五大模型三角形等积变形共角模型

合集下载

数学全等三角形五大模型及必要步骤

数学全等三角形五大模型及必要步骤

数学全等三角形五大模型及必要步骤
一、等积变换模型
1、等底等高的两个三角形面积相等.
2、两个三角形高相等,面积比等于它们的底之比.
3、两个三角形底相等,面积比等于它的的高之比.
二、共角定理模型
两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形.
共角三角形的面积比等到于对应角(相等角或互补角)两夹边的乘积之比.
三、蝴蝶定理模型
(说明:任意四边形与四边形、长方形、梯形,连接对角线所成四部的比例关系是一样的.)四、相似三角形模型
相似三角形:是形状相同,但大小不同的三角形叫相似三角形.
相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比.
相似三角形的面积比等于它们相似比的平方.
五、燕尾定理模型
不多说了,应该知道吧。

小学奥数几何篇 五大模型——等积变换和共角定理(附答案)

小学奥数几何篇 五大模型——等积变换和共角定理(附答案)

等积变换与共角定理我们的目标:掌握三角形等积变换与共角定理的基本模型;学会构造出模型进行解题三角形等积变换模型(1)等底等高的两个三角形面积相等;(2)两个三角形高相等,面积比等于底之比;如左图1 2 : :S S a b(3)两个三角形底相等,面积比等于高之比;在一组平行线之间的等积变形,如右图;S△ACD=S△BCD;共角定理两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形.共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如下两图例1. 如图三角形ABC的面积为1,其中AE=3AB,BD=2BC,三角形BDE的面积是多少?例2. 如图,三角形ABC的面积是24,D、E分别是BC、AC和AD的中点,求三角形DEF的面积。

例3.如图,在角MON的两边上分别有A、C、E及B、D、F六个点,并且△OAB、△ABC、△BCD、△CDE 、△DEF 的面积都等于1,则△DCF的面积等于例4.E、M分别为直角梯形ABCD两边的点,且DQ、CP、ME彼此平行,若AD=5,BC=7,AE=5,EB=3.求阴影部分的面积例5.如图,已知CD=5,DE=7,EF=15,FG=6,线段AB将图形分成两部分,左边部分面积是38,右边部分是65,那么三角形ADG的面积是例6. 如图,正方形的边长为10,四边形EFGH的面积为5,那么阴影部分的面积是例7. 已知正方形的边长为10,EC=3,BF=2,则S=四边形ABCD例8.如图,平行四边形ABCD,BE=AB,CF=2BC,DG=3DC,HA=4AD,平行四边形ABCD的面积是2,求平行四边形ABCD与四边形EFGH的面积比。

例9. 已知△DEF的面积为7平方厘米,BE=CE,AD=2BD,CF=3AF,求△ABC的面积等积变换与共角定理习题1. 如图,在长方形ABCD中,Y是BD的中点,Z是DY的中点,如果AB=24厘米,BC=8厘米,求三角形ZCY的面积2. 如图,点D、E、F在线段CG上,已知CD=2厘米,DE=8厘米,EF=20厘米,FG=4厘米,AB将整个图形分成上下两部分,下边部分面积是67平方厘米,上边部分是166平方厘米,则三角形ADG的面积是多少平方厘米?3. 如图,阴影部分四边形的外界图形是边长为12厘米的正方形,则阴影部分四边形的面积是多少平方厘米?4. 如图,四边形EFGH的面积是66平方米,EA=AB,CB=BF,DC=CG,HD=DA,求四边形ABCD 的面积。

几何的五大模型

几何的五大模型

5、 想想?正方形ABCD中,还有哪些没有包块进去,及与份数之间旳关系
6、SΔADE =S2+S3,S ΔBCF =S4+S3 想想?为何,用了什么模型
7、∴正方形ABCD被提成了24份 S阴影=S2+S4=6÷24×12=3cm2
例题:相同模型
例题4:如图,长方形ABCD中,E为AD旳中点,AF与BE、BD分别交于
例题:二分之一模型
例题3:如图ABFE和CDEF都是矩形,AB旳长是4厘米,BC旳长是3厘 米,那么图中阴影部分旳面积是多少平方厘米。
分析:阴影部分是一种个三角形,矩形CDEF中阴影 A
B
部分旳三角形底边长度为矩形旳长,高与矩 E
F
形宽相等,根据面积公式可知S阴影=SEDCF÷2
D
C
思索:二分之一模型是什么意思?
分析:SΔ黄+SΔ绿=S长方形÷2(=宽×长÷2)
黄色三角形面积21cm2,占长方形面积百分比

