无限循环小数化分数

合集下载

无限循环小数化为分数的方法

无限循环小数化为分数的方法

无限循环小数化为分数的方法无限循环小数化为分数的方法如下:一、等比数列法无限循环小数,先找其循环节(即循环的那几位数字),然后将其展开为一等比数列、求出前n项和、取极限、化简。

例如:0.333333……循环节为3则0.33333.....=3*10^(-1)+3*10^(-2)+……+3*10^(-n)+……前n项和为:0.3[1-(0.1)^(n)]/(1-0.1)当n趋向无穷时(0.1)^(n)=0因此0.3333……=0.3/0.9=1/3注意:m^n的意义为m的n次方。

再如:0.999999.......循环节为9则0.9999.....=9*10^(-1)+9*10^(-2)+……+9*10^(-n)+……前n项和为:{0.9*[1-(0.1)^n]}/(1-0.1)当n趋向无穷时(0.1)^n=0因此:0.99999.....=0.9/0.9=1二、解方程法无限循环小数化分数可分为两类情况,纯循环小数,混循环小数纯小数纯循环小数例:0.1111…… 1的循环,我们可以设此小数为x,可得:10x-x=1.1111……-0.1111……9x=1X=1/9例:0.999999.......=1设x=0.9999999......10x-x=9.999999.....-0.999999.....9x=9x=1关于这方面,还可以运用极限的知识加以证明,这里不在赘述。

例:将无限循环小数0.26(··)化成分数:解题:已知无限循环小数0.26(··),将已知无限循环小数0.26(··)的未知分数设为X,即0.26(··) =X——1式,令100X=100(0.26+0.0026(··)),100X=26+0.26(··)——2式,将(2式)中的无限循环小数0.26(··)更换为X得:100x=26+X,100X-X=26,99X= 26,X=26/99,∴X=0.26(··)=26/99,即:0.26(··)=26/99例:将无限循环小数0.123(··)化成分数:解题:已知无限循环小数0.123(··),将已知无限循环小数0.123(··)的未知分数设为X,即0.123(··)= X ——1式,令1000X=1000(0.123+0.000123(··)),1000X=123+0.123(··)——2式,将(2式)中的无限循环小数0.123(··)更换为X得:1000X=123+X,1000X-X=123, 999 X=123,X=123/999,X=41/333,∴X=0.123(··)=41/333,即:0.123(··)=41/333归纳为了公式化,我们可以这样表示:x·10∧b-x ,其中b是循环节的位数。

