2018春中考数学《图形规律题:针对演练》
2018中考数学《规律探索》专题复习试题含解析
![2018中考数学《规律探索》专题复习试题含解析](https://img.taocdn.com/s3/m/a04dde33eff9aef8941e06aa.png)
规律探索一、选择题1. 如图,将一张等边三角形纸片沿中位线剪成4 个小三角形,称为第一次操作;然后,将其中的一 个三角形按同样方式再剪成 4 个小三角形,共得到7 个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成 4 个小三角形, 共得到 10 个小三角形, 称为第三次操作; , 根据以上操作, 若要得到 100 个小三角形,则需要操作的次数是( )A .25B .33C .34D . 50 【考点】 规律型:图形的变化类.【分析】 由第一次操作后三角形共有 4 个、第二次操作后三角形共有( 4+3)个、第三次操作后三角 形共有( 4+3+3)个,可得第n 次操作后三角形共有4+3( n ﹣ 1)=3n+1 个,根据题意得 3n+1=100, 求得 n 的值即可.【解答】 解:∵第一次操作后,三角形共有 4 个; 第二次操作后,三角形共有 4+3=7 个; 第三次操作后,三角形共有 4+3+3=10 个;,∴第 n 次操作后,三角形共有 4+3( n ﹣ 1) =3n+1 个; 当 3n+1=100 时,解得: n=33, 故选: B .2. 观察图中正方形四个顶点所标的数字规律,可知,数 2016 应标在( )A .第 C .第504 个正方形的左下角 505 个正方形的左上角B.第D.第504 个正方形的右下角505 个正方形的右下角【考点】规律型:点的坐标.【分析】根据图形中对应的数字和各个数字所在的位置,可以推出数 2016 在第多少个正方形和它所在的位置,本题得以解决.【解答】解:∵ 2016÷4=504,又∵由题目中给出的几个正方形观察可知,每个正方形对应四个数,而第一个最小的数是0,0 在右下角,然后按逆时针由小变大,∴第 504 个正方形中最大的数是2015,∴数 2016 在第 505 个正方形的右下角,故选 D.3 .( 2016. 山东省临沂市, 3 分)用大小相等的小正方形按一定规律拼成下列图形,则第 n 个图形中小正方形的个数是()22A. 2n+1 B . n ﹣ 1 C . n +2n D . 5n ﹣ 2【分析】由第 1 个图形中小正方形的个数是 2 2﹣ 1、第 2 个图形中小正方形的个数是 3 2﹣ 1 、第 3 个图形中小正方形的个数是 4 2﹣ 1,可知第 n 个图形中小正方形的个数是( n+1 )2﹣ 1 ,化简可得答案.【解答】解:∵第 1 个图形中,小正方形的个数是: 22﹣ 1=3 ;第2 个图形中,小正方形的个数是: 3 2﹣ 1=8 ;第3 个图形中,小正方形的个数是: 4 2﹣ 1=15 ;,∴第 n 个图形中,小正方形的个数是:( n+1 )2﹣ 1=n 2+2n+1 ﹣ 1=n 2 +2n ;故选: C.【点评】本题主要考查图形的变化规律,解决此类题目的方法是:从变化的图形中发现不变的部分和变化的部分及变化部分的特点是解题的关键.二、填空题1.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n 个图形中共有三角形的个数为4n﹣ 3 .【考点】规律型:图形的变化类.【分析】结合题意,总结可知,每个图中三角形个数比图形的编号的 4 倍少 3 个三角形,即可得出结果.【解答】解:第①是 1 个三角形, 1=4×1﹣ 3;第②是 5 个三角形, 5=4×2﹣ 3;第③是 9 个三角形, 9=4×3﹣ 3;∴第 n 个图形中共有三角形的个数是4n﹣3;故答案为: 4n﹣ 3.【点评】此题主要考查了图形的变化,解决此题的关键是寻找三角形的个数与图形的编号之间的关系.2.如图,直线l : y=-43 x,点 A1 坐标为(- 3,0) . 过点 A1 作 x 轴的垂线交直线l 于点 B1,以原点 O为圆心, OB1 长为半径画弧交x 轴负半轴于点A2,再过点A2 作 x 轴的垂线交直线l 于点 B2,以原点 O为圆心, OB2 长为半径画弧交x 轴负半轴于点A3,, ,按此做法进行下去,点A2016 的坐标为.【考点】一次函数图像上点的坐标特征,规律型:图形的变化类.【分析】 由直线 l : y=- 4 x 的解析式求出 A1B1 的长,再根据勾股定理,求出 OB1 的长,从而得出 A23的坐标;再把 A 的横坐标代入 y= - 4 x 的解析式求出 A B 的长,再根据勾股定理,求出 OB 的长,从3 2 2 2 2 而得出 A3 的坐标; , ,由此得出一般规律.【解答】 解:∵点 A 1 坐标为(- 3,0),知 O A1=3,把 x=- 3 代入直线 y=- 4 x 中,得y=4 ,即A1B1=4. 3根据勾股定理,OB= 2 1 22 21 1 = 3 4 =5, 1 OA A B∴ A 坐标为(- 5, 0), O A=5;2 24 x 中,得 y=20 ,即 A B = 2把 x=- 5 代入直线 y=- 3 3 3 .2 22 2 2 2 2 根据勾股定理, OB2= A 2 B = ( 20 ) = 253 = 51,2 2 5 OA3 3 2 2∴A3 坐标为(-51 , 0),O A3= 51 ; 3 32把 x=- 51 代入直线 y=- 4x 中,得 y= 100 ,即 A3B3= 100.3 3 9 92 2 25 2 100 23 ( ) ( ) 125 5根据勾股定理, OB = OA A B = = ,3 9 9 = 233 3 3 3 3∴ A4 坐标为(-52, 0), OA4= 52;3 3,,n 1n 1同理可得 An 坐标为(-52, 0), OAn=52 ;n n3 32015∴ A2016 坐标为(-52014, 0)32015故答案为:( - 52014 , 0)3【点评】本题是规律型图形的变化类题是全国各地的中考热点题型,考查了一次函数图像上点的坐标特征 . 解题时,要注意数形结合思想的运用,总结规律是解题的关键 . 解此类题时,要得到两三个结果后再比较、总结归纳,不要只求出一个结果就盲目的匆忙得出结论。
2018届中考数学专题4 规律探索题 (共28张PPT)
![2018届中考数学专题4 规律探索题 (共28张PPT)](https://img.taocdn.com/s3/m/e5b0ab1179563c1ec5da7123.png)
考点·梳理自清
考题·体验感悟
考法·互动研析
类型一
类型二
解:(1)4 17 (2)猜想:(2n+1)2-4n2=2(2n+1)-1.证明如下: 左边=(2n+1)2-4n2=4n2+4n+1-4n2=4n+1, 右边=2(2n+1)-1=4n+2-1=4n+1. 左边=右边, 故(2n+1)2-4n2=2(2n+1)-1.
考点·梳理自清
考题·体验感悟
考法·互动研析
类型一
类型二
例4(2012· 安徽,17)在由m×n(m×n>1)个小正方形组成的矩形网 格中,研究它的一条对角线所穿过的小正方形个数f, (1)当m,n互质(m,n除1外无其他公因数)时,观察下列图形并完成 下表:
考点·梳理自清考题·Fra bibliotek验感悟考法·互动研析
类型一
类型二
解析:(1)1+3+5+7=16=42, 设第n幅图中球的个数为an, 观察,发现规律:a1=1+3=22,a2=1+3+5=32,a3=1+3+5+7=42,…, 故an-1=1+3+5+…+(2n-1)=n2. (2)观察图形发现: 图中黑球可分三部分,1到n行,第n+1行,n+2行到2n+1行, 即1+3+5+…+(2n-1)+[2(n+1)-1]+(2n1)+…+5+3+1=1+3+5+…+(2n-1)+(2n+1)+(2n-1)+…+5+3+1=an2 2 2 1+(2n+1)+an-1=n +2n+1+n =2n +2n+1. 答案:(1)4 n2 (2)2n+1 2n2+2n+1
中考数学压轴题冲刺提升专题04图形规律探索题含解析
![中考数学压轴题冲刺提升专题04图形规律探索题含解析](https://img.taocdn.com/s3/m/c03ca089783e0912a3162a07.png)
专题04图形规律探索题【例1】(2018·河师大附中模考)如图,在平面直角坐标系中,等腰直角三角形OA1A2 的直角边OA1 在y轴的正半轴上,且OA1=A1A2=1,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,⋯,依此规律,得到等腰直角三角形OA2017A2018,则点A2017 的坐标为A8yA 2A1xA 7O A 3A4A6A 5【答案】(0,2 1008).【解析】解:由题意知:A1(0,1) ,A2(1,1) ,OA2=A2A3= 2 ,OA3=2,∴A3(2,0),同理,A4(2, -2) ,A5(0, -4) ,A6( -4, -4) ,A7( -8,0) ,A8( -8,8) ,A9(0,16) ⋯⋯每隔8 个点恰好处于同一坐标系或象限内,2017÷8=252⋯⋯1,即点A2017在y轴正半轴上,横坐标为0,1各点纵坐标的绝对值为:2 0,20,2 1,2 1,2 2,2 2,2 3,2 3,⋯⋯0,22017÷2=1008⋯⋯1,可得点A2017 的纵坐标为:2 1008,故答案为(0,2 1008).【变式1-1 】(2019·济源一模)如图,在一个单位为1 的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,⋯,是斜边在x轴上、斜边长分别为2 ,4,6,⋯的等腰直角三角形.若△A1A2A3 的顶点坐标分别为A1(2 ,0) ,A2(1 ,-1) ,A3(0 ,0) ,则依图中所示规律,A2019 的横坐标为()A.-1008 B.2 C.1 D.1011【答案】A.【解析】解:观察图形可知,奇数点在x轴上,偶数点在象限内,所以A2019 在x轴上,A1,A5,A9,A13⋯⋯,A4n-3 在x 正半轴,4n-3=2019,n,所以A2019不在x 正半轴上;A3(0,0 ),A7(-2,0 ),A11(-4,0 ),A15(-8,0 )⋯⋯,3=4×0+3,7=4×1+3,11=4×2+3,15=4×3+3,⋯⋯,2019=4×504+3,∴-2×504=-1008,即A2019的坐标为(-1008,0),故答案为:A.【变式1-2 】(2019·洛阳三模)如图,在平面直角坐标系中,将正方形OABC绕点O 逆时针旋转45°后得到正方形OA1B1C1,称为一次旋转,依此方式,⋯⋯,绕点O连续旋转2 019 次得到正方形OA2 019B2019C2 019 ,如果点A 的坐标为(1 ,0) ,那么点B2 019 的坐标为.2【答案】(- 2 ,0 ).【解析】由旋转及正方形性质可得:B (1,1), B 1 (0, 2 ) , B 2( -1, 1) ,B 3( - 2 ,0) ,B 4( -1, -1) ,B 5(0, - 2 ) ,B 6(1, -1) ,B 7( 2 ,0) , B 8(1, 1) ,⋯ ⋯∴360÷45=8, 2019÷8=252⋯ ⋯ 3, ∴点 B 2019落在 x 轴负半轴上, 即 B 2019( - 2 ,0) , 故答案为:(- 2 ,0 ).【例 2】如图,在平面直角坐标系中,将△ ABO 绕点 A 顺指针旋转到△ AB 1C 1 的位置,点 B 、O 分别落在 点 B 1、C 1处,点 B 1 在 x 轴上,再将△ AB 1 C 1绕点 B 1顺时针旋转到△ A 1B 1C 2 的位置,点 C 2 在 x 轴上,将△ A 1B 1C 2 绕点 C 2顺时针旋转到△ A 2B 2C 2 的位置,点 A 2 在 x 轴上,依次进行下去⋯ ,若点 A ( 53,0), B (0,4),则点B 2016 的横坐标为( )A .5B .12C . 10070D .10080【答案】 D .【解析】解:由图象可知点 B 2016 在第一象限,∵OA = 53,OB =4,∠AOB =90°,3在Rt△BOA中,由勾股定理得:AB=133,可得:B2(10,4),B4(20,4),B6(30,4),⋯∴点B2016横坐标为10080.故答案为:D.【变式2-1 】(2019·开封二模)我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如1,3,6,10⋯)和“正方形数”(如1,4,9,16⋯),在小于200 的数中,设最大的“三角形数”为m,最大的“正方形数”为n,则m+n 的值为()A.33 B.301 C.386 D.571【答案】C.【解析】解:由图形知:第n 个三角形数为1+2+3+⋯+n=n n21,第n 个正方形数为n 2,当n=19时,n n21=190<200,当n=20时,n n21=210>200,所以最大的三角形数:m=190;当n=14时,n 2=196<200,当n=15时,n 2=225>200,所以最大的正方形数:n=196,则m+n=386,所以答案为:C.41. 如图,边长为1 的菱形 ABCD 中,∠ DAB =60°.连接对角线AC ,以 AC 为边作第二个菱形 ACC 1D 1,使 ∠D 1AC =60°;连接 AC 1,再以 AC 1为边作第三个菱形 AC 1C 2D 2,使∠ D 2AC 1=60°;⋯ ,按此规律所作的第 n 个 菱形的边长为.n 1【答案】 .3【解析】解:∵四边形 ABCD 是菱形,∠ DAB =60°,∴ AB =BC =1,∠ ACB =∠CAB =30°, ∴AC = 3 AB = 3 ,同理可得: AC 1= 3 AC =( 3 ) 2= 3 AC 1=3 3 =( 3 ) 2,AC2,AC3,⋯ ⋯ n 1第 n 个菱形的边长为: 3,故答案为:3n 1.2. 如图,在平面直角坐标系中,∠ AOB =30°,点 A 的坐标为( 2,0),过点 A 作 AA 1⊥ OB ,垂足为点 A 1, 过A 1 作 A 1A 2⊥x 轴,垂足为点 A 2;再过点 A 2 作 A 2A 3⊥OB ,垂足为点 A 3;再过点 A 3 作 A 3A 4⊥x 轴,垂足为点 A 4⋯ ; 这样一直作下去,则A 2017的横坐标为( )A . 3 2 ?( 3 2 ) 2015B . 3 2 ?( 3 2 2016C . 3 )2?(3 2 2017 D . 3)2?( 3 2)2018 【答案】 B .【解析】解:∵∠ AOB =30°,点 A 坐标为( 2,0), ∴OA =2,53 2OA = 3, OA 2=3 2 OA 1=2× 3 2 2 ,OA 3= 3 2OA 2=2×3 2 3 ∴OA 1=⋯ ,∴OA n =( 3 2) n OA =2( 3 2n).∴OA 2018=2×(3 2) 2018 = 32?( 3 2)2016 故答案为: B .3. (2018· 安阳一模)如图,函数yx x 4 0 x 2 2x 8 2 x 4的图象记为C 1,它与 x 轴交于点 O 和点 A 1,将 C 1绕点 A 1选择180°得 C 2,交 x 轴于点 A 2⋯ ⋯ ,如此进行下去,若点 P (103 , m ) 在图象上,则m 的值是( )A . -2B . 2C . -3D . 4【答案】 A .【解析】 解:由图可知: 横坐标每间隔 8 个单位, 函数值相同, 即函数图象重复周期为8,103÷8=12⋯ ⋯ 5,当 x =5时, y =-2,即 m =- 2,故答案为: A .4.(2019·郑州二模) 如图,弹性小球从点 P (0 ,1) 出发,沿所示方向运动, 每当小球碰到正方形 DABC 的边时反弹,反弹时反射角等于入射角,当小球第 1 次碰到正方形的边时的点为P 1(-2 ,0) ,第 2 次碰到 正方形的边时的点为P 2,⋯ ⋯ ,第 n 次碰到正方形的边时的点为Pn ,则点 P 2 019 的坐标是( )A .(0 ,1)B .(-4 ,1)C .(-2 ,0)D .(0 ,3)6【答案】D.【解析】解:根据图象可得:P1(-2,0) ,P2(-4,1) ,P3(0,3) ,P4(-2,4) ,P5(-4,0) ,P6(0,1) ,P(-2,0 )⋯⋯7 2019÷6=336⋯⋯3,即P2019(0,3 ),故答案为:D.5.(2019·偃师一模)如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,点B 在y轴上,OA=1,先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2019 次,点B 的落点依次为B1,B2,B3,⋯,则B2 019 的坐标为()A. (1010,0)B.(1310.5,32) C. (1345,32) D. (1346,0)【答案】D.【解析】解:连接AC,如图所示.∵四边形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等边三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.由图可知:每翻转6 次,图形向右平移4.∵2019=336×6+3,∴点B3 向右平移1344(即336×4)到点B2019.∵B3 的坐标为(2,0),7∴B2019 的坐标为(1346,0),故答案为:D.6. (2019·新乡一模)如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到△1,△2,△3,△4,⋯,则△2019 的直角顶点的坐标为()A.(8076,0)B.(8064,0)C.(8076,125 )D.(8064,125)【答案】A.【解析】解:∵点A(﹣3,0)、B(0,4),由勾股定理得:AB=5,由图可知,三个三角形为一个循环,经历一次循环前进的水平距离为:12,2019÷3=673,直角顶点在x轴上,673×12=8076,∴△2019 的直角顶点的坐标为(8076,0).故答案为:A.7. (2019·西华县一模)如图,在平面直角坐标系中,函数y=2x 和y=﹣x 的图象分别为直线l 1,l 2,过点(1,0)作x轴的垂线交l 1 于点A1,过点A1 作y轴的垂线交l 2 于点A2,过点A2 作x轴的垂线交l 1 于点A3,过点A3 作y轴的垂线交l 2 于点A4,⋯依次进行下去,则点A2017 的坐标为.【答案】(2 1008,21009).8【解析】解:由图可知:A1(1,2),A2(﹣2,2),A3(﹣2,﹣4),A4(4,﹣4),A5(4,8),⋯,∵2017=504×4+1,∴点A2017在第一象限,∵2017=1008×2+1,∴A2n+1((﹣2)n,2(﹣2)n )(n为自然数).∴A2017 的坐标为((﹣2) 1008,2(﹣2)1008)=(21008,21009).故答案为:(2 1008,21009).8. (2019·郑州联考)如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2018 次得到正方形OA2018B2018C2018,如果点A的坐标为(1,0),那么点B2018 的坐标为()A.(1,1)B.(0,2 )C.(2 ,0)D.(﹣1,1)【答案】D.【解析】解:∵四边形OABC是正方形,OA=1,∴B(1,1),连接OB,在Rt△OAB中,由勾股定理得:OB=2 ,由旋转性质得:OB=OB1=OB2=OB3=⋯=2 ,∴B1(0,2 ),B2(﹣1,1),B3(﹣2 ,0),⋯,360÷45=8,每8 次一循环,2018÷8=252⋯⋯2,∴点B2018的坐标为(﹣1,1).故答案为:D.9.(2019·安阳二模)将直角三角形纸板OAB按如图所示方式放置在平面直角坐标系中,OB在x轴上,OB=4,OA=2 3 .将三角形纸板绕原点O逆时针旋转,每秒旋转60°,则第2019 秒时,点A的对应点A′的坐标为()9A.(﹣3,﹣3 )B.(3,﹣3 )C.(﹣3,3 )D.(0,2 3 )【答案】A.【解析】解:360÷60=6,即每6 秒一循环,2019÷6=336⋯⋯3,即2019 秒时,点A与其对应点A′关于原点O对称,∵OA=4,∠AOB=30°,可得:A(3, 3 ) ,∴第2019 秒时,点A的对应点A′的坐标为(-3, -3 ) ,故答案为:A.10. 正方形ABCD的位置在坐标中如图所示,点A、D的坐标反别为(1,0)、(0,2),延长C B交x轴于点A1,作正方形A1B1C1C,延长C1B1 交x轴于点A2,作正方形A2B2C2C1,⋯按这样的规律进行下去,第2017 个正方形的面积为40323【答案】52.【解析】解:∵四边形ABCD是正方形,∴AD=AB,∠DAB=∠ABC=∠ABA1=90°=∠DOA,∴∠ADO+∠DAO=90°,∠DAO+∠BAA1=90°,∴∠ADO=∠BAA1,10∵∠DOA=∠ABA1,∴△DOA∽△ABA1,∴OA B A1 1OD AB 2,由勾股定理得:AB=AD= 5 ,∴BA1= 52 ,2∴第2 个正方形A1B1 C1 C的边长A1C=A1B+BC=3 52,面积=3 52,23 3 5同理,第3 个正方形的面积为:,2 223 3 3 5第4 个正方形的面积为:,⋯⋯2 2 240323∴第2017 个正方形的面积为:5 .240323即答案为:5.211. (2019·郑州模拟)如图所示,一动点从半径为2 的⊙O 上的A0 点出发,沿着射线A0O 方向运动到⊙O 上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O 上的点A2处;接着又从A2 点出发,沿着射线A2O 方向运动到⊙O 上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O 上的点A4 处;⋯⋯按此规律运动到点A2 017处,则点A2 017 与点A0间的距离是【答案】4.【解析】解:由图分析可知,A6 点与A0 点重合,2017÷6=336⋯⋯1,即点A2 017 与A1 重合,11∵⊙O的半径为2 ,∴点A2 017 与点A0间的距离是4.12. (2018·洛宁县模拟)如图,由一些点组成形如正多边形的图案,按照这样的规律摆下去,则第n(n>0)个图案需要点的个数是.【答案】n 2+2n.【解析】解:由图知,第1 个图形点数为3+0×3,第2 个图形点数为4+1×4;第3 个图形点数为5+2×5;第4 个图形点数为6+3×6⋯⋯第n 个图形点数为:(n+2)+(n-1)(n+2)=n 2+2n,即答案为:n 2+2n.13.(2018·泌阳三模)如图所示的坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1,先将菱形OABC沿x轴的正方形无滑动翻转,每次翻转60°,连续翻转2017 次,点B的落点分别是B1,B2,B3,⋯⋯,则B2017 的坐标为【答案】(,3 ).【解析】解:由题意知:OB= 3 OA= 3 ,即B(0, 3) ,∴B1 的纵坐标为:32,横坐标为:3 ×32=32 ,即B1( 32,32) ,12由图可知,每翻折6 次,图形向右平移4 个单位,2017=336×6+1,求得:B2017(336×4+ 32,3 ),即B2017(,3 ),故答案为:(,3).14. (2019·许昌二模)如图,在平面直角坐标系中,点A1,A2,A3,⋯⋯和点B1,B2,B3,⋯⋯分别在直线12019 y x b 和x轴上,△OA1B1,△B1A2B2,△B2A3B3⋯⋯都是等腰直角三角形,若点A1(1,1) ,则点A 5的纵坐标是20183【答案】.2【解析】解:如图,分别过A1,A2,A3 作x轴的垂线,∵点A(1,1) 在直线1y x b 上,5∴b= 45 ,由△OA1B1 是等腰直角三角形,得:OB1=2,设A2( x, y) ,则B1C2=x-2,y= x-2,∴x-2= 1 4x ,解得:x= 72,y= 32,即A2 的纵坐标为:32 ;5 51329 3同理可得: A 3 的纵坐标为:,4 2即 A n 的纵坐标是 A n -1纵坐标的-1纵坐标的3 2倍,20183 即 A 2019的纵坐标为: .215. ( 2019· 平顶山二模)在平面直角坐标系中,正方形 ABCD 的位置如图所示,点 A 的坐标为(1 ,0) ,点 D 的坐标为(0 ,2) ,延长C B 交 x 轴于点 A 1,作正方形 A 1C C 1B 1;延长C 1B 1 交 x 轴于点 A 2,作正方 形 A 2C 1C 2B 2;⋯ ,按照这样的规律作正方形,则点 B 2 019 的纵坐标为 .20193【答案】 .2【解析】解:过B 作 BH ⊥x 轴于 H ,由一线三直角模型,可知△ ADO ≌ △ BAH ,即 BH =OA =1,即 B 点纵坐标为1,3 同理得: B 1 点纵坐标为2,B 2 点纵坐标为3 2 2 ,B 3点纵坐标为 32 33 2,⋯ ⋯ B 2019 点纵坐标为2019 ,20193即答案为: .214中考数学压轴题冲刺提升专题04图形规律探索题含解析15。