50%-15%=35% 所以,长方形面积=21÷35%=60cm2


绿
例题:等积变换
例题2:图中ABCD是个直角梯形,以AD为一边向外作长方形ADEF, 其面积为6.36平方厘米,连接BE交AD于P,再连接PC,则图 中阴影部分旳面积是多少平方厘米?
AB
S1 S2
a
b
图1
CD 图2
概念
2、鸟头定理(共角定理)模型
1)两个三角形中有一种角相等或互补,这两个三角形叫做共角三角形
2)共角三角形旳面积比等于相应交(相等或互补角)两夹边旳乘积之比
D
E
A
D
A
A
E D
BC

小升初平面几何常考五大模型

小升初平面几何常考五大模型

一、等积变换模型1、等底等高的两个三角形面积相等。

2、两个三角形高相等,面积比等于它们的底之比。

3、两个三角形底相等,面积比等于它的的高之比。

二、共角定理模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角三角形的面积比等到于对应角(相等角或互补角)两夹边的乘积之比。

三、蝴蝶定理模型(说明:任意四边形与四边形、长方形、梯形,连接对角线所成四部的比例关系是一样的。

)四、相似三角形模型相似三角形:是形状相同,但大小不同的三角形叫相似三角形。

相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比。

相似三角形的面积比等于它们相似比的平方。

五、燕尾定理模型正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为由题知DC/GP=GC/PK,即DC/(DC-4)=(4+PK)/PK,令DC=a,PK=c,则a=4+c,则S△DEK=a^2+16+c*(4-c)/2+c^2-ac-a(4+a)/2=a^2/2+c^2/2-ac-2a+2c+16=(c+4)^2/2+c^2/2-c( c+4)-2(c+4)+2c+16=16。

1、图17是一个正方形地板砖示意图,在大正方形ABCD中AA1=AA2=BB1=BB2=CC1=CC2=DD1=D D2,中间小正方形 EFGH的面积是16平方厘米,四块蓝色的三角形的面积总和是72平方厘米,那么大正方形ABCD的面积是多少平方厘米?分析与解连AC和BD两条大正方形的对角线,它们相交于O,然后将三角形AOB放在D PC处(如图18和图19)。

已知小正方形EFGH的面积是16平方厘米,所以小正方形EFGH的边长是4厘米。

又知道四个蓝色的三角形的面积总和是72平方厘米,所以两个蓝色三角形的面积是72÷2=36平方厘米,即图19的正方形OCPD中的小正方形的面积是36平方厘米,那么这个正方形的边长就是6厘米。

中考数学几何五大模型

中考数学几何五大模型

一、等积变换模型⑴等底等高的两个三角形面积相等;其它常见的面积相等的情况⑵两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比。

如上图12::S S a b =⑶夹在一组平行线之间的等积变形,如下图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD 。

⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于与它等底等高的平行四边形面积的一半;二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。

如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△五大模型1S 2S图1 图2三、蝴蝶定理模型任意四边形中的比例关系(“蝴蝶定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。

梯形中比例关系(“梯形蝴蝶定理”)①2213::S S a b =②221324::::::S S S S a b ab ab =; ③梯形S 的对应份数为()2a b +.四、相似模型相似三角形性质:金字塔模型 沙漏模型 ①AD AE DE AFAB AC BC AG===; ②22::ADE ABC S S AF AG =△△。

所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方.五、燕尾定理模型S △ABG :S △AGC =S △BGE :S △EGC =BE :EC S △BGA :S △BGC =S △AGF :S △FGC =AF :FC S △AGC :S △BCG =S △ADG :S △DGB =AD :DB典型例题精讲例1 一个长方形分成4个不同的三角形,绿色三角形面积是长方形面积的0。