把无限循环小数化成分数的方法

把无限循环小数化成分数的方法

把无限循环小数化成分数的方法如何将无限循环小数化成分数无限循环小数是指小数部分存在一个或多个重复的数字组合,无限重复下去的小数。

例如,0.3333...就是一个无限循环小数,因为小数部分的3无限重复下去。

将无限循环小数化成分数是一种常见的数学运算,可以使得无限循环小数变成一个有限的数值。

下面将介绍几种方法来实现这个转换。

方法一:设x为无限循环小数,将x乘以一个适当的倍数,使得小数点后的循环部分移到整数部分,然后用等式表示这个乘法,解方程求解x的值。

例如,将0.3333...乘以10,得到3.3333...。

然后用等式表示这个乘法:10x = 3.3333...。

接着,将等式两边减去原来的等式,得到9x = 3。

解这个方程,得到x = 1/3。

方法二:设x为无限循环小数,将x的循环部分移到整数部分后,设为y。

然后用等式表示这个移位操作,得到x = y + 1/10^n,其中n为循环部分的长度。

接着,将等式两边乘以10^n,得到10^n*x = 10^n*y + 1。

再将等式两边减去原来的等式,得到(10^n - 1)x = 10^n*y。

解这个方程,得到x = y/(10^n - 1)。

例如,将0.3333...的循环部分移到整数部分后,得到3。

然后用等式表示这个移位操作:0.3333... = 3 + 1/10^1。

接着,将等式两边乘以10,得到10*0.3333... = 10*3 + 1。

再将等式两边减去原来的等式,得到9*0.3333... = 3。

解这个方程,得到0.3333... = 3/9 = 1/3。

方法三:设x为无限循环小数,将x的循环部分移到整数部分后,设为y。

然后用等式表示这个移位操作,得到x = y + 1/10^n,其中n为循环部分的长度。

接着,将等式两边乘以10^n,得到10^n*x = 10^n*y + 1。

再将等式两边减去原来的等式,得到(10^n - 1)x = 10^n*y。

无限循环小数化成分数的一般方法

无限循环小数化成分数的一般方法

无限循环小数化成分数的一般方法说实话无限循环小数化成分数这事儿,我一开始也是瞎摸索。

我最早就拿那种最简单的循环节是一位数的无限循环小数来试。

比如说……。

我当时就想啊,这个到底怎么变成分数呢?我就开始乱猜。

我想那能不能直接就是3分之1呢?后来一验证,还真对。

但是这到底为啥啊?我又不确定这是不是巧合。

然后我又试了……,我猜是不是也是3分之2呢?结果一验证竟然又是对的。

我就寻思这里面肯定有规律。

后来啊,我就专门去研究那种循环节是一位数的。

我发现这么个事儿,如果这个循环小数是……(a是循环节的那一位数),那化成分数的话分子就是这个循环的数字,分母就是9。

像……就是7/9。

这个我感觉挺靠谱。

我当时就觉得自己好像找到了绝世秘籍一样,可高兴了。

但是很快我就出问题了。

当我开始研究循环节不是一位数的时候,就像……这种。

我一开始还想用之前的办法,结果发现根本不行。

那怎么办呢?我又开始新的摸索。

我就拿好多个这种循环节是两位数的无限循环小数去试。

我绞尽脑汁啊。

最后发现,如果是……(xy是循环节),分子就是这个循环节组成的两位数,分母就是99。

就像……就是12/99,约分一下就是4/33。

那要是循环节是三位数呢?我又试啊试。

我猜可能是分子就是循环节组成的三位数,分母是999。

比如说……我一算,还真没错,就是123/999,约分一下就行。

通过这么多的尝试我就总结出来了。

对于无限循环小数,先看循环节有几位。

如果循环节是1位,那分母就是9;如果循环节是2位,分母就是99;如果循环节是3位,分母就是999,以此类推。

分子就是循环节所表示的那个数。

不过呢,这个方法有时候化出的分数可能不是最简分数,最后还要约分化简一下就是最终答案了。

这就是我这么久摸索出来的关于无限循环小数化成分数的小经验了。

1.6-无限循环小数如何化为分数

1.6-无限循环小数如何化为分数

====Word行业资料分享--可编辑版本--双击可删====无限循环小数如何化为分数【解析】由于小数部分位数是无限的,所以不可能写成十分之几、百分之几、千分之几……的数。

转化需要先“去掉”无限循环小数的“无限小数部分”。

一般是用扩倍的方法,把无限循环小数扩大十倍、一百倍或一千倍……使扩大后的无限循环小数与原无限循环小数的“无限小数部分”完全相同,然后这两个数相减,这样“大尾巴”就剪掉了。

例1、…………化成分数解:0.33……×10=3.33……0.33……×10-0.33……=3.33……-0.33……(10-1) ×0.33……=3即9×0.33……=3那么0.33……=3/9=1/3例2:0.4747……×100=47.4747……0.4747……×100-0.4747……=47.4747……-0.4747……(100-1)×0.4747……=47即99×0.4747…… =47那么0.4747……=47/99由此可见, 纯循环小数化为分数,它的小数部分可以写成这样的分数:纯循环小数的循环节最少位数是几,分母就是由几个9组成的数;分子是纯循环小数中一个循环节组成的数。

例3、把0.4777……和0.325656……化成分数解:0.4777……×10=4.777……①0.4777……×100=47.77……②用②-①即得:0.4777……×90=47-4所以:0.4777……=43/90例4:0.325656……×100=32.5656……①0.325656……×10000=3256.56……②用②-①即得:0.325656……×9900=3256.5656……-32.5656……0.325656……×9900=3256-32所以:0.325656……=3224/9900源-于-网-络-收-集。

