长方体和正方体的奥数题

合集下载

长方体与正方体奥数题及答案

长方体与正方体奥数题及答案

1、一个长方体的棱长之和是80厘米,如果把这个长方体平均截成两段,就成了两个大小相等的正方体,求:这个长方体的表面积和体积。

80÷2÷8=5(cm) 表面积:5X5X5X2=250(平方厘米)体积:5X5X5=125(立方厘米)答:这个长方体的表面积是250平方厘米,体积是125立方2、把3个完全相等的正方体拼成一个长方体,这个长方体的表面积是350平方厘米,每个正方体的表面积是多少平方厘米?350÷14X6=150(平方厘米)答:每个正方体的表面积是150平方厘米?3、把一个长方体的木块截成两段,就成了两个完全相等的正方体,这两个正方体的棱长之和比原来那个长方体的棱长之和增加40厘米,原来那个长方体的体积是多少立方厘米?40÷8=5(厘米)5X2=10(厘米)5X5X10=250(平方厘米)答:原来那个长方体的体积是250立方厘米4、把一个长、宽、高分别是7厘米、6厘米、5厘米的长方体截成两个长方体,使这两个长方体的表面积之和最大,这时表面积之和是多少平方厘米?(7X6+7X5+6X5)X2=214(平方厘米)214+6X7X2=298(平方厘米)答:这时表面积之和是298平方厘米5、一个长方体,前面和上面的面积之和是290平方厘米,这个长方体的长宽高都是质数,这个长方体的体积和表面积各是多少?290=29X10=29X(7+3)体积:29X7X3=609(立方厘米)表面积:(29X7+29X3+7X3)=672(平方厘米)答:这个长方体的体积j 609立方厘米,表面积是672平方厘米6、一个长方体的表面积是78平方厘米,底面积是15平方厘米,底面周长是16厘米,求长方体的体积。

78-15-15=48(平方厘米)48÷16=3(厘米)15×3=45(立方厘米)答:长方体的体积是45立方厘米7、一个长方体水箱,从里面量,长20厘米,宽30厘米,深35厘米,箱中水面高5厘米,放进一个棱长20厘米的正方体的铁块后,铁块顶面仍高于水面,这时水面的高多少厘米?20×30×5=3000(立方厘米)20×30-20×20=200(平方厘米)3000÷200=15(厘米)答:这时水面的高15厘米8、一个长方体木块,从下部和上部分别截去3厘米和2厘米的长方体后,成了一个正方体,表面积减少了120平方厘米,原长方体的体积是多少立方厘米?120÷(3+2)=24(平方厘米)24÷4=6(厘米)6+3+2=11(厘米)6×6×11=369(立方厘米)答:原长方体的体积是369立方厘米。

数学五年级下册第三单元的奥数题

数学五年级下册第三单元的奥数题

数学五年级下册第三单元的奥数题一、奥数题1. 一个长方体水箱,从里面量长40厘米,宽30厘米,深35厘米,箱中水面高10厘米,放进一个棱长20厘米的正方体铁块后,铁块顶面仍高于水面。

这时水面高多少厘米?2. 有一个长方体容器,长30厘米,宽20厘米,高10厘米,里面的水深6厘米(最大面为底面),如果把这个容器盖紧(不漏水),再朝左竖起来(最小面为底面),里面的水深是多少厘米?3. 一个长方体的容器(底面是正方形),里面装了水,水面高10厘米,将一个棱长5厘米的正方体铁块放入水中,水面升高到12厘米,这个容器的底面积是多少平方厘米?4. 一个长方体玻璃缸,最多可装水120升。

已知玻璃缸里面长6分米,宽4分米,现有水深3分米。

如果在玻璃缸里放入了体积为15立方分米的石块,里面的水会不会溢出?为什么?5. 一个正方体油箱,棱长40厘米,它能装多少升油?如果每升汽油重0.74千克,这箱汽油重多少千克?6. 一个长方体形状的儿童游泳池,长40米,宽14米,深1.2米。

现在要在四壁和池底贴上面积为16平方分米的正方形瓷砖,需要多少块?7. 有一个长方体,它的正面和上面的面积之和是209,如果它的长、宽、高都是质数,那么这个长方体的体积是多少?8. 一个长方体,高减少2厘米,就成为一个正方体,表面积比原来减少了48平方厘米,原来长方体的体积是多少立方厘米?9. 一个长方体容器,底面是一个边长为60厘米的正方形,容器里直立着一个高1米,底面边长为15厘米的长方体铁块,这时容器里的水深0.5米。

现在把铁块轻轻地向上提起24厘米,那么露出水面的铁块上被水浸湿的部分长多少厘米?10. 一个长方体,如果高增加2厘米,就变成一个正方体。

这时表面积比原来增加56平方厘米。

原来长方体的体积是多少立方厘米?11. 一个密封的长方体玻璃容器中有水,从里面量长40厘米,宽20厘米,高10厘米,水深6厘米,如果把容器的左侧面作为底面放在桌上,这时水深多少厘米?12. 一个长方体木块,从上部和下部分别截去高为3厘米和2厘米的长方体后,便成为一个正方体,表面积减少了120平方厘米,原来长方体的体积是多少立方厘米?13. 有一个长方体水箱,从里面量长8分米,宽6分米,先倒入165升水,再浸入一块棱长3分米的正方体铁块,这时水面离水箱口1分米。