几何五大模型-汇总情况

几何五大模型-汇总情况

小学平面几何五大模型一、共角定理两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形.共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比. 如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△证明:由三角形面积公式S=1/2*a*b*sinC 可推导出 若△ABC 和△ADE 中, ∠BAC=∠DAE 或∠BAC+∠DAE=180°,则ADE ABC S S ∆∆=AEAD ACAB ⨯⨯二、等积模型①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如下图12::S S a b =③夹在一组平行线之间的等积变形,如右图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.三、蝶形定理1、任意四边形中的比例关系(“蝶形定理”): ①1243::S S S S =或者1324S S S S ⨯=⨯ ②()()1243::AO OC S S S S =++ 速记:上×下=左×右蝶形定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.2、梯形中比例关系(“梯形蝶形定理”): ①2213::S S a b =②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +.ba S 2S 1DC BA A DO a S 2S 1S 4S 4S 2S 1O DA四、相似模型(一)金字塔模型 (二) 沙漏模型GF E ABCDAB CDEF G①AD AE DE AF ABACBCAG===; ②22:ADE ABC S S AF AG =△△:.相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比;⑵相似三角形的面积比等于它们相似比的平方; ⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半. 相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具. 在小学奥数里,出现最多的情况是因为两条平行线而出现的相似三角形.五、共边定理(燕尾模型和风筝模型)在∆ABC 中,AD ,BE ,CF 相交于同一点O ,那么::ABO ACO S S BD DC ∆∆=.上述定理给出了一个新的转化面积比与线段比的手段,因为ABO ∆和ACO ∆的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径.OFE DCBA附件1:鸟头模型例题及习题:例8:法1:无敌设高法。

1数学几何五大模型

1数学几何五大模型

数 学 几 何 五 大 模 型一、等积变换模型⑴等底等高的两个三角形面积相等;其它常见的面积相等的情况⑵两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比。

如上图12::S S a b =⑶夹在一组平行线之间的等积变形,如下图ACD BCD S S =△△;反之,如果ACDBCD S S =△△,则可知直线AB 平行于CD 。

⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于与它等底等高的平行四边形面积的一半; 二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。

如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△1S 2S 1S 2S ab图1 图2三、蝴蝶定理模型任意四边形中的比例关系(“蝴蝶定理”):(1) 1243::S S S S =或者1324S S S S ⨯=⨯(2)()()1243::AO OC S S S S =++ 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。

梯形中比例关系(“梯形蝴蝶定理”)(1)2213::S S a b =(2)221324::::::S S S S a b ab ab =;(3)梯形S 的对应份数为()2a b +。

四、相似模型相似三角形性质:金字塔模型 沙漏模型(1)AD AE DE AFAB AC BC AG===; (2)22::ADE ABCS S AF AG =△△。

所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比;⑵相似三角形的面积比等于它们相似比的平方。

五大模型——共边模型、鸟头模型

五大模型——共边模型、鸟头模型

戈瑞教育
共角模型(鸟头模型) 两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。
A
D
A
E
D
E
D
AD
E
E
B 如图,
CB
CB
CB
S△ABC : S△ADE ( AB AC ) : ( AD AE )
A
C
【例1】(★★) 如图,在梯形ABCD中,三角形ABE的面积为4.6平方厘米, BE=EF=FD,求三角形ABF、CDF、ABD、ACD的面积。
【例4】 (★★★★) 等腰 △ABC中,AB=AC=12cm,BD、DE、EF、FG把它的面积5等分, 求AF、FD、DC、AG、GE、EB的长。
【例5】(★★★) 已知四边形ABCD、BEFG、CHIJ为正方形,正方形ABCD边长为10, 正方形BEFG边长为6,求阴影部分的面积。
【例6】(★★★★) E、M分别为直角梯形ABCD两边上的点,且DQ、CP、ME彼此平行, 若 AD=5, BC=7,AE=5 , EB=3。求阴影部分的面积。
2
【例7】 (★★★) 已知 △DEF的面积为7 平方厘米,BE=CE,AD=2BD,CF=3AF,求△ABC 的面积。
【例8】(★★★★) 如图,在 △ABC中,延长AB至D,使BD=AB,延长BC至E,使 CE 1 BC , 2 F是AC的中点,若 △ABC的面积是2,则 △DEF的面积是多少?
大海点睛
一、本讲重点知识回顾 等积变形 边比=面积比 共角模型(鸟头模型)
大海点睛 二、本讲经典例题
例2,例3,例5,例7,例8
如图, S△ABC : S△ADE ( AB AC ) : ( AD AE ) 3

