平行线分线段成比例定理(1)
1.2 平行线分线段成比例定理 课件(人教A选修4-1)(2)
![1.2 平行线分线段成比例定理 课件(人教A选修4-1)(2)](https://img.taocdn.com/s3/m/ee5f0fea524de518964b7d88.png)
返回
证明:过 A 作 AG∥BC,交 DF 于 G 点. FA AG ∵AG∥BD,∴ = . FB BD FA AG 又∵BD=DC,∴ = . FB DC AG AE ∵AG∥DC,∴ = . DC EC AE FA ∴ = ,即 AE· FB=EC· FA. EC FB
返回
[研一题]
[例 3] 如图,已知▱ABCD 中,延长
返回
AD DE CE ∴ = = , AB AB AC AD AD CE AD CE AE ∴ + = + = + , AB AC AC AC AC AC CE AE AC AD AD ∵ + = =1,∴ + =1, AC AC AC AB AC 1 1 1 ∴ + = . AB AC AD
返回
返回
[悟一法]
求线段长度比的问题,通常引入一个参数k,然
后用所设的参数k表示所求结论中的各个线段,最后消 掉参数k即可得到所求结论.
返回
[通一类]
3.如图,在△ABC中,DE∥BC,DF ∥AC,且AE∶AC=3∶5,DE=6, 求BF的值.
解:因为 DE∥BC, DE AE 3 所以 = = . BC AC 5 5 又因为 DE=6,所以 BC= ×6=10. 3 又因为 DF∥AC, 所以四边形 DFCE 是平行四边形, 所以 FC=DE=6,所以 BF=BC-FC=10-6=4.
提示:仍然成立.
返回
[例 1] AB m BC= n .
[研一题] 已知:如图,l1∥l2∥l3,
DE m 求证:DF= . m+n 分析:本题考查平行线分线段成比例定理及比例的
DE AB 基本性质.解答本题需要利用定理证得 = ,然后利 EF BC DE 用比例的有关性质求出 即可. DF
平行线分线段成比例定理
![平行线分线段成比例定理](https://img.taocdn.com/s3/m/47b460ef580216fc710afd0e.png)
平行线分线段成比例定理【重点难点解析】 重点:平行线分比例线段定理与三角形一边的平行线的性质和判定 . 难点:平行线分线段成比例定理及推论的应用 .【命题趋势分析】 利用平行线分线段成比例定理及相关推论,进行证明和计算是考试热点,在中考中常以填空题、选择题、计算题、证明题和作 图题出现,解题时要结合比例性质 .核心知识 【基础知识精讲】 本节的主要内容是平行线分线段成比例定理与三角形一边的平行线的性质和判定 .1. 平行线分线段成比例定理(1) 定理:三条平行线截两条直线,截得的对应线段成比例 (2) 定理的基本图形若 l 1∥l 2 ∥l 3,则3. 三角形一边平行线的判定定理:如果一条直线截三角的两边 ( 或两边的延长线 ) 所得的线段成比例,那么这条直线平行于三角形的第三边4. 相似三角形性质定理的预备定理 平行于三角形的一边,并且和其它两边相交的直线,所截得的三角形与原三角形的三边成比例 ( 如图 )) ,所得的对应线段成比例2. 平行线分线段成比例推论(1) 推论:平行于三角形一边的直线截( 或两边的延长线△ABC中,若DE∥BC,则==上述基础知识①用来证明线段成比例;②证明直线平行;③证明两三角形相似;④已知三条线段,作第四比例项典型例题例 1 如图,AD是△ABC的中线,E是AD上一点,AE∶ED=1∶3,BE的延长线交AC于 F.求AF∶FC.例 2 如图, D 为△ABC的AC边上一点, E 为CB延长线上一点,且=,求证:AD=EB.例 3 已知:如图,△ ABC 中,DE∥BC,AC=6,AD=6,CE=2,则BD的长为多少?例 4 如图,已知AD为△ ABC中∠ BAC 的平分线,求证:【课本难题解答】例 1 在△ABC(AB> AC)的边AB上取一点D,在边AC上取一点E,使AD=AE,直线DE和BC的延长线交于点P,求证:BP∶CP=BD∶CE.(如图 5.2-11)(P 255 A.18)例 2 如图 5.2-12 ,过△ABC的顶点C任作一直线,与边AB及中线AD分别交于点F和 E.求证:AE∶ED=2AF∶FB例3 为了求出海岛上的山峰AB的高度、在D和F处树立标杆DC和FE,标杆的高都是3丈,相隔1000步(1 步等于6尺),并且AB、CD和EF在同一平面内,从标杆DC退后123 步的G处,可看到山峰A和标杆顶端C在同一直线上,从标杆FE退后127 步的H处,可看到山峰A和标杆顶端E在一直线上,求山峰的高度AB及它和标杆CD的水平距离BD各是多少?(如图 5.2- 13)(P 256B.17)补充一些小问题1.