.(2)研究线性算子(线性算子空间).包括:有界线性算子、有界线性算子的重要性质、共轭空间。
其中:一致有界原则、开映射定理、闭图像定理、Hahn-Banach定理.(3)线性算子的谱理论.线性算子的谱分解从结构上展示了线性算子的基本运算特征,特别是自共轭算子的谱分解,与有限维空间对称矩阵的分解很类似.❞定义1:设有集合,且存在映射,使得对任意的都有:1.非负性:;2.对称性:;3.三角不等式:映射称为集合上的一个度量,称为度量空间.度量函数有时也用表示.下边我们给出一些常用的度量空间:1.,度量函数为经典度量.这样的实空间就称为欧式空间.2.(平凡度量)在任何一个集合上,我们都可以定义上述度量,因此任何一个集合上都可以让其变为一个度量空间.1.(空间) 所有的方勒贝格可积函数,定义度量:1.(空间) 所有的在可测的本性有界的函数,定义度量:表示它的本性上界.1.(空间和空间) 元素是数列:.2.3.(连续函数空间) 如果不做声明时,我们的定义的度量是:4.当然还可以有其他度量:有了度量函数后,我们可以定义收敛性:定义2:设为距离空间中的一个点列(或称序列), 这里如果存在中的点, 使得当时, , , 则称点列收敛于, 记为有时也简记为称为的极限.注意到,这里一定要要求在集合中!命题1:设是距离空间中的收敛点列,则下列性质成立:(i) 的极限唯一;(ii) 对任意的, 数列有界.(iii) 如果收敛,那么它的任意子列也收敛.定义3:距离空间中的点列叫做基本点列或柯西点列,若对任给的, 存在, 使得当时,如果中的任一基本点列必收敛于中的某一点,则称为完备的距离空间.注意到:一个空间是否完备与它的集合和度量都有关系,比如:按照最大值定义的度量是完备的,但是按照积分定义的度量不完备,在比如上配备欧式度量,点列是基本列但是不收敛,因为不在集合中.一个不完备的空间,我们可以想方设法的添加一些元素使其完备,然而是否任何的不完备空间都能这样做使其完备呢?这就要需要我们的完备化定理了!在此之前,我们需要引入一些其他有必要的东西!定义4设是两个度量空间, 如果存在映射:满足:(1):是满射;(2):.则称和是等距同构的, 称为等距同构映射, 有时简称等距同构。
有限空间定义及种类
有限空间定义及种类有限空间是指具有有限个数的点构成的空间。
它是数学中的一个重要概念,广泛应用于几何学、拓扑学、线性代数等领域。
有限空间的定义及种类包括但不限于以下几种。
一、度量空间:度量空间是有限空间的一种重要形式,它在数学中有着广泛的应用。
度量空间是一个集合,其中包含有限个点,同时也附带了一个由点对之间的距离所构成的度量函数。
度量函数满足以下几个条件:对于任意的两个点a和b,存在一个非负实数d(a,b)表示它们之间的距离,同时该函数满足非负性、对称性和三角不等式。
常见的例子包括欧几里得空间、离散空间等。
二、拓扑空间:拓扑空间是另外一种常见的有限空间形式。
它是一个集合,其中包含有限个点,并且这些点之间存在一些相邻的关系。
拓扑空间可以通过引入拓扑结构来定义,该结构是指一个集合中的一些特殊子集,称为开集,它们满足一定的性质,包括:空集和整个集合都是开集,有限个开集的交集仍然是开集,开集的有限个并集仍然是开集。
拓扑空间上的拓扑结构可以用来描述空间的连通性、紧致性等性质。
三、向量空间:向量空间是一种常见的线性代数概念,它是由一组向量构成的空间。
向量空间满足一些性质,包括零向量存在、加法封闭性和标量乘法封闭性等。
有限维向量空间是指向量空间中向量的个数是有限的。
在有限维向量空间中,可以定义向量的线性组合、向量的线性无关性等概念。
有限维向量空间在数学和物理学中都有广泛的应用。
四、有穷拓扑空间:有穷拓扑空间是一种特殊形式的拓扑空间。
在有穷拓扑空间中,空间中的点是有限个数的,同时也满足拓扑结构的条件。
该类空间的特点是具有有限个开集和有限个闭集,并且拓扑结构的性质可以通过有限个元素来定义。
有穷拓扑空间是拓扑学中研究的一个重要分支。
以上是有限空间的一些常见定义及种类。
这些空间在不同领域中都有着重要的应用,对于理解和研究空间结构、连通性、线性代数等概念具有重要意义。