2018年中考数学复习 题型研究题型四新定义与阅读理解题类型二新概念学习型针对演练
![2018年中考数学复习 题型研究题型四新定义与阅读理解题类型二新概念学习型针对演练](https://img.taocdn.com/s3/m/1f3e75322af90242a895e555.png)
第二部分题型研究题型四新定义与阅读理解题类型二新概念学习型针对演练1.若x 1,x 2是关于x 的方程x 2+bx +c =0的两个实数根,且|x 1|+|x 2|=2|k |(k 是整数),则称方程x2+bx +c =0为“偶系二次方程”.如方程x 2-6x -27=0,x 2-2x -8=0,x 2+3x -274=0,x 2+6x -27=0,x 2+4x +4=0都是“偶系二次方程”.(1)判断方程x 2+x -12=0是否是“偶系二次方程”,并说明理由;(2)对于任意一个整数b ,是否存在实数c ,使得关于x 的方程x 2+bx +c =0是“偶系二次方程”,并说明理由.2.设二次函数y 1,y 2的图象的顶点分别为(a,b )、(c,d ),当a =-c ,b =2d ,且开口方向相同时,则称y 1是y 2的“反倍顶二次函数”.(1)请写出二次函数y =x 2+x +1的一个“反倍顶二次函数”;(2)已知关于x 的二次函数y 1=x 2+nx 和二次函数y 2=nx 2+x ;函数y 1+y 2恰是y 1-y 2的“反倍顶二次函数”,求n .3.函数y =k x 和y =-k x (k ≠0)的图象关于y 轴对称,我们定义函数y =k x 和y =-kx(k ≠0)相互为“影像”函数:(1)请写出函数y =2x -3的“影像”函数:________;(2)函数________的“影像”函数是y =x 2-3x -5;(3)若一条直线与一对“影像”函数y =2x (x >0)和y =-2x(x <0)的图象分别交于点A、B、C (点A、B 在第一象限),如图,如果CB ∶BA =1∶2,点C 在函数y =-2x(x <0)的“影像”函数上的对应点的横坐标是1,求点B 的坐标.第3题图4.如图,在平面直角坐标系中,已知点P 0的坐标为(1,0),将线段OP 0按逆时针方向旋转45°,再将其长度伸长为OP 0的2倍,得到线段OP 1,又将线段OP 1按逆时针方向旋转45°,长度伸长为OP 1的2倍,得到线段OP 2,如此下去,得到线段OP 3,OP 4…,OP n (为正整数).(1)求点P 3的坐标;(2)我们规定:把点P n (x n ,y n )(n =0,1,2,3…)的横坐标x n 、纵坐标y n 都取绝对值后得到的新坐标(|x n |,|y n |)称为点P n 的“绝对坐标”,根据图中P n 的分布规律,求出点P n 的“绝对坐标”.第4题图考向2)几何类(杭州:2015.19;台州:2016.23,2015、2013.24;绍兴:2017.22,2013.22,2012.21)针对训练1.(2017绍兴)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图①,等腰直角四边形ABCD ,AB=BC ,∠ABC =90°.①若AB =CD =1,AB ∥CD ,求对角线BD 的长;②若AC ⊥BD ,求证:AD=CD .(2)如图②,在矩形ABCD 中,AB =5,BC =9,点P 是对角线BD 上一点,且BP =2PD ,过点P 作直线分别交边AD ,BC 于点E ,F ,使四边形ABFE 是等腰直角四边形.求AE 的长.。
中考数学复习材料 题型一 规律探索题(针对演练)
![中考数学复习材料 题型一 规律探索题(针对演练)](https://img.taocdn.com/s3/m/f94ac502ed630b1c59eeb5d4.png)
目录题型一规律探索题 (2)类型一探索图形累加规律 (2)类型二探索图形循环规律 (13)拓展类型数式规律 (16)题型一规律探索题类型一探索图形累加规律针对演练1. (2016荆州改编)下列图形是将黑白两种颜色的菱形纸片按一定的规律排列组成,第1个图形有4张白色纸片,第2个图形有7张白色纸片,第3个图形有10张白色纸片,…,依此规律,则第12个图形中白色纸片的个数为()第1题图A. 34B. 37C. 42D. 462. (2016重庆八中初三(下)第三次月考)下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第⑧个图案用火柴棒的根数为()第2题图A. 33B.32C. 31D. 303. (2015重庆B卷)下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,依此规律,图⑩中黑色正方形的个数是()第3题图A.32B. 29C. 28D. 264. (2014重庆B卷)下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形,…,依此规律,第五个图形中三角形的个数是()第4题图A. 22B. 24C. 26D. 285. 如图,下列图形是由边长为2的等边三角形按照一定规律排列而成,第①个图形的周长为6,第②个图形的周长为8,第③个图形的周长为10,第④个图形的周长为12,按照这样的规律来摆放,则第⑧个图形的周长为()第5题图A. 18B. 19C. 20D. 216. (2016天水改编)将一些相同的“○”按如图所示的规律依次摆放,其中图①中“○”的个数为5个,图②中“○”的个数为7个,图③中“○”的个数为11个,图④中“○”的个数为17个,…,若图○,n)中有245个“○”,则n =()第6题图A. 10B. 12C. 14D. 167. (2016重庆外国语学校二诊)下列图案均是用长度相同的小木棒按一定的规律拼搭而成,拼搭第(1)个图案需4根小木棒,拼搭第(2)个图案需10根小木棒,…,依此规律,拼搭第(6)个图案需小木棒的根数是()第7题图A. 53B. 54C. 55D. 568. (2016重庆江津中学初三下半期考试)用同样大小的黑色五角星按如图所示的方式摆图案,按照这样的规律摆下去,第⑬个图案需要的黑色五角星的个数是()第8题图A. 18B. 19C. 21D. 229. (2016重庆十一中一诊)下列图形是将正三角形按一定规律排列,则第④个图形中所有正三角形的个数有()第9题图A. 160B. 161C. 162D. 16310. (2016重庆巴蜀一诊)如图,每个图形都由同样大小的矩形按照一定的规律组成,其中第①个图形的面积为6 cm2,第②个图形的面积为18 cm2,第③个图形的面积为36 cm2,…,那么第⑥个图形的面积为()第10题图A. 84 cm2B. 90 cm2C. 126 cm2D. 168 cm211. (2016重庆西大附中第九次月考)下列图形都是用同样大小的♥按一定规律组成的,则第(8)个图形中♥共有()第11题图A. 80个B. 73个C. 64个D. 72个12. (2016重庆一中三模)如图所示,图①中含“〇”的矩形有1个,图②“〇”的矩形有7个,图③中含“〇”的矩形有17个,按此规律,图⑥中含“〇”的矩形个数为()A. 70B. 71C. 72D. 7313. (2016大渡口区诊断性检测)如图是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要棋子的枚数为()第13题图A. 115B. 122C. 127D. 13914. (2016重庆一中二模)下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有1个空心小圆圈,第②个图形中一共有6个空心小圆圈,第③个图形中一共有13个空心小圆圈,…,按此规律排列,则第⑦个图形中空心小圆圈的个数为()第14题图A. 61B. 63C. 76D. 7815. (2016重庆巴蜀中学保送生考试)如图,各图都由同样大小的图形①按一定规律组成,其中第①个图形中共有一个完整菱形,第②个图形中共有5个完整菱形,第③个图形中共有13个完整菱形,…,则第⑥个图形中完整菱形的个数为()第15题图A. 60B. 61C. 62D. 6316. (2016重庆一中第一次定时作业)已知四边形ABCD对角线相交于点O,若在线段BD上任意取一点(不与点B、O、D重合),并与A、C连接,如图①,则三角形个数为15个;若在线段BD上任意取两点(不与点B、O、D重合),如图②,则三角形个数为24个;若在线段BD上任意取三点(不与点B、O、D重合),如图③,则三角形个数为35个;…;以此规律,则图⑤中三角形的个数为()第16题图A. 48B. 56C. 61D. 6317. (2016徐州)如图,每个图案都由大小相同的正方形组成.按照此规律,第n 个图案中这样的正方形的总个数可用含n的代数式表示为________.第17题图18. (2016安顺改编)观察下列砌钢管的横截面图:第18题图则第5个图形中钢管数为________个.19. 如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图案中花盆的个数为6个,第2个图案中花盆的个数为12个,第3个图案中花盆的个数为20个,…,则第8个图案中花盆的个数为________.第19题图20. (2016龙岩改编)用棱长为1的小正方体按照如图所示的摆放规律,逐个排成若干个无缝隙的几何体,图①几何体表面积为6,图②几何体表面积为18,则图④中所示几何体的表面积为________.第20题图答案类型一探索图形累加规律1. B【解析】每个图形中白色纸片的个数依次是4,7,10,13,….那么,第n个图形中白色纸片的个数为3n+1,∴第12个图形中白色纸片的个数为3×12+1=37.2.A【解析】∵图①用了5根火柴,即5=5+4×0;图②用了9根火柴,即9=5+4×1;图③用了13根火柴,即13=5+4×2;…;以此规律,第○n个图形中,火柴的根数为5+4(n-1),故第⑧个图案用火柴棒的根数为5+4×(8-1)=33.3.B【解析】图①有2+3×0=2个黑色正方形;图②有2+3×1=5个黑色正方形;图③有2+3×2=8个黑色正方形;图④有2+3×3=11个黑色正方形,…,按照这个规律,图○n有2+3(n-1)个黑色正方形,故图⑩一共有2+3×9=29个黑色正方形.4.C【解析】第一个图形中有2个三角形:6×1-4=2;第二个图形中有8个三角形:6×2-4=8;第三个图形中有14个三角形:6×3-4=14;…;第n个图形中三角形的个数为:6n-4,故第五个图形中三角形的个数为:6×5-4=26.5. C【解析】第①个图形的周长为6+0×2=6,第②个图形的周长为6+1×2=8,第③个图形的周长为6+2×2=10,第④个图形的周长为6+3×2=12,…,依此规律,可知第○n个图形的周长为6+(n-1)×2,所以第⑧个图形的周长为6+7×2=20.6. D【解析】图①中有1×(1-1)+5=5个“○”,图②中有2×(2-1)+5=7个“○”,图③中有3×(3-1)+5=11个“○”,图④中有4×(4-1)+5=17个“○”,…,据此得出:图○n中有n(n-1)+5个“○”,则可得方程n(n-1)+5=245,解得n 1=16,n 2=-15(不合题意,舍去).7. B 【解析】观察图形可知,每个图案都是由横排小木棒和纵排小木棒搭建而成,且横排和纵排数相同,其中第(1)个图案有2横排,每排有1个小木棒;第(2)个图案有3横排,每排的小木棒个数分别为2,2,1;第(3)个图案有4横排,每排的小木棒个数分别为3,3,2,1;第(4)个图案有5横排,每排的小木棒个数分别为4,4,3,2,1,…;由此可推测第(n )个图案共有n +1横排,每排木棒个数分别为n ,n ,n -1,n -2,…,2,1,故第(6)个图案共有7横排,每排的小木棒个数分别为6,6,5,4,3,2,1,共有27根,则对应的纵排也有27根小木棒,则搭建第(6)个图案共需要小木棒54根.8. C 【解析】观察图形可以发现图①中黑色五角星的个数为1+2=3,图②中黑色五角星个数为1+2+1=4,图③中黑色五角星个数为1+2+1+2=6,图④中黑色五角星个数为1+2+1+2+1=7,图⑤中黑色五角星个数为1+2+1+2+1+2=9,…,则图○n 中,当n 为奇数时,黑色五角星个数为2)1(3+n ,当n 为偶数时,黑色五角星个数为123+n ,∴第⑬个图案需要的黑色五角星的个数为3×(13+1)2=21个. 9. B 【解析】第①个图形中正三角形的个数为:1+4,第②个图形中正三角形的个数为:1+4+3×4,第③个图形中正三角形的个数为:1+4+3×4+9×4,…,第○n 个图形中正三角形的个数为:1+4+3×4+9×4+…+3n -1×4,∴第④个图形中正三角形的个数为1+4+3×4+9×4+34-1×4=1+4+12+36+108=161.10. C 【解析】∵所有的小矩形都是大小相同的,第①个图形是由2个小矩形组成,面积为6,∴每个小矩形的面积是3,∵第①个图形中有2个小矩形,第②个图形中有6个小矩形,第③个图形中有12个小矩形,12=2+4+6=2×(1+2+3),第④个图形中有20个小矩形,20=2+4+6+8=2×(1+2+3+4),则第○n个图形中有2×(1+2+…+n)个小矩形,故第⑥个图形中小矩形的个数为2×(1+2+3+4+5+6)=42个,则其面积为42×3=126 cm2.11. A【解析】第(1)个图形中♥的个数为3=22-1;第(2)个图形中♥的个数为8=32-1;第(3)个图形中♥的个数为15=42-1;第(4)个图形中♥的个数为24=52-1;…,于是,第(n)个图形中♥的个数为(n+1)2-1,所以第(8)个图形中♥的个数为92-1=80(个),故选A.12.B【解析】图①中含“○”的矩形有1=2×12-1个,图②中含“○”的矩形有7=2×22-1个,图③中含“○”的矩形有17=2×32-1个,…,按此规律,则图○n中含“○”的矩形个数为2n2-1,所以图⑥中含“○”的矩形有2×62-1=71个,故选B.13. C【解析】由题意可知,摆第1个图案需要7=1+6枚棋子,摆第2个图案需要19=1+6+6×2枚棋子,摆第3个图案需要37=1+6+6×2+6×3枚棋子,…,则摆第n个图案需要1+6+6×2+6×3+…+6n=3n(n+1)+1枚棋子,所以摆第6个图案需要:3×6×(6+1)+1=127枚棋子,故选C.14. A【解析】∵第①个图形中空心小圆圈个数为:4×1-3+1×0=1个;第②个图形中空心小圆圈个数为:4×2-4+2×1=6个;第③个图形中空心小圆圈个数为:4×3-5+3×2=13个;…,依此规律,第○n个图形中空心小圆圈个数为:4n-(n+2)+n(n-1),∴第⑦个图形中空心小圆圈个数为:4×7-9+7×6=61个.15.B【解析】∵第①个图形中菱形个数为02+12=1个;第②个图形中菱形个数为12+22=5个;第③个图形中菱形个数为22+32=13个;第④个图形中菱形个数为32+42=25个,…,依此规律第○n个图形中菱形个数为(n-1)2+n2个,∴第⑥个图形中菱形个数为52+62=61个.16. D【解析】在图①中,线段BD上共有4个点,所得三角形的个数共15个,15=16-1=42-1;图②中,线段BD上共5个点,所得三角形的个数共24个,24=25-1=52-1;图③中,线段BD上共6个点,所得三角形的个数共35个,35=36-1=62-1,…,由此可猜想,图○n中,线段BD上共有n +3个点,所得三角形的个数为(n+3)2-1,∴图⑤中三角形的个数为(5+3)2-1=63.17. n(n+1)【解析】由题图知,第1、2、3个图案对应的小正方形的个数分别为2=1×2、6=2×3、12=3×4,…,∴第n个图案所对应的小正方形的个数为n(n+1).18. 45【解析】根据题意,可得序号 1 2 3 4钢管数 3 9 18 30找规律3×1 3×3=3×(1+2)3×6=3×(1+2+3)3×10=3×(1+2+3+4)综上可知,第5个图形中钢管数为3×(1+2+3+4+5)=3×15=45个.19. 90【解析】观察可得,第1个图案:正三角形每条边上有3个花盆,共计32-3个花盆;第2个图案:正四边形每条边上有4个花盆,共计42-4个花盆;第3个图案:正五边形每条边上有5个花盆,共计52-5个花盆;…;由此可知第n个图案:正(n+2)边形每条边上有(n+2)个花盆,共计(n+2)2-(n +2)个花盆,则第8个图案中花盆的个数为(8+2)2-(8+2)=90.20. 60【解析】图①几何体的表面积为:6=6×1;图②几何体的表面积为:18=6×(1+2);图③几何体的表面积为:6×(1+2+3)=36.由此规律得,图④几何体的表面积为:6×(1+2+3+4)=60.类型二探索图形循环规律针对演练1. 如图所示,两个全等的等边三角形的边长为1 m,一个微型机器人由A点开始按A→B→C→D→B→E→A的顺序沿等边三角形的边循环运动,行走2017 m 停下,则这个微型机器人停在()第1题图A. A点B. B点C. C点D. E点2.(2016重庆八中强化训练一)将正六边形ABCDEF的各边按如图所示延长,从射线F A开始,分别在各射线上标记点O1,O2,O3,…,按此规律,则点O2016所在射线是()第2题图A. ABB. DEC. BCD. EF3. 下列一串梅花图案是按一定规律排列的,请你仔细观察,在前2017个梅花图案中,共有________个“”图案.第3题图4. 有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2014次后,骰子朝下一面的点数是________.第4题图5.如图,在平面直角坐标系中,已知点A(1, 1),B(-1, 1),C(-1, -2),D (1, -2),把一根长为2016个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在矩形ABCD的边上,则细线的另一端落在________线段上第5题图答案类型二探索图形循环规律1. B【解析】∵两个全等的等边三角形的边长为1 m,∴机器人由A点开始按A→B→C→D→B→E→A的顺序沿等边三角形的边循环运动一圈,即为6 m,∵2017÷6=336……1,即正好行走了336圈多1米,到第二个点,∴行走2017 m 停下,则这个微型机器人停在B点.2. C【解析】观察图形可知12个点依次排列在射线F A、CD、AB、DE、BC、EF、CD、F A、DE、AB、EF、BC上,依此规律循环,又因2016÷12=168,则点O2016在第12条射线BC上,故选C.3. 505【解析】观察题图可知,“”图案方向依次向上、向右、向下、向左,每四个图案为一个循环周期.∵2017÷4=504……1,∴前2017个梅花图案中,共有505个“”图案.4. 3【解析】观察可知,点数3与点数4相对,点数2与点数5相对,且循环周期为4. ∵2014÷4=503……2,∴滚动2014次后与第二次相同,∴骰子朝下一面的点数为3.5.CD【解析】∵矩形四个顶点的坐标分别为:A(1,1),B(-1,1),C(-1,-2),D(1,-2),∴AB=CD=2,BC=AD=3,∴矩形的周长为2+3+2+3=10,则循环一周所需的单位长度是10,∵2016÷10=201……6,∴细线的另一端落在绕矩形第202圈的第6个单位长度的位置,即是点C与点D的中间位置,即在线段CD上.拓展类型数式规律针对演练1. (2016张家界)观察下列等式:71=7,72=42+92=97,73=343,74=2401,75=16807,76=117649,…,那么:71+72+73+…+72016的末位数字是() A. 9 B. 7 C. 6 D. 02. (2016丹东)观察下列数据:-2,52,-103,174,-265,…,它们是按一定规律排列的,依照此规律,第11个数据是________.3. (2016贵港)已知a1=tt-1,a2=11-a1,a3=11-a2,…,a n+1=11-a n(n为正整数,且t≠0,1),则a2016=________(用含有t的代数式表示).4. (2016泉州)指出下列各图形中数的规律,依此,a的值为________.第4题图5. (2016南宁)观察下列等式:第1层1+2=3第2层4+5+6=7+8第3层9+10+11+12=13+14+15第4层16+17+18+19+20=21+22+23+24…在上述数字宝塔中,从上往下数,2016在第________层.答案拓展类型 数式规律1. D 【解析】根据题意,7的幂的最终结果的末位数字是以7,9,3,1为循环,其和结果的末位数字是0,因为2016÷4=504,所以71+72+73+…+72016的末位数字是0.2. -12211 【解析】∵-2=-12+11,52=22+12,-103=-32+13,174=42+14,-265=-52+15,…,∴第11个数据是:-112+111=-12211. 3. t 1【解析】∵a 1=1-t t ,a 2=111--t t =1-t ,a 3=t +-111=t 1,a 4=t 111-=1-t t ,…,∴每3个一次循环,∵2016÷3=672,∴a 2016的值为t1. 4. 226 【解析】观察可得:2=1×0+2,10=2×3+4,26=4×5+6,50=6×7+8,…,可以得到规律:右下角三角形中的数字等于左下角三角形中的数字与正上方三角形中数字的积加上中间三角形中的数字,故a =14×15+16=226.5. 44 【解析】根据题中给出的式子,观察得出规律,第一层第一个数为12,第2层第一个数为22,第3层第一个数为32,…,∵442=1936,452=2025,且442<2016<452,∴2016位于第44层.。