怎样用三角形面积公式证明平行线分线段成比例定理?2.平行线分线段成比例定理有没有逆定理?3.如图,D为△ABC的AB 边上一点,过 D 点作DE∥BC,DF∥AC,4.如图,已知AC∥BD,BD⊥AB,AD、BC相交于E,EF⊥AB 于 F. 求证:- =5. 如图,D、F 分别是△ ABC的边AB、AC上的点,且AD∶DB=CF∶FA=2∶3连DF 交BC的延长线于E. 求EF∶FD.AF交DE于G,BE交DF于H,求证:GH∥AB.6.已知:如图,在□ ABCD 中, E 是AB 的中点,在 AD 上截取 AF =FD ,EF 交 AC 于 G.求证: =7. 如图,在△ ABC (AB > AC )的边 AB 上取一点 D ,在边 AC 上取一点 E ,使 AD =AE ,线段 DE 和 BC 的延长线交于点 P. 求证: BP ∶CP =BD ∶CE8. 如图,已知菱形 ABCD 的边长为 3,延长 AB 到点 E ,使 BE =2AB ,连结 EC 并延长交 AD 的延长线于点 F ,求 AF 的长.【典型例题】例 1 如图,在△ ABC 中, DE ∥BC , EF ∥ CD.( 1)求证: AF :AD=AD :AB (2)若 AF=4,FB=5,求 FD 的长 . ( 1)证明:∵ EF ∥DC ,∴ AF : AD=AE : AC∵ DE ∥ BC ,∴ AD :AB=AE :AC ∴AF : AD=AD : AB(2)AF=4,FB=5,∴AB=9,由 AD 2=AF ·AB ,∴ AD=6,FD=2.A例 2 如图, M 为 ABCD 一边 AD 的中点, BM 交 AC 于点 P ,若 AC=6cm ,求 PC 的值 .A MAD 2例 3 如图,若 DE ∥ AB ,FD ∥BC , = ,AB=9cm ,BC=6cm ,求 BEDF 的周长 .AC 3例 4 如图,在△ ABC 中,∠ ABC 的角平分线交 AC 于 D 。
平行线分线段成比例定理证明方法
![平行线分线段成比例定理证明方法](https://img.taocdn.com/s3/m/7bbb265424c52cc58bd63186bceb19e8b9f6ec55.png)
平行线分线段成比例定理证明方法平行线分线段成比例定理是数学中的一条重要定理,它描述了当两条平行线与一条横切线相交时,所形成的线段之间的比例关系。
本文将通过证明该定理,来展示其严谨的数学推导过程。
我们先来描述一下该定理的内容:设有两条平行线l和m,它们被一条横切线n相交于A、B、C三点。
如果在l上任取一点D,并且连接BD和AC,那么我们有以下结论:\(\frac{AD}{DB} = \frac{AC}{BC}\)接下来,我们将通过严格的证明来验证这一结论。
证明过程如下:假设在平行线l上任取一点D,并连接BD和AC。
根据平行线的性质,我们可以得到以下两个对应角相等的等角关系:∠ACB = ∠DBC (对应角相等)∠ADC = ∠BCD (对应角相等)由于三角形ABC和三角形DBC中有两个角相等,根据三角形的基本性质,我们可以得到这两个三角形是相似的。
根据相似三角形的性质,我们可以得到下面的比例关系:\(\frac{AD}{DB} = \frac{AC}{BC}\)从上述推导过程可以看出,平行线分线段成比例定理是由两个等角关系推导得到的,而等角关系是由平行线的性质所决定的。
因此,该定理的证明是严谨而准确的。
值得注意的是,平行线分线段成比例定理的证明过程中没有使用到具体的数值,而仅仅是通过等角关系和相似三角形的性质进行了推导。
因此,该定理具有普适性,适用于任意情况下的平行线。
通过平行线分线段成比例定理,我们可以解决很多实际问题。
例如,在建筑工程中,我们可以利用该定理来计算建筑物的高度。
通过测量建筑物的影子长度和测量仪的高度,我们可以利用平行线分线段成比例定理来计算建筑物的实际高度。
在几何学的研究中,平行线分线段成比例定理也是解决一些复杂问题的重要工具。
通过应用该定理,我们可以得到一些关于平行线和三角形的性质,进而推导出更多的几何定理。
总结起来,平行线分线段成比例定理是数学中的一条重要定理,它描述了当两条平行线与一条横切线相交时,所形成的线段之间的比例关系。
平行线分线段成比例定理-课件(人教A选修4-1)
![平行线分线段成比例定理-课件(人教A选修4-1)](https://img.taocdn.com/s3/m/c2a5ecb7a0116c175f0e48bc.png)
[证明] 作 EH∥AB 交 AC 于点 H, 则AAHC=BBEC,∴BACC=ABHE. 同理:AAHF=DDFE,∴DAFF=ADHE. ∵△BDC 为直角三角形, 且 E 为 BC 边中点, ∴BE=CE=DE. ∴ABHE=ADHE.∴ABCC=DAFF.