巴拿赫空间理论
巴拿赫空间理论巴拿赫空间理论(Banach space)是192O年由波兰数学家巴拿赫(S.Banach)⼀⼿创⽴的,数学分析中常巴拿赫空间⽤的许多空间都是巴拿赫空间及其推⼴,它们有许多重要的应⽤。
⼤多数巴拿赫空间是⽆穷维空间,可看成通常向量空间的⽆穷维推⼴。
编辑本段线性空间巴拿赫空间(Banach space)是⼀种赋有“长度”的线性空间﹐泛函分析研究的基本对象之⼀。
数学分析各个分⽀的发展为巴拿赫空间理论的诞⽣提供了许多丰富⽽⽣动的素材。
从外尔斯特拉斯﹐K.(T.W.)以来﹐⼈们久已⼗分关⼼闭区间[a﹐b ]上的连续函数以及它们的⼀致收敛性。
甚⾄在19世纪末﹐G.阿斯科利就得到[a﹐b ]上⼀族连续函数之列紧性的判断准则﹐后来⼗分成功地⽤于常微分⽅程和复变函数论中。
巴拿赫空间1909年⾥斯﹐F.(F.)给出[0﹐1]上连续线性泛函的表达式﹐这是分析学历史上的重⼤事件。
还有⼀个极重要的空间﹐那就是由所有在[0﹐1]上次可勒贝格求和的函数构成的空间(1<p <∞)。
在1910~1917年﹐⼈们研究它的种种初等性质﹔其上连续线性泛函的表⽰﹐则照亮了通往对偶理论的道路。
⼈们还把弗雷德霍姆积分⽅程理论推⼴到这种空间﹐并且引进全连巴拿赫空间续算⼦的概念。
当然还该想到希尔伯特空间。
正是基于这些具体的﹑⽣动的素材﹐巴拿赫﹐S.与维纳﹐N.相互独⽴地在1922年提出当今所谓巴拿赫空间的概念﹐并且在不到10年的时间内便发展成⼀部本⾝相当完美⽽⼜有着多⽅⾯应⽤的理论。
编辑本段Banach空间完备的线性赋范空间称为巴拿赫空间。
是⽤波兰数学家巴拿赫(Stefan Banach )的名字命名的。
巴拿赫空间巴拿赫的主要贡献是引进了线性赋范空间概念,建⽴了其上的线性算⼦理论,证明了作为泛函分析基础的三个定理,哈恩--巴拿赫延拓定理,巴拿赫--斯坦豪斯定理即共鸣之定理、闭图像定理。
这些定理概括了许多经典的分析结果,在理论上和应⽤上都有重要价值。
数学中的空间概念
数学中的空间概念
数学中的空间概念是指用数学语言和方法对空间进行描述和研究的概念。
1. 欧几里得空间(Euclidean space):欧几里得空间是数学中
最基本且最常见的空间概念,它以几何学为基础,通常用笛卡尔坐标系表示。
2. 向量空间(Vector space):向量空间是指一组向量构成的
集合,满足一系列定义的运算规则,常用于向量和矩阵的研究。
3. 坐标空间(Coordinate space):坐标空间是指通过一组坐标系,将点的位置表示为坐标的空间。
常见的坐标空间有二维平面、三维空间等。
4. 线性空间(Linear space):线性空间是指满足特定运算规
则的向量空间,其中向量的加法和数乘满足线性运算的性质。
5. 拓扑空间(Topological space):拓扑空间是指在集合上定
义了一种拓扑结构,用来研究集合中的连通性、收敛性以及极限等性质。
6. 测度空间(Measure space):测度空间是指在集合上定义了一种测度,用来度量集合中的大小或者衡量集合中的某种特性。
7. 平面几何(Plane geometry):平面几何是指研究二维平面
中图形的性质、关系和构造等内容。
8. 立体几何(Solid geometry):立体几何是指研究三维空间
中立体图形的性质、关系和构造等内容。
9. 代数拓扑(Algebraic topology):代数拓扑是将代数学方法
应用于拓扑空间研究的一个分支,研究空间的代数性质和变形等问题。
10. 同调论(Homology theory):同调论是数学中的一个分支,研究空间中的“洞”和“环”等代数特征,用于研究空间的性质和
分类。
现代分析报告基础结课作业——Hilbert空间性质介绍
Hilbert空间性质介绍摘要在这篇文章中,主要是为了介绍Hilbert空间的一些性质,并且把线性分析中各个空间的性质进行了描述,这也是为了更好的描述Hilbert空间及其性质做好基础,并且把各个空间的性质关系进行了讲述,总结了在线性分析基础这门课程中的收获与感悟。