长方体正方体奥数题练习题

长方体正方体奥数题练习题

长方体正方体奥数题练习题1、把一张长20厘米,宽16米的长方形纸裁成同样大小,面积尽可能大的正方形,纸没剩余,最多可裁多少个?2、两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距多少千米?3、一块长40厘米、宽30厘米的长方形铁板,把它的四个角分别切掉边长为4厘米的正方形,然后焊接成一个无盖的盒子。

它的容积是多少升?4、楼房外壁用于流水的水管是长方体。

如果每节长15分米,横截面是一个长方形,长1分米,宽0.6分米。

做一节水管,至少要用铁皮多少平方分米?5.把一根长米的长方体木料,平均截成3段,表面积增加了12平方米,原来长方体木料的体积是多少立方分米?6.一个长方体长16分米,高6分米,沿水平方向横切成俩个小长方体,表面积增加160平方分米,求原长方体体积?7.一个长方体如果高减少3厘米,正好成为一个正方体,表面积少36平方厘米,原长方体的体积?8.一个长方体高减2厘米成一个正方体,面积减少24平方厘米.原长方体的体积是多少立方厘米9.一个长方体木块,从上部和下部分别截去高为3厘米和2厘米的长方体,便成为一个正方体,表面积减少了120平方厘米,原来长方体的体积是多少立方厘米?10.一个长方体,如果高增加2厘米就成了一个正方体,而且表面积增加56平方厘米,求原长方体的体积?11.一段长方体木料,长1.2米如果锯短2厘米,它的体积就减少40立方厘米,求原长方体的体积?12.一个长方体,表面积是70平方分米,底面积是9.8平方分米,底面周长是12.6分米,这个长方体的高是多少?体积是多少?13.一个长方体的表面积为16000平方分米,底面是边长为40厘米的正方形,求长方体的体积是多少?14.将一块棱长20厘米的正方体铁块锻压成一块,100厘米长,2厘米厚的铁板,这个铁板的宽是多少?15.把一棱长30厘米的正方体钢坯,锻压成高和宽都是5厘米的长方体钢材.能锻造多长?16.把一个棱长5厘米的正方体钢材,锻压成长5厘米,宽4厘米的长方体钢材,钢材厚多少厘米?17、用两个长5cm,宽3cm,高4cm的长方体拼成一个大的长方体。

五年级奥数几何长方体和正方体经典例题详解

五年级奥数几何长方体和正方体经典例题详解

五年级奥数几何长方体和正方体经典例题详解有关五年级奥数几何长方体和正方体经典例题详解五年级奥数几何长方体和正方体经典例题详解1、一个零件形状大小如下图:算一算,它的体积是多少立方厘米,表面积是多少平方厘米?【思路导航】(1)可以把零件沿虚线分成两部分来求它的体积,左边的长方体体积是10×4×2=80(立方厘米),右边的长方体的体积是10×(6-2)×2=80(立方厘米),整个零件的体积是80+80=160(立方厘米)。

10×4×2+10×(6-2)×2=160(立方厘米)(2)求这个零件的表面积,看起来比较复杂,其实,朝上的两个面的面积和正好与朝下的一个面的面积相等;朝右的两个面的面积和正好与朝左的一个面的面积相等。

因此,此零件的表面积就是:(10×6+10×4+4×2×2)×2=232(平方厘米)练习(1)一个长5厘米、宽1厘米、高3厘米的长方体,被切去一块后(如下图),剩下部分的表面积和体积各是多少?练习(2)把一根长2米的长方体木料锯成1米长的两段,表面积增加2平方分米,求这根木料原来的体积。

练习(3)有一个长8厘米,宽1厘米,高3厘米的长方体木块,在它的左右两角各切掉一个正方体(如下图),求切掉正方体后的表面积和体积各是多少?2、有一个长方体形状的零件。

中间挖去一个正方体的孔(如下图)。

你能算出它的体积和表面积吗?(单位:厘米)【思路导航】(1)先求出长方体的体积,8×5×6=240(立方厘米),由于挖去一个孔,所以体积减少2×2×2=8(立方厘米),这个零件的体积是240-8=232(立方厘米)(2)长方体完整的表面积是(8×5+8×6+5×6)×2=236(平方厘米),但由于挖去一个孔,它的表面积减少了一个(2×2)平方厘米的面积,同时又增加了凹进去的5个(2×2)平方厘米的面,因此,这个零件的表面积是236+(2×2)×4=252(平方厘米).练习(1)有一个形状如下图的零件,求它的体积和表面积。

小学五年级数学思维训练(奥数)《长方体和正方体巧算体积》讲解及练习题(含答案)