证明比例式成立,往往会将比例式中各线段放到 一组平行线中进行研究.有时图形中没有平行线,要 添加辅助线,构造相关图形,创造可以形成比例式的 条件,达到证明的目的.
5.如图,梯形 ABCD 中,AD∥BC, 点 E,F 分别在 AB,CD 上,且 EF∥ BC,若AEEB=23,AD=8 cm,BC= 18 cm,求 EF 长.
解:作 AG∥DC 分别交 BC,EF 于 G,H, ∴AD=HF=GC=8 cm. BG=18-8=10(cm). ∵EABE=23,∴AAEB=25. ∴EBHG=AAEB=25. ∴EH=25×BG=25×10=4(cm). ∴EF=EH+HF=4+8=12(cm).
证明:在正方形 ABCD 中,AB∥CD, ∴AFBC=EAFE. ∵FG∥AD,∴FAGD=EAFE. ∴AFBC=FAGD. ∵AB=AD. ∴FC=FG.
4.如图,在▱ABCD 中,E 是 AB 延长线上一点,DE 交 AC 于 G,交 BC 于 F. 求证:(1)DG2=GE·GF; (2)CCBF=AAEB.
2.平行线分线段成比例定理的推论 (1)文字语言:平行于三角形一边的直线截其他两边 (或两边的延长线)所得的 对应线段 成比例. (2)图形语言:如图l1∥l2∥l3,
则有:AADB=
AACE,ADDB=
EACE,DABB=
CE AC .
3.平行线分线段成比例定理的作用 平行线分线段成比例定理及推论是研究相似三角形 的理论基础,它可以判定线段成比例.另外,当不能直 接证明要证的比例成立时,常用该定理借助“中间比”转 化成另两条线段的比,来得出正确结论.合理添加平行 线,运用定理及推论列比例式,再经过线段间的转换可 以求线段的比值或证明线段间倍数关系.
平行线分线段成比例定理
![平行线分线段成比例定理](https://img.taocdn.com/s3/m/24e5e104b7360b4c2e3f642e.png)
5
17
2 1
)
)
(3) S△AGE=( 2
4
课堂小结
作业 4
已知AD // ED // BC,AD=15,BC=21,2AE = EB,求EF的长
A D E
H
F
解法(一)
作AG // CD交EF于H AD // EF // BC AD=15, BC=21
B
G
C
AD = HF = GC =15 ,BG = 6 EH AE = BG AB 2AE = EB
A
3k 3m 2m
E
D
2k
G
4m 2a
F
a
B
C
应用1—求线段长度(比值)
如图,△ABC中,D是AB上的点,E是AC上的点,延长ED与射线 CB交于点F.若AE∶EC=1∶2,AD∶BD=3∶2. 求:FB∶FC的值.
A
3k 3m
E
6m
H
2m
D
2k
F
a
B
3a
C
应用1—求线段长度(比值)
如图,△ABC中,D是AB上的点,E是AC上的点,延长ED与射线 CB交于点F.若AE∶EC=1∶2,AD∶BD=3∶2. 求:FB∶FC的值.
A
y
D
x
x
E C
B
5
应用4 — 建立函数关系式
2. 已知:如图,BC = 4, AC = 2 3 ∠C=60°,P为BC上 一点,DP//AB,设BP = x,S△APD= y.