无限循环小数化分数的方法

无限循环小数化分数的方法

无限循环小数化分数的方法无限循环小数,指十进制小数中数字序列一直循环出现的小数。

如0.3333……就是无限循环小数,它等于1/3。

接下来介绍几种常见的方法将无限循环小数化成分数。

1.长除法法将无限循环小数表示为分数x/y,其中x和y互质。

假设小数中以m开始不断循环出现,那么我们可以列出以下的等式:10^(n+d)x = m·(10^n-1)·10^d + m·(10^(n+2d)-10^(n+d))其中,d为小数循环节长度,n为大于d的任意正整数。

由于x是小数转化而来,因此有:x = m/(10^d - 1) + m/(10^(2d) - 1) + … + m/(10^(nd) - 1)然后将上式的右边化为分数,则有:x = m(1/10^d + 1/10^(2d) + … + 1/10^(nd))/(1-1/10^d)而y=10^n-1,则x/y=m/(10^d - 1) + m/(10^(2d) - 1) + … + m/(10^(nd) - 1)。

2.解二元一次方程组法同样假设无限循环小数为x/y,其中循环节长度为d。

则有:10^d·x - x = m10^d·y - y = 1其中m为小数循环节序列。

将x和y相消,联立方程组得到:x = m/(10^d - 1)y = (10^d - 1)/y因此,将无限循环小数化成分数的方法就是将循环节序列作为m 代入上式即可。

3.其他方法如果无限循环小数的分母是5的倍数,则可以将它们都变为10的倍数,即将小数点后移一位。

这时,无限循环小数就可以化为分数。

例如:0.6 = 6/10 = 3/5。

如果无限循环小数的分母可以分解为2和5的倍数,则先将该小数化为相应的分母,再用长除法法将无限循环小数化为分数。

通过以上几种方法,我们可以将无限循环小数化成分数,使其更便于计算。

0.35无限循环小数化分数的方法

0.35无限循环小数化分数的方法

0.35无限循环小数化分数的方法
宝子,今天咱来唠唠0.35无限循环小数咋化成分数哈。

你看哈,0.35无限循环,这个数呢,它是有规律地一直循环下去的。

咱设这个数为x,那就是x = 0.353535……
然后呢,咱想办法把这个循环节给它整没了。

100x就等于35.353535……这时候你看哈,100x和x是不是就差了个整数倍呢。

100x - x就等于35.3535…… - 0.3535……也就是99x等于35。

那x就等于35除以99,所以0.35无限循环小数化成分数就是35/99啦。

宝子,你看,这就像变魔术一样呢。

本来一个无限循环的小数,咱这么捣鼓捣鼓就变成了一个分数。

这数学啊,有时候就像个调皮的小精灵,你得找到它的小秘密,然后就能把它搞定啦。

你要是再遇到这种无限循环小数化分数的题啊,就按照这个法子来,保管没错。

就像找到了一把小钥匙,能打开这种类型题目的小锁呢。

嘻嘻,是不是还挺好玩的呀。

人教版七年级数学上册《无限循环小数化分数》PPT

人教版七年级数学上册《无限循环小数化分数》PPT

n
请根据你的发现归,纳纯循环小数的计算公式:
智慧碰撞一下 ^_^
规律
分子
所有数字组成的数-整数
分母
分母各位数字都是9,
(9的个数与循环节中的数字的个数相同)


x m.a bc e
n
混循环小数化成分数
任务三
例3:

1.2 3
••
练习4:12.3456
••
练习5:1.234567
练习6: (1)观察混循环小数化成分数的解题过程,总结规律(口答)
解题经验
循环小数进行四则运算: 先变成分数再计算
希望同学们学有所获~
x 234 999
••
2.18
••
解:设x 0.18
••
100x 18.18 99x 18
x 18 99
练习3:观察以上纯循环小数化成分数的 结果,完成下列各题
(1)观察纯循环小数化成分数的解题过程,总结规律(口答), 并直接得出答案
••
0.52 0
••
lo.v e