小学五年级数学思维训练(奥数)《长方体和正方体巧算体积》讲解及练习题(含答案)

长方体和正方体巧算体积专题简析:物体所占空间的大小叫物体的。

长方体和正方体的物体都占一定的空间。

长方体所含体积的数量正好等于长、宽、高的乘积,所以,长方体的体积=长×宽×高=横截面面积×长=底面积×高例1 把一块棱长为6分米的正方体钢坯,熔铸成横截面是9平方分米的长方体钢材。

铸成的钢材有多长?分析与解答:把正方体钢坯熔铸成长方体后,虽说形状变了,可体积没有变,正方体钢坯的体积就是长方体钢材的体积。

所以先求出正方体的体积,也就是长方体的体积。

用体积除以长方体钢材的横截面面积,就可以求出长方体钢材的长度了。

方法总结:抓住体积不变这个隐藏的量,熔铸前体积等于熔铸后的体积,再根据“体积÷横截面积=长”这个公式,从而轻松解决问题。

随堂练习:把一个棱长10厘米的正方体橡皮泥,重新捏成一个高和宽都是2厘米的长方体,这个长方体的长是多少分米?例2 一只长15分米、宽12分米的长方体玻璃钢中,有10分米深的水。

放入一块棱长为3分米的正方体铁块,铁块全部浸没在水中并且水未溢出,这时,水面升高了几厘米?分析与解答:将物体放入容器中,水面的高度肯定上升,上升的水的体积其实就是物体的体积。

本题可以先求出正方体铁块的体积,也就是增加的水的体积,再用这个体积除以容器的底面积从而求出水面上升的高度了。

方法总结:要明白一点:当物体完全沉没在水中时,物体的体积=上升的水的体积。

随堂练习:一个长方体容器,底面积是200平方厘米,高10厘米,里面盛有5厘米深的水。

现将一块石头放入水中,水面升高到8厘米处,这块石头的体积是多少立方厘米?例3 如图,一个长方体,高截去2cm,表面积就减少了48平方分析与解答:当高少了2cm后,首先明白表面积少了哪些面?应该是前后左右四个小面,因为上面虽然也少了,但又多出来一个上面,所以少了4个小面,因为剩下的部分是一个正方体,所以这四个小面是完全相等的,故用48除以4从而得出一个小面的面积,再用一个小面的面积除以2,从而能求出正方体的棱长,也是原长方体的长和宽,接着求出原长方体的高,最后求出体积。

长方体和立方体奥数题

长方体和立方体奥数题

长方体和立方体班级:姓名:得分:一、填空。

1、长方体有( 6 )个面,( 12 )条棱,( 8 )个顶点,相对的棱长度(),相对的面()。

2、一个长方体的长5厘米,宽3厘米,高2厘米,它的最大的一个面是()面,面积是()。

这个长方体的表面积是(),体积是()。

3、一个正方体的棱长总和是48厘米,它的表面积是( 96 ),体积是( 64 )。

4、把三个棱长为1分米的正方体拼成一个长方体,这个长方体的表面积是(),体积是()。

5、把一个棱长是a米的正方体木材,任意截成两个小长方体后,表面积比原来多()。

6、把一个棱长为4厘米的正方体,分割成两个长方体,这两个长方体表面积总和是()。

7、一个正方体的棱长扩大到原来的5倍,则表面积扩大到原来的()倍,它的体积扩大到原来的()倍。

8、一个长方体各条棱长和是96厘米,并且它的长是宽的2倍,宽与高相等,那么这个长方体的体积是()立方厘米。

9、将两块棱长相等的正方体木块拼成一个长方体,已知长方体的棱长总和是48厘米。

则这个长方体的体积是()10、将一个表面涂有红色的长方体分割成若干个体积为1立方厘米的小正方体,其中一点红色没有涂的小立方体只有3块。

原来长方体的体积是()立方厘米。

二、判断。

1、正方体是特殊的长方体。

()2、一个长方体可能有8条棱的长度都相等。

()3、棱长是6分米的正方体,它的表面积和体积相等。

()4、正方体的棱长缩小一半后,体积比原来少一半。

()5、一个正方体的棱长扩大a倍,那么它的体积扩大a2倍。

()6、用三个长3厘米,宽2厘米,高1厘米的长方体拼成一个大的长方体,这个大长方体的表面积最大是62平方厘米,最小是54平方厘米.三、基础题。

1、一个零件形状大小如下图:算一算,它的体积是多少立方厘米,表面积是多少平方厘米?2、把一根长2米的长方体木料锯成1米长的两段,表面积增加2平方分米,求这根木料原来的体积。

- 2 -3、有一个长8厘米,宽1厘米,高3厘米的长方体木块,在它的左右两角各切掉一个正方体(如下图),求切掉正方体后的表面积和体积各是多少?4、 有一个长方体形状的零件。