(1)求y关于x的函数关系式; (2)若S△APD =
2 S△APB,求:BP的长. 3
A
D
H
B
2.平行线分线段成比例定理
![2.平行线分线段成比例定理](https://img.taocdn.com/s3/m/d3af92bd6394dd88d0d233d4b14e852458fb3983.png)
如图:l1 // l2 // l3 // l4 // l5 //,l6
且AP=PB=BQ=QR=RC.
(1)你能推出怎样的结论?
为什么?
由平行线等分线段定理可知.
(注意其前提条件是:等距)
A P B Q R C
D
L1
S
L2
E L3
T L4
G L5
F L6
(2)三条距离不相等的平行线截
两条直线会有什么结果?
线交于点G.
E
G
C
证明:过点C作CG//AB,且与DE的延长线交于点G.
∵DE//BC, ∴AD:AB=AE:AC ∵CG//AB, ∴DE:DG=AE:AC
AD AB
DE . DG
∵四边形DEFB为平行四边形, ∴DG=BC.
AD AE DE . AB AC BC
四 课后小结
1、学习掌握平行线等分线段定理,了解定 理的证明。
成比例定理的推论可直 证明:过点E作EF//AB,交BC于点F, 接得到AD:AB=AE:AC. ∵DE//BC, ∴AD:AB=AE:AC.
为了证明AE:AC=DE:BC, ∵EF//AB, ∴BF:BC=AE:AC.
需要构造一组平行线,使 且四边形DEFB为平行四边形.
AE、AC、DE、BC成为 由这组平行线截得的线段.
B
BC ( EF) AC ( DF) F AB (BC) ( AC)
DE (EF ) ( DF)
2、如图L1∥L2∥L3 ,
A
(1)已知BC=3,DEEF 3,则AB=(9) B
(2)已知AB=a,BC=b,EF= c,
ac
C
则DE=( b )
平行线分线段成比例定理
![平行线分线段成比例定理](https://img.taocdn.com/s3/m/ffdc4a0bb52acfc789ebc922.png)
左 左 = 右 右
L5 L4 A D B E C
L5
L4 D
L1
L2
E A
L1
L2
B C 数学符号语言 L3 数学符号语言 ∵ DE∥BC ∵ DE∥BC
L3
AD AE AB AC
AD AE AB AC
平行于三角形一边的直线截其他两边(或两边的 延长线),所得的对应线段的比相等.
例1 如图: l1∥l2∥l3 ,
A1 A 要把表示对应角顶点的 字母写在对应的位置上。 注意 B1 C
B
C1
当 ∠A =∠A1,∠B =∠B1, ∠C =∠C1, AB : A1B1 = BC : B1C1 = CD : C1D1 = k 时, 则△ABC 与△A1B1C1 相似,
记作△ABC ∽ △A1B1C1。
平行线分线段成比例定理:
(1)若AB=3 , DE=2, EF=4,求 BC. 解: l ∥l ∥l A
一般把所求线段 BC EF AB DE 写成比例第一项.
即:
BC EF BCDE 4 AB
1
2
3
B C
D E
F
l1 l2 l3
3
2
BC=6
(2)若AC=8,DE=2,EF=3,求AB.
AB DE DE AB 2 16 AB AC DF DE EF 8 2 3 5
过点E作EF∥AB,EF交BC于点F. ∵DE∥BC,EF∥AB,
AD AE BF AE , . AB AC BC AC DE . BC
E
C
∵四边形DEFB是平行四边形, DE AE AD AE , ∴DE=BF,
BC AC AB AC
1.2平行线分线段成比例定理(1)
![1.2平行线分线段成比例定理(1)](https://img.taocdn.com/s3/m/693a15b2f121dd36a32d8229.png)
BC AC EF DF
?
合比
AB DE AC DF
AB BC AC DE EF DF
若将下图中的直线L2看成是平行于△ABC 的边BC的直线,那么可得: AD = AE .
AB AC
推论:平行于三角形一边的直线截其他两边 (或两边的延长线)所得的对应线段成比例.
三、定理的运用
例1(一、基础题) 1、已知: L1∥L2∥L3 则:
A B
D
E
L1 LC ) (EF )
BC ( EF) AC ( DF) ( AC) ( DF)
F
C L3
2、如图L1∥L2∥L3 , DE (1)已知BC=3, 3,则AB=(9) EF (2)已知AB=a,BC=b,EF= c, C ac 则DE=( ) b
l1 a1
AB DE 2 则: . BC EF 3
A B
D E
L1
A (D) B E
L1 L2 2 L3
L2
F 1 L3
C
C
F
D
A
L1 L2
D B (E)
A
L1 L2 4 L3
B
C
E
F
L3
3
C
F
基本事实9:
两条直线被一组平行线所截,所得的对应线段成比例.
