寒冷地区路基冻害整治解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
寒冷地区路基冻害整治
摘要
青藏铁路格尔木至拉萨段,全长1118公里,其中多年冻土区为632公里。青藏铁路的修建关键问题是,冻土和路基冻害。因此解决冻土与路基冻害对寒冷地区铁路的发展有着尤为重要的意义。
首先,我们总体分析了寒冷地区铁路路基冻害的主要分布地区、类型及形成的原因对铁路运营造成的影响。其次介绍了冻土和冻胀是产生冻害的原因以及冻土的类型地温分区、危害。最后提出了整治各种路基冻害的综合措施和新型材料EPS板。
关键词
冻土(frozen soil) 、路基冻害(frost damage)、EPS材料
序言
第一章路基冻害的影响
路基是轨道的基础,它承受着轨道及机车车辆的静荷载和动荷载,并将荷载向地基深处传递扩散。它必须保持稳定、坚固,这样才能确保铁路高速、高密、高载的良好状态,不出现可能危及线路正常运营的形变。
路基冻害是寒冷地区铁路线路上分布很广,影响铁路安全及正常运营的常见病害,它与寒冷的气候有关,冰冻线能达到相当深度,又涉及到土的特性。在我国东北、西北、西南以及刚刚建成通车的青藏铁路线上都存在这路基冻害,路基冻害因其分布广、时间长、工作量大、影响行车非常严重占首位。哈局、沈局、呼局、兰局等管内大部分都铺设在冻土地带上,路基冻害较为严重。重要表现形式为:在冬季路基土体冻结时,除路基纵断面在短距离地段内产生不均匀冻胀或路基发生冻结裂缝外,还存在这冰锥、冻胀丘、路基融沉及路基边坡滑坍等一些独特的表现形式。冻害发生发展时期,一般从每年10月中旬起至次年7月中旬止完全回落完。对铁路线路影响很大。
每年都会投入大量人力物力来处理路基冻害。根据历年调查统计报告,沈局关内有冻害207处多,其中冻害高50mm~300mm的冻害6处、50mm 以下的冻害198处,冰锥3处。冬季线路冻胀凸起冰锥流水成冰,冰水漫及线路影响行车。为了预防冻害事故的发生,在冬季需派人看守观察组织刨冰,每年仅用于刨冰的工数就达5000多工日。夏季路基融沉病害情况严重,在管内就有200多处严重下沉地段。有的地段融沉很快,几天就的抬道一次,全年累计下沉达200mm~300mm,情况严重的,如潮乌线8km ,在1972年曾发生过5小时内,路基连续融沉达1。4m,造成列车颠覆事故。每年用于路基冻害融沉抬道的砂石料数量就达30000多立方米,使用的劳动里有20000多工日。
可见,路基冻害的存在,不仅增加了维修养护劳动里,影响了正常维护,加大了维修养护的成本,而且使的线路质量下降,使用年限大大缩短,因此如何整治寒冷地区路基冻害减少维修养护工作量,确保行车安全一直受到各级
领导的高度重视。经过多年的研究和实践,总结出了一套防治冻害的措施,实验了多种处理病害的新方法,取得了一系列成果,进一步完善了寒冷地区路基冻害的防治技术,对今后的设计和施工具有重要意义。
第二章冻胀的形成原因
路基冻害是一个物理力学过程,土冻结是由于水热动力变化而产生的应力应变状态。凡温度等于或低于摄氏零度且含有冰的土称为冻土(frozen soil)。冻土冻胀时能够引起铁路线路变形而形成冻害。当以冻胀的土融化时由于融土的透水性和压缩性提高而使其承载力显著下降,当水分过饱和时又会产生路基基床翻浆冒泥等。因此对路基冻土的发展变化规律的研究就非常重要。