2018春中考数学《数学文化讲堂:图形规律题》
![2018春中考数学《数学文化讲堂:图形规律题》](https://img.taocdn.com/s3/m/cbcea200fad6195f312ba650.png)
数学文化讲堂(一)九章算术——正负术《九章算术》大约于东汉初年(公元一世纪)成书,共九章,汇总了战国和西汉时期的数学成果,是几代人共同劳动的结晶,在世界数学史上首次正式引入负数及其加减法运算法则,并给出名为“正负术”. 材料1刘徽在《九章算术注》中给出了正、负数的定义:“两算得失相反,要令‘正’、‘负’以名之”.意思为:今有两数意义相反,则分别叫做正数和负数.1. 若气温为零上10 ℃记作+10 ℃,则-3 ℃表示气温为( )A. 零上3 ℃B. 零下3 ℃C. 零上7 ℃D. 零下7 ℃材料2魏晋数学家刘徽在《九章算术注》中用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(白色为正,黑色为负,如图表示的是+23-54=-31的计算过程).2. 如图表示的过程是在计算.第2题图材料3“正负术”是正、负数加减法则,其中有一段话是“同名相除,异名相益,正无入负之,负无入正之.”解释为:同号两数相减时,括号前为被减数的符号,括号内为被减数的绝对值减去减数的绝对值;异号两数相减时,括号前为被减数的符号,括号内为被减数的绝对值加上减数的绝对值.3. 根据材料中“正负术”的运算法则,将下列计算过程补充完整:(-5)-(-3)=;(-5)-(+3)=__________.斐波那契数列斐波那契数列,又称黄金分割数列,因数学家莱昂纳多·斐波那契以兔子繁殖为例而引入,故又称为“兔子数列”.指的是这样一个数列:1、1、2、3、5、8、13、21、34、…,即从第三个数开始,每一个数都是它前面两个数的和.美国数学学会出版了以《斐波那契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果.4. 数列1,1,2,3,5,8,13,21,34,55,…的排列规律是:前两个数是1,从第三个数开始,每一个数都是它前面两个数的和,这个数列叫做斐波那契数列.在斐波那契数列的前2018个数中共有_________个偶数.5. 我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧P1P2,P2P3,P3P4,…,得到斐波那契螺旋线,然后顺次连接P1P2,P2P3,P3P4,…,得到螺旋折线(如图),已知点P1(0,1),P2(-1,0),P3(0,-1),则该折线上点P9的坐标为___________.第5题图杨辉三角杨辉在1261年所著的《详解九章算法》中,辑录了如图所示的三角形数表,称之为“开方作法本源”图,并说明此表引自11世纪前半叶贾宪的《释锁算术》,并绘画了“古法七乘方图”.故此,杨辉三角又被称为“贾宪三角”.(人教八上113页、北师七下P24)6. 在如图所示的“杨辉三角”中,假设最上面的数字1作为第1行,将每一行的数字相加,则得数字串为:,请你根据这串数字的规律,写出第m行的数字和为__________:.第6题图7. 将杨辉三角中的每一个数换成分数,得到一个如图所示的分数三角形,称为莱布尼茨三角形,则第9行第2个数是__________.第7题图第8题图8. 我国宋朝数学家杨辉在他的著作《详解九章算法》中提出如表,此表揭示了(a+b)n(n为非负整数)展开式的各项系数的规律,例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1;(a+b)2=a2+2ab+b2,它有3项,系数分别为1,2,1;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1,…;根据以上规律,(a+b)10展开式中,所有系数的和为__________.四元玉鉴—垛积术材料《四元玉鉴》是中国元代数学重要著作之一,由数学家朱世杰所著,收录288问,其中涵盖了高阶等差级数的计算——“垛积术”.9. 卷中“菱草形段”中记载:“今有菱草六百八十束,欲令‘落一形’捶(同垛)之.问底子(每层三角形边菱草束数,等价于层数)几何?”中探讨了“垛积术”中的落一形垛(“落一形”即是指顶上1束,下一层3束,再下一层6束,…,成三角锥的堆垛,故也称三角垛,如图,表示第二层开始的每层菱草束数),则本问题中三角垛底层菱草总束数为___________.第9题图答案1.B2.(-33)+45=123. -(5-3)=-2;-(5+3)=-8.4. 672【解析】∵数列1,1,2,3,5,8,13,21,34,55,…中是两个奇数然后一个偶数,即偶数在数列中是每3个循环一次,而2018÷3=672……2;余数是2,那么这个数列的第2017个数和第2018个数是奇数,∴斐波那契数列的前2018个数中共有672个偶数.5. (-6,25)【解析】由题意可知,P1(0,1),P2(-1,0),P3(0,-1),P4(2,1),P5(-1,4),P6(-6,-1),结合斐波那契数可以看出,这组数据是以P1(0,1)为起点,向右转动,横坐标加对应的斐波那契数,向上转纵坐标加斐波那契数,向左转横标减斐波那契数,向下转纵坐标减斐波那契数.由此可知P7(2,-9),P8(15,4),P9(-6,25).6. 1,2,4,8,16,…; 2m-1【解析】由题意可知.第1行数字和1=20,第2行数字和2=21,第3行数字和4=22,…由此可知第m行数字和为2m-1.【解析】观察图表可知一下规律:是第几行就有几个分数;每7. 172行每个分数的分子都是1;每行第一个分数的分母为行号,每行首尾对称,第n行第一个数为,第二个为,故第9行第2个数为.8. 1024 【解析】根据题意得:(a+b)0的展开式系数和为1=20,(a+b)1的展开式的系数和为2=21,(a+b)2的展开式的系数为4=22,(a+b)3的展开式的系数和为8=23,则(a+b)n的展开式的分数和为2n.故(a+b)10展开式中系数的和为210=1024.9. 120【解析】由题意知,第n层菱草束数为1+2+…+n=,∴1+3+6+…+=680,即为,既有,∴n=15, ∴=120.。
2018全国各地中考数学分类解析第33章 规律探索型问题
![2018全国各地中考数学分类解析第33章 规律探索型问题](https://img.taocdn.com/s3/m/bc9d42baec3a87c24028c4ca.png)
第三十三章 规律探索型问题12.<2018山东省滨州,12,3分)求1+2+22+23+…+22018的值,可令S=1+2+22+23+…+22018,则2S=2+22+23+24+…+22018,因此2S ﹣S=22018﹣1.仿照以上推理,计算出1+5+52+53+…+52018的值为< ) A .52018﹣1 B .52018﹣1 C .D .【解读】设S=1+5+52+53+…+52018,则5S=5+52+53+54+…+52018, 因此,5S ﹣S=52018﹣1, S=.【答案】选C .【点评】本题考查同底数幂的乘法,以及类比推理的能力.两式同时乘以底数,再相减可得s的值.<2018广东肇庆,15,3)观察下列一组数:32,54,76,98,1110,…… ,它们是按一定规律排列的,那么这一组数的第k 个数是 ▲ . sPgk3SuTH6【解读】通过观察不难发现,各分数的分子与分母均相差1,分子为连续偶数,分母为连续奇数. 【答案】122 k k【点评】本题是一道规律探索题目,考查了用代数式表示一般规律,难度较小.18. ( 2018年四川省巴中市,18,3>观察下列面一列数:1,-2,3,-4,5,-6,…根据你发现的规律,第2018个数是___________sPgk3SuTH6【解读】观察知: 下列面一列数中,它们的绝对值是连续正整数,第2018个数的绝对值是2018,值偶数项是负数,故填-2018.sPgk3SuTH6【答案】-2018【点评】本题是找规律的问题,确定符号是本题的难点.20.<2018贵州省毕节市,20,5分)在下图中,每个图案均由边长为1的小正方形按一定的规律堆叠而成,照此规律,第10个图案中共有个小正方形。
sPgk3SuTH6解读:观察图案不难发现,图案中的正方形按照从上到下成奇数列排布,写出第n个图案的正方形的个数,然后利用求和公式写出表达式,再把n=10代入进行计算即可得解.sPgk3SuTH6答案:解:第1个图案中共有1个小正方形,第2个图案中共有1+3=4个小正方形,第3个图案中共有1+3+5=9个小正方形,…,第n个图案中共有1+3+5+…+<2n-1)=2)121(-+nn=n2个小正方形,所以,第10个图案中共有102=100个小正方形.故答案为:100.sPgk3SuTH6点评:本题是对图形变化规律的考查,根据图案从上到下的正方形的个数成奇数列排布,得到第n个图案的正方形的个数的表达式是解题的关键.sPgk3SuTH618.(2018贵州六盘水,18,4分>图7是我国古代数学家杨辉最早发现的,称为“杨辉三角形”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角形”中有许多规律,如它的每一行的数字正好对应了()na b+<n为非负整数)的展开式中a按次数从大到小排列的项的系数.例如222()2a b a ab b +=++展开式中的系数1、2、1恰好对应图中第三行的数字;再入,33223()33a b a a b ab b +=+++展开式中的系数1、3、3、1恰好对应图中第四行的数字.请认真观察此图,写出4()a b +的展开式. 4()a b += ▲ .sPgk3SuTH6分析:该题属规律型,通过观察可发现第五行的系数是:1、4、6、4、1,再根据例子中字母的排列规律即得到答案.sPgk3SuTH6解答:解:由题意,4432234()464a b a a b a b ab b +=++++, 故填432234464a a b a b ab b ++++.点评:本题考查了数字的变化规律,从整体观察还要考虑字母及字母指数的变化规律,从而得到答案.17. <2018山东莱芜, 17,4分) 将正方形ABCD 的各边按如图所示延长,从射线AB 开始,分别在各射线上标记点321,,A A A ….,按此规律,则点A2018在射线 上.sPgk3SuTH6【解读】根据表格中点的排列规律,可以得到点的坐标是每16个点排列的位置一循环,2018=16×125+12,所以点A2018所在的射线和点A所在的直线一样。
2018年中考数学真题分类汇编第一期专题36规律探索试题含解析
![2018年中考数学真题分类汇编第一期专题36规律探索试题含解析](https://img.taocdn.com/s3/m/21cfeff1f524ccbff021842a.png)
规律探索一、选择题1.(2018·重庆(A)·4分)把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为A.12 B.14 C.16 D.18【考点】图形的变化规律【解析】∵第1个图案中的三角形个数为:2+2=2×2=4;第2个图案中的三角形个数为:2+2+2=2×3=6;第3个图案中的三角形个数为:2+2+2+2=2×4=8;……∴第7个图案中的三角形个数为:2+2+2+2+2+2+2+2=2×8=16;【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果。
比较简单。
2(2018·台湾·分)若小舒从1~50的整数中挑选4个数,使其由小到大排序后形成一等差数列,且4个数中最小的是7,则下列哪一个数不可能出现在小舒挑选的数之中?()A.20 B.25 C.30 D.35【分析】A、找出7,20、33、46为等差数列,进而可得出20可以出现,选项A不符合题意;B、找出7、16、25、34为等差数列,进而可得出25可以出现,选项B不符合题意;C、由30﹣7=23,23为质数,30+23>50,进而可得出30不可能出现,选项C符合题意;D、找出7、21、35、49为等差数列,进而可得出35可以出现,选项D不符合题意.【解答】解:A、∵7,20、33、46为等差数列,∴20可以出现,选项A不符合题意;B、∵7、16、25、34为等差数列,∴25可以出现,选项B不符合题意;C、∵30﹣7=23,23为质数,30+23>50,∴30不可能出现,选项C符合题意;D、∵7、21、35、49为等差数列,∴35可以出现,选项D不符合题意.故选:C.【点评】本题考查了规律型中数字的变化类,根据等差数列的定义结合四个选项中的数字,找出符合题意得等差数列是解题的关键.3(2018·广东广州·3分)在平面直角坐标系中,一个智能机器人接到如下指令,从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m,其行走路线如图所示,第1次移动到,第2次移动到……,第n次移动到,则△的面积是()A.504B.C.D.【答案】A【考点】探索图形规律【解析】【解答】解:依题可得:A2(1,1),A4(2,0),A8(4,0),A12(6,0)……∴A4n(2n,0),∴A2016=A4×504(1008,0),∴A2018(1009,1),∴A2A2018=1009-1=1008,∴S△=×1×1008=504().故答案为:A.【分析】根据图中规律可得A4n(2n,0),即A2016=A4×504(1008,0),从而得A2018(1009,1),再根据坐标性质可得A2A2018=1008,由三角形面积公式即可得出答案.4 (2018四川省绵阳市)将全体正奇数排成一个三角形数阵13 57 9 1113 15 17 1921 23 25 27 29… … … … … …根据以上排列规律,数阵中第25行的第20个数是()A.639B.637C.635D.633【答案】A【考点】探索数与式的规律【解析】【解答】解:依题可得:第25行的第一个数为:1+2+4+6+8+……+2×24=1+2× =601,∴第25行的第第20个数为:601+2×19=639.故答案为:A.【分析】根据规律可得第25行的第一个数为,再由规律得第25行的第第20个数.5.(2018年湖北省宜昌市3分)1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则a,b,c的值分别为()A.a=1,b=6,c=15 B.a=6,b=15,c=20C.a=15,b=20,c=15 D.a=20,b=15,c=6【分析】根据图形中数字规模:每个数字等于上一行的左右两个数字之和,可得a、b、c 的值.【解答】解:根据图形得:每个数字等于上一行的左右两个数字之和,∴a=1+5=6,b=5=10=15,c=10+10=20,故选:B.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二.填空题1(2018年四川省内江市)如图,直线y=﹣x+1与两坐标轴分别交于A,B两点,将线段OA 分成n等份,分点分别为P1,P2,P3,…,P n﹣1,过每个分点作x轴的垂线分别交直线AB于点T1,T2,T3,…,T n﹣1,用S1,S2,S3,…,S n﹣1分别表示Rt△T1OP1,Rt△T2P1P2,…,Rt△T n﹣1P n﹣2P n﹣1的面积,则S1+S2+S3+…+S n﹣1=﹣.【考点】F8:一次函数图象上点的坐标特征;D2:规律型:点的坐标.【分析】如图,作T1M⊥OB于M,T2N⊥P1T1.由题意可知:△BT1M≌△T1T2N≌△T n﹣1A,四边形OMT1P1是矩形,四边形P1NT2P2是矩形,推出=××=,S1=,S2=,可得S1+S2+S3+…+S n﹣1=(S△AOB﹣n).【解答】解:如图,作T1M⊥OB于M,T2N⊥P1T1.由题意可知:△BT1M≌△T1T2N≌△T n﹣1A,四边形OMT1P1是矩形,四边形P1NT2P2是矩形,∴=××=,S1=,S2=,∴S1+S2+S3+…+S n﹣1=(S△AOB﹣n)=×(﹣n×)=﹣.故答案为﹣.【点评】本题考查一次函数的应用,规律型﹣点的坐标、三角形的面积、矩形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分割法求阴影部分面积.2(2018•广西桂林•3分)将从1开始的连续自然数按右图规律排列:规定位于第m行,第n列的自然数10记为(3,2),自然数15记为(4,2)......按此规律,自然数2018记为__________【答案】(505,2)【解析】分析:由表格数据排列可知,4个数一组,奇数行从左向右数字逐渐增大,偶数行从右向左数字逐渐增大,用2018除以4,商确定所在的行数,余数确定所在行的序数,然后解答即可.详解:2018÷4=504⋯⋯2.∴2018在第505行,第2列,∴自然数2018记为(505,2).故答案为:(505,2).点睛:本题是对数字变化规律的考查,观察出实际有4列,但每行数字的排列顺序是解题的关键,还要注意奇数行与偶数行的排列顺序正好相反.3(2018•河北•6分)如图,作平分线的反向延长线,现要分别以,,为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以为内角,可作出一个边长为1的正方形,此时,而是(多边形外角和)的,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图所示.图中的图案外轮廓周长是;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是.4(2018·广东·3分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为(2,0).【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2、B3、B4的坐标,得出规律,进而求出点B6的坐标.【解答】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB1+B1C=2+a,A2(2+a,a).∵点A2在双曲线y=(x>0)上,∴(2+a)•a=,解得a=﹣1,或a=﹣﹣1(舍去),∴OB2=OB1+2B1C=2+2﹣2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB2+B2D=2+b,A2(2+b,b).∵点A3在双曲线y=(x>0)上,∴(2+b)•b=,解得b=﹣+,或b=﹣﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);…,∴点B n的坐标为(2,0),∴点B6的坐标为(2,0).故答案为(2,0).【点评】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B2、B3、B4的坐标进而得出点B n的规律是解题的关键.5(2018·浙江临安·3分)已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若10+=102×符合前面式子的规律,则a+b= 109 .【考点】等式的变化规律【分析】要求a+b的值,首先应该认真仔细地观察题目给出的4个等式,找到它们的规律,即中,b=n+1,a=(n+1)2﹣1.【解答】解:根据题中材料可知=,∵10+=102×,∴b=10,a=99,a+b=109.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出式子的规律.6(2018·浙江衢州·4分)定义:在平面直角坐标系中,一个图形先向右平移a个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫作图形的γ(a,θ)变换.如图,等边△ABC的边长为1,点A在第一象限,点B与原点O重合,点C在x轴的正半轴上.△A1B1C1就是△ABC经γ(1,180°)变换后所得的图形.若△ABC经γ(1,180°)变换后得△A1B1C1,△A1B1C1经γ(2,180°)变换后得△A2B2C2,△A2B2C2经γ(3,180°)变换后得△A3B3C3,依此类推……△A n﹣1B n﹣1C n﹣1经γ(n,180°)变换后得△A n B n C n,则点A1的坐标是(﹣,﹣),点A2018的坐标是(﹣,).【考点】坐标的变化规律.【分析】分析图形的γ(a,θ)变换的定义可知:对图形γ(n,180°)变换,就是先进行向右平移n个单位变换,再进行关于原点作中心对称变换.向右平移n个单位变换就是横坐标加n,纵坐标不变,关于原点作中心对称变换就是横纵坐标都变为相反数.写出几次变换后的坐标可以发现其中规律.【解答】解:根据图形的γ(a,θ)变换的定义可知:对图形γ(n,180°)变换,就是先进行向右平移n个单位变换,再进行关于原点作中心对称变换.△ABC经γ(1,180°)变换后得△A1B1C1,A1 坐标(﹣,﹣)△A1B1C1经γ(2,180°)变换后得△A2B2C2,A2坐标(﹣,)△A2B2C2经γ(3,180°)变换后得△A3B3C3,A3坐标(﹣,﹣)△A3B3C3经γ(3,180°)变换后得△A4B4C4,A4坐标(﹣,)依此类推……可以发现规律:A n横坐标存在周期性,每3次变换为一个周期,纵坐标为当n=2018时,有2018÷3=672余2所以,A2018横坐标是﹣,纵坐标为故答案为:(﹣,﹣),(﹣,).