五年级下册第二单元奥数题

五年级下册第二单元奥数题

五年级下册第二单元奥数题一、题目1. 有一个长方体水箱,从里面量长40厘米,宽30厘米,深35厘米,箱中水面高10厘米,放进一个棱长20厘米的正方体铁块后,铁块顶面仍高于水面。

这时水面高多少厘米?(5分)2. 一个无盖的长方体玻璃鱼缸,长5分米,宽4分米,高3分米。

(1)做这个鱼缸至少需要玻璃多少平方分米?(3分)(2)在鱼缸里注入40升水,水深多少分米?(3分)3. 把一根长2米的长方体木料锯成两段后,表面积增加了100平方厘米,它的体积是多少立方厘米?(4分)4. 一个正方体容器棱长2分米,向容器中倒入5升水,再把一个红薯放入水中,这时容器内水深14厘米,红薯的体积是多少立方厘米?(5分)5. 有一块长方形铁皮,长32厘米,在它四个顶角分别剪去边长4厘米的正方形,然后折起来焊成一个无盖的长方体铁皮盒。

已知这个铁皮盒的容积是768立方厘米,原来这块铁皮的面积是多少平方厘米?(6分)6. 一个长方体,如果高增加2厘米就成了正方体,而且表面积要增加56平方厘米,原来这个长方体的体积是多少立方厘米?(6分)7. 一个长方体玻璃容器,从里面量长、宽均为2分米,向容器中倒入 5.5升水,再把一个苹果放入水中。

这时量得容器内的水深是15厘米。

这个苹果的体积是多少立方分米?(5分)8. 一个长方体游泳池,长50米,宽25米,深2米。

(1)如果要在这个游泳池的四壁和底面贴上瓷砖,一共需要贴多少平方米的瓷砖?(4分)(2)如果往这个游泳池里注水,使水面高度达到1.8米,需要注水多少立方米?(4分)9. 有一个棱长为3分米的正方体木块,在它的六个面的中心分别挖去一个棱长为1分米的小正方体,这时这个木块的表面积是多少平方分米?(6分)10. 一个长方体,长12厘米,宽8厘米,高6厘米。

(1)它的棱长总和是多少厘米?(3分)(2)它的表面积是多少平方厘米?(4分)(3)它的体积是多少立方厘米?(4分)11. 一个正方体的棱长是5厘米,把它切成棱长是1厘米的小正方体,可以切成多少个?(4分)12. 一个长8分米,宽6分米,高5分米的长方体容器,里面盛有一些水,水深3分米。

六年级上册奥数试题-第21讲:正方体和长方体_全国通用(含答案)

六年级上册奥数试题-第21讲:正方体和长方体_全国通用(含答案)

第21讲正方体和长方体知识网络长方体一共有六个面,每个面都是长方形(或正方形),并且相对应的两个面是全等的,所以长方体一共有3对大小相等的面,即相对面的面积相等。

长方体中两个面相交的边叫棱,它共有12条棱,并且相互平行的棱的长度是一样的。

长方体有8个顶点,相交于同一个顶点的三条棱分别叫做长方体的长、宽、高。

长、宽、高相等的长方体叫做正方体,正方体的长、宽、高统称为棱长。

正方体是长方体的特殊情况,它的六个面都是正方体且面积都相等,它的12条棱长的长度也相等。

若长方体的长、宽、高分别用字母a、b、c表示,则其体积V=abc,其表面积为S=2(ab+bc+ca);若正方体的棱长用字母a表示,则其体积其表面积为。

重点·难点本讲主要涉及的问题有:立体图形的计数;立体图形上的最短路线;立体图形的分割与拼凑;立体图形的表面积与体积的计算。

这四个问题是数学竞赛中常见的问题,是本讲的难点。

学法指导针对上述四个问题,我们用相应的方法来求解。

(1)立体图形的计数问题,有一个常用的结论:如果把正方体的每条棱长n等分,那么就将正方体分成个小正方体,而正方体的总个数有。

(2)立体图形上的最短路线问题,一般将立体图形展开在平面上,利用公理“两点之间,直线段最短”来求解。

(3)立体图形的分割与拼凑,类似于平面图形的分割与拼凑,将不规则的立体图形拼凑成规则的或我们比较熟悉的立体图形。

(4)立体图形的表面积与体积的计算,一般是将图形分成几个部分,对各个部分分别求出表面积或体积,再求出总的表面积或体积。

经典例题[例1]把十九个棱长为1厘米的正方体重叠起来,拼成一个立体图形,如图1所示,求这个立体图形的表面积。

思路剖析如果一个立体图形没有被“挖洞”的问题,那么它的表面积应该是从上、下、左、右和前、后六个方向看到的平面图形的面积的总和。

而此立方体图形,从前后、上下、左右分别看到的图形分别如图2所示。

解答由于此立体图形的三个面的投影的面积分别是10平方厘米,8平方厘米,9平方厘米,所以此立体图形表面积为(10+8+9)×2=54(平方厘米)。

小学五年级奥数第15讲 长方体和正方体(三)(含答案分析)

小学五年级奥数第15讲 长方体和正方体(三)(含答案分析)