(2)设任意一个纯循环小数为: x m. a,b e
(2)运用你发现的规律直接得出答案
••
0.234 56


k.ab c de f


(3)设任意一个纯循环小数为: x k. ab c,d e f
m
n
请根据你的发现归纳纯循环小数的计算公式:

练习6:(1)
••
0.234 56
• (2)通过之前的混循环小数的计算,直接写出答案


0.ab c de f

无限循环小数和分数的互化

无限循环小数和分数的互化
无限纯循环
有限小数
01
无限小数
02
小数
03
无限循环小数
04
无限不循环小数
05
无限纯循环
06
无限混循环
07
分数化循环小数
化为小数为0.3333……=
1
化为小数为1.2222……=
2
化为小数为0.1818……=
3
反过来,循环小数怎样化为分数呢?
4
分析
首先明确一点 无限不循环小数 是不能转化成分数的 那么无限循环小数又是如何化分数的呢?由于它的小数部分位数是无限的,显然不可能写成十分之几、百分之几、千分之几……的数。其实,循环小数化分数难就难在无限的小数位数。所以我就从这里入手,想办法“剪掉”无限循环小数的“大尾巴”。策略就是用扩倍的方法,把无限循环小数扩大十倍、一百倍或一千倍……使扩大后的无限循环小数与原无限循环小数的“大尾巴”完全相同,然后这两个数相减,“大尾巴”不就剪掉了吗!
无限循环小数和分数的互化
单击添加副标题
单击此处添加文本具体内容,简明扼要地阐述你的观点
有限小数 如0.6,6.78,10.168 (小数部分位数有限)
添加标题
无限小数 如0.333……,2.304304304……,
添加标题
, (小数部分位数无限)
添加标题
小数
添加标题
无限循环小数 如0.333……,2.567567567…… 5666…… 0.1777……
分数化小数 分母是10,100,1000......的:可以直接化成小数,如,十分之七化成0.7,一百分之九化成0.09 分母不是10,100,1000......的:分子除以分母。一个最简分数,如果分母分解质因数只含有2、5的,可以化成有限小数;如果含有2、5以外的质因数,就不能化成有限小数,但绝对能化成循环小数。附加:如果分母分解质因数不含有2、5,只含有2、5以外的质因数,就能化成纯循环小数,如果既含有2、5,又含有2、5以外的质因数,就能化成混循环小数。

无限循环小数化分数

无限循环小数化分数

无限循环小数化分数无限循环小数是有理数,既然是有理数就可以化成分数。

循环小数分为混循环小数、纯循环小数两大类。

混循环小数可以*10^n(n为小数点后非循环位数),所以循环小数化为分数都可以最终通过纯循环小数来转化。

方法1.无限循环小数,先找其循环节(即循环的那几位数字),然后将其展开为一等比数列、求出前n项和、取极限、化简。

例如:0.333333……循环节为3则0.3=3*10^(-1)+3*10^(-2)+……+3^10(-n)+……前n项和为:30.1(1-(0.1)^(n))/(1-0.1)当n趋向无穷时(0.1)^(n)=0因此0.3333……=0.3/0.9=1/3注意:m^n的意义为m的n次方。

方法2:设0.3333......,三的循环为x,10x=3.3333.......10x-x=3.3333.......-0.3333......(注意:循环节被抵消了)9x=33x=1x=1/3第二种:如,将3.305030503050.................(3050为循环节)化为分数。

解:设:这个数的小数部分为a,这个小数表示成3+a10000a-a=30509999a=3050a=3050/9999算到这里后,能约分就约分,这样就能表示循环部分了。

再把整数部分乘分母加进去就是(3×9999+3050)/9999=33047/9999还有混循环小数转分数如0.1555.....循环节有一位,分母写个9,非循环节有一位,在9后添个0分子为非循环节+循环节(连接)-非循环节+15-1=1414/90约分后为7/45。