几何五大模型

几何五大模型

⑴等底等高的两个三角形面积相等;其它常见的面积相等的情况⑵两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比。

如上图12::S S a b =⑶夹在一组平行线之间的等积变形,如下图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD 。

⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于与它等底等高的平行四边形面积的一半;五大模型1S 2S两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。

如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△图1 图2任意四边形中的比例关系(“蝴蝶定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。

梯形中比例关系(“梯形蝴蝶定理”)①2213::S S a b =②221324::::::S S S S a b ab ab =; ③梯形S 的对应份数为()2a b +。

相似三角形性质:金字塔模型 沙漏模型 ①AD AE DE AFAB AC BC AG===; ②22::ADE ABC S S AF AG =△△。

所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比;⑵相似三角形的面积比等于它们相似比的平方。

几何的五大模型

几何的五大模型
解析:
利用燕尾定理,连接FC,BFD面积/BFC面积=DE/EC=1/2,如果BFD面积为1份的话,BFC为2份;又DF=FG,所以BFG面积与BFD面积相等也是1份,故FGC面积是2-1=1份,那么BG=GC;再利用燕尾定理,DFC的面积与DFB相等也是1份,BDC的面积是4份=6,故一份面积是6/4=1.5,阴影部分是1+2/3=5/3份,面积是1.5×5/3=2关系是一样的。)
四、相似三角形模型
相似三角形:是形状相同,但大小不同的三角形叫相似三角形。
相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比。
相似三角形的面积比等于它们相似比的平方。
五、燕尾定理模型
解析:
因为阴影部分比三角形EFG的面积大10厘米2,都加上梯形FGCB后,根据差不变性质,所得的两个新图形的面积差不变,即平行四边行ABCD比直角三角形ECB的面积大10厘米2,所以平行四边形ABCD的面积等于10×8÷2+10=50厘米2。
几何的五大模型
一、等积变换模型
1、等底等高的两个三角形面积相等。
2、两个三角形高相等,面积比等于它们的底之比。
3、两个三角形底相等,面积比等于它的的高之比。
二、共角定理模型
两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比等到于对应角(相等角或互补角)两夹边的乘积之比。
三、蝴蝶定理模型
显然,最大的三角形的面积为21公顷.
解析:
如图所示,设上底为a,则下底为2a,梯形的高为h,则EF= (a+2a)= ,所以,
。所以
阴影部分
= 即 ,梯形 ABCD的面积=
如下图所示,为了方便叙述,将某些点标上字母.

五大模型——三角形等积变形、共角模型

五大模型——三角形等积变形、共角模型

小升初几何重点考查内容一.鸟头模型(共角摸型)两个三角形中有1*角相等或互补,这两个三角形叫做共角三角形共南三轴形的面积比等于对应角(相等角或互补站)两夹边的義积之比屈Sj ABC-亀宓=(X AO* (AD X J4£)二、三角形的等积变形直纷也平行于CD ,可知两个三角形高相等,面积比等于它们的底之比两个三角形底相寻,面积比等于它们的高之比盼見口 = BDYD(★★★)已知三角形DEF的面积为18, AD : BD = 2 : 3, AE : CE= 1 : 2, BF : CF = 3 : 2,则三角形ABC的面积为?H例运(★★★)如图,已知三角形 ABC 面积为1,延长AB 至D ,使BD = AB ;延长BC 至E ,使CE = 2BC ; 延长CA 至F ,使AF = 3AC ,求三角形 DEF 的面积。

心(★★★★)如图将四边形 ABCD 四条边AB 、CB 、CD 、AD 分别延长两倍至点 E 、F 、G 、H ,若四边形2ABCD 的面积为5cm ,则四边形EFGH 的面积是多少?图中三角形 ABC 的面积是180平方厘米,D 是BC 的中点,AD 的长是AE 长的3倍,EF 的 长是BF 长的3倍。

那么三角形 AEF 的面积是多少平方厘米(★★★★)如图,大长方形由面积是 12平方厘米、24平方厘米、36平方厘米、48平方厘米的四个小 长方形组合而成。

求阴影部分的面积。

(★★★)RDCFEAD B(★★★★★)在线测试题温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。