第15讲长方体和正方体(三)一、知识要点解答有关长方体和正方体的拼、切问题,除了要切实掌握长方体、正方体的特征,熟悉计算方法,仔细分析每一步操作后表面几何体积的等比情况外,还必须知道:把一个长方体或正方体沿水平方向或垂直方向切割成两部分,新增加的表面积等于切面面积的两倍。

二、精讲精练【例题1】一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的正方体若干块,表面积增加多少平方厘米?练习1:1.把27块棱长是1厘米的小正方体堆成一个大正方体,这个大正方体的表面积比原来所有的小正方体的表面积之和少多少平方厘米?2.有一个棱长是1米的正方体木块,如果把它锯成体积相等的8个小正方体,表面积增加多少平方米?【例题2】有一个正方体木块,把它分成两个长方体后,表面积增加了24平方厘米,这个正方体木块原来的表面积是多少平方厘米?练习2:1.把三个棱长都是2厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?2.有一个正方体木块,长4分米、宽3分米、高6分米,现在把它锯成两个长方体,表面积最多增加多少平方分米?【例题3】有一个正方体,棱长是3分米。

如果按下图把它切成棱长是1分米的小正方体,这些小正方体的表面积的和是多少?练习3:1.用棱长是1厘米的小正方体摆成一个稍大一些的正方体,至少需要多少个小正方体?如果要摆一个棱长是6厘米的正方体,需要多少个小正方体?2.有一个长方体,长10厘米、宽6厘米、高4厘米,如果把它锯成棱长是1厘米的小正方体,一共能锯多少个?这些小正方体的表面积和是多少?【例题4】一个正方体的表面涂满了红色,然后如下图切开,切开的小正方体中:(1)三个面涂有红色的有几个?(2)二个面涂有红色的有几个?(3)一个面涂有红色的有几个?(4)六个面都没有涂色的有几个?1.把一个棱长是5厘米的正方体的六个面涂满红色,然后切成1立方厘米的小正方体,这些小正方体中,一面涂红色的、二面涂红色的、三面涂红色的以及六个面都没有涂色的各有多少个?2.把若干个体积相同的小正方体堆成一个大的正方体,然后在大正方体的表面涂上颜色,已知两面被涂上红色的小正方体共有24个,那么,这些小正方体一共有多少个?【例题5】一个长方体的长、宽、高分别是6厘米、5厘米和4厘米,若把它切割成三个体积相等的小长方体,这三个小长方体表面积的和最大是多少平方厘米?1.有三块完全一样的长方体木块,每块长8厘米、宽5厘米、高3厘米。

小学五年级长方体正方体的奥数题

小学五年级长方体正方体的奥数题

小学五年级长方体正方体的练习题1、把一张长20厘米,宽16米的长方形纸裁成同样大小,面积尽可能大的正方形,纸没剩余,最多可裁多少个?2、两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距多少千米?3、一块长40厘米、宽30厘米的长方形铁板,把它的四个角分别切掉边长为4厘米的正方形,然后焊接成一个无盖的盒子。

它的容积是多少升?4、楼房外壁用于流水的水管是长方体。

如果每节长15分米,横截面是一个长方形,长1分米,宽0.6分米。

做一节水管,至少要用铁皮多少平方分米?5.把一根长2米的长方体木料,平均截成3段,表面积增加了12平方米,原来长方体木料的体积是多少立方分米?6.一个长方体长16分米,高6分米,沿水平方向横切成俩个小长方体,表面积增加160平方分米,求原长方体体积?7.一个长方体如果高减少3厘米,正好成为一个正方体,表面积少36平方厘米,原长方体的体积?8.一个长方体高减2厘米成一个正方体,面积减少24平方厘米.原长方体的体积是多少立方厘米9.一个长方体木块,从上部和下部分别截去高为3厘米和2厘米的长方体,便成为一个正方体,表面积减少了120平方厘米,原来长方体的体积是多少立方厘米?10.一个长方体,如果高增加2厘米就成了一个正方体,而且表面积增加56平方厘米,求原长方体的体积?11.一段长方体木料,长1.2米如果锯短2厘米,它的体积就减少40立方厘米,求原长方体的体积?12.一个长方体,表面积是70平方分米,底面积是9.8平方分米,底面周长是12.6分米,这个长方体的高是多少?体积是多少?13.一个长方体的表面积为16000平方分米,底面是边长为40厘米的正方形,求长方体的体积是多少?14.将一块棱长20厘米的正方体铁块锻压成一块,100厘米长,2厘米厚的铁板,这个铁板的宽是多少?15.把一棱长30厘米的正方体钢坯,锻压成高和宽都是5厘米的长方体钢材.能锻造多长?16.把一个棱长5厘米的正方体钢材,锻压成长5厘米,宽4厘米的长方体钢材,钢材厚多少厘米?17、用两个长5cm,宽3cm,高4cm的长方体拼成一个大的长方体。