无限循环小数化分数

无限循环小数化分数

有限循环小数如何化为分数北京市第十九中学初一二班王旭目前的学习误区:在小学奥数中,只学过0.aaa……=a/9,并没有更具体的概念。

主要内容:一个数的小数部分,如果从某一位起,一个或几个数字依次不断地重复出现,这样的数就叫做循环小数。

循环小数化分数的方法有:1.纯循环小数化分数。

分子是一个循环节所表示的数;分母的各位数字都是9,9的个数和一个循环节的数字的个数相同。

2.混循环小数化分数。

分子是第二个循环节以前的小数部分的数字所组成的数减去不循环数字所组成的数的差;分母的头几位数字是9,末几位数字是0,9的个数和一个循环节的数字的个数相同,0的个数和不循环部分的数字的个数相同。

一、纯循环小数化分数从小数点后面第一位就循环的小数叫做纯循环小数。

怎样把它化为分数呢?看下面例题。

把纯循环小数化分数:纯循环小数的小数部分可以化成分数,这个分数的分子是一个循环节表示的数,分母各位上的数都是9。

9的个数与循环节的位数相同。

能约分的要约分。

二、混循环小数化分数不是从小数点后第一位就循环的小数叫混循环小数。

怎样把混循环小数化为分数呢?把混循环小数化分数。

(2)先看小数部分0.353一个混循环小数的小数部分可以化成分数,这个分数的分子是第二个循环节以前的小数部分组成的数与小数部分中不循环部分组成的数的差。

分母的头几位数是9,末几位是0。

9的个数与循环节中的位数相同,0的个数与不循环部分的位数相同。

三、循环小数的四则运算循环小数化成分数后,循环小数的四则运算就可以按分数四则运算法则进行。

从这种意义上来讲,循环小数的四则运算和有限小数四则运算一样,也是分数的四则运算。

有限小数化成分数直接将小数点去掉,分母对应化成十百千万等。

再约分浅谈如何将循环小数化为分数感受:我们知道,有限小数是十进分数的另一种表现形式,因此,任何一个有限小数都可以直接写成十分之几、百分之几……等形式的数。

那么无限小数能否化成分数呢?我们可以将无限小数按照小数部分是否循环分成两类:即无限循环小数和无限不循环小数。

小学奥数:循环小数化分数概念

小学奥数:循环小数化分数概念

小学奥数:循环小数化分数概念无限循环小数是有理数,既然是有理数就可以化成分数。

循环小数分为混循环小数、纯循环小数两大类。

混循环小数可以*10^n(n为小数点后非循环位数),所以循环小数化为分数都可以最终通过纯循环小数来转化。

方法1.无限循环小数,先找其循环节(即循环的那几位数字),然后将其展开为一等比数列、求出前n项和、取极限、化简。

例如:0.333333……循环节为3则0.3=3*10^(-1)+3*10^(-2)+……+3^10(-n)+……前n项和为:30.1(1-(0.1)^(n))/(1-0.1)当n趋向无穷时(0.1)^(n)=0因此0.3333……=0.3/0.9=1/3注意:m^n的意义为m的n次方。

方法2:设0.3333......,三的循环为x,10x=3.3333.......10x-x=3.3333.......-0.3333......(注意:循环节被抵消了)9x=33x=1x=1/3第二种:如,将3.305030503050.................(3050为循环节)化为分数。

解:设:这个数的小数部分为a,这个小数表示成3+a10000a-a=30509999a=3050a=3050/9999算到这里后,能约分就约分,这样就能表示循环部分了。

再把整数部分乘分母加进去就是(3×9999+3050)/9999=33047/9999还有混循环小数转分数如0.1555.....循环节有一位,分母写个9,非循环节有一位,在9后添个0分子为非循环节+循环节(连接)-非循环节+15-1=1414/90约分后为7/45。