基本事实9:两条直线被一组平行线所截,所得的对应线
A
D
L1
B
E F
L2 L3
3、如图1:已知L1∥L2∥L3 , AB=3厘米,BC=2厘米,DF=4.5厘米. 则EF=( 1.8 ),DE=( 2.7 ).
4、如图2:△ABC中,DE ∥BC,如果 AE :EC=7 :3,则DB :AB=( 3:10 )
(完整版)平行线分线段成比例
![(完整版)平行线分线段成比例](https://img.taocdn.com/s3/m/817ac06e52d380eb62946d89.png)
1.在VABC中,AD是ABC的平分线,35AB=5cm, AC=4cm,BC=7cm,则BD=___9____
2.在VABC中,AD是ABC的平分线, 55 AB-AC=5, BD-CD=3, DC=8,则AB=____3___
3.RtVABC中,B 90, AB 12, BC 5, DE AC于E,
A
D
C
证明: 过C作AD的平行线交AB于点E。 ∴BD︰CD=AB︰AE,∠1=∠AEC ∠CAD=∠ACE ∵∠1=∠CAD ∴∠AEC=∠ACE
∴AE=AC ∴BD︰CD=AB︰AC
直角三角形中的比例(射影定理):
C
A
DB
在直角三角形ABC中,CD为斜边AB边上的高, 则:
CD2 ADgDB; AC2 ADgAB; BC2 BDgAB
1gABgADgsin BAD 2
SVDAC
1 gCDgh 2
1gDAgACgsin DAC 2
SVABD BDgh ABgADgsin BAD SVDAC DCgh ACgADgsin DAC
Q AD为BAC的平分线 BAC DAC
AB BD
B
AC DC
本节内容是关于几何中的一些比例关系,这几 节内容现在在初中课本中已“淡化”,但是这几个 结论在高中的“立体几何”和“平面解析几何”中 有时会用到.因此,在本节中首先把这几个定理内容介 绍给同学们,然后利用这三个定理来解决一些题目.其 中对于“平行线分线段成比例”介绍几条稍有难度 的题目,而“三角形内外角平分线性质定理”和 “直角三角形中的比例”的题目直接围绕定理展开, 难度不大.
平行线分线段成比例定理
三条平行线截两条直线,截得的对应线段成比例
平行线分线段成比例定理(一).
![平行线分线段成比例定理(一).](https://img.taocdn.com/s3/m/9ff5766327d3240c8447ef82.png)
=
右上 右下
;
左上 左全
=
右上 右全
;
左下 左全
=
右下 右全
例3.如图,已知:DE∥BC,AB=15,AC=9, BD=4.求AE 的长.
A
B D
C E
例3.如图,已知:DE∥BC,AB=15,AC=9, BD=4.求AE 的长.
A
15
B D C E
例3.如图,已知:DE∥BC,AB=15,AC=9, BD=4.求AE 的长.
l1
l2
l3
应用线段的对应关系以及比例 的性质,我们还可以得到:
平行线分线段成比例定理:
三条平行线截两条直线,所得的对应 线段成比例.
A C E G
l1
l2
D
H
l3
A C
E
G
D
H
在你画的图形中, = 的 AD EH 说法正确吗?
AC
GH
左上
左上
左下
左上
左下
右上
左上
左下
右上
右下
左上
左下
结
A C D E G H
2.思想方法:
A B C D E F G H A
C
E
G
l1 l2
D
H
l3
特殊
一般
2.思想方法:
例1的数字形式 具体
例2的字母形式 抽象
2.思想方法:
A
A C E G
E G H
l
1
C D
H
l2 l3
D
基本图形 具体
变式图形 抽象
2.思想方法:
基本图形
变式图形
思 考 题
22.1.6平行线分线段成比例定理
![22.1.6平行线分线段成比例定理](https://img.taocdn.com/s3/m/509796eb770bf78a652954c1.png)
由平行线等分线段定理可知. (注意其前提条件是:等距)
A P B Q R C
D S E T G F
L1 L2 L3
L4 L5
L6
(2)三条距离不相等的平行线截 两条直线会有什么结果?