【点评】本题是规律探究题,又是材料阅读理解题,关键是能正确理解图形的γ(a,θ)变换的定义后运用,关键是能发现连续变换后出现的规律,该题难点在于点的横纵坐标各自存在不同的规律,需要分别来研究.7(2018·四川自贡·4分)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有6055 个○.【分析】每个图形的最下面一排都是1,另外三面随着图形的增加,每面的个数也增加,据此可得出规律,则可求得答案.【解答】解:观察图形可知:第1个图形共有:1+1×3,第2个图形共有:1+2×3,第3个图形共有:1+3×3,…,第n个图形共有:1+3n,∴第2018个图形共有1+3×2018=6055,故答案为:6055.【点评】本题为规律型题目,找出图形的变化规律是解题的关键,注意观察图形的变化.8(2018•湖北荆门•3分)将数1个1,2个,3个,…,n个(n为正整数)顺次排成一列:1,,…,记a1=1,a2=,a3=,…,S1=a1,S2=a1+a2,S3=a1+a2+a3,…,S n=a1+a2+…+a n,则S2018= 63.【分析】由1+2+3+…+n=结合+2=2018,可得出前2018个数里面包含:1个1,2个,3个,…,63个,2个,进而可得出S2018=1×1+2×+3×+…+63×+2×=63,此题得解.【解答】解:∵1+2+3+…+n=,+2=2018,∴前2018个数里面包含:1个1,2个,3个,…,63个,2个,∴S2018=1×1+2×+3×+…+63×+2×=1+1+…+1+=63.故答案为:63.【点评】本题考查了规律型中数字的变化类,根据数列中数的排列规律找出“前2018个数里面包含:1个1,2个,3个,…,63个,2个”是解题的关键.9(2018•甘肃白银,定西,武威•3分)如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.【答案】1【解析】【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案.【解答】当x=625时,当x=125时,=25,当x=25时,=5,当x=5时,=1,当x=1时,x+4=5,当x=5时,=1,当x=1时,x+4=5,当x=5时,=1,…(2018−3)÷2=1007…1,即输出的结果是1,故答案为:1.【点评】考查代数式的求值,找出其中的规律是解题的关键.10. (2018•山东滨州•5分)观察下列各式:=1+,=1+,=1+,……请利用你所发现的规律,计算+++…+,其结果为9.【分析】直接根据已知数据变化规律进而将原式变形求出答案.【解答】解:由题意可得:+++…+=1++1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.【点评】此题主要考查了数字变化规律,正确将原式变形是解题关键.11.(2018·山东泰安·3分)观察“田”字中各数之间的关系:则c的值为270或28+14 .【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【解答】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8 数为28.观察左下和右上角,每个“田”字的右上角数字依次比左下角大0,2,4,6等,到第8个图多14.则c=28+14=270故应填:270或28+14【点评】本题以探究数字规律为背景,考查学生的数感.解题时注意同等位置的数字变化规律,用代数式表示出来.12.(2018·山东威海·3分)如图,在平面直角坐标系中,点A1的坐标为(1,2),以点O为圆心,以OA1长为半径画弧,交直线y=x于点B1.过B1点作B1A2∥y轴,交直线y=2x于点A2,以O为圆心,以OA2长为半径画弧,交直线y=x于点B2;过点B2作B2A3∥y轴,交直线y=2x于点A3,以点O为圆心,以OA3长为半径画弧,交直线y=x于点B3;过B3点作B3A4∥y轴,交直线y=2x于点A4,以点O为圆心,以OA4长为半径画弧,交直线y=x于点B4,…按照如此规律进行下去,点B2018的坐标为(22018,22017).【分析】根据题意可以求得点B1的坐标,点A2的坐标,点B2的坐标,然后即可发现坐标变化的规律,从而可以求得点B2018的坐标.【解答】解:由题意可得,点A1的坐标为(1,2),设点B1的坐标为(a, a),,解得,a=2,∴点B1的坐标为(2,1),同理可得,点A2的坐标为(2,4),点B2的坐标为(4,2),点A3的坐标为(4,8),点B3的坐标为(8,4),……∴点B2018的坐标为(22018,22017),故答案为:(22018,22017).【点评】本题考查一次函数图象上点的坐标特征、点的坐标,解答本题的关键是明确题意,发现题目中坐标的变化规律,求出相应的点的坐标.13.(2018·山东潍坊·3分)如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则的长是.【分析】先根据一次函数方程式求出B1点的坐标,再根据B1点的坐标求出A2点的坐标,得出B2的坐标,以此类推总结规律便可求出点A2019的坐标,再根据弧长公式计算即可求解,.【解答】解:直线y=x,点A1坐标为(2,0),过点A1作x轴的垂线交直线于点B1可知B1点的坐标为(2,2),以原O为圆心,OB1长为半径画弧x轴于点A2,OA2=OB1,OA2==4,点A2的坐标为(4,0),这种方法可求得B2的坐标为(4,4),故点A3的坐标为(8,0),B3(8,8)以此类推便可求出点A2019的坐标为(22019,0),则的长是=.故答案为:.【点评】本题主要考查了一次函数图象上点的坐标特征,做题时要注意数形结合思想的运用,是各地的中考热点,学生在平常要多加训练,属于中档题.14. (2018•山东枣庄•4分)将从1开始的连续自然数按以下规律排列:则2018在第45 行.【分析】通过观察可得第n行最大一个数为n2,由此估算2018所在的行数,进一步推算得出答案即可.【解答】解:∵442=1936,452=2025,∴2018在第45行.故答案为:45.【点评】本题考查了数字的变化规律,解题的关键是通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.15. (2018•山东淄博•4分)将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是2018 .【考点】37:规律型:数字的变化类.【分析】观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;【解答】解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.【点评】本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.16(2018•四川成都•3分)已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,________.【答案】【考点】探索数与式的规律【解析】【解答】解:∵,∴S2=- -1=∵,∴S3=1÷()=∵,∴S4=-()-1=∴S5=-a-1、S6=a、S7= 、S8= …∴2018÷4=54 (2)∴S2018=故答案为:【分析】根据已知求出S2= ,S3= ,S4= 、S5=-a-1、S6=a、S7= 、S8= …可得出规律,按此规律可求出答案。
2018年中考数学真题分类汇编(第三期)专题36规律探索试题(含解析)
![2018年中考数学真题分类汇编(第三期)专题36规律探索试题(含解析)](https://img.taocdn.com/s3/m/a3222a8fbb4cf7ec4afed058.png)
规律探索一.选择题1. (2018·广西贺州·3分)如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,依此下去,第n个正方形的面积为()A.()n﹣1 B.2n﹣1C.()n D.2n【解答】解:第一个正方形的面积为1=20,第二个正方形的面积为()2=2=21,第三个正方形的边长为22,…第n个正方形的面积为2n﹣1,故选:B.2. (2018·广西梧州·3分)按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中的第100个数是()A.9999 B.10000 C.10001 D.10002【分析】观察不难发现,第奇数是序数的平方加1,第偶数是序数的平方减1,据此规律得到正确答案即可.【解答】解:∵第奇数个数2=12+1,10=32+1,26=52+1,…,第偶数个数3=22﹣1,15=42﹣1,25=62﹣1,…,∴第100个数是1002﹣1=9999,故选:A.【点评】本题是对数字变化规律的考查,分数所在的序数为奇数和偶数两个方面考虑求解是解题的关键,另外对平方数的熟练掌握也很关键.3.(2018·重庆市B卷)(4.00分)下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为()A.11 B.13 C.15 D.17【分析】仔细观察图形知道第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,由此得到规律求得第⑥个图形中正方形的个数即可.【解答】解:观察图形知:第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,…故第⑥个图形有3+2×5=13(个),故选:B.【点评】此题主要考查了图形的变化规律,是根据图形进行数字猜想的问题,关键是通过归纳与总结,得到其中的规律,然后利用规律解决一般问题.4.(2018·辽宁省阜新市)如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018,如果点A的坐标为(1,0),那么点B2018的坐标为()A.(1,1)B.(0,)C.()D.(﹣1,1)【解答】解:∵四边形OABC是正方形,且OA=1,∴B(1,1),连接OB,由勾股定理得:OB=,由旋转得:OB=OB1=OB2=OB3=…=.∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴B1(0,),B2(﹣1,1),B3(﹣,0),…,发现是8次一循环,所以2018÷8=252…余2,∴点B2018的坐标为(﹣1,1)故选D.二.填空题1. (2018·湖北江汉·3分)如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=.【分析】分别过点P1.P2.P3作x轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案.【解答】解:如图,分别过点P1.P2.P3作x轴的垂线段,垂足分别为点C.D.E,∵P1(3,3),且△P1OA1是等腰直角三角形,∴OC=CA1=P1C=3,设A1D=a,则P2D=a,∴OD=6+a,∴点P2坐标为(6+a,a),将点P2坐标代入y=﹣x+4,得:﹣(6+a)+4=a,解得:a=,∴A1A2=2a=3,P2D=,同理求得P3E=、A2A3=,∵S1=×6×3=9.S2=×3×=、S3=××=、……∴S2018=,故答案为:.2. (2018·湖北荆州·3分)如图所示,是一个运算程序示意图.若第一次输入k的值为125,则第2018次输出的结果是.【解答】解:∵第1次输出的结果是25,第2次输出的结果是5,第3次输出的结果是1,第4次输出的结果是5,第5次输出的结果是5,…,∴第2n次输出的结果是5,第2n+1次输出的结果是1(n为正整数),∴第2018次输出的结果是5.故答案为:5.3. (2018·湖北十堰·3分)如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是()A.2B. C.5 D.【分析】由图形可知,第n行最后一个数为=,据此可得答案.【解答】解:由图形可知,第n行最后一个数为=,∴第8行最后一个数为==6,则第9行从左至右第5个数是=,故选:B.【点评】本题主要考查数字的变化类,解题的关键是根据题意得出第n行最后一个数为.4.(2018·辽宁省葫芦岛市) 如图,∠MON=30°,点B1在边OM上,且OB1=2,过点B1作B1A1⊥OM交ON于点A1,以A1B1为边在A1B1右侧作等边三角形A1B1C1;过点C1作OM的垂线分别交OM、ON于点B2.A2,以A2B2为边在A2B2的右侧作等边三角形A2B2C2;过点C2作OM的垂线分别交OM、ON于点B3.A3,以A3B3为边在A3B3的右侧作等边三角形A3B3C3,…;按此规律进行下去,则△A n B n+1C n的面积为()2n﹣2×.(用含正整数n的代数式表示)【解答】解:由题意△A1A2C1是等边三角形,边长为,△A2A3C2是等边三角形,边长为×,△A3A4C3是等边三角形,边长为××=()2×,△A4A5C4是等边三角形,边长为×××=()3×,…,△A n B n+1C n的边长为()n﹣1×,∴△A n B n+1C n的面积为×[()n﹣1×]2=()2n﹣2×.5.(2018·辽宁省抚顺市)(3.00分)如图,正方形AOBO2的顶点A的坐标为A(0,2),O1为正方形AOBO2的中心;以正方形AOBO2的对角线AB为边,在AB的右侧作正方形ABO3A1,O2为正方形ABO3A1的中心;再以正方形ABO3A1的对角线A1B为边,在A1B的右侧作正方形A1BB1O4,O3为正方形A1BB1O4的中心;再以正方形A1BB1O4的对角线A1B1为边在A1B1的右侧作正方形A1B1O5A2,O4为正方形A1B1O5A2的中心:…;按照此规律继续下去,则点O2018的坐标为(21010﹣2,21009).【分析】由题意Q1(1,1),O2(2,2),O3(,4,2),O4(,6,4),O5(10,4),O6(14,8)…观察可知,下标为偶数的点的纵坐标为2,下标为偶数的点在直线y=x+1上,点O2018的纵坐标为21009,可得21009=x+1,同侧x=21010﹣2,可得点O2018的坐标为(21010﹣2,21009).【解答】解:由题意Q1(1,1),O2(2,2),O3(,4,2),O4(,6,4),O5(10,4),O6(14,8)…观察可知,下标为偶数的点的纵坐标为2,下标为偶数的点在直线y=x+1上,∵点O2018的纵坐标为21009,∴21009=x+1,∴x=21010﹣2,∴点O2018的坐标为(21010﹣2,21009).故答案为(21010﹣2,21009).【点评】本题考查规律型:点的坐标,一次函数的应用,解题的关键是学会探究规律的方法,灵活运用所学知识解决问题,属于中考常考题型.6. (2018•广安•3分)为了从2018枚外形相同的金蛋中找出唯一的有奖金蛋,检查员将这些金蛋按1﹣2018的顺序进行标号.第一次先取出编号为单数的金蛋,发现其中没有有奖金蛋,他将剩下的金蛋在原来的位置上又按1﹣1009编了号(即原来的2号变为1号,原来的4号变为2号……原来的2018号变为1009号),又从中取出新的编号为单数的金蛋进行检验,仍没有发现有奖金蛋……如此下去,检查到最后一枚金蛋才是有奖金蛋,问这枚有奖金蛋最初的编号是1024 .【分析】根据题意可得每次挑选都是去掉偶数,进而得出需要挑选的总次数进而得出答案.【解答】解:∵将这些金蛋按1﹣2018的顺序进行标号,第一次先取出编号为单数的金蛋,发现其中没有有奖金蛋,∴剩余的数字都是偶数,是2的倍数,;∵他将剩下的金蛋在原来的位置上又按1﹣1009编了号,又从中取出新的编号为单数的金蛋进行检验,仍没有发现有奖金蛋,∴剩余的数字为4的倍数,以此类推:2018→1009→504→252→126→63→31→15→7→3→1共经历10次重新编号,故最后剩余的数字为:210=1024.故答案为:1024.【点评】此题主要考查了推理与论证,正确得出挑选金蛋的规律进而得出挑选的次数是解题关键.7. (2018·湖北咸宁·3分)按一定顺序排列的一列数叫做数列,如数列:,,,,…,则这个数列前2018个数的和为_____.【答案】【解析】【分析】根据数列得出第n个数为,据此可得前2018个数的和为,再用裂项求和计算可得.【详解】由数列知第n个数为,则前2018个数的和为===1﹣=,故答案为:.【点睛】本题考查了规律题、有理数的加减混合运算等,熟练掌握有理数混合运算的法则以及得出第n个数为是解题的关键.8.(2018·江苏常州·2分)下面是按一定规律排列的代数式:a2,3a4,5a6,7a8,…则第8个代数式是15a16.【分析】直接利用已知单项式的次数与系数特点得出答案.【解答】解:∵a2,3a4,5a6,7a8,…∴单项式的次数是连续的偶数,系数是连续的奇数,∴第8个代数式是:(2×8﹣1)a2×8=15a16.故答案为:15a16.【点评】此题主要考查了单项式,正确得出单项式次数与系数的变化规律是解题关键.三.解答题1.(2018·辽宁大连·9分)【观察】1×49=49,2×48=96,3×47=141,…,23×27=621,24×26=624,25×25=625,26×24=624,27×23=621,…,47×3=141,28×2=96,49×1=49.【发现】根据你的阅读回答问题:(1)上述内容中,两数相乘,积的最大值为;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是.【类比】观察下列两数的积:1×59,2×58,3×57,4×56,…,m×n,…,56×4,57×3,58×2,59×1.猜想mn的最大值为,并用你学过的知识加以证明.解:【发现】(1)上述内容中,两数相乘,积的最大值为625.故答案为:625;(2)设参与上述运算的第一个因数为a,第二个因数为b,用等式表示a与b的数量关系是a+b=50.故答案为:a+b=50;【类比】由题意,可得m+n=60,将n=60﹣m代入mn,得mn=﹣m2+60m=﹣(m﹣30)2+900,∴m=30时,mn的最大值为900.故答案为:900.。
2018年中考数学规律探索题(中考找规律题目_有答案解析)
![2018年中考数学规律探索题(中考找规律题目_有答案解析)](https://img.taocdn.com/s3/m/ac0a873027d3240c8447efd0.png)
WORD 格式 -可编辑中考规律探索 1以下为全部整理类型,规律探索共两套试题,供参考学习使用一.选择题1.观察下列等式:31= 3, 32= 9,33= 27, 34=81, 35=243, 36=729, 37=2187⋯解答下列问题:3+ 32+ 33+ 34⋯+ 32013的末位数字是()A . 0 B. 1 C. 3 D. 72. 把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5, 7),( 9,11, 13, 15, 17),( 19, 21, 23, 25, 27,29, 31),⋯,现用等式 A M=( i , j)表示正奇数M 是第 i 组第 j 个数(从左往右数),如A7=(2,3),则A2013=()A .( 45, 77)B.( 45, 39)C.( 32, 46) D.( 32, 23)3.下表中的数字是按一定规律填写的,表中 a 的值应是.1 2 3 5 8 13 a ⋯2 3 5 8 13 21 34 ⋯4.下列图形都是由同样大小的矩形按一定的规律组成,其中第(1)个图形的面积为2cm 2,第(2)个图形的面积为8 cm2,第(3)个图形的面积为18 cm2,⋯⋯,第( 10)个图形的面积为()A . 196 cm2 B. 200 cm2 C. 216 cm2 D. 256 cm25.如图,动点P从(0,3)出发,沿所示的方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P 第2013 次碰到矩形的边时,点P 的坐标为()A 、( 1, 4)B、( 5, 0)C、( 6, 4)D、( 8, 3)6.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律 ,图形中 M 与 m、 n 的关系是A . M=mn B. M=n(m+1)C. M=mn+1D. M=m(n+1)专业知识--整理分享WORD 格式 -可编辑7.我们知道,一元二次方程x2 1 没有实数根,即不存在一个实数的平方等于-1,若我们规定一个新数“”,使其满足i 2 1(即方程 x2 1 有一个根为),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有i1 i , i2 1 ,i 3 i 2 i ( 1).i i, i 4 (i 2 ) 2 ( 1) 2 1. 从而对任意正整数n,我们可得到i 4 n 1 i 4n .i (i 4 ) n .i i , 同理可得 i 4n 2 1, i 4 n 3 i, i 4 n 1, 那么,i i 2 i 3 i 4 i 2012 i 2013的值为A . 0 B. 1 C.-1 D.8.下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有 1 颗棋子,第②个图形一共有 6 颗棋子,第③个图形一共有16 颗棋子,⋯,则第⑥个图形中棋子的颗数为()···图①图②图③(第8题图)A . 51B . 70 C. 76 D . 81二.填空题1.观察下列图形中点的个数,若按其规律再画下去,可以得到第n 个图形中所有的个数为(用含n的代数式表示).2.如图,在直角坐标系中,已知点A(﹣ 3, 0)、B( 0,4),对△ OAB 连续作旋转变换,依次得到△ 1、△2、△3、△4⋯,则△ 2013的直角顶点的坐标为.3.如图,正方形 ABCD 的边长为 1,顺次连接正方形 ABCD 四边的中点得到第一个正方形 A 1B 1C1D1,由顺次连接正方形A1B1C1D1四边的中点得到第二个正方形A 2B2C2D2⋯,以此类推,则第六个正方形A 6 B6C6D6周长是.专业知识--整理分享WORD 格式 -可编辑4.直线上有 2013 个点,我们进行如下操作:在每相邻两点间插入1 个点,经过 3 次这样的操作后,直线上共有个点.5. 如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1, 5, 12, 22⋯为五边形数,则第 6个五边形数是.6 .