无限循环小数化成分数的公式

无限循环小数化成分数的公式

无限循环小数化成分数的公式一、纯循环小数化分数公式及推导示例。

1. 公式。

- 对于纯循环小数,将一个循环节作为分子,分母是由若干个9组成,9的个数与循环节的位数相同。

- 例如:将纯循环小数0.ȧ = (a)/(9)(a为一位循环节);0.ȧḃ=frac{¯ab}{99}(¯ab表示两位数ab组成的数);0.ȧḃċ=frac{¯abc}{999}(¯abc表示三位数abc组成的数)等等。

2. 推导示例。

- 以0.3̇为例,设x = 0.3̇,则10x=3.3̇。

- 用10x - x,即10x - x=(3.3̇)-(0.3̇) = 3。

- 因为10x - x = 9x,所以9x = 3,解得x=(3)/(9)=(1)/(3)。

- 再以0.1̇2为例,设x = 0.1̇2,则100x = 12.1̇2。

- 100x - x=(12.1̇2)-(0.1̇2) = 12。

- 又因为100x - x = 99x,所以99x = 12,解得x=(12)/(99)=(4)/(33)。

二、混循环小数化分数公式及推导示例。

1. 公式。

- 对于混循环小数,分子是不循环部分与第一个循环节组成的数减去不循环部分组成的数,分母的前面是若干个9,9的个数与循环节的位数相同,后面是若干个0,0的个数与不循环部分的位数相同。

- 例如:将混循环小数0. a ḃ= frac{¯ab-a}{90}(a为不循环部分一位数,¯ab表示a和循环节b组成的数);0. a ḃċ=frac{¯abc-a}{990}(a为不循环部分一位数,¯abc 表示a和循环节bc组成的数);0. ab ċ=frac{¯abc-¯ab}{900}(ab为不循环部分两位数,¯abc表示ab和循环节c组成的数)等等。

2. 推导示例。

- 以0.23̇为例,设x = 0.23̇,则10x = 2.3̇,100x=23.3̇。

无限循环小数化为分数形式的一般规律

无限循环小数化为分数形式的一般规律

无限循环小数化为分数形式的一般规律哇塞,同学们,你们知道无限循环小数怎么变成分数形式吗?这可太神奇啦!
就拿0.333...... 这个无限循环小数来说吧。

咱们假设它等于x ,那x 就等于
0.333...... 。

那10x 呢?10x 不就是3.333...... 嘛。

这时候咱们用10x - x ,也就是3.333...... - 0.333...... ,那结果是多少?这不就是3 嘛!而10x - x 是9x 呀,那9x 等于3 ,x 不就等于3÷9 ,也就是1/3 嘛。

再比如说0.121212...... ,咱们还是设它是x 。

那100x 就是12.121212...... 。

然后100x - x ,不就是12 嘛!因为100x - x 等于99x ,所以99x 等于12 ,x 就等于12÷99 ,约分之后就是4/33 。

哎呀,你们想想,这是不是就像在一个神秘的数学城堡里探险?每一个无限循环小数都是一扇隐藏的门,咱们找到规律,就像拿到了打开门的钥匙!
咱们平时觉得无限循环小数好像很复杂,很难搞定,可一旦找到了这个规律,是不是就觉得也没那么可怕啦?这不就跟咱们刚开始学骑自行车似的,觉得好难好难,老是摔倒,可一旦掌握了平衡的窍门,就能骑得又快又稳啦!
我觉得呀,数学里这些神奇的规律,就等着咱们去发现,去探索,只要咱们用心,啥难题都能解决!这无限循环小数化为分数形式的规律,咱们不就搞明白啦?所以,同学们,别害怕数学里的难题,咱们都能搞定!。

小学奥数之各种循环小数化成分数的方法归纳

小学奥数之各种循环小数化成分数的方法归纳

小学奥数之各种循环小数化成分数的方法归纳小学奥数中,常常会遇到各种循环小数,化成分数的问题。

循环小数是指小数部分有一组数字无限重复出现。

对于循环小数,我们可以采用一些方法将其化成分数。

下面我们将介绍几种常见的方法。

方法一:直接法对于循环小数0.abcabcabc...,我们可以设这个循环小数为x,则有:10x = abc.abcabcabc...x = 0.abcabcabc...将上述两式相减,得到:9x = abc所以,x = abc / 9这就是将循环小数直接化成分数的方法。