小学奥数4-5-2 长方体与正方体(二).专项练习及答案解析

小学奥数4-5-2 长方体与正方体(二).专项练习及答案解析

对于小学几何而言,立体图形的表面积和体积计算,既可以很好地考查学生的空间想象能力,又可以具体考查学生在公式应用中处理相关数据的能力,所以,很多重要考试都很重视对立体图形的考查.如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.cba HGFEDCBA①在六个面中,两个对面是全等的,即三组对面两两全等. (叠放在一起能够完全重合的两个图形称为全等图形.) ②长方体的表面积和体积的计算公式是: 长方体的表面积:2()S ab bc ca =++长方体; 长方体的体积:V abc =长方体.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形. 如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.长方体与正方体的体积不规则形体的体积常用方法: ①化虚为实法 ②切片转化法 例题精讲长方体与正方体(二)④实际操作法⑤画图建模法【例1】一个长方体的棱长之和是28厘米,而长方体的长宽高的长度各不相同,并且都是整厘米数,则长方体的体积等于立方厘米。

【考点】长方体与正方体【难度】2星【题型】填空【关键词】希望杯, 6年级,第16题,6分【解析】由题意知长、宽、高的和为2847÷=,又根据题意长、宽、高各不相同,且是整数,所以只能是1、2、4,所以体积为8立方厘米【答案】8【例2】将几个大小相同的正方体木块放成一堆,从正面看到的视图是图(a),从左向右看到的视图是图(b),从上向下看到的视图是图(c),则这堆木块最多共有___________块。

【考点】长方体与正方体【难度】2星【题型】填空【关键词】希望杯,4年级,初赛,8题【解析】对于图c来说,每个小方块都摞了2层,最多有6块。

【答案】6【例3】一根长方体木料,体积是0.078立方米.已知这根木料长1.3米.宽为3分米,高该是多少分米?孙健同学把高错算为3分米.这样,这根木料的体积要比0.078立方米多多少?【考点】长方体与正方体【难度】2星【题型】解答【关键词】小数报,决赛【解析】0.078(1.30.3)0.2÷⨯=(米).0.2米=2分米.⨯⨯-=(立方米).1.30.30.30.0780.039所以这根木料的高是2分米;算错后,这根木料的体积比0.078立方米多0.039立方米.【答案】0.039【例4】如图,两个同样的铁环连在一起长28厘米,每个铁环长16厘米。

奥数长方体和正方体

奥数长方体和正方体

长方体和正方体习题六年级奥数上册:第五讲长方体和正方体习题解答28.正方体的展开图把一个正方体的各面展开放在桌面上,下图就是正方体的一个展开图形,试问,一个正方体有几种展开图。

28.正方体的展开图共有11种:把四个面排成一排的有6种29.长方体的体积阿强做一道求长方体体积的数学题。

当他算完长乘以宽以后,发现宽厚30.长方体和正方体一个棱长 5 厘米的立方体是由棱长 1 厘米的小立方体若干个堆砌而成的。

①如果小立方体增加3个,可以堆砌出多少种长、宽、高都不相同的长方体?②如果小立方体减少5个,可以堆砌出多少种长、宽、高都不相同的长方体?30.长方体和正方体解:5×5×5=125125+3=128=27×1125-5=120=23×31×51×1根据约数个数公式,128有(7+1)=8个约数它们是1,2,4,8,16,2,64,128。

120有(3+1)×(1+1)×(1+1)=16个约数,它们是:1,,3,4,5,6,8,10,12,15,20,24,30,40,60,120。

有大、中、小三个正方形水池,它们的内边长分别为4米、3米、2米,把两堆碎石分别沉没在中、小水池的水中,两个水池的水面分别升高了4厘米和11厘米.如果将这两堆碎石都沉没在大水池中,大水池水面将升高多少厘米?解:水池中水面升高部分水的体积就是投入水中的碎石体积.沉入中、小水池中的碎石的体积分别是:3×3×=立方米,2×2×=立方米.它们的和是:+=立方米.把它们都沉入大池里,大池水面升高部分水的体积也应当是立方米,而大池的底面面积是4×4=16平方米,所以,大水池的水面升高:六年级奥数上册:第五讲长方体和正方体习题六年级奥数上册:第五讲长方体和正方体习题解答第五讲长方体和正方体长方体和正方体在立体图形中是较为简单的,也是我们较为熟悉的立体图形.如下图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱。

小学五年级奥数第14讲 长方体和正方体(二)(含答案分析)

小学五年级奥数第14讲 长方体和正方体(二)(含答案分析)

第14讲长方体和正方体(二)一、知识要点在长方体、正方体问题中,我们还会常常遇到这样一些情况:把一个物体变形为另一种形状的物体;把两个物体熔化后铸成一个物体;把一个物体浸入水中,物体在水中会占领一部分的体积。

解答上述问题,必须掌握这样几点:1.将一个物体变形为另一种形状的物体(不计损耗),体积不变;2.两个物体熔化成一个物体后,新物体的体积是原来物体体积的和;3.物体浸入水中,排开的水的体积等于物体的体积。