如图,是用火柴棒拼成的图形,则第n 个图形需 根火柴棒.7.观察规律: 1=1 2; 1+3=22; 1+3+5=3 2; 1+3+5+7=4 2; ⋯,则 1+3+5+ ⋯+2013 的值是.8. 如图 12,一段抛物线: y =- x(x - 3) (0≤x ≤3),记为 C1,它与 x 轴交于点 O ,A1;将 C1 绕点 A1 旋转 180°得 C2 ,交 x 轴于点 A2;将 C2 绕点 A2 旋转 180°得 C3 ,交 x 轴于点 A3;⋯⋯如此进行下去,直至得C13.若 P ( 37, m )在第 13 段抛物线 C13 上,则 m =_________ .9.直线上有 2013 个点,我们进行如下操作:在每相邻两点间插入1 个点,经过 3 次这样的操作后,直线上共有个点 .10.观察下列各式的计算过程:5× 5=0× 1×100+25 ,15× 15=1 ×2× 100+25 ,25× 25=2 ×3× 100+25 ,35× 35=3 ×4× 100+25 ,⋯⋯⋯⋯请猜测,第n 个算式 (n 为正整数 )应表示为 ____________________________ .11.将连续的正整数按以下规律排列,则位于第7 行、第 7 列的数x是 ____.专业知识--整理分享WORD 格式 -可编辑12、如下图,每一幅图中均含有若干个正方形,第①幅图中含有 1 个正方形;第②幅图中含有 5 个正方形;⋯⋯按这样的规律下去,则第(6)幅图中含有个正方形;??????①②③13.将一些半径相同的小圆按如图所示的规律摆放:第 1 个图形有 6 个小圆,第2个图形有10个小圆,第3个图形有16 个小圆,第4个图形有24 个小圆,⋯⋯,依次规律,第 6 个图形有个小圆.14.已知一组数 2, 4, 8,16, 32,⋯,按此规律,则第 n 个数是.15、我们知道,经过原点的抛物线的解析式可以是y=ax2+bx( a≠ 0)(1)对于这样的抛物线:当顶点坐标为(1,1)时,a=__________;当顶点坐标为(m,m),m≠0时,a与m之间的关系式是__________;(2)继续探究,如果b≠0,且过原点的抛物线顶点在直线y=kx( k≠ 0) 上,请用含k的代数式表示 b;(3)现有一组过原点的抛物线,顶点A1,A2,⋯, A n在直线 y= x 上,横坐标依次为1,2,⋯, n(为正整数,且n≤ 12),分别过每个顶点作x 轴的垂线,垂足记为B1, B2,⋯, B n,以线段A n B n为边向右作正方形A n B n C n D n,若这组抛物线中有一条经过D n,求所有满足条件的正方形边长.16.如图,所有正三角形的一边平行于x 轴,一顶点在y 轴上,从内到外,它们的边长依次为2, 4,6, 8,⋯,顶点依次用A1、A2、A3、A4、⋯表示,其中A1 A2与x轴、底边 A1A2与 A4 A5、 A4 A5与 A7 A8、⋯均相距一个单位,则顶点A3的坐标是,A22的坐标是.专业知识--整理分享WORD 格式 -可编辑yA9A6A3O xA1A2A4A5A7A8 第16题图17.如图,已知直线 l: y= 3l 于点 B,过点 B 作直线 l 的垂线交 y 轴于点 A1;x,过点 A( 0, 1)作 y 轴的垂线交直线3过点A1作y轴的垂线交直线l 于点 B1,过点 B1作直线 l 的垂线交 y 轴于点 A2;⋯⋯按此作法继续下去,则点A2013的坐标为.18、如图,在平面直角坐标系中,一动点从原点 O 出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),⋯那么点A4n+1(n为自然数)的坐标为(用n表示)19.当白色小正方形个数n 等于1,2,3⋯时,由白色小正方形和和黑色小正方形组成的图形分别如图所示.则第n 个图形中白色小正方形和黑色小正方形的个数总和等于_____________.(用n表示,n是正整数)20. ( 2013?衢州 4 分)如图,在菱形 ABCD 中,边长为 10,∠ A=60 °.顺次连结菱形ABCD 各边中点,可得四边形 A 1B1C1D 1;顺次连结四边形A1B1C1D1各边中点,可得四边形 A 2B2C2D2;顺次连结四边专业知识--整理分享WORD 格式 -可编辑形A2B2C2D2各边中点,可得四边形 A 3B 3C3D3;按此规律继续下去⋯.则四边形A2B2C2D2的周长是A 2013B 2013C2013D 2013的周长是.21.一组按规律排列的式子:a2, a4 , a6 , a8 , ⋯.则第 n 个式子是 ________3 5 72 3 48 个式子是.22.观察下面的单项式: a,﹣ 2a ,4a ,﹣8a,⋯根据你发现的规律,第23.如图,已知直线l : y=x,过点 M ( 2, 0)作 x 轴的垂线交直线l 于点 N,过点 N 作直线 l 的垂线交x 过点M1作x轴的垂线交直线l 于 N 1,过点 N1作直线 l 的垂线交x 轴于点 M 2,⋯;按此作法继续下去,则点;四边形轴于点M1;M10的坐标为.24.为庆祝“六?一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆第(n)图,需用火柴棒的根数为.专业知识--整理分享WORD 格式 -可编辑答案:选择题: 1、 C2、 C3、 214、B5、 D6、 D7、D8、 C填空题: 1、( n+1)22、( 8052,0)3、 0.54、 160975、 516、 2n+17、 10140498、 29、 1609710、 [10(n-1)+5] 2=100n(n-1)+2511、 8512、 9113、 4614、2n15、( 1)- 1; a =- 1(或 am + 1= 0);m( 2)解:∵ a ≠ 0∴b = 2k∴点 D n 的坐标为( 2n , n ) ∴ y = ax2+ bx = a( x + b ) 2-b 2(3)解:∵顶点 A n 在直线 y = x 上∴- 1( 2n) 2+2× 2n = n2a4a∴可设 A n 的坐标为( n , n ),点 D ntb ,- b 2∴ 4n =3t∴顶点坐标为(- )所在的抛物线顶点坐标为(t , t )2a 4a∵ t 、 n 是正整数,且 t ≤ 12, n ≤ 12 ∵顶点在直线 y = kx 上由( 1)( 2)可得,点 D n 所在的抛∴ n = 3, 6 或 9∴ k( -b)=- b 2y =- 1物线解析式为 x 2+ 2x∴满足条件的正方形边长为3,6 或2a4at∵ b ≠ 0∵四边形 A n B n C n D n 是正方形916 、( ,3 1 ),(- 8 ,- 8 ). 17 、 0, 42013或 0, 24026(注:以上两答案任选一个都对)18、( 2n , 1)19、 n 2+4n20、 20;a 2 n21、 2n - 1 ( n 为正整数)22、 -128a823、( 884736,0)24、6n+2专业知识 -- 整理分享WORD 格式 -可编辑规律探索 21、我们平常用的数是十进制数,如2639=2×103+6×102+3×101+9×100,表示十进制的数要用10 个数码(又叫数字):0,1,2,3, 4,5,6, 7,8,9。
2018年中考数学真题演练之轴对称专题(解析版)
![2018年中考数学真题演练之轴对称专题(解析版)](https://img.taocdn.com/s3/m/b847a645ddccda38376baf8f.png)
2018年中考数学真题演练之轴对称专题(解析版)1. (1)问题提出如图1,点A为线段BC外一动点,且,填空:当点A位于________时,线段AC的长取得最大值,且最大值为________ (用含的式子表示).(2)问题探究点A为线段BC外一动点,且,如图2所示,分别以为边,作等边三角形ABD和等边三角形ACE,连接,找出图中与BE相等的线段,请说明理由,并直接写出线段BE长的最大值.(3)问题解决:①如图3,在平面直角坐标系中,点A的坐标为,点B的坐标为,点P为线段AB外一动点,且,求线段AM长的最大值及此时点P的坐标.如图4,在四边形ABCD中,,若对角线于点D,请直接写出对角线AC的最大值.2.在△ABC中,AB=AC,∠BAC=α,点P是△ABC内一点,且∠PAC+∠PCA= ,连接PB,试探究PA、PB、PC满足的等量关系.(1)当α=60°时,将△ABP绕点A逆时针旋转60°得到△ACP′,连接PP′,如图1所示.由△ABP≌△ACP′可以证得△APP′是等边三角形,再由∠PAC+∠PCA=30°可得∠APC的大小为________度,进而得到△CPP′是直角三角形,这样可以得到PA、PB、PC满足的等量关系为________;(2)如图2,当α=120°时,参考(1)中的方法,探究PA、PB、PC满足的等量关系,并给出证明;(3)PA、PB、PC满足的等量关系为________.3.如图,抛物线y=ax2﹣5ax﹣4交x轴于A,B两点(点A位于点B的左侧),交y轴于点C,过点C 作CD∥AB,交抛物线于点D,连接AC、AD,AD交y轴于点E,且AC=CD,过点A作射线AF交y轴于点F,AB平分∠EAF.(1)此抛物线的对称轴是________;(2)求该抛物线的解析式;(3)若点P是抛物线位于第四象限图象上一动点,求△APF面积S△APF的最大值,以及此时点P的坐标;(4)点M是线段AB上一点(不与点A,B重合),点N是线段AD上一点(不与点A,D重合),则两线段长度之和:MN+MD的最小值是________.4.已知四边形ABCD是矩形,连接AC,点E是边CB延长线上一点,CA=CE,连接AE,F是线段AE 的中点,(1)如图1,当AD=DC时,连接CF交AB于M,求证:BM=BE;(2)如图2,连接BD交AC于O,连接DF分别交AB、AC于G、H,连接GC,若∠FDB=30°,S四边形= ,求线段GC的长.GBOH5.如图,△ABC内接于⊙O,且AB=AC.延长BC到点D,使CD=CA,连接AD交⊙O于点E.(1)求证:△ABE≌△CDE;(2)填空:①当∠ABC的度数为________时,四边形AOCE是菱形;②若AE=6,BE=8,则EF的长为________.6.如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=________,BC=________,AC=________;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.请从下列A、B两题中任选一题作答,我选择哪题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P 的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.7.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC= AB;(3)点M是弧AB的中点,CM交AB于点N,若AB=4,求MN MC的值.8.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E 出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:(1)求证:△BEF∽△DCB;(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;(3)当t为何值时,△PQF为等腰三角形?试说明理由.9.如图,△ABC是边长为2的正三角形,点D在△ABC内部,且满足DB=DC,DB⊥DC,点E在边AC 上,延长ED交线段AB于点H.(1)若ED=EC请直接写出∠BAD=________,∠AEH=________,∠AHE=________.(2)若ED=EC,求EH的长;(3)若AE=x,AH=y,请利用S△AEH=S△AED+S△AHD,求y关于x的函数关系式,并求自变量x的取值范围.10.已知:如图①,在平行四边形ABCD中,AB=12,BC=6,AD⊥BD.以AD为斜边在平行四边形AB CD的内部作Rt△AED,∠EAD=30°,∠AED=90°.(1)求△AED的周长;(2)若△ AED以每秒2个单位长度的速度沿DC向右平行移动,得到△AE0D0,当A0D0与BC重合时停止移动,设运动时间为t秒,△A0E0D0与△BDC重叠的面积为S,请直接写出S与t之间的函数关系式,并写出t的取值范围;(3)如图②,在(2)中,当△AED停止移动后得到△BEC,将△BEC绕点C按顺时针方向旋转α(0°<α<180°),在旋转过程中,B的对应点为B1,E的对应点为E1,设直线B1E1与直线BE 交于点P、与直线CB交于点Q.是否存在这样的α,使△BPQ为等腰三角形?若存在,求出α的度数;若不存在,请说明理由.11.如图,抛物线y=ax2+bx(a≠0)的图象过原点O和点A(1,),且与x轴交于点B,△AOB的面积为。
2018届中考数学全程演练 第47课时 动态型问题含答案
![2018届中考数学全程演练 第47课时 动态型问题含答案](https://img.taocdn.com/s3/m/0ce6ed96d0d233d4b14e6995.png)
第47课时 动态型问题(50分)一、选择题(每题8分,共16分)1.[2016·莱芜]如图47-1,在矩形ABCD 中,AB =2a ,AD =a ,矩形边上一动点P 沿A →B →C →D 的路径移动.设点P 经过的路径长为x ,PD 2=y ,则下列能大致反映y 与x 的函数关系的图象是(D)【解析】 (1)当0≤x ≤2a 时, ∵PD 2=AD 2+AP 2,AP =x ,∴y =x 2+a 2; (2)当2a <t ≤3a 时,CP =2a +a -x =3a -x ,∵PD 2=CD 2+CP 2,∴y =(3a -x )2+(2a )2=x 2-6ax +13a 2; (3)当3a <t ≤5a 时,PD =2a +a +2a -x =5a -x , ∵PD 2=y =(5a -x )2,y =⎩⎪⎨⎪⎧x 2+a 2(0≤x ≤2a ),x 2-6ax +13a 2(2a <x ≤3a ),(x -5a )2(3a <x ≤5a ),∴能大致反映y 与x 的函数关系的图象是选项D 中的图象.2.[2016·烟台]如图47-2,Rt △ABC 中∠C =90°,∠BAC =30°,AB =8,以23为边长的正方形DEFG 的一边GD 在直线AB 上,且点D 与点A 重合,现将正方形DEFG 沿AB 的方向以每秒1个单位的速度匀速运动,当点D 与点B 重合时停止,则在这个运动过程中,正方形DEFG 与△ABC 的重合部分的面积S 与运动时间t之图47-1图47-2间的函数关系图象大致是(A)【解析】 首先根据Rt △ABC 中∠C =90°,∠BAC =30°,AB =8,分别求出AC ,BC ,以及AB 边上的高各是多少;然后根据图示,分三种情况:(1)当0≤t ≤23时;(2)当23<t ≤6时;(3)当6<t ≤8时;分别求出正方形DEFG 与△ABC 的重合部分的面积S 的表达式,进而判断出正方形DEFG 与△ABC 的重合部分的面积S 与运动时间t 之间的函数关系图象大致是哪个即可.S =⎩⎪⎨⎪⎧36t 2(0≤t ≤23),2t -23(23<t ≤6),-233t 2+(2+83)t -263(6<t ≤8).二、填空题(每题8分,共8分)3.[2016·凉山]菱形OBCD 在平面直角坐标系中的位置如图47-3所示,顶点B (2,0),∠DOB =60°,点P 是对角线OC 上一个动点,E (0,-1),当EP +BP 最短时,点P 的坐标为.【解析】 如答图,连结DE 交OC 于点P ,即点P 满足EP +BP 最短.如答图,延长CD 交y 轴于点F ,则CF ⊥y 轴, ∵四边形OBCD 是菱形, ∵OD =CD =OB =2,∵∠DOB =60°,则∠DOF =30°, ∴DF =1,OF =3, ∴D (1,3),C (3,3),图47-3第3题答图设直线DE 的解析式为y =kx -1,则k -1=3, ∴k =3+1,则y =(3+1)x -1, 设直线OC 的解析为y =mx ,则3m =3, ∴m =33,则y =33x ,由⎩⎪⎨⎪⎧y =(3+1)x -1,y =33x ,得⎩⎨⎧x =23-3,y =2-3,∴点P 的坐标为(23-3,2-3). 二、解答题(共26分)4.(13分)[2016·攀枝花]如图47-4①,矩形ABCD 的两条边在坐标轴上,点D 与坐标原点O 重合,且AD =8,AB =6.如图②,矩形ABCD 沿OB 方向以每秒1个单位长度的速度运动,同时点P 从A 点出发也以每秒1个单位长度的速度沿矩形ABCD 的边AB 经过点B 向点C 运动,当点P 到达点C 时,矩形ABCD 和点P 同时停止运动,设点P 的运动时间为t s.图47-4(1)当t =5时,请直接写出点D ,点P 的坐标;(2)当点P 在线段AB 或线段BC 上运动时,求出△PBD 的面积S 关于t 的函数关系式,并写出相应t 的取值范围;(3)点P 在线段AB 或线段BC 上运动时,作PE ⊥x 轴,垂足为点E ,当△PEO 与△BCD 相似时,求出相应的t 值.解:(1)延长CD 交x 轴于M ,延长BA 交x 轴于N ,如答图①所示.则CM ⊥x 轴,BN ⊥x 轴,AD ∥x 轴,BN ∥DM , ∵四边形ABCD 是矩形,∴∠BAD =90°,CD =AB =6,BC =AD =8,第4题答图①∴BD =10, 当t =5时,OD =5, ∴BO =15, ∵AD ∥NO , ∴△ABD ∽△NBO , ∴AB BN =AD NO =BD BO =23,即6BN =8NO =23, ∴BN =9,NO =12,∴OM =12-8=4,DM =9-6=3,PN =9-1=8, ∴D (-4,3),P (-12,8);(2)①如答图②所示,当点P 在边AB 上时,BP =6-t , ∴S △PBD =12BP ·AD =12(6-t )×8=-4t +24;②当点P 在边BC 上时,BP =t -6,∴S △PBD =12BP ·AB =12(t -6)×6=3t -18;∴S △PBD =⎩⎪⎨⎪⎧-4t +24(0≤t ≤6),3t -18(6<t ≤14);(3)设点D ⎝ ⎛⎭⎪⎫-45t ,35t ; ①当点P 在边AB 上时,P ⎝ ⎛⎭⎪⎫-45t -8,85t ,若PE OE =CD CB 时,85t 45t +8=68, 解得t =6;若PE OE =CB CD 时,85t 45t +8=86, 解得t =20(不合题意,舍去);第4题答图②②当点P 在边BC 上时,P ⎝ ⎛⎭⎪⎫-14+15t ,35t +6, 若PE OE =CD BC 时,35t +614-15t=68, 解得t =6;若PE OE =BC CD 时,35t +614-15t=86, 解得t =19013(不合题意,舍去);综上所述,当t =6时,△PEO 与△BCD 相似.5.(13分)[2016·铜仁]如图47-5,已知:关于x 的二次函数y =x 2+bx +c 的图象与x 轴交于点A (1,0)和点B ,与y 轴交于点C (0,3),抛物线的对称轴与x 轴交于点D . (1)求二次函数的表达式;(2)在y 轴上是否存在一点P ,使△PBC 为等腰三角形.若存在,请求出点P 的坐标;(3)有一个点M 从点A 出发,以每秒1个单位的速度在AB 上向点B 运动,另一个点N 从点D 与点M 同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M 到达点B 时,点M ,N 同时停止运动,问点M ,N 运动到何处时,△MNB 面积最大,试求出最大面积.解:(1)A (1,0),C (0,3)在函数y =x 2+bx +c 的图象上, ∴0=1+b +c ,c =3,∴b =-4,即二次函数的表达式是y =x 2-4x +3; (2)∵y =x 2-4x +3, ∴B 点坐标为(3,0),如答图①,当BC 为底边时,作BC 的垂直平分线,则P 点坐标为P 1(0,0),当BC 为腰时,分别以B ,C 为圆心,BC 长为半径作圆, 则P 点坐标为P 2(0,-3),P 3(0,3-32),图47-5第5题答图①P 4(0,3+32);(3)第5题答图② 第5题答图③如答图②③,设经过的时间为t 时,△MNB 的面积为:S △MNB =12MB ·DN =12(3-1-t )2t =2t -t 2=-(t -1)2+1,∴当t =1时,△MNB 的面积最大,最大的值为1,其中M ,N 的坐标分别为M (2,0),N (2,-2)或M (2,0),N (2,2).(30分)6.(15分)[2016·威海]已知:如图47-6①,抛物线l 1:y =-x 2+bx +3交x 轴于点A ,B (点A 在点B 的左侧),交y 轴于点C ,其对称轴为x =1,抛物线l 2经过点A ,与x 轴的另一个交点为E (5,0),与y 轴交于点D ⎝⎛⎭⎪⎫0,-52.① ②图47-6(1)求抛物线l 2的函数表达式;(2)P 为直线x =1上一点,连结PA ,PC ,当PA =PC 时,求点P 的坐标;(3)如图②,M 为抛物线l 2上一动点,过点M 作直线MN ∥y 轴,交抛物线l 1于点N ,求点M 自点A 运动至点E 的过程中,线段MN 长度的最大值.解:(1)由题意,得-b2a =1,a =-1,∴b =2.∴抛物线l 1的函数表达式为y =-x 2+2x +3. 设-x 2+2x +3=0,解得x 1=-1,x 2=3. ∴点A 的坐标为(-1,0).设y =a (x +1)(x -5),将点D ⎝ ⎛⎭⎪⎫0,-52代入,得a =12. ∴抛物线l 2的函数表达式为y =12x 2-2x -52;(2)如答图,设直线x =1与x 轴交于点G ,过点C 作CH ⊥PG ,垂足为H .第6题答图由(1)知,C 的坐标为(0,3). 则HG =OC =3. 设P 点的纵坐标为m , 在Rt △APG 中,AG =2,PG =m . ∴AP 2=22+m 2=4+m 2.在Rt △CHP 中,CH =OG =1,HP =3-m . ∴CP 2=12+(3-m )2=m 2-6m +10. ∵AP =CP ,∴4+m 2=m 2-6m +10. 解得m =1.∴点P 的坐标为(1,1);(3)设点M ⎝ ⎛⎭⎪⎫x ,12x 2-2x -52,则N (x ,-x 2+2x +3).当-x 2+2x +3=12x 2-2x -52时,解得x 1=-1,x 2=113.①当-1≤x ≤113时,MN =y N -y M =-32x 2+4x +112=-32⎝ ⎛⎭⎪⎫x -432+496,显然,-1≤43≤113,∴当x =43时,MN 有最大值496,②当113≤x ≤5时,MN =y M -y N =32x 2-4x -112=32⎝ ⎛⎭⎪⎫x -432-496.