111 1. ★★★★ 设AD =-AB, BE = - BC, FC =-AC,如果三角形 DEF 的面积为19平方厘米, 3 4 5那么三角形ABC 的面积是多少平方厘米?D . 46.5(2009年“学而思杯”六年级)如图BC = 45 , AC = 21 , △ ABC 被分成9个面积相等的小三角形,那么 DI + FK= 1.共南的含义(3种形式)2+共爾面殺比等于两夷边的乘积比3+加辅助线构造共角三會彫4*三角形等积变形(由边的比得到面积的比)乩加辅助线构造等叔变形(通常为平行线〉A . 46.7B . 45.3C . 45.6 話故知新2 2 13 105132. ★★★如下图,将三角形 ABC 的BA 边延长1倍到D , CB 的边延长2倍到E , AC 边延D5. ★★图中的E 、F 、G 分别是正方形 ABCD 三条边的三等分点,如果正方形的边长是12 , 那么阴影部分的面积是()A . 50B . 48C . 56D . 456. ★★★如图,ABC -1 , BC =5BD , FGS 的面积是()。

几何五大模型

几何五大模型

、等积变换模型⑴等底等高的两个三角形面积相等;其它常见的面积相等的情况⑵两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比。

如上图S1 : S2=a: b⑶夹在一组平行线之间的等积变形,如下图$△ ACD反之,如果S AACD =S ABCD,则可知直线AB平行于CD。

⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于与它等底等高的平行四边形面积的一半;、鸟头定理(共角定理)模型五大模型一S A BCD '两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。

如图,在△ ABC中,D,E分别是AB,AC上的点(如图1)或D在BA的延长线上,E在AC上(如图2),则S A ABC: S A ADE=(AB "C):(AD XAE)① S 1 :S 2 =S 4:S 3或者 S 1 XS 3=S 2 xs 4② AO : OC =(S i +S 2 ):(S 4 +S 3 )蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不 规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例 关系。

梯形中比例关系(梯形蝴蝶定理”)① S 1 : S 3=a 2 : b 2② S 1 : S 3: S 2: S 4=a 2 : b 2 : ab : ab ;2③ 梯形S 的对应份数为(a +b )。

三、蝴蝶定理模型I)/T ---- i任意四边形中的比例关系(蝴蝶定理”:)四、相似模型相似三角形性质:①ADAEDE ABAC BC②SA ADE- S A ABC =AF所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它 们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方。

小学数学五大经典几何图形模型及解题思路精讲

小学数学五大经典几何图形模型及解题思路精讲

小学数学五大经典几何图形模型及解题思路精讲1、等积变换模型(1)等底等高的两个三角形面积相等;(2)两个三角形高相等,面积之比等于底之比;(3)两个三角形底相等,面积在之比等于高之比;(4)在一组平行线之间的等积变形。

【例题】如图,三角形A B C的面积是24,D、E、F分别是B C、A C、A D的中点,求三角形DE F的面积。

2、鸟头(共角)定理模型(1)两个三角形中有一个角相等或互补,这两个三角形叫共角三角形;(2)共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。

【例题】如图在△A B C中,D在B A的延长线上,E在AC上,且A B:A D=5:2,AE:E C=3:2,△A D E的面积为12平方厘米,求△ABC的面积。

3、蝴蝶模型(1)梯形中比例关系(“梯形蝴蝶定理”)①S2=S4(因为S△ABC= S△DBC,所以S△ABC-S△OBC= S△DBC-S△OBC)S1:S3=a2:b2②S1:S3:S2:S4= a2:b2:ab:ab③梯形S的对应份数为(a+b)2。

(2)任意四边形中的比例关系(“蝴蝶定理”)①S1:S2=S4:S3或者S1×S3=S4×S2;②AO:OC=(S1+S2):(S4+S3)蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径,通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。

【例题】如图,己知正方形AB C D的边长为10厘米,E为AD的中点,F为CE的中点,G为B F的中点,求三角形BD G的面积。

4、相似模型(1)相似三角形:形状相同,大小不相等的两个三角形相似。

(2)寻找相似模型的大前提是平行线:平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。

(3)相似三角形性质①相似三角形的一切对应线段(对应高、对应边)的比等于相似比;②相似三角形周长的比等于相似比;③相似三角形面积的比等于相似比的平方。

【资料汇编】最新几何五大模型

【资料汇编】最新几何五大模型

一、等积变换模型⑴等底等高的两个三角形面积相等;其它常见的面积相等的情况⑵两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比。