引言学习了线性分析基础的课程之后,我对于空间的理解有个更加深刻的认识,同时也对各种空间的应用与关系有着许多的困惑与不解,老师的课程十分精彩,介绍了许多原来没有接触过的知识,同时我感觉到了线性分析基础这门课程的重要性。
在接下来的文章中,我们主要想对Hilbert空间及其性质进行介绍,在介绍Hilbert空间之前,必须把Hilbert建立的基础进行描述,甚至文章的一大部分都在描述可测空间、测度空间、赋线性空间和Banach空间等,但是这些空间的性质也在Hilbert空间中得以体现,可以认为Hilbert空间是这些空间基础上比较特殊的一类空间,它在满足这些空间所具有的性质的同时也有着自己特殊的性质以及应用。
Hilbert空间是在一个复向量空间H上的给定的积并导出一种数,如果其对于这个数来说是完备的,那么这个复向量空间就是希尔伯特空间。
这里已经说明了希尔伯特空间是一个积空间,其上有距离和角的概念(及由此引伸而来的正交性与垂直性的概念),可以根据它的特点和性质来进行扩展,得到我们想要得到的可以加以利用的空间。
另外,希尔伯特空间还是一个完备的空间。
在下面的文章中,我们将详细的对所学的知识进行整理和阐释。
关键词可测测度空间数完备性Banach空间积空间Hilbert空间1.可测空间及其性质首先我们要对拓扑空间进行一定的了解。
假设X是一个集合,如果有一个子集族,我们定义为τ,满足以下的几点性质:(1).空集ø和集合X是在子族集当中。
(2)在这个子集族τ的元素满足交运算封闭。
(3) τ中元素族集的并运算封闭。
那么我们称τ为X上的一个拓扑,称X为拓扑空间,而τ中的元素成为拓扑的开集,在X中,如果一个集合是这个开集的余集,那么称为闭集。
数学教案4:拓扑学基础——欧几里得空间与度量空间的特性比较
在数学领域中,拓扑学是一门非常重要的学科。
它专门研究空间结构以及它们之间的变换,成为数学中一个重要的分支。
其中,欧几里得空间和度量空间是拓扑学中的两个基础概念,它们之间有着很大的联系和区别。
本文将详细介绍欧几里得空间和度量空间的特性比较。
一、欧几里得空间欧几里得空间一般指的是一个n维空间,具有一些特定的性质,例如:1.线性空间结构:欧几里得空间的点可以视为具有一定的线性结构,即可以通过线性变换进行移动、旋转和缩放等操作。
2.度量结构:欧几里得空间中的点之间还有一定的距离度量规律,也就是我们常说的欧几里得距离公式。
通过这个公式,我们可以计算出任意两点之间的距离,从而形成了完整的度量结构。
3.坐标表示:欧几里得空间可以用数值来表示,因为我们可以给每个点都对应一个唯一的坐标。
这个坐标可以用来描述点的位置和坐标之间的距离。
欧几里得空间在很多方面都有着广泛的应用。
例如,在几何学和物理学中,欧几里得空间被使用来描述实际的空间结构。
在计算机图形学和机器学习中,欧几里得空间的线性结构和度量结构被广泛应用于特征提取和分类等领域。
二、度量空间度量空间一般指的是一个集合S,其中对于任意两个元素x和y,都定义了一个非负实数d(x,y)来表示它们之间的距离,同时满足下列条件:1.对称性:d(x,y)=d(y,x)2.三角形不等式:d(x,z)<=d(x,y)+d(y,z)3.非负性:d(x,y)>=04.同一性:d(x,y)=0,当且仅当x=y度量空间的基本概念和欧几里得空间有着很大的不同,主要在于度量空间中的距离是任意定义的,而且没有坐标和线性结构。
度量空间广泛应用于实际中,例如在概率统计中,度量空间中可以对样本进行度量,从而衡量它们之间的相似程度。
三、欧几里得空间与度量空间的比较欧几里得空间和度量空间之间有着许多的相似和不同之处。
下面我们来进行一些比较:1.空间结构:欧几里得空间有着完整的坐标和线性结构,而度量空间却没有。
泛函分析第2章_度量空间与赋范线性空间[1]
第2章 度量空间与赋范线性空间度量空间在泛函分析中是最基本的概念。
事实上,它是n 维欧几里得空间n R 的推广,它为统一处理分析学各分支的重要问题提供了一个共同的基础。