二、精讲精练【例题1】有两个无盖的长方体水箱,甲水箱里有水,乙水箱空着。

从里面量,甲水箱长40厘米,宽32厘米,水面高20厘米;乙水箱长30厘米,宽24厘米,深25厘米。

将甲水箱中部分水倒入乙水箱,使两箱水面高度一样,现在水面高多少厘米?练习1:1.有两个水池,甲水池长8分米、宽6分米、水深3分米,乙水池空着,它长6分米、宽和高都是4分米。

现在要从甲水池中抽一部分水到乙水池,使两个水池中水面同样高。

问水面高多少?2.有一个长方体水箱,从里面量长40厘米、宽30厘米、深35厘米,箱中水面高10厘米。

放进一个棱长20厘米的正方体铁块后,铁块顶面仍高于水面。

这时水面高多少厘米?【例题2】将表面积分别为54平方厘米、96平方厘米和150平方厘米的三个铁质正方体熔成一个大正方体(不计损耗),求这个大正方体的体积。

练习2:1.有三个正方体铁块,它们的表面积分别是24平方厘米、54平方厘米和294平方厘米。

现将三块铁熔成一个大正方体,求这个大正方体的体积。

2.将表面积分别为216平方厘米和384平方厘米的两个正方体铁块熔成一个长方体,已知这个长方体的长是13厘米,宽7厘米,求它的高。

【例题3】有一个长方体容器,从里面量长5分米、宽4分米、高6分米,里面注有水,水深3分米。

如果把一块边长2分米的正方体铁块浸入水中,水面上升多少分米?练习3:1.有一个小金鱼缸,长4分米、宽3分米、水深2分米。

把一块假山石浸入水中后,水面上升0.8分米。

五年级几何知识奥数题

五年级几何知识奥数题

五年级几何知识奥数题五年级几何知识奥数题小学五年级奥数长方体和正方体几何知识经典例题详解:1、一个零件形状大小如下图:算一算,它的体积是多少立方厘米,表面积是多少平方厘米?【思路导航】(1)可以把零件沿虚线分成两部分来求它的体积,左边的长方体体积是10×4×2=80(立方厘米),右边的长方体的体积是10×(6-2)×2=80(立方厘米),整个零件的体积是80+80=160(立方厘米)。

10×4×2+10×(6-2)×2=160(立方厘米)(2)求这个零件的表面积,看起来比较复杂,其实,朝上的两个面的面积和正好与朝下的一个面的面积相等;朝右的两个面的面积和正好与朝左的一个面的面积相等。

因此,此零件的表面积就是:(10×6+10×4+4×2×2)×2=232(平方厘米)练习(1)一个长5厘米、宽1厘米、高3厘米的长方体,被切去一块后(如下图),剩下部分的表面积和体积各是多少?练习(2)把一根长2米的长方体木料锯成1米长的两段,表面积增加2平方分米,求这根木料原来的体积。

练习(3)有一个长8厘米,宽1厘米,高3厘米的长方体木块,在它的左右两角各切掉一个正方体(如下图),求切掉正方体后的表面积和体积各是多少?2、有一个长方体形状的零件。

中间挖去一个正方体的孔(如下图)。

你能算出它的体积和表面积吗?(单位:厘米)【思路导航】(1)先求出长方体的体积,8×5×6=240(立方厘米),由于挖去一个孔,所以体积减少2×2×2=8(立方厘米),这个零件的体积是240-8=232(立方厘米)(2)长方体完整的表面积是(8×5+8×6+5×6)×2=236(平方厘米),但由于挖去一个孔,它的表面积减少了一个(2×2)平方厘米的面积,同时又增加了凹进去的5个(2×2)平方厘米的面,因此,这个零件的表面积是236+(2×2)×4=252(平方厘米).练习(1)有一个形状如下图的零件,求它的体积和表面积。

五年级下册数学奥数试题 -- 长方体与正方体 全国通用 含答案

五年级下册数学奥数试题 -- 长方体与正方体  全国通用 含答案

长方体与正方体一、走进来:大科学家伽里略说:“大自然用数学语言讲话。

这个语言的字母是:圆、三角形还有长方体及其它各种形体。

”圆、三角形等是平面图形;长方体、正方体等是立体图形平面图形是研究同一个平面内的各数量之间的关系;而立体图形研究的是若干个面内的数量和数量之间的关系。

长方体和正方体是我们最熟悉的几何体。

我国国家游泳中心就是一个巨大的长方体,它的长、宽、高分别为 177米、 177米、30米,又被称为“水立方”,2008年奥运会主要的游泳赛事将在这个巨大的长方体建筑内举行!本章我们将进一步认识长方体、正方体及其组合而成的立体图形的特征,学习其体积和表面积的计算方法和技巧。

提高作图能力、观察能力、计算能力和空间想象力。

二、一起做:【例1】有一个长6厘米,宽4厘米,高8厘米的长方体木块,表面被刷上了红油漆,把它截成棱长是2厘米的若干个小正方体教具,然后把各个小正方体教具中没有刷上红油漆面也刷上红油漆,问还要刷多少平方厘米的红油漆?提示:先画出图形,然后借助图形观察分析,弄清没有刷上红油漆的面处在大正方体的何位置。