显然,当x >43时,MN 随x 的增大而增大.所以当点M 与点E 重合,即x =5时,MN 有最大值:32×52-4×5-112=12.综上所述,在点M 自点A 运动至点E 的过程中,线段MN 长度的最大值为12. 7.(15分)[2017·湖州]如图47-7,已知在平面直角坐标系xOy 中,O 是坐标原点,以P (1,1)为圆心的⊙P 与x 轴,y 轴分别相切于点M 和点N .点F 从点M 出发,沿x 轴正方向以每秒1个单位长度的速度运动,连结PF ,过点P 作PE ⊥PF 交y 轴于点E .设点F 运动的时间是t s(t >0).(1)若点E 在y 轴的负半轴上(如图47-7所示),求证:PE =PF ;(2)在点F 运动过程中,设OE =a ,OF =b ,试用含a 的代数式表示b ;(3)作点F 关于点M 的对称点F ′.经过M ,E ,F ′三点的抛物线的对称轴交x 轴于点Q ,连结QE .在点F 运动过程中,是否存在某一时刻,使得以点Q ,O ,E 为顶点的三角形与以点P ,M ,F 为顶点的三角形相似,若存在,请直接写出t 的值;若不存在,请说明理由.解:(1)证明:如答图①,连结PM ,PN . ∵⊙P 与x 轴,y 轴分别相切于点M 和点N , ∴PM ⊥MF ,PN ⊥ON ,且PM =PN , ∴∠PMF =∠PNE =90°且∠NPM =90°. ∵PE ⊥PF ,∴∠1=∠3=90°-∠2. 在△PMF 和△PNE 中,图47-7第7题答图①⎩⎪⎨⎪⎧∠1=∠3,PM =PN ,∠PMF =∠PNE . ∴△PMF ≌△PNE , ∴PE =PF ;(2)分两种情况:①当t >1时,点E 在y 轴的负半轴上,如答图②, 由(1)得△PMF ≌△PNE , ∴NE =MF =t ,PN =PM =1,∴b =OF =OM +MF =1+t ,a =NE -ON =t -1. ∴b -a =1+t -(t -1)=2, ∴b =2+a ;②当0<t ≤1时,如答图③,点E 在y 轴的正半轴上或原点,同理可证△PMF ≌△PNE , ∴b =OF =OM +MF =1+t ,a =OE =ON -NE =1-t ,∴b +a =1+t +1-t =2, ∴b =2-a .综上所述,当t >1时,b =2+a ; 当0<t ≤1时,b =2-a ;(3)解存在,t 的值是2+2或2-2或2或1+174. (20分)8.(20分)[2016·金华]如图47-8,抛物线y =ax 2+c (a ≠0)与y 轴交于点A ,与x 轴交于B ,C 两点(点C 在x 轴正半轴上),△ABC 为等腰直角三角形,且面积为4.现将抛物线沿BA 方向平移,平移后的抛物线过点C 时,与x 轴的另一个交点为E ,其顶点为F ,对称轴与x 轴的交点为H.第7题答图②第7题答图③图47-8(1)求a ,c 的值;(2)连结OF ,试判断△OEF 是否为等腰三角形,并说明理由;(3)先将一足够大的三角板的直角顶点Q 放在射线AF 或射线HF 上,一直角边始终过点E ,另一直角边与y 轴相交于点P .是否存在这样的点Q ,使以点P ,Q ,E 为顶点的三角形与△POE 全等?若存在,求出点Q 的坐标;若不存在,请说明理由. 解:(1)∵△ABC 为等腰直角三角形,∴OA =12BC ,又∵△ABC 的面积=12BC ·OA =4,即OA 2=4,∴OA =2,∴A (0,2),B (-2,0),C (2,0),∴c =2,∴抛物线的函数表达式为y =ax 2+2, ∴有4a +2=0,解得a =-12;∴a =-12,c =2.(2)△OEF 是等腰三角形. 理由:如答图①, ∵A (0,2),B (-2,0),∴直线AB 的函数表达式为y =x +2,又∵平移后的抛物线顶点F 在射线BA 上, ∴设顶点F 的坐标为(m ,m +2),∴平移后的抛物线函数表达式为y =-12(x -m )2+m +2,∵抛物线过点C (2,0),第8题答图①∴-12(2-m )2+m +2=0, 解得m 1=0(舍去),m 2=6,∴平移后的抛物线函数表达式为y =-12(x -6)2+8,即y =-12x 2+6x -10. 当y =0时,-12x 2+6x -10=0,解得x 1=2,x 2=10,∴E (10,0),OE =10,又F (6,8),OH =6,FH =8,∴OF =OH 2+FH 2=62+82=10,又∵EF =FH 2+HE 2=82+42=45,∴OE =OF ,即△OEF 为等腰三角形;(3)点Q 的位置分两种情形.情形一:点Q 在射线HF 上.当点P 在x 轴上方时,如答图②.由于△PQE ≌△POE ,∴QE =OE =10,在Rt △QHE 中,QH =QE 2-HE 2=102-42=84=221,∴Q (6,221);当点P 在x 轴下方时,如答图③,有PQ =OE =10,过P 点作PK ⊥HQ 于点K ,则有PK =6,在Rt △PQK 中,QK =PQ 2-PK 2=102-62=8,∵∠PQE =90°,∴∠PQK +∠HQE =90°,∵∠HQE +∠HEQ =90°,∴∠PQK =∠HEQ ,又∵∠PKQ =∠QHE =90°,∴△PKQ ∽△QHE ,∴PK QH =KQ HE ,即6QH =84,解得QH =3,第8题答图②第8题答图③∴Q (6,3);情形二:点Q 在射线AF 上.当PQ =OE =10时,如答图④,有QE =PO ,∴四边形POEQ 为矩形,∴Q 的横坐标为10,当x =10时,y =x +2=12,∴Q (10,12).第8题答图④ 第8题答图⑤当QE =OE =10时,如答图⑤,过Q 作QM ⊥y 轴于点M ,过E 点作x 轴的垂线交QM 于点N . 设Q 的坐标为(x ,x +2),∴MQ =x ,QN =10-x ,EN =x +2,在Rt △QEN 中,有QE 2=QN 2+EN 2,即102=(10-x )2+(x +2)2,解得x =4±14, 当x =4+14时,如答图⑤,y =x +2=6+14, ∴Q (4+14,6+14),当x =4-14时,如答图⑥,y =x +2=6-14, ∴Q (4-14,6-14).综上所述,存在点Q 1(6,221),Q 2(6,3),Q 3(10,12), Q 4(4+14,6+14),Q 5(4-14,6-14),使以P ,Q ,E 三点为顶点的三角形与△POE 全等.第8题答图⑥。
【备考期末】长春市中考数学规律问题图形变化类专题
![【备考期末】长春市中考数学规律问题图形变化类专题](https://img.taocdn.com/s3/m/3952ba44960590c69fc3767d.png)
【备考期末】长春市中考数学规律问题图形变化类专题一、规律问题图形变化类1.将若干个小菱形按如图的规律排列:第(1)个图形有1个小菱形,第(2)个图形有3个小菱形,第(3)个图形有6个小菱形,…,则第(20)个图形有( )个小菱形,A .190B .200C .210D .2202.利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表表示0,将第一行数字从左到右一次记为a b c d ,,,,那么可以转换为该生所在班级序号,其序号为43212222a b c d ⨯+⨯+⨯+⨯,如图2第一行数字从左到右依次为0,1,0,1,序号为43210212021210⨯+⨯+⨯+⨯=,表示该生为10班的学生,表示12班的学生的识别图案是( )A .B .C .D .3.如图30MON ∠=︒,点1A 、2A 、3A …在射线ON 上,点1B 、2B 、3B …在射线OM 上,112A B A △、223A B A △、324A B A △…为等边三角形,若11OA =,则877A B A △的边长为( )A .32B .56C .64D .1284.第①图形中有2个三角形,第②图形中有8个三角形,第③个图形中有14个三角形,依此规律,第⑦个图形中三角形的个数是( )A .40B .38C .36D .345.如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;…;根据以上操作,若操作670次,得到小正方形的个数是( )A .2009B .2010C .2011D .20126.按照如图所示的方法排列黑色小正方形地砖,则第14个图案中黑色小正方形地砖的数量是( )A .360B .363C .365D .3697.长度相同的木棒按一定规律拼搭图案,第1个需7根木棒,第2个需13根木棒,…,第11个需要木棒的个数为( )A .156B .157C .158D .1598.如图,已知正方形1234A A A A 的边长为1,延长12A A 到1B ,使得1212B A A A =,延长23A A 到2B ,使得2323B A A A =,以同样的方式得到34,B B ,连接1234,,,B B B B ,得到第2个正方形1234B B B B ,再以同样方式得到第3个正方形1234C C C C ,……,则第2020个正方形的边长为( )A .2020B .2019(5)C .2020(5)D .202059.如图,点Q 在线段AP 上,其中10PQ =,第一次分别取线段AP 和AQ 的中点1P ,1Q 得到线段11PQ ;再分别取线段1AP 和1AQ 的中点2P ,2Q 得到线段22P Q ;第三次分别取线段2AP 和2AQ 的中点3P ,3Q 得到线段33PQ ;连续这样操作11次,则每次的两个中点所形成的所有线段之和1122331111PQ P Q PQ P Q ++++=( )A .1010102-B .1110102-C .1010102+D .1110102+10.把黑色三角形按如图所示的规律拼成下列图案,其中第①个图案中有4个黑色三角形,第②图案有7个黑色三角形,第③个图案有10个黑色三角形,…,按此规律排列下去,则第⑥图案中黑色三角形的个数为( )A .16B .19C .31D .3611.图①是一个三角形,分别连接这个三角形三边的中点得到图②,再分别连接图②中间小三角形三边的中点,得到图③.按这样的方法继续下去,第n 个图形中有( )个三角形(用含n 的代数式表示).A .4nB .41n +C .41n -D .43n -12.如图,四边形OAA 1B 1是边长为1的正方形,以对角线OA 1为边作第二个正方形OA 1A 2B 2,连接AA 2,得到AA 1A 2;再以对角线OA 2为边作第三个正方形OA 2A 3B 3,连接A 1A 3,得到A 1A 2A 3,再以对角线OA 3为边作第四个正方形OA 2A 4B 4,连接A 2A 4,得到A 2A 3A 4,…,设AA 1A 2,A 1A 2A 3,A 2A 3A 4,…,的面积分别为S 1,S 2,S 3,…,如此下去,则S 2020的值为( )A .202012B .22018C .22018+12D .101013.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第8个图中正方形和等边三角形的个数之和为( )A .57B .66C .67D .7514.如图,每个图案都由若干个“●”组成,其中第①个图案中有7个“●”,第②个图案中有13个“●”,…,则第⑨个图案中“●”的个数为( )A .87B .91C .103D .11115.如图,在射线OA ,OB 上分别截取11OA OB =,连接11A B ,在11B A ,1B B 上分别截取1212B A B B =,连接22A B ,⋯按此规律作下去,若11A B O a ∠=,则20202020A B O ∠=( )A .20202a B .20192aC .4040aD .4038a16.如图,△ABC 面积为1,第一次操作:分别延长AB ,BC ,CA 至点A 1,B 1,C 1,使A 1B =AB ,B 1C =BC ,C 1A =CA ,顺次连接A 1,B 1,C 1,得到△A 1B 1C 1.第二次操作:分别延长A 1B 1,B 1C 1,C 1A 1至点A 2,B 2,C 2,使A 2B 1=A 1B 1,B 2C 1=B 1C 1,C 2A 1=C 1A 1,顺次连接A 2,B 2,C 2,得到△A 2B 2C 2,…按此规律,要使得到的三角形的面积超过2019,最少经过( )次操作.A .4B .5C .6D .717.如图,直线m//n ,点A 在直线m 上,BC 在直线n 上,构成ABC ,把ABC 向右平移BC 长度的一半得到A B C '''(如图①),再把A B C '''向右平移BC 长度的一半得到A B C ''''''△(如图②),再继续上述的平移得到图③,…,通过观察可知图①中有4个三角形,图②中有8个三角形,则第2020个图形中三角形的个数是( )A .4040B .6060C .6061D .808018.如图,在平面直角坐标系中,点1A ,2A ,3A 在直线15y x b =+上,点1B ,2B ,3B 在x 轴上,11OA B ∆,122B A B ∆,233B A B ∆都是等腰直角三角形,若已知点()11,1A ,则点3A 的纵坐标是( )A .32B .23C .49D .9419.如图,已知∠MON=30°,点123......A A A 、、在射线ON 上,点123......B B B 、、在射线OM 上,111OA A B =,12B A OM ⊥,222OA A B =,23B A OM ⊥,以此类推,若11OA =,则66A B 的长为( )A .6B .152C .32D .7296420.下列图形都是由同样大小的黑色正方形纸片组成,其中图①有3张黑色正方形纸片,图②有5张黑色正方形纸片,图③有7张黑色正方形纸片…按此规律排列下去,图⑩中黑色正方形纸片的张数为( )A .17B .19C .21D .2321.用棋子按下列方式摆图形,第一个图形有1枚棋子,第二个图形有5枚棋子,第三个图形有12枚棋子,…依此规律,第7个图形比第6个图形多( )枚棋子A .20B .19C .18D .1722.如图,在坐标系中放置一菱形 OABC ,已知∠ABC =60°,点 B 在 y 轴上,OA =1,先将菱形 OABC 沿 x 轴的正方向无滑动翻转,每次翻转 60°,连续翻转2019次,点 B 的落点依次为 B 1,B 2,B 3,…,则 B 2 019 的坐标为( )A .(1010,0)B .(1310.5,32) C .(1345, 32) D .(1346,0)23.如图,依次连结第一个菱形各边的中点得到一个矩形,再依次连结矩形各边的中点得到第二个菱形,按此方法继续下去.已知第一个菱形的面积为1,则第4个菱形的面积是( )A .14B .116C .132D .16424.如图,8AOB ∠=︒,点P 在OB 上.以点P 为圆心,OP 为半径画弧,交OA 于点1P (点1P 与点O 不重合),连接1PP ;再以点1P 为圆心,OP 为半径画弧,交OB 于点2P (点2P 与点P 不重合),连接12PP ;再以点2P 为圆心,OP 为半径画弧,交OA 于点3P (点3P 与点1P 不重合),连接23P P ;…按照这样的方法一直画下去,得到点n P ,若之后就不能再画出符合要求的点1n P +,则n 等于( )A .13B .12C .11D .1025.把圆形按如图所示的规律拼图案,其中第①个图案中有1个圆形,第②个图案中有5个圆形,第③个图案有11个圆形,第④个图案有19个圆形,…,按此规律排列下去,第7个图案中圆形的个数为( )A .42B .54C .55D .56【参考答案】***试卷处理标记,请不要删除一、规律问题图形变化类 1.C 【分析】仔细观察图形知:第(1)个图形有1个小菱形,第(2)个图形有3=1+2个,第(3)个图形有6=1+2+3个,…由此得到规律求得第(20)个图形中小菱形的个数即可. 【详解】解:第(1)个图形有1(个)菱形, 第(2)个图形有3=1+2(个), 第(3)个图形有6=1+2+3(个), 第(4)个图形有10=1+2+3+4(个), …第n 个图形有1+2+3+4+…+n =(1)2n n + (个)小菱形, ∴第(20)个图形有20212102⨯=(个)小菱形. 故选:C . 【点睛】本题考查了规律型问题,解题的关键是仔细观察图形并找到有关图形个数的规律. 2.B 【分析】根据规定的运算法则分别计算出每个选项的数即可作出判断. 【详解】根据题意,可得A 中的图案表示的班级序号为432102+12+12+12=8+4+2=14⨯⨯⨯⨯, B 中的图案表示的班级序号为432102+12+12+02=8+4=12⨯⨯⨯⨯, C 中的图案表示的班级序号为432112+02+02+12=16+2=18⨯⨯⨯⨯, D 中的图案表示的班级序号为432112+02+12+02=16+4=20⨯⨯⨯⨯. 故选B .【点睛】本题主要考查图形的变化类,解题的关键是根据题意弄清题干规定的运算规则,并将图形的变化问题转化为数字问题.3.C【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2…进而得出答案.【详解】解:如图,∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2=2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,…∴△A n B n A n+1的边长为2n-1,∴△A7B7A8的边长为27-1=26=64.故选:C.【点睛】本题考查的是等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.4.B【分析】由图形可知:第①个图形有2+6×0=2个三角形;第②个图形有2+6×1=8个三角形;第③个图形有2+6×2=14个三角形;…第n个图形有2+6×(n-1)=6n-4个三角形;进一步代入求得答案即可.【详解】解:∵第①个图形有2+6×0=2个三角形;第②个图形有2+6×1=8个三角形;第③个图形有2+6×2=14个三角形;…∴第n个图形有2+6×(n-1)=6n-4个三角形;∴第⑦个图形有6×7-4=38个三角形,故选:B.【点睛】本题考查了规律型:图形的变化类:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.5.C【分析】先根据题意发现规律,然后再按照规律计算即可.【详解】解:将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;……将其中的一个正方形再剪成四个小正方形,共得到4+3(n-1)个小正方形,称为第n次操作;令n=670,可得4+3×(670-1)=2011.故选:C.【点睛】本题主要考查了数字变化类规律问题,根据题意发现规律成为解答本题的关键.6.C【分析】观察求出图案中地砖的块数,找到规律再求出黑色的地砖的数量即可.【详解】第1个图案只有(2×1﹣1)2=12=1块黑色地砖,第2个图案有黑色与白色地砖共(2×2﹣1)2=32=9,其中黑色的有12(9+1)=5块,第3个图案有黑色与白色地砖共(2×3﹣1)2=52=25,其中黑色的有12(25+1)=13块,…第n 个图案有黑色与白色地砖共(2n ﹣1)2,其中黑色的有12 [(2n ﹣1)2+1], 当n =14时,黑色地砖的块数有12×[(2×14﹣1)2+1]=12×730=365. 故选:C.【点睛】 此题考查图形类规律的探究,有理数的混合运算,根据所给图案总结出图案排列的规律由此进行计算是解题的关键.7.B【分析】分别求出每一个图形的木棒数,然后再找出一般规律求解即可.【详解】解:第1个图形共有7=1×(1+3)+3根木棒,第2个图形共有13=2×(2+3)+3根木棒,第3个图形共有21=3×(3+3)+3根木棒,第4个图形共有31=4×(4+3)+3根木棒,…第n 个图形共有n×(n+3)+3根木棒,第11个图形共有11×(11+3)+3=157根木棒,故选:B【点睛】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.8.B【分析】结合题意分析每个正方形的边长,从而发现数字的规律求解【详解】解:由题意可得:第1个正方形1234A A A A 的边长为012A A∵1212B A A A =∴112A B =∴第2个正方形1234B B B B由题意,以此类推,21C B =22C B =∴第3个正方形1234C C C C 25==…∴第n 个正方形的边长为1n∴第2020个正方形的边长为2019故选:B .【点睛】本题考查勾股定理及图形类规律探索,题目难度不大,正确理解题意求解每个正方形边长的规律是解题关键.9.B【分析】根据线段中点定义先求出P 1Q 1的长度,再由P 1Q 1的长度求出P 2Q 2的长度,从而找到P n Q n 的规律,即可求出结果.【详解】解:∵线段PQ=10,线段AP 和AQ 的中点P 1,Q 1,∴P 1Q 1=AP 1-AQ 1 =12AP-12AQ =12(AP-AQ ) =12PQ =12×10 =5.∵线段AP 1和AQ 1的中点P 2,Q 2;∴P 2Q 2=AP 2-AQ 2 =12AP 1-12AQ 1 =12(AP 1-AQ 1) =12P 1 Q 1 =12×12×10 =212×10 =52. 发现规律:P n Q n =12n×10 ∴P 1Q 1+P 2Q 2+…+P 11Q 11=12×10+212×10+312×10+…+1112×10 =10(12+212+312+…+1112) =10(1111212-) =10(1-1112) =10-11102 故选:B .【点睛】本题考查了线段规律性问题,准确根据题意找出规律是解决本题的关键,比较有难度. 10.B【分析】观察图案发现第①个图案中黑色三角形的个数为1314+⨯=;第②个图案中黑色三角形的个数为1327+⨯=;第③个图案中黑色三角形的个数为13310+⨯=;即可求解.【详解】解:第①个图案中黑色三角形的个数为1314+⨯=;第②个图案中黑色三角形的个数为1327+⨯=;第③个图案中黑色三角形的个数为13310+⨯=;……第⑥个图案中黑色三角形的个数为13619+⨯=,故答案为:B .【点睛】本题考查图形的规律,观察图案找出规律是解题的关键.11.D【分析】由题意易得第一个图形三角形的个数为1个,第二个图形三角形的个数为5个,第三个图形三角形的个数为9个,第四个图形三角形的个数为13个,由此可得第n 个图形三角形的个数.