它研究的范围非常广泛,包括了在工程技术、物理学、数学中遇到的许多很有用的函数空间。
因而,度量空间理论已成为从事科学研究所不可缺少的知识。
2.1 度量空间的基本概念 2.1.1 距离(度量)空间的概念在微积分中,我们研究了定义在实数空间R 上的函数,在研究函数的分析性质,如连续性,可微性及可积性中,我们利用了R 上现有的距离函数d ,即对y x y x d R y x -=∈),(,,。
度量是上述距离的一般化:用抽象集合X 代替实数集,并在X 上引入距离函数,满足距离函数所具备的几条基本性质。
【定义2.1】 设X 是一个非空集合,),(∙∙ρ:[)∞→⨯,0X X 是一个定义在直积X X ⨯上的二元函数,如果满足如下性质:(1) 非负性 y x y x y x X y x =⇔=≥∈0,(,0),(,,ρρ; (2) 对称性 ),(),(,,x y y x X y x ρρ=∈(3) 三角不等式 ),(),(),(,,,y z z x y x X z y x ρρρ+≤∈;则称),(y x ρ是X 中两个元素x 与y 的距离(或度量)。
此时,称X 按),(∙∙ρ成为一个度量空间(或距离空间),记为),(ρX 。
注:X 中的非空子集A ,按照X 中的距离),(∙∙ρ显然也构成一个度量空间,称为X 的子空间。
当不致引起混淆时,),(ρX 可简记为X ,并且常称X 中的元素为点。
例2.1 离散的距离空间设X 是任意非空集合,对X 中任意两点,,x y X ∈令1 (,)0 x yx y x y ρ≠⎧=⎨=⎩显然,这样定义的),(∙∙ρ满足距离的全部条件,我们称(,)X ρ是离散的距离空间。
这种距离是最粗的。
它只能区分X 中任意两个元素是否相同,不能区分元素间的远近程度。
第七章度量空间和赋范线性空间
1
5.p次幂可和数列空间l p , d(x, y) ( yk xk p ) p .
k 1
§3 连续映射
回忆数学分析中连续函数的定义 : 0, 0,当x x0 时,有 f (x) f (x0) .
如同数学分析中的海涅(Heine)定理,可以证明如下结论。
:由T在x0 X连续, 对 0, 0,当d (x, x0 ) 时,有
证明:对 {x(k )} Rn为柯西点列 , x(k ) (x1(k ) , x2(k ) , , xn(k ) ),
n
则对 0, N ,当k, j N , 有d (x(k) , x( j) ) (
1
k) i
x( j) i
2
)2
.
i 1
即对每个i,当k, j N,有 xi(k) xi( j) . 故{xi(k)}是R1中柯西列 ,
xm (t)在[a,b]上收敛于一函数 x(t). 在(*)式中令n ,
当m
N时, 有 max at b
xm (t)
x(t)
,
即xm (t)在[a,b]上一致收敛于 x(t).
定理1.完备度量空间 X的子空间 M是完备空间的充要条件 为 M是X中的闭子空间 .
定理2.设( X , d )是度量空间 , Bn Bn (xn , rn ), (n 1,2, )是X中 一列闭球 ,则X是完备的度量空间的充 要条件是若 Bn Bn1,
d~(Tx,Tx0) 0.
取
1 n
,
则有xn
,
使d
(
xn
,
x0
)
1 n
,
但d~(Txn
,
Tx0
)
0.
这与已知矛盾.
第二章线性空间与度量空间(理工大)资料
– 例:
1 , W 0,1, X Y , X ,Y W n n1
1 是柯西序列,但 1 0, n ,00,1
n n1
n
13
§2.3 距离空间-完备度量空间
• 完备度量空间——Complete Metric Space
W, 称为完备度量空间,指其中所有柯
西序列都收敛。
– 极限运算在完备时可行 – 如何完备化? – W不要求线性空间
14
第二章 线性空间与度量空间
1
第二章 线性空间与度量空间
• §2.1 线性空间 • §2.2 线性子空间 • §2.3 距离(度量)空间
2
§2.1 线性空间
• 线性空间:设W≠Ø(W为非空集合)
– (1) W中元对“+”构成交换群,即对 X,Y,ZW, 有
ⅰ.