冻土是一种复杂的天然复合体,土在冻结过程中是有条件的。如果条件全则冻土冻胀量大,反之则其冻胀量小或不冻胀。因此冻土的冻胀必须应当具有土、水、温及力四个条件既:
(一) 土质对冻胀的影响
冻胀的一个重要物理指标是土的分散性,即表示矿物成分形状,粒度成分及结构特性的土的离散性强度。根据土颗粒同水相互作用的主动性,土具有不同的冻结变形能力。通过大量的现场观测得知:一般情况下,颗粒粒径大于0。1mm组成得碎石、砾石、砂类土,无冻胀性或冻胀很小;颗粒粒径小于0。1mm组成得粘性土有较大的冻胀性;特别是粉、粘粒含量大于15%、容重较小的粉质土冻胀性最强烈。
另外土的密实度对冻胀有着一定影响,在同一含水量下,干容重不同,冻胀系数可相差很大。其变化规律,在相同条件下,冻胀系数随含水量的增大而增大。
(二)温度对冻胀的影响
温度是冻胀的四大要素之一,也是唯一的自然因素。温度特征,在土冻胀过程可由温度间隔(梯度)来表示,温度变幅的极端值,即冻胀过程的起始温度及冻胀停止温度。实践证明,这个温度变化幅度相当大,它取决于土的分散性、骨架特性、土的水理和物理化学性质。所谓温度对冻胀的影响,主要是指环境温度对路基土体冻胀的影响作用。其作用有:一是土层内的冷却速度(冻结速率)与冻胀的关系。冻结速率直接影响冻胀率,冻结速率快时冻胀率小,但也不是冻结速率越慢则冻胀量越大。而是对某一种特定条件的土,都有一个最适宜的冻结速率,在这个冻结速率下的冻胀量最大;二是在整个相转换区内各种土温(包括温度梯度)与冻胀的关系。当土层温度处于相转换区,且冻结速率较小时,土中水分迁移的条件最充分,可以形成较大的冻胀。
(三)水分对冻胀的影响
在土冻结过程中,水分这一内在因素是影响冻胀的很主要因素。土中有水分是造成冻胀的必要条件,但含水的土不一定都会有冻胀。只有在土的含水量达到或超过一定的数值后,才发生冻胀,在有地下水补给时,就会发生强烈的冻胀,因此,含水量的变化直接左右着土的冻胀强度。
(四)外部荷载对冻胀的影响
外部荷载对冻胀具有压抑或防止的作用。因为在荷载作用下土被压密,使土的起始温度降低、初始含水量减少,且水分迁移过程也受到抑制。这是强夯法能防止冻害的基本原因。
实践证明:当已冻和未冻水总体的增量超过了该土体原来无孔隙水的空隙体积时,才是冻土冻胀的基本条件。如果无空隙水的空隙体积大于或等于结冰水的增量,使不能产生土的冻胀。
在寒冷地区因大气负温影响会使土中水冻结从而成为冻土。而水又与冻土紧密相关,我们知道土中水分区分为结合水和自由水两大类。结合水根据其所受分子引力的大小分为强结合水和弱结合水,自由水又分为重力水
与毛细水。重力水在0摄氏度时冻结,毛细水因受表面张力的作用其冰点稍低于0摄氏度;结合水的冰点则随着共受到的引力增加而降低,弱结合水的外层在-0。5摄氏度时冻结,越靠近土料表面其冰点越低,弱结合水要在
-20~-30摄氏度时才会全部冻结,而强结合水在-78摄氏度仍不冻结。
当大气温度降至负温时,土层中的温度也随之降低,土体孔隙中的自由水首先在0℃时冻结成冰晶体。随气温的继续下降,偌结合水的外层也开始冻结,使冰晶体逐渐扩大。这样使冰晶体周围土粒的结合水膜件薄,土粒就产生剩余的分子引力,另外由于结合水膜的减薄,使得水膜中的离子浓度增加(因为结合水中的水分子结合成冰晶体,使离子浓度相应增加)这样就产生渗透压力(当两中水溶液的浓度不同时,会在他们之间产生一种压力差,使浓度