【详解】解:由题意得:第一个图形三角形的个数为4×1-3=1个,第二个图形三角形的个数为4×2-3=5个,第三个图形三角形的个数为4×3-3=9个,第四个图形三角形的个数为4×4-3=13个,……∴第n 个图形三角形的个数为()43n -个;故选:D.【点睛】本题主要考查图形规律问题,关键是根据图形得到一般规律即可.12.B【分析】首先求出S1、S2、S3,然后猜测命题中隐含的数学规律,即可解决问题.【详解】解:如图∵四边形OAA1B1是正方形,∴OA=AA1=A1B1=1,∴S1=12⨯1×1=12,∵∠OAA1=90°,∴OA12=12+12=2,∴OA2=A2A3=2,∴S2=12⨯2×1=1,同理可求:S3=12⨯2×2=2,S4=4…,∴S n=2n﹣2,∴S2020=22018,故选:B.【点睛】本题考查了勾股定理在直角三角形中的运用,考查了学生找规律的能力,本题中找到a n的规律是解题的关键.13.D【分析】根据题中正方形和等边三角形的个数找出规律,进而可得出结论.【详解】解:∵第1个图由1个正六边形、6个正方形和6个等边三角形组成,∴正方形和等边三角形的和=6+6=12=9+3;∵第2个图由2个正六边形、11个正方形和10个等边三角形组成,∴正方形和等边三角形的和=11+10=21=9×2+3;∵第3个图由3个正六边形、16个正方形和14个等边三角形组成,∴正方形和等边三角形的和=16+14=30=9×3+3,…,∴第n 个图中正方形和等边三角形的个数之和=9n +3.∴当n =8时,第8个图中正方形和等边三角形的个数之和为9×8+3=75,故选D .【点睛】本题考查的是数字的变化类,根据题意找出规律是解答此题的关键.14.D【分析】根据第①个图案中“●”有:1+3×(0+2)个,第②个图案中“●”有:1+4×(1+2)个,第③个图案中“●”有:1+5×(2+2)个,第④个图案中“●”有:1+6×(3+2)个,据此可得第⑨个图案中“●”的个数.【详解】解:∵第①个图案中“●”有:1+3×(0+2)=7个,第②个图案中“●”有:1+4×(1+2)=13个,第③个图案中“●”有:1+5×(2+2)=21个,第④个图案中“●”有:1+6×(3+2)=31个,…∴第9个图案中“●”有:1+11×(8+2)=111个,故选:D .【点睛】本题考查规律型:图形的变化,解题的关键是将原图形中的点进行无重叠的划分来计数. 15.B【分析】根据等腰三角形两底角相等结合三角形外角性质用α表示出22A B O ∠,依此类推即可得到结论.【详解】解:1212B A B B =,11A B O α∠=,22111122A B O A B O α∴∠=∠=, 同理3322211112222A B O A B O αα∠=∠=⨯=, ∴44312A B O α∠=, 112n n n A B O α-∴∠=, 2020202020192A B O α∴∠=,故选:B .【点睛】本题考查了等腰三角形两底角相等的性质,和三角形外角性质,图形的变化规律,依次求出每个三角形的一个底角,得到分母成2的指数次幂变化,分子不变的规律是解题的关键. 16.A【分析】先根据已知条件求出△111A B C 及△222A B C 的面积,再根据两三角形的倍数关系求解即可.【详解】解:ABC ∆与△11A BB 底相等1()AB A B =,高为11:2(2)BB BC =,故面积比为1:2, ABC ∆面积为1,112A B B S ∴=.同理可得,112C B C S =,12AA C S =, 11111_1_1_122217A B C C B C AA C A B B ABC S S S S S ∆∴=+++=+++=;同理可证△222A B C 的面积7=⨯△111A B C 的面积49=,第三次操作后的面积为749343⨯=,第四次操作后的面积为73432401⨯=.故按此规律,要使得到的三角形的面积超过2019,最少经过4次操作.故选:A .【点睛】考查了三角形的面积,此题属规律性题目,解答此题的关键是找出相邻两次操作之间三角形面积的关系,再根据此规律求解即可.17.D【分析】探究规律,利用规律解决问题即可.【详解】解:观察图可得,第1个图形中大三角形有2个,小三角形有2个,第2个图形中大三角形有4个,小三角形有4个,第3个图形中大三角形有6个,小三角形有6个,…依次可得第n 个图形中大三角形有2n 个,小三角形有2n 个.故第2019个图形中三角形的个数是:2×2020+2×2020=8080.故选:D .【点睛】本题考查规律型问题,平行线的性质,平移变换等知识,解题的关键是学会探究规律的方法,属于中考常考题型.18.D【分析】作11A C ⊥x 轴,22A C ⊥ x 轴,33A C ⊥ x 轴,设2A 纵坐标为m ,再根据等腰直角三角形的性质,将坐标表示为()22,A m m +,代入直线解析式算出m ,再用同样的方法设()35,A n n +,代入解析式求出n .【详解】解:如图,作11A C ⊥x 轴,22A C ⊥ x 轴,33A C ⊥ x 轴,把()11,1A 代入15y x b =+,求出45b =,则直线解析式是1455y x =+, 已知()11,1A ,根据等腰直角三角形的性质,得到111111OC A C B C ===,设2A 纵坐标为m ,22A C m =,22OC m =+,得()22,A m m +,代入直线解析式,得()14255m m =++,解得32m =, 设3A 纵坐标为n ,33A C n =,35OC n =+,得()35,A n n +,代入直线解析式,得()14555n n =++,解得9n 4=. 故选:D .【点睛】本题考查一次函数的图象和几何综合,解题的关键是抓住等腰直角三角形的性质去设点坐标,再代入解析式列式求解.19.C【分析】根据等腰三角形的性质以及平行线的性质,=30MON ∠︒,111OA A B =,得到1=30∠︒,由12B A OM ⊥,得到1OA 的长度,进而得到22122A B B A =,根据已知得出33124A B B A =,44128A B B A =,551216A B B A =,进而得出答案.【详解】∵=30MON ∠︒,111OA A B =,12B A OM ⊥∴1=30∠︒,∴===60︒∠3∠4∠12,∵11OA =,∴111A B =,∴21121A B A A ==,∴22OA =,∵222OA A B =,∴22122A B B A =∵23B A OM ⊥,∴122334////B A B A B A∴1===30︒∠∠6∠7,==90︒∠5∠8∴3323324A B B A OA ===,∴331244A B B A ==,441288A B B A ==,55121616A B B A ==,以此类推:66123232A B B A ==.故选:C .【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出33124A B B A =,44128A B B A =,551216A B B A =,进而发现规律是解题关键.20.C【分析】设第n (n 为正整数)个图形有a n 张黑色正方形纸片,根据各图形中黑色正方形纸片张数的变化,可找出变化规律“a n =2n +1”,再代入n =10即可求出结论.【详解】解:设第n (n 为正整数)个图形有a n 张黑色正方形纸片.观察图形,可知:a 1=3=2×1+1,a 2=5=2×2+1,a 3=7=2×3+1,…,∴a n =2n +1,∴a 10=2×10+1=21.故选:C .【点睛】本题考查了规律型:图形的变化类,根据各图形中黑色正方形纸片张数的变化,找出变化规律“a n =2n +1”是解题的关键.21.B【详解】试题分析:设第n 个图形的棋子数为Sn ,则第1个图形,S 1=1;第2个图形,S 2=1+4,S 2-S 1=4=3×1+1;第3个图形,S 3=1+4+7;S 3-S 2=7=3×2+1;第3个图形,S 3=1+4+7+10;S 4-S 3=10=3×3+1;……∴第n 个图形比第(n -1)个图形多()3n 113n 2-+=-棋子.∴第7个图形比第6个图形多372=19⨯-棋子.故选B.考点:探索规律题(图形的变化类).22.D【分析】连接AC ,根据条件可以求出AC ,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移4.由于2019=336×6+3,因此点3B 向右平移1344(即3364⨯)即可到达点2019B ,根据点3B 的坐标就可求出点2019B 的坐标.【详解】连接AC ,如图所示.∵四边形OABC 是菱形,∴OA =AB =BC =OC .∵∠ABC =60°,∴△ABC 是等边三角形.∴AC =AB .∴AC =OA .∵OA =1,∴AC =1.由图可知:每翻转6次,图形向右平移4.∵2019=336×6+3,∴点B 3向右平移1344(即336×4)到点B 2019.∵B 3的坐标为(2,0),∴B 2019的坐标为(1346,0),故选:D【点睛】本题考查了菱形的性质、等边三角形的判定与性质等知识,考查了操作、探究、发现规律的能力.发现“每翻转6次,图形向右平移4”是解决本题的关键.23.D【分析】易得第二个菱形的面积为(12)2,第三个菱形的面积为(12)4,依此类推,第n 个菱形的面积为(12)2n-2,把n=4代入即可. 【详解】 解:已知第一个菱形的面积为1; 则第二个菱形的面积为原来的(12)2, 第三个菱形的面积为(12)4, 依此类推,第n 个菱形的面积为(12)2n-2, 当n=4时,则第4个菱形的面积为(12)2×4-2=(12)6=164. 故选:D .【点睛】 本题考查了三角形的中位线定理及矩形、菱形的性质,是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.24.C【分析】先观察题目,可知画出的三角形为等腰三角形,可依次算出第一个第二个第三个等腰三角形的底角的度数,发现规律:第n 个等腰三角形的底角度数为(8)n ︒,再根据等腰三角形的底角度数小于90°,即可算出答案.【详解】解:根据题意可得出:∵11223OP PP PP P P === ∴画出的三角形为等腰三角形∵8AOB ∠=︒ ∴18AOB PPO ∠=∠=︒ ∴121216PPP PP P ∠==︒∴21323132P PP P P P ∠==︒依次推算可发现规律:第n 个等腰三角形的底角度数为(8)n ︒∵等腰三角形的底角度数小于90°∴(8)90n ︒<︒ ∴908n <(n 为正整数)n .∴11故选:C.【点睛】本题主要考查规律探索和等腰三角形的性质,知道三角形的外角度数等于其它两个内角和的度数以及等腰三角形的底角小于90°是解题的关键.25.C【分析】根据题意找到图案中圆形个数的规律,从而求解【详解】解:第①个图案中有0+12=1个圆形,第②个图案中有1+22=5个圆形,第③个图案有2+32=11个圆形,第④个图案有3+42=19个圆形,第n个图案有(n-1)+n2个圆形,∴第7个图案中圆形的个数为:6+72=55故选:C.【点睛】本题考查了规律型:图形的变化类,根据图形中圆形个数的变化找出变化规律是解题的关键.。
2018年中考数学真题分类汇编第一期专题36规律探索试题含解析
![2018年中考数学真题分类汇编第一期专题36规律探索试题含解析](https://img.taocdn.com/s3/m/5351b55d8e9951e79b892748.png)
规律探索一、选择题1.(2018·重庆(A)·4分)把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为A.12 B.14 C.16 D.18【考点】图形的变化规律【解析】∵第1个图案中的三角形个数为:2+2=2×2=4;第2个图案中的三角形个数为:2+2+2=2×3=6;第3个图案中的三角形个数为:2+2+2+2=2×4=8;……∴第7个图案中的三角形个数为:2+2+2+2+2+2+2+2=2×8=16;【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果。
比较简单。
2(2018·台湾·分)若小舒从1~50的整数中挑选4个数,使其由小到大排序后形成一等差数列,且4个数中最小的是7,则下列哪一个数不可能出现在小舒挑选的数之中?()A.20 B.25 C.30 D.35【分析】A、找出7,20、33、46为等差数列,进而可得出20可以出现,选项A不符合题意;B、找出7、16、25、34为等差数列,进而可得出25可以出现,选项B不符合题意;C、由30﹣7=23,23为质数,30+23>50,进而可得出30不可能出现,选项C符合题意;D、找出7、21、35、49为等差数列,进而可得出35可以出现,选项D不符合题意.【解答】解:A、∵7,20、33、46为等差数列,∴20可以出现,选项A不符合题意;B、∵7、16、25、34为等差数列,∴25可以出现,选项B不符合题意;C、∵30﹣7=23,23为质数,30+23>50,∴30不可能出现,选项C符合题意;D、∵7、21、35、49为等差数列,∴35可以出现,选项D不符合题意.故选:C.【点评】本题考查了规律型中数字的变化类,根据等差数列的定义结合四个选项中的数字,找出符合题意得等差数列是解题的关键.3(2018·广东广州·3分)在平面直角坐标系中,一个智能机器人接到如下指令,从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m,其行走路线如图所示,第1次移动到,第2次移动到……,第n次移动到,则△的面积是()A.504B.C.D.【答案】A【考点】探索图形规律【解析】【解答】解:依题可得:A2(1,1),A4(2,0),A8(4,0),A12(6,0)……∴A4n(2n,0),∴A2016=A4×504(1008,0),∴A2018(1009,1),∴A2A2018=1009-1=1008,∴S= ×1×1008=504().故答案为:A.【分析】根据图中规律可得A4n(2n,0),即A2016=A4×504(1008,0),从而得A2018(1009,1),再根据坐标性质可得A2A2018=1008,由三角形面积公式即可得出答案.4 (2018四川省绵阳市)将全体正奇数排成一个三角形数阵13 57 9 1113 15 17 1921 23 25 27 29… … … … … …根据以上排列规律,数阵中第25行的第20个数是()A.639B.637C.635D.633【答案】A【考点】探索数与式的规律【解析】【解答】解:依题可得:第25行的第一个数为:1+2+4+6+8+……+2×24=1+2× =601,∴第25行的第第20个数为:601+2×19=639.故答案为:A.【分析】根据规律可得第25行的第一个数为,再由规律得第25行的第第20个数.5.(2018年湖北省宜昌市3分)1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则a,b,c的值分别为()A.a=1,b=6,c=15 B.a=6,b=15,c=20C.a=15,b=20,c=15 D.a=20,b=15,c=6【分析】根据图形中数字规模:每个数字等于上一行的左右两个数字之和,可得a、b、c 的值.【解答】解:根据图形得:每个数字等于上一行的左右两个数字之和,∴a=1+5=6,b=5=10=15,c=10+10=20,故选:B.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二.填空题1(2018年四川省内江市)如图,直线y=﹣x+1与两坐标轴分别交于A,B两点,将线段OA 分成n等份,分点分别为P1,P2,P3,…,P n﹣1,过每个分点作x轴的垂线分别交直线AB于点T1,T2,T3,…,T n﹣1,用S1,S2,S3,…,S n﹣1分别表示Rt△T1OP1,Rt△T2P1P2,…,Rt△T n﹣1P n﹣2P n﹣1的面积,则S1+S2+S3+…+S n﹣1= ﹣.【考点】F8:一次函数图象上点的坐标特征;D2:规律型:点的坐标.【分析】如图,作T1M⊥OB于M,T2N⊥P1T1.由题意可知:△BT1M≌△T1T2N≌△T n﹣1A,四边形OMT1P1是矩形,四边形P1NT2P2是矩形,推出=××=,S1=,S2=,可得S1+S2+S3+…+S n﹣1=(S△AOB﹣n).【解答】解:如图,作T1M⊥OB于M,T2N⊥P1T1.由题意可知:△BT1M≌△T1T2N≌△T n﹣1A,四边形OMT1P1是矩形,四边形P1NT2P2是矩形,∴=××=,S 1=,S 2=,∴S 1+S 2+S 3+…+S n ﹣1=(S △AOB ﹣n )=×(﹣n ×)=﹣.故答案为﹣.【点评】本题考查一次函数的应用,规律型﹣点的坐标、三角形的面积、矩形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分割法求阴影部分面积.2(2018•广西桂林•3分)将从1开始的连续自然数按右图规律排列:规定位于第m 行,第n 列的自然数10记为(3,2),自然数15记为(4,2)......按此规律,自然数2018记为__________【答案】(505,2)【解析】分析:由表格数据排列可知,4个数一组,奇数行从左向右数字逐渐增大,偶数行从右向左数字逐渐增大,用2018除以4,商确定所在的行数,余数确定所在行的序数,然后解答即可.详解:2018÷4=504⋯⋯2. ∴2018在第505行,第2列, ∴自然数2018记为(505,2). 故答案为:(505,2).点睛:本题是对数字变化规律的考查,观察出实际有4列,但每行数字的排列顺序是解题的关键,还要注意奇数行与偶数行的排列顺序正好相反.3(2018•河北•6分)如图101-,作BPC ∠平分线的反向延长线PA ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ∠=︒,而90452︒=︒是360︒(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图102-所示.图102-中的图案外轮廓周长是 ;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是 .4(2018·广东·3分)如图,已知等边△OA 1B 1,顶点A 1在双曲线y=(x >0)上,点B 1的坐标为(2,0).过B 1作B 1A 2∥OA 1交双曲线于点A 2,过A 2作A 2B 2∥A 1B 1交x 轴于点B 2,得到第二个等边△B 1A 2B 2;过B 2作B 2A 3∥B 1A 2交双曲线于点A 3,过A 3作A 3B 3∥A 2B 2交x 轴于点B 3,得到第三个等边△B 2A 3B 3;以此类推,…,则点B 6的坐标为 (2,0) .【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B 2、B 3、B 4的坐标,得出规律,进而求出点B 6的坐标.【解答】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB1+B1C=2+a,A2(2+a,a).∵点A2在双曲线y=(x>0)上,∴(2+a)•a=,解得a=﹣1,或a=﹣﹣1(舍去),∴OB2=OB1+2B1C=2+2﹣2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB2+B2D=2+b,A2(2+b,b).∵点A3在双曲线y=(x>0)上,∴(2+b)•b=,解得b=﹣+,或b=﹣﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);…,∴点B n的坐标为(2,0),∴点B6的坐标为(2,0).故答案为(2,0).【点评】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B2、B3、B4的坐标进而得出点B n的规律是解题的关键.5(2018·浙江临安·3分)已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若10+=102×符合前面式子的规律,则a+b= 109 .【考点】等式的变化规律【分析】要求a+b的值,首先应该认真仔细地观察题目给出的4个等式,找到它们的规律,即中,b=n+1,a=(n+1)2﹣1.【解答】解:根据题中材料可知=,∵10+=102×,∴b=10,a=99,a+b=109.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出式子的规律.6(2018·浙江衢州·4分)定义:在平面直角坐标系中,一个图形先向右平移a个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫作图形的γ(a,θ)变换.如图,等边△ABC的边长为1,点A在第一象限,点B与原点O重合,点C在x轴的正半轴上.△A1B1C1就是△ABC经γ(1,180°)变换后所得的图形.若△ABC经γ(1,180°)变换后得△A1B1C1,△A1B1C1经γ(2,180°)变换后得△A2B2C2,△A2B2C2经γ(3,180°)变换后得△A3B3C3,依此类推……△A n﹣1B n﹣1C n﹣1经γ(n,180°)变换后得△A n B n C n,则点A1的坐标是(﹣,﹣),点A2018的坐标是(﹣,).【考点】坐标的变化规律.【分析】分析图形的γ(a,θ)变换的定义可知:对图形γ(n,180°)变换,就是先进行向右平移n个单位变换,再进行关于原点作中心对称变换.向右平移n个单位变换就是横坐标加n,纵坐标不变,关于原点作中心对称变换就是横纵坐标都变为相反数.写出几次变换后的坐标可以发现其中规律.【解答】解:根据图形的γ(a,θ)变换的定义可知:对图形γ(n,180°)变换,就是先进行向右平移n个单位变换,再进行关于原点作中心对称变换.△ABC经γ(1,180°)变换后得△A1B1C1,A1 坐标(﹣,﹣)△A1B1C1经γ(2,180°)变换后得△A2B2C2,A2坐标(﹣,)△A2B2C2经γ(3,180°)变换后得△A3B3C3,A3坐标(﹣,﹣)△A3B3C3经γ(3,180°)变换后得△A4B4C4,A4坐标(﹣,)依此类推……可以发现规律:A n横坐标存在周期性,每3次变换为一个周期,纵坐标为当n=2018时,有2018÷3=672余2所以,A2018横坐标是﹣,纵坐标为故答案为:(﹣,﹣),(﹣,).【点评】本题是规律探究题,又是材料阅读理解题,关键是能正确理解图形的γ(a,θ)变换的定义后运用,关键是能发现连续变换后出现的规律,该题难点在于点的横纵坐标各自存在不同的规律,需要分别来研究.7(2018·四川自贡·4分)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有6055 个○.