ⅱ.
+ +
W(加法封闭性)
+ = + + ( 结合律)
• , 称为W上的距离,W, 为度量空间。
8
§2.3 距离空间
• 例: ,
X,Y X Y
• 例:C a,b
X t,Y t max X t Y t at b
9
§2.3 距离空间
• 例: n ,
x1
,
xn
y1
n
yn
n
, xi yi i 1
1
,
6
§2.2 线性子空间
• 线性子空间:设 Ø ≠V W, V是W的线性 子空间
对 , V ,, ,有 + V
• 直和:设 W1, W2, , Wp是W的子空间,若 W ,
可唯一表示成 = 1 + + p , 其中 i W
第二章 赋范线性空间1
5
凸集在求解极值问题中是一个十分重要的条件。 命题:凸集的交是凸集;凸集的直和是凸集。
凸锥(convex core): C ⊂ X , C ≠ ∅ 。若对任意的 x1, x2 ∈ C ,θ1,θ2 > 0 ,有θ1x1 + θ2 x2 ∈ C ,则 称 C 为 X 的一个凸锥,例如 R+n = {x = (ξ1,",ξn ) ∈ Rn | ξi > 0, i = 1,", n}
则 F : C[a,b] → R 是连续(泛)函数。
证明:
三 完备性
设 X 为一个度量空间,如果 X 任意一个 Cauchy 序列在 X 中都有极限,则称 X 是完备的度量空
间。
例2.6 Rn 关于任何 p ≥ 1的距离都是完备的, n ≥ 1。
例2.7
C[a, b] 关于 d∞ 是完备的,而关于 d1 , d2 都不是完备的。
定义 ||
x
|| p
=
⎛ ⎜⎝
∞ i =1
| ξi
|p
⎞1/ ⎟⎠
p
。由
Minkowski
不等式可知, (l
则 称 X 为 一 个 赋 范 线 性 空 间 ( normalized linear space)或赋范空间,|| ||为 X 的范数(norm)。|| x || 称为向量 x 的范数。
范数实际上是向量“模”或“长度”的统一称谓。
例2.9 n 维欧氏(Euclid)空间 R n ( Cn )
∑ 对
证明:考虑 C[0,1] ,赋予距离 d1 。
3
⎧⎪0,
⎪
取
xn
(t
)
=
⎪⎨nt ⎪
−
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性空间与度量空间
摘要:线性空间和度量空间是很重要的内容,本文对空间的线性结构
和度量结构做了简单总结,体现了空间的度量结构和线性结构之间具
有某种协调性,特别重要和有用的一类度量空间是赋范线性空间.而向量的长度与夹角等度量性质都可以通过向量的内积来表示.
关键词:空间;线性;度量
线性空间是线性代数最基本的概念之一.在解析几何中,讨论过三维空间中的向量.向量的基本属性是可以按平行四边形规律来描述的.
P是一个数域.在集合X的元素之间定义了一种代定义1 设X是一个
集合,
.在数域P与集合X的元素之间还定义了一运算,叫做数量乘法;这
就是说,对于β+α=γ的和,记为β与α与它们对应,称为γ,在X中都
有唯一的一个元素β与α数运算,叫做加法;这就是说,给出了一个
法则,对于X中任意两个元素
.如果加法与数量乘法满足下述规则,那么X称为数域P上的线性空间.αk=δ的数量乘积,记为α与它们对应,称为k与δ,在X中都有唯
一的一个元素α数域P中任一数k与X中任一元素
加法满足下面四条规则:
;α+β=β+α1)
);γ+β(+α=γ+)β+α2)(
都有α3)在X中有一个元素0,对于X中任一元素
,使得β,都有X中的元素α;4)对于X中每一个元素α=α+0
0.=β+α
.α(kl)=)α;6)k(lα=α数量乘法满足下面两条规则:5)1
.βk+αk=)β+α;8)k(αl+αk=αl)+数量乘法与加法满足下面两条规则:7)(k
等表示集合X中任意元素.γ,β,α在以上规则中,k,l等表示数域P 中任意数;
由定义,几何空间中全部向量组成的集合是一个实数域上的线性空间.分量属于数域P的全体n元数组构成数域P上的一个线性空间,这个线性空间我们用。