【例2】老师为了考核同学们的空间想象能力,用若干个棱长为1cm的小正方体摆成如图所示的立体图形。

你能计算出这个立方体的体积和表面积吗?提示:求体积关键是数一数小正方体的个数,注意数正方体时要讲究顺序性。

数一数相对的面,看看你有什么发现?【例3】有一个六个面都涂满巧克力的长方体的大蛋糕,长4分米,宽4分米,高6分米,把它切成棱长是1分米的若干个小正方体蛋糕分给幼儿园的小朋友,问:(1)没有吃到巧克力的小朋友共有多少人?(2)吃到三个面、两个面、一个面涂有巧克力蛋糕的小朋友各有多少人?提示:动手画一画图,看看三面、二面、一面涂巧克力及没有涂巧克力的小正方各在长方体的什么位置。

相信你一定能发现其中的规律!【例4】在一个棱长为9厘米的正方体的钢坯上、下底面正中间打一个对穿孔,制成一个机器零件。

已知这个对穿孔是底面边长为2厘米的正方形,这个机器零件的体积和表面积各是多少?如果在前、后、左、右面正中间也各打一个同样的对穿孔,你能算出这个零件的体积和表面积吗?提示:你能画出相应的图形吗?体积的计算可采用相减的办法,当打三个对穿孔时需注意如何处理三个孔的交汇处的立方体。

奥数题长正方体)

奥数题长正方体)
10、号码分别为37、57、77、和97的四名运动员进行乒乓球比赛,规定每两人比赛的盘数是他们号码的和除以3的余数,那么打球盘数最多的运动员是几号?他打了多少盘?
11.一部书,甲、乙两个打字员需要10天完成,两人合打8天后,余下的由乙单独打,若这部书由甲单独打需要28天完成。问乙又干了几天完成?
12.在300米长的环形跑道上,甲、乙两人同时同向并排起跑,甲平均每秒跑5米,乙平均每秒跑4.4米。两人起跑后的第一次相遇在起跑线前多少米?
8、一个整数除以84的余数是46,那么他分别除以3、4、7所得的三个余数之和是多少?
9、甲、乙、丙、丁四个旅行团分别有游客69人、85人、93人、97人。现在要把四个旅行团分别进行分组,使每组都是A名游客,以便乘车前往参观旅游。已知甲、乙、丙三个团分成每组A人的若干组后,所剩下的人数相同,问丁旅行团分成每组A人的若干组后还剩下几人?
洗葱,切葱花
打蛋
搅拌蛋液和葱花
洗锅
烧热锅
烧热油
烧菜
1分钟
半分钟
1分钟
半分钟
半分钟
半分钟
2分钟
小晴做好这道菜至少需要分钟。
9、一项特殊的工作必须日夜有人值守,如果安排8人轮流值班,当值班人员为3人,那么,平均每人每天工作小时。
10、甲、乙两商店中某种商品的定价相同。甲商店按定价销售这种商品。销售额是7200
9、有一个棱长为9厘米的正方体,在每两个对面的中央钻一个边长为2厘米的正方形孔,且穿透,所得立体的体积是多少?
10、有甲、乙、丙三个正方体水池,它们内边长分别是5米、3米、1米,把两堆碎石分别沉没在乙、丙两个水池的水里,它们的水面分别升高了4厘米和2厘米。如果将这两堆碎石都沉没在甲水池的水里,甲水池的水面升高了多少厘米?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长方体和正
方体(一)
姓名:
1. 一个零件形状大小如下图:算一算,它的体积是多少立方厘米?表面积是多少平方厘米?(单位:厘米)
2. 一个长5厘米,宽1厘米,高3厘米的长方体,被切去一块后(如图),剩下部分的表面积和体积各是多少?
3. 把一根长2米的长方体木料锯成1米长的两段,表面积增加了2平方分米,求这根木料原来的体积。

4.有一个长方体形状的零件,中间挖去一个正方体的孔(如图),你能算出它的体积和表面积吗?(单位:厘米)
5.有一个形状如下图的零件,求它的体积和表面积。

(单位:厘米)
评价:
6.一个正方体和一个长方体拼成了一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了50平方厘米。

原正方体的表面积是多少平方厘米?
7. 把11块相同的长方体砖拼成一个大长方体。

已知每块砖的体积是288立方厘米,求大长方体的表面积。

8. 一个长方体的体积是385立方厘米,且长、宽、高都是质数,求这个长方体的表面积。

9. 一个长方体,前面和上面的面积之和是209平方厘米,这个长方体的长、宽、高以厘米为单位的数都是质数。

这个长方体的体积和表面积各是多少?
10. 一个长方体和一个正方体的棱长之长相等,已知长方体长、宽、高分别是6分米、4分米、5分米,求正方体体积。

相关文档
最新文档