如上图12::S S a b⑶夹在一组平行线之间的等积变形,如下图ACD BCD S S =△△;反之,如果ACD BCD S S △△,则可知直线AB 平行于CD 。

⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于与它等底等高的平行四边形面积的一半;二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。

如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADES S AB AC ADAE △△五大模型1S 2S图1图2三、蝴蝶定理模型任意四边形中的比例关系(“蝴蝶定理”):①1243::S S S S 或者1324S S S S ②1243::AO OC S S S S 蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。

梯形中比例关系(“梯形蝴蝶定理”)①2213::S S a b②221324::::::S S S S a b ab ab ;③梯形S 的对应份数为2ab 。

四、相似模型相似三角形性质:金字塔模型沙漏模型①AD AE DE AF AB AC BC AG;②22::ADE ABC S S AF AG △△。

所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比;⑵相似三角形的面积比等于它们相似比的平方。

小学数学知识图形五大模型

小学数学知识图形五大模型

一、等积变换模型⑴等底等高的两个三角形面积相等;其它常见的面积相等的情况⑵两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比。

如上图12::S S a b =⑶夹在一组平行线之间的等积变形,如下图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD 。

⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于与它等底等高的平行四边形面积的一半;五大模型二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。

如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或在的延长线上,在上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△图1 图2三、蝴蝶定理模型任意四边形中的比例关系(“蝴蝶定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。

梯形中比例关系(“梯形蝴蝶定理”)①2213::S S a b =②221324::::::S S S S a b ab ab =; ③梯形的对应份数为()2a b +。

四、相似模型相似三角形性质:金字塔模型 沙漏模型 ①AD AE DE AFAB AC BC AG===; ②22::ADE ABC S S AF AG =△△。

所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方。

几何五大模型一之欧阳美创编

几何五大模型一之欧阳美创编

几何五大模型一、等积变换模型1、等底等高的两个三角形面积相等。

2、两个三角形高相等,面积比等于它们的底之比。

3、两个三角形底相等,面积比等于它的的高之比。

二、共角定理模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角三角形的面积比等到于对应角(相等角或互补角)两夹边的乘积之比。

三、蝴蝶定理模型(说明:任意四边形与四边形、长方形、梯形,连接对角线所成四部的比例关系是一样的。

)四、相似三角形模型相似三角形:是形状相同,但大小不同的三角形叫相似三角形。

相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比。

相似三角形的面积比等于它们相似比的平方。

五、燕尾定理模等积变形: 等积变形是小学几何里面一个非常重要的思想,小学所以的几何题,或多或少的都会用到等积变形的思想,几何五大模型也都是依托等积变形思想变化而成的。

一半模型平行四边形、梯形、任意四边形中的一些一半模型。

一、 模型归纳总结1、等面积变换模型(1)直线AB 平行于CD ,可知BCD ACD S S ∆∆=;反之,如果BCD ACD S S ∆∆=,则可知直线AB 平行于CD .如图A(2)两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比;::ABD ACD S S BD CD =△△如图B图A 图B(3)一半面积关系【例1】、如图,每一个正方形四边中点的连线构成另一内接小正方形,则阴影部分面积为原正方形面积的几分之几?【例2】、如右图,过平行四边形ABCD 内的一点P 作边的平行线EF 、GH ,若PBD ∆的面积为8平方分米,求平行四边形PHCF 的面积比平行四边形PGAE 的面积大多少平方分米?【例4】、如图1,一个长方形被切成8块,其中三块的面积分别为12,23,32,则图中阴影部分的面积为_____二、 不规则图形求面积的常用方法【例5】、右图中两个半径为1的14圆扇形'A O B ''与AOB 叠放在一起,POQO '是正方形,则整个阴影图形的面积是。

小升初图形专题——五大模型

小升初图形专题——五大模型

一、等积变换模型(1)等底等高的两个三角形面积相等;(2)两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比。

12::S S a b =(3)夹在一组平行线之间的等积变形,如下图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD 。