【分析】每个图形的最下面一排都是1,另外三面随着图形的增加,每面的个数也增加,据此可得出规律,则可求得答案.【解答】解:观察图形可知:第1个图形共有:1+1×3,第2个图形共有:1+2×3,第3个图形共有:1+3×3,…,第n个图形共有:1+3n,∴第2018个图形共有1+3×2018=6055,故答案为:6055.【点评】本题为规律型题目,找出图形的变化规律是解题的关键,注意观察图形的变化.8(2018•湖北荆门•3分)将数1个1,2个,3个,…,n个(n为正整数)顺次排成一列:1,,…,记a1=1,a2=,a3=,…,S1=a1,S2=a1+a2,S3=a1+a2+a3,…,S n=a1+a2+…+a n,则S2018= 63.【分析】由1+2+3+…+n=结合+2=2018,可得出前2018个数里面包含:1个1,2个,3个,…,63个,2个,进而可得出S2018=1×1+2×+3×+…+63×+2×=63,此题得解.【解答】解:∵1+2+3+…+n=,+2=2018,∴前2018个数里面包含:1个1,2个,3个,…,63个,2个,∴S2018=1×1+2×+3×+…+63×+2×=1+1+…+1+=63.故答案为:63.【点评】本题考查了规律型中数字的变化类,根据数列中数的排列规律找出“前2018个数里面包含:1个1,2个,3个,…,63个,2个”是解题的关键.9(2018•甘肃白银,定西,武威•3分)如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.【答案】1【解析】【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案.【解答】当x=625时,当x=125时,=25,当x=25时,=5,当x=5时,=1,当x=1时,x+4=5,当x=5时,=1,当x=1时,x+4=5,当x=5时,=1,…(2018−3)÷2=1007…1,即输出的结果是1,故答案为:1.【点评】考查代数式的求值,找出其中的规律是解题的关键.10. (2018•山东滨州•5分)观察下列各式:=1+,=1+,=1+,……请利用你所发现的规律,计算+++…+,其结果为9.【分析】直接根据已知数据变化规律进而将原式变形求出答案.【解答】解:由题意可得:+++…+=1++1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.【点评】此题主要考查了数字变化规律,正确将原式变形是解题关键.11.(2018·山东泰安·3分)观察“田”字中各数之间的关系:则c的值为270或28+14 .【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【解答】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8 数为28.观察左下和右上角,每个“田”字的右上角数字依次比左下角大0,2,4,6等,到第8个图多14.则c=28+14=270故应填:270或28+14【点评】本题以探究数字规律为背景,考查学生的数感.解题时注意同等位置的数字变化规律,用代数式表示出来.12.(2018·山东威海·3分)如图,在平面直角坐标系中,点A1的坐标为(1,2),以点O为圆心,以OA1长为半径画弧,交直线y=x于点B1.过B1点作B1A2∥y轴,交直线y=2x于点A2,以O为圆心,以OA2长为半径画弧,交直线y=x于点B2;过点B2作B2A3∥y轴,交直线y=2x于点A3,以点O为圆心,以OA3长为半径画弧,交直线y=x于点B3;过B3点作B3A4∥y轴,交直线y=2x于点A4,以点O为圆心,以OA4长为半径画弧,交直线y=x于点B4,…按照如此规律进行下去,点B2018的坐标为(22018,22017).【分析】根据题意可以求得点B1的坐标,点A2的坐标,点B2的坐标,然后即可发现坐标变化的规律,从而可以求得点B2018的坐标.【解答】解:由题意可得,点A1的坐标为(1,2),设点B1的坐标为(a, a),,解得,a=2,∴点B1的坐标为(2,1),同理可得,点A2的坐标为(2,4),点B2的坐标为(4,2),点A3的坐标为(4,8),点B3的坐标为(8,4),……∴点B2018的坐标为(22018,22017),故答案为:(22018,22017).【点评】本题考查一次函数图象上点的坐标特征、点的坐标,解答本题的关键是明确题意,发现题目中坐标的变化规律,求出相应的点的坐标.13.(2018·山东潍坊·3分)如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x 轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则的长是.【分析】先根据一次函数方程式求出B1点的坐标,再根据B1点的坐标求出A2点的坐标,得出B2的坐标,以此类推总结规律便可求出点A2019的坐标,再根据弧长公式计算即可求解,.【解答】解:直线y=x,点A1坐标为(2,0),过点A1作x轴的垂线交直线于点B1可知B1点的坐标为(2,2),以原O为圆心,OB1长为半径画弧x轴于点A2,OA2=OB1,OA2==4,点A2的坐标为(4,0),这种方法可求得B2的坐标为(4,4),故点A3的坐标为(8,0),B3(8,8)以此类推便可求出点A2019的坐标为(22019,0),则的长是=.故答案为:.【点评】本题主要考查了一次函数图象上点的坐标特征,做题时要注意数形结合思想的运用,是各地的中考热点,学生在平常要多加训练,属于中档题.14. (2018•山东枣庄•4分)将从1开始的连续自然数按以下规律排列:则2018在第45 行.【分析】通过观察可得第n行最大一个数为n2,由此估算2018所在的行数,进一步推算得出答案即可.【解答】解:∵442=1936,452=2025,∴2018在第45行.故答案为:45.【点评】本题考查了数字的变化规律,解题的关键是通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.15. (2018•山东淄博•4分)将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是2018 .【考点】37:规律型:数字的变化类.【分析】观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;【解答】解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.【点评】本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.16(2018•四川成都•3分)已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,________.【答案】【考点】探索数与式的规律【解析】【解答】解:∵,∴S2=- -1=∵,∴S3=1÷()=∵,∴S4=-()-1=∴S5=-a-1、S6=a、S7= 、S8= …∴2018÷4=54 (2)∴S2018=故答案为:【分析】根据已知求出S2= ,S3= ,S4= 、S5=-a-1、S6=a、S7= 、S8= …可得出规律,按此规律可求出答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二部分 攻克题型得高分题型二 规律探索题类型二图形规律探索针对演练1. (2017临沂)将一些相同的“”按如图所示摆放,观察每个图形中的“”的个数,若第n 个图形中“”的个数是78,则n 的值是( )第1题图A .11B .12C .13D .142. (2014荆州)如图,在第1个△A 1BC 中,∠B =30°,A 1B =CB ;在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E ,…,按此做法继续下去,则第n 个三角形中以A n 为顶点的内角度数是( )第2题图 A. (12)n ·75° B. (12)n -1·65° C. (12)n -1·75° D. (12)n ·85° 3. (2017重庆B 卷)下列图形都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为( )第3题图A. 116B. 144C. 145D. 1504. (2017遵义航天中学模拟)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…,组成一条平滑的曲线.点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2017秒时,点P 的坐标是( )第4题图A. (2014,0)B. (2015,-1)C. (2017,1)D. (2016,0)5. (2017绵阳)如图所示,将形状、大小完全相同的“”和线段按照一定规律摆成下列图形.第1幅图形中“”的个数为a 1,第2幅图形中“”的个数为a 2,第3幅图形中“”的个数为a 3,…,以此类推,则1a 1+1a 2+1a 3+…+1a 19的值为( )第5题图A. 2021B. 6184C. 589840D. 4317606. (2017达州)如图,将矩形ABCD 绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,依此类推,这样连续旋转2017次.若AB =4,AD =3,则顶点A 在整个旋转过程中所经过的路径总长为( )第6题图A. 2017πB. 2034πC. 3024πD. 3026π7. (2016河南)如图,已知菱形OABC 的顶点O(0,0),B(2,2),若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D 的坐标为( )第7题图A. (1,-1)B. (-1,-1)C. (2,0)D. (0,2)地砖图案8. (2017威海)某广场用同一种如右图所示的地砖拼图案,第一次拼成形如图①所示的图案,第二次拼成形如图②所示的图案,第三次拼成形如图③所示的图案,第四次拼成形如图④所示的图案…按照这样的规律进行下去,第n 次拼成的图案共用地砖________块.第8题图 地砖图案9. (2017牡丹江)下列图形都是由大小相同的小正方形按一定规律组成的,其中第1个图形的周长为4,第2个图形的周长为10,第3个图形的周长为18,…,按此规律排列,第5个图形的周长为________.第9题图10. (2015云南省卷)如图,在△ABC中,BC=1,点P1、M1分别是AB、AC边的中点,点P2、M2分别是AP1、AM1的中点,点P3、M3分别是AP2、AM2的中点,按这样的规律下去,P n M n 的长为________(n为正整数).第10题图11. (2017广安)正方形A1B1C1O,A2B2C2C1,A3B3C3C2…按如图所示放置,点A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,则A n的坐标是________.第11题图12. (2016德州)如图,在平面直角坐标系中,函数y=2x和y=-x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…,依次进行下去,则点A2017的坐标为________.第12题图第13题图13. (2016钦州)如图,∠MON=60°,作边长为1的正六边形A1B1C1D1E1F1,边A1B1、F1E1分别在射线OM、ON上,边C1D1所在的直线分别交OM、ON于点A2、F2,以A2F2为边作正六边形A2B2C2D2E2F2,边C2D2所在的直线分别交OM、ON于点A3、F3,再以A3F3为边作正六边形A3B3C3D3E3F3,…,依此规律,经第n次作图后,点B n到ON的距离是________.14. (2017锦州)如图,Rt△OA0A1在平面直角坐标系内,∠OA0A1=90°,∠A0OA1=30°,以OA1为直角边向外作Rt△OA1A2,使∠OA1A2=90,∠A1OA2=30°,以OA2为直角边向外作Rt △OA2A3,使∠OA2A3=90°,∠A2OA3=30°,按此方法进行下去,得到Rt△OA3A4,Rt△OA4A5,…,Rt△OA2016A2017,若点A0(1,0),则点A2017的横坐标为________.第14题图15. (2017葫芦岛)如图,直线y =33x 上有点A 1,A 2,A 3,…,A n +1,且OA 1=1,A 1A 2=2,A 2A 3=4,…,A n A n +1=2n ,分别过点A 1,A 2,A 3,…,A n +1作直线y =33x 的垂线,交y 轴于点B 1,B 2,B 3,…,B n +1,依次连接A 1B 2,A 2B 3,A 3B 4,…,A n B n +1,得到△A 1B 1B 2,△A 2B 2B 3,△A 3B 3B 4,…,△A n B n B n +1,则△A n B n B n +1的面积为________(用含正整数n 的式子表示).第15题图16. (2017本溪)如图,∠AOB =60°,点O 1是∠AOB 平分线上一点,OO 1=2,作O 1A 1⊥OA ,O 1B 1⊥OB ,垂足分别为A 1,B 1,以A 1B 1为边作等边三角形A 1B 1O 2;作O 2A 2⊥OA ,O 2B 2⊥OB ,垂足分别为A 2,B 2,以A 2B 2为边作等边三角形A 2B 2O 3;作O 3A 3⊥OA ,O 3B 3⊥OB ,垂足分别为A 3,B 3,以A 3B 3为边作等边三角形A 3B 3O 4;…,按这样的方法继续下去,则△A n B n O n 的面积为________(用含正整数n 的代数式表示).第16题图答案1. B 【解析】由每个图形中小圆的个数规律可得第n 个图形中,小圆的个数为n (n +1)2,由此可得方程n (n +1)2=78,解得n =12,故选B.2. C 【解析】在△CBA 1中,∠B =30°,A 1B =CB ,∴∠BA 1C =180°-∠B 2=75°,∵A 1A 2=A 1D ,∠BA 1C 是△A 1A 2D 的外角,∴∠DA 2A 1=12∠BA 1C =12×75°;同理可得,∠EA 3A 2=(12)2×75°,∠FA 4A 3=(12)3×75°,∴第n 个三角形中以A n 为顶点的内角度数是(12)n -1×7 3. B 【解析】将图中下半部分组成的梯形放到矩形上方,第n 个组合图形可看作是由下半部分为n 行n 列方阵和上半部分的梯形成,第n 个图中方阵中的为(n +1)2,梯形中为2+n 2·(n-1)=n 2+n -22,∴第n 个图中的的个数为(n +1)2+n 2+n -22=3n 22+5n 2,令n =9,解得第9个中个数为144个.4. C 【解析】由图象可知,半圆的周长为π,∴运动一秒后的坐标为(1,1),两秒后的坐标为(2,0),三秒后的坐标为(3,-1),四秒后的坐标为(4,0),…,其中纵坐标以1,0,-1,0循环变化,∵2017÷4=504……1,∴第2017秒时,点P 的坐标为(2017,1).5. C 【解析】由所给图形可知,a 1=3=22-1=(1+1)2-1,a 2=8=32-1=(2+1)2-1,a 3=15=42-1=(3+1)2-1,a 4=24=52-1=(4+1)2-1,由此猜想a n =(n +1)2-1=n(n +2),∴1a 1+1a 2+1a 3+…+1a 19=13+18+115+…+119×21=12×(1-13+12-14+13-15+…+118-120+119-121)= 12×(1+12-120-121)=589840. 6. D 【解析】∵AB =4,AD =3,∴AC =BD =5,转动一次A 的路线长是90·π·4180=2π,转动第二次A 的路线长是90·π·5180=52π,转动第三次A 的路线长是90·π·3180=32π,转动第四次A 的路线长是0,以此类推,每四次一个循环,且顶点A 转动一个循环的路线长为:52π+32π+2π=6π,∵2017÷4=504……1,∴顶点A 转动2017次经过的路线长为:6π×504+2π=3026π.7. B 【解析】∵菱形OABC 的顶点O(0,0),点B 的坐标是(2,2),∴BO 与x 轴的夹角为45°,∵菱形的对角线互相垂直平分,∴点D 是线段OB 的中点,∴点D 的坐标是(1,1) ,∵菱形绕点O 逆时针旋转,每秒旋转45°,360°÷45°=8,∴每旋转8秒,菱形的对角线交点就回到原来的位置(1,1),∵60÷8=7……4,∴第60秒时是把菱形绕点O 逆时针旋转了7周回到原来位置后,又旋转了4秒,即又旋转了4×45°=180°,∴点D 的对应点落在第三象限,且对应点与点D 关于原点O 成中心对称,∴第60秒时,菱形的对角线交点D 的坐标为(-1,-1).8. 2n 2+2n 【解析】①4,②4+2×4,③4+2×4+2×6,…,故第n 个图形共有4+2×4+2×6+…+2×2n =4+4×2+4×3+…+4n =4(1+2+3+…+n)=4×n (n +1)2=2n 2+2n.9. 40 【解析】第一个图形周长1×2+1×2;第二个图形周长(2+1)×2+2×2;第三个图形周长(3+2+1)×2+2×3;第四个图形周长(4+3+2+1)×2+2×4;第五个图形周长(5+4+3+2+1)×2+2×5=40.10. 12n 【解析】在△ABC 中,BC =1,P 1、M 1分别是AB 、ACnnnn 的中点,∴P 1M 1=12BC=12,按照题设给定的规律,列表如下:11. (2n -1-1,2) 【解析】∵点A 1、A 2、A 3…在直线y =x +1上,∴A 1的坐标是(0,1),即OA 1=1,∵四边形A 1B 1C 1O 为正方形,∴OC 1=1,即点A 2的横坐标为1,∴A 2的坐标是(1,2),A 2C 1=2,∵四边形A 2B 2C 2C 1为正方形,∴C 1C 2 =2,∴OC 2 =1+2=3,即点A 3的横坐标为3,∴A 3的坐标是(3,4),…,观察可以发现:A 1的横坐标是:0=20-1,A 1的纵坐标是:1=20;A 2的横坐标是:1=21-1,A 2的纵坐标是:2=21;A 3的横坐标是:3=22-1,A 3的纵坐标是:4=22;…据此可以得到A n 的横坐标是:2n -1-1,纵坐标是:2n -1.所以点A n的坐标是(2n -1-1,2n -1).12. (21008,21009) 【解析】观察,发现规律:A 1(1,2),A 2(-2,2),A 3(-2,-4),A 4(4,-4),A 5(4,8),…,∴A 2n +1((-2)n ,2(-2)n ),A 2n +2(-2)n +1,2(-2)n ,(n 为自然数),∵2017=1008×2+1,∴A 2017的坐标为((-2)1008,2(-2)1008)=(21008,21009).13. 3n -1 3 【解析】由题可知,∠MON =60°,不妨设B n 到ON 的距离为h n ,∵正六边形A 1B 1C 1D 1E 1F 1的边长为1,则A 1B 1=1,易知△A 1OF 1为等边三角形,∴A 1B 1=OA 1=1,∴OB 1=2,则h 1=2×32=3,又OA 2=A 2F 2=A 2B 2=3,∴OB 2=6,则h 2=6×32=33,同理可求:OB 3=18,则h 3=18×32=93,…,依此可求:OB n =2×3n -1,则h n =2×3n -1×32=3n -13,∴B n 到ON 的距离h n =3n -1 3.14. (43)1008 【解析】由题意可知,经过12次变换后,点A 13落在射线OA 1上,∵2017÷12=168……1,∴点A 2017落在射线OA 1上,其横坐标与点A 2016相同,∵OA 0=1,经过12次变换后,OA 12=(233)12,再经过12次变换后,OA 24=(233)24,综上可猜想,OA 2016=(233)2016=(43)1008,∴点A 2017的横坐标为(43)1008. 15. 32×22n -32×2n 【解析】如解图,作A 1C 1⊥x 轴于C 1,A 2C 2⊥x 轴于C 2,A n C n ⊥x 轴于C n ,∵点A n 在直线上y =33x ,∴A 1C 1OC 1=A 2C 2OC 2=A n C n OC n =33,∴∠A n OC n =30°,∴OC n =32OA n =32(1+2+22+…+2n -1),∠A n OB n =60°,∵B n A n ⊥OA n ,∴OB n =2OA n ,∴ B n B n +1=2OA n +1-2OA n =2A n A n +1=2×2n =2n +1.第15题解图S △AnBnBn +1=12B n B n +1×OC n =12×2n +1·32(1+2+22+…+2n -1),设S =1+2+4+…+2n -1,则2S =2+4+…+2n +1+2n ,∴S =2S -S =(2+4+…+2n -1+2n )-(1+2+4+…+2n -1)=2n-1 ,综上可知 S △AnBnBn +1=12×2n +1×32(2n -1)=32×22n -32×2n . 16. 32n -24n 3 【解析】∵∠AOB=60°,OO n 平分∠AOB,∴∠AOO n =30°,∵A 1O 1⊥AO,OO 1=2,∴A 1O 1=1,OA 1=3.∵O 1A 1⊥OA ,O 1B 1⊥OB ,∴O 1A 1=O 1B 1,∵O 1O =O 1O ,∴Rt△O 1A 1O≌Rt△O 1B 1O(HL),∴OA 1=OB 1,∵∠A 1OB 1=60°,∴△A 1OB 1是等边三角形,∴A 1B 1=OA 1=3,∵△A 1O 2B 1是等边三角形,∴A 1O 2=A 1B 1=3,在Rt△A 1O 2A 2中,∠O 2A 1A 2=60°,A 1O 2=3,∴A 2O 2=32A 1O 2=32O 1A 1,同理A 3O 3=32A 2O 3=(32)2A 1O 1,∴A n O n =(32)n -1A 1O 1. 又 S△O 1A 1B 1=2S△O 1A 1O -S△A 1B 1O =2×12×1×3-34·(3)2=34.易得∠A n O n B n =∠A 1O 1B 1=120°,A n O n =B n O n ,∴A n O n A 1O 1=B n O n B 1O 1,∴△A 1O 1B 1∽△A n O n B n ,∴S△A n B n O n S△A 1B 1O 1=(A n O n A 1O 1)2=(32)2n -2.∴S△A n B n O n =32n -24n 3.。