解:设这个循环小数为x,则有:将上述两式相减,得到:99x=36所以,x=36/99=4/11方法二:倍数法对于循环小数0.abcabcabc...,我们可以设这个循环小数为x,则有:1000x = abc.abcabcabc...100x = 0.abcabcabc...将两式相减,得到:900x = abc所以,x = abc / 900这就是利用倍数法将循环小数化成分数的方法。

解:设这个循环小数为x,则有:将两式相减,得到:900x=571所以,x=571/900=19/30方法三:代数法对于循环小数0.abcabcabc...,我们可以利用代数方法将其化成分数。

设这个循环小数为x,则有:x = 0.abcabcabc...10x = abc.abcabcabc...将两式相减,得到:9x = abc所以,x = abc / 9这种方法和直接法类似,但更侧重于利用代数思想。

例题3:将0.8888...化成分数。

解:设这个循环小数为x,则有:10x=8.8888...x=0.8888...将两式相减,得到:9x=8所以,x=8/9除了以上的三种常见方法,还有一些特殊的循环小数化成分数的方法,根据具体情况灵活运用。

总结起来,小学奥数中循环小数化成分数常用的方法有直接法、倍数法和代数法。

学生们在解决这类问题时,可以根据题目的具体形式选择合适的方法。

一元一次方程无限小数转化为分数

一元一次方程无限小数转化为分数

用一元一次方程,将无限循环小数转化为分数
1.将纯无限小数转化为分数
从小数点后面第一位起就开始循环的小数,叫做纯循环小数。

例如:0.33333……、0.454545……、0.345345345……等这些小数都是纯无限小数
分析:遇到这样的纯循环小数,我们可令其为x,观察可知,若将左右两边同时扩大10倍,则右边两个小数的差正好为3,从而可以得到关于x的一元一次方程,通过解方程即可得到该分数。

分析:本题和例题1的区别在于:循环节不一样,因此需要左右两边同时乘以100,而不是乘以10.
分析:同样的,循环节变成了3,因此左右两边需要同时乘以1000.
2.把混循环小数化为分数
如果小数点后面的开头几位不循环,从后面的某一位才开始循环,这样的小数叫做混循环小数。

分析:在解答时,要把握的关键是:先把不循环的小数,转移到等号的左边,最后转化为纯循环无限小数来做即可。

1.6 无限循环小数如何化为分数

1.6 无限循环小数如何化为分数

无限循环小数如何化为分数【解析】由于小数部分位数是无限的,所以不可能写成十分之几、百分之几、千分之几……的数。

转化需要先“去掉”无限循环小数的“无限小数部分”。

一般是用扩倍的方法,把无限循环小数扩大十倍、一百倍或一千倍……使扩大后的无限循环小数与原无限循环小数的“无限小数部分”完全相同,然后这两个数相减,这样“大尾巴”就剪掉了。

例1、把 0.33……和 0.4747……化成分数解:0.33……×10=3.33……0.33……×10-0.33……=3.33……-0.33……(10-1) ×0.33……=3即9×0.33……=3那么0.33……=3/9=1/3例2:0.4747……×100=47.4747……0.4747……×100-0.4747……=47.4747……-0.4747……(100-1)×0.4747……=47即99×0.4747…… =47那么0.4747……=47/99由此可见, 纯循环小数化为分数,它的小数部分可以写成这样的分数:纯循环小数的循环节最少位数是几,分母就是由几个9组成的数;分子是纯循环小数中一个循环节组成的数。

例3、把0.4777……和0.325656……化成分数解:0.4777……×10=4.777……①0.4777……×100=47.77……②用②-①即得:0.4777……×90=47-4所以:0.4777……=43/90例4:0.325656……×100=32.5656……①0.325656……×10000=3256.56……②用②-①即得:0.325656……×9900=3256.5656……-32.5656……0.325656……×9900=3256-32所以:0.325656……=3224/9900。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有限循环小数如何化为分数
北京市第十九中学初一二班王旭目前的学习误区:在小学奥数中,只学过0.aaa……=a/9,并没有更具体的概念。