(4)正方形的面积=边长×边长=对角线×对角线÷2S 正方形=a ×a S 正方形=b×b÷2(5)三角形面积等于与它等底等高的平行四边形面积的一半;1S 2S二、鸟头定理(共角定理)模型【共角三角形】定义:两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

规律:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。

如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△图1 图2三、蝴蝶定理模型任意四边形中的比例关系(“蝴蝶定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。

通过构造模型:一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。

梯形中比例关系(“梯形蝴蝶定理”)①2213::S S a b =②221324::::::S S S S a b ab ab =;③梯形S 的对应份数为()2a b +。

四、相似模型相似三角形性质:金字塔模型沙漏模型①AD AE DE AFAB AC BC AG===;②22::ADE ABCS S AF AG=△△。

所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:(1)相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比;(2)相似三角形的面积比等于它们相似比的平方。

小学奥数之几何五大模型

小学奥数之几何五大模型

一、等积变换模型⑴等底等高的两个三角形面积相等;其它常见的面积相等的情况⑵两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比。

如上图12::S S a b =⑶夹在一组平行线之间的等积变形,如下图ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD 。

⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于与它等底等高的平行四边形面积的一半; 二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。

共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。

如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△图1 图2三、蝴蝶定理模型任意四边形中的比例关系(“蝴蝶定理”):①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。

梯形中比例关系(“梯形蝴蝶定理”) ①2213::S S a b =②221324::::::S S S S a b ab ab =; ③梯形S 的对应份数为()2a b +。

四、相似模型相似三角形性质:金字塔模型 沙漏模型①AD AE DE AFAB AC BC AG===; ②22::ADE ABC S S AF AG =△△。

所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五大模型三角形等积变
形共角模型
GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-
小升初几何重点考查内容
(★★★)
已知三角形DEF的面积为18,AD∶BD=2∶3,AE∶CE=1∶2,BF∶CF=3∶2,则三角形ABC的面积为?
(★★★)
如图,已知三角形ABC面积为1,延长AB至D,使BD=AB;延长BC至E,使CE=2BC;延长CA至F,使AF=3AC,求三角形DEF的面积。

(★★★★)
如图将四边形ABCD四条边AB、CB、CD、AD分别延长两倍至点E、F、G、H,若四边形ABCD的面积为5cm2,则四边形EFGH的面积是多少?
(★★★)
图中三角形ABC的面积是180平方厘米,D是BC的中点,AD的长是AE长的3倍,EF的长是BF长的3倍。

那么三角形AEF的面积是多少平方厘米
(★★★★)
如图,大长方形由面积是12平方厘米、24平方厘米、36平方厘米、48平方厘米的四个小长方形组合而成。

求阴影部分的面积。

(★★★★★)
(2009年“学而思杯”六年级)
如图BC=45,AC=21,△ABC被分成9个面积相等的小三角形,那么DI+FK =_____。

在线测试题
温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。

1.★★★★设1
11,,,345
AD AB BE BC FC AC ===如果三角形DEF 的面积为19平方厘米,那么三角形ABC 的面积是多少平方厘米?
A .46.7
B .45.3
C .45.6
D .46.5
F
E
D
C B
A
2.★★★如下图,将三角形ABC 的BA 边延长1倍到D ,CB 的边延长2倍到E ,AC 边延长1倍到F 。

如果三角形ABC 的面积等于1,那么三角形DEF 的面积是多少?
A .10
B .8
C .9
D .
11
E
F
D
C
B
A
3.★★★★★如图,把四边形ABCD 的各边都延长3倍,得到一个新四边形EFGH ,如果ABCD 的面积是6,则EFGH 的面积是( )? A .130 B .145 C .160 D .150
4.★★★★如图, D 是BC 的中点,AD 的长是AE 长的3倍,EF 的长是BF 长的3倍.三角形AEF 的面积是18平方厘米,三角形ABC 的面积是( )平方厘米?
A .144
B .168
C .72
D .100
5.★★图中的E 、F 、G 分别是正方形ABCD 三条边的三等分点,如果正方形的边长是12,那么阴影部分的面积是( ) A .50 B .48 C .56 D .45
E G
C
B
6.★★★如图,1ABC S =△,5BC BD =,4AC EC =,DG GS SE ==,AF FG =。

三角形FGS 的面积是( )。

A .
413
B .
25
C .
23
D .
110
S
G
F E D
C B
A。

相关文档
最新文档