主要内容:一个数的小数部分,如果从某一位起,一个或几个数字依次不断地重复出现,这样的数就叫做循环小数。

循环小数化分数的方法有:
1.纯循环小数化分数。

分子是一个循环节所表示的数;分母的各位数字都是9,9的个数和一个循环节的数字的个数相同。

2.混循环小数化分数。

分子是第二个循环节以前的小数部分的数字所组成的数减去不循环数字所组成的数的差;分母的头几位数字是9,末几位数字是0,9的个数和一个循环节的数字的个数相同,0的个数和不循环部分的数字的个数相同。

一、纯循环小数化分数
从小数点后面第一位就循环的小数叫做纯循环小数。

怎样把它化为分数呢?看下面例题。

把纯循环小数化分数:
纯循环小数的小数部分可以化成分数,这个分数的分子是一个循环节表示的数,分母各位上的数都是9。

9的个数与循环节的位数相同。

能约分的要约分。

二、混循环小数化分数
不是从小数点后第一位就循环的小数叫混循环小数。

怎样把混循环小数化为分数呢?把混循环小数化分数。

(2)先看小数部分0.353
一个混循环小数的小数部分可以化成分数,这个分数的分子是第二个循环节以前的小数部分组成的数与小数部分中不循环部分组成的数的差。

分母的头几位数是9,末几位是0。

9的个数与循环节中的位数相同,0的个数与不循环部分的位数相同。

三、循环小数的四则运算
循环小数化成分数后,循环小数的四则运算就可以按分数四则运算法则进行。

从这种意义上来讲,循环小数的四则运算和有限小数四则运算一样,也是分数的四则运算。

有限小数化成分数直接将小数点去掉,分母对应化成十百千万等。

再约分
浅谈如何将循环小数化为分数
感受:我们知道,有限小数是十进分数的另一种表现形式,因此,任何一个有限小数都可以直接写成十分之几、百分之几……等形式的数。

那么无限小数能否化成分数呢?
我们可以将无限小数按照小数部分是否循环分成两类:即无限循环小数和无限不循环小数。

无限不循环小数不能化成分数,而无限循环小数是可以化成分数的。

那么,无限循环小数又是如何化分数的呢?由于它的小数部分位数是无限的,显然不可能写成十分之几、百分之几、千分之几……的数。

其实,循环小数化分数难就难在无限的小数位数。

所以我就从这里入手,想办法去掉无限循环小数的循环的部分。

策略就是用扩大倍数的方法,把无限循环小数扩大十倍、百倍或千倍……使扩大后的无限循环小数与原无限循环小数循环的部分完全相同,然后这两个数相减,这样就把循化的部分去掉了,我们的目的就达到了,我们来看两个例子:
例1 把0.4747……和0.33……化成分数。

解法1:0.4747……×100=47.4747……
0.4747……×100-0.4747……=47.4747……-0.4747……
(100-1)×0.4747……=47
即99×0.4747……=47
那么0.4747……=47/99
解法2:0.33……×10=3.33……
0.33……×10-0.33……=3.33…-0.33……
(10-1) ×0.33……=3
即9×0.33……=3
那么0.33……=3/9=1/3
由此可见, 纯循环小数化分数,它的小数部分可以写成这样的分数:纯循环小数的循环节最少位数是几,分母就是由几个9组成的数;分子是纯循环小数中一个循环节组成的数。

⑵把0.4777……和0.325656……化成分数。

想1:0.4777……×10=4.777……①
0.4777……×100=47.77……②
用②-①即得:
0.4777……×90=47-4
所以, 0.4777……=43/90
想2:0.325656……×100=32.5656……①
0.325656……×10000=3256.56……②
用②-①即得:
0.325656……×9900=3256.5656……-32.5656……
0.325656……×9900=3256-32
所以, 0.325656……=3224/9900。

相关文档
最新文档