四 课后小结
1、学习掌握平行线等分线段定理,了解定 理的证明。 2、正确理解“对应线段成比例”,能正确 写出需要的比例式。 3 了解平行线分线段成比例定理是一般情 况,平行线等分线段定理的特殊情况,明 确我们的研究是采用从特殊到一般的数 学方法。
例3:用平行于三角形一边且和其他两边相交的直线 截三角形,所截得的三角形的三边与原三角形的三边 对应成比例.(文字语言) A (图形语言) 已知:如图,DE//BC分别交AB、AC于
5 5
C
E
C
1、如图:EF∥AB,BF: FC= 5 :4, E F 4 AC=3厘米,则CE=( cm ) 3 2、已知在△ABC中,DE∥BC,EF∥DC, A B A 那么下列结论不成立的是( ) B F AD AB AD AC B A AF AD AB AE D E C AF AD D AF AE DF DB B AD AC C A 3、如图: △ABC中, DE ∥BC, DF ∥AC,AE=4,EC=2,BC=8, D E 求线段BF,CF之长.
L1
L2 L3
L5 L4
L1
L2 L3
L5
L4
L1 L2 L3
L5 A
D
L4
L1
E
L2
B
C
L3
数学:《平行线分线段成比例定理》教案一(新人教A版选修4-1)
![数学:《平行线分线段成比例定理》教案一(新人教A版选修4-1)](https://img.taocdn.com/s3/m/b619bd05be1e650e52ea9964.png)
平行线分线段成比例定理一、教学目标:㈠知识与技能:1.掌握平行线分线段成比例定理的推论。
2.用推论进行有关计算和证明。
㈡教学思考:通过探究平行线分线段成比例定理的推论,培养学生数学思维能力。
㈢解决问题:学生经历观察、操作、探究、交流、归纳、总结过程获得结论,体验解决问题的多样性,感悟比例中间量的作用。
㈣情感态度:1.通过探究活动,给学生创造表现自我的机会,让学生体验成功的喜悦。
2.培养学生合作交流的意识和大胆猜想、乐于探究的良好品质。
3.将学生置于教师平等地位、营造和谐的师生气氛。
二、教学重点:推论及应用三、教学难点:推论的应用四、教学方法:引导、探究五、教学媒体:投影、胶片六、教学过程:【活动一】引入新课问题1 上节我们学习了什么内容?本节将研究什么?学生共同手工拼图,通过思考探究得出结论。
在本次活动中,教师应重点关注:1.操作过程中学生是否把被截得两直线交点放在相应位置。
2.学生是否有探究本节所学内容的兴趣和欲望。
设计意图:使学生通过动手操作、观察、直观得出初步结论。
【活动二】探究推论问题2.被截直线的交点若落在第一条或第二条平行线上,平行线分线段成比例定理是否还成立?问题3.若上述问题成立,可得什么特殊结论?321123教师提问,引导学生猜想,并在拼好的图上测量、计算、证明。
推论:投影出示。
在本次活动中,教师应重点关注: 1.学生是否认真、仔细的测量和计算。
2.学生能否用定理证明所得推论。
设计意图:培养学生大胆猜测,从实践中得出结论。
【活动三】问题4 看图说比例式 ABCD3()2() AB DE1() DEBC学生结对子,师生结对子说出比例式。
在本次活动中,教师应重点关注:1.学生能否顺利回答对方所提出的比例式。
2.学生是否与同伴交流中达到互帮互学。
3.学生能否体会由平行得出多个比例式。
设计意图:给学生表现机会,让学生体验成功的喜悦,调动学生积极性。
【活动四】 教学例3问题5 已知:如图:BC ∥DE ,AB=15,AC=9,BD=4,求:AE学生独立思考后,分组交流得出多种解题途径,老师引导学生找出最佳方案。
23.1.4平行线分线段成比例定理
![23.1.4平行线分线段成比例定理](https://img.taocdn.com/s3/m/a39e373c31126edb6f1a10a1.png)
F
A E
D B C
l1 l2 l3
AB DE m \ 注意观察: BC EF n 此图与前面图形有何不同? (平行线分线段成比例定理) A D DE n m EF n EF \ , DE m DE m E B DF m n 即 . DE m [例二] DE m F C \ . DF m n
已知:如图,l 1//l2 //l3,AB a,BC b,EF c. 求:DE.
A D
?
B E
l1 l2
C
F
l3
[练习一]
课 堂 小 结
平行线分线段成比例定理与平行线等分线段 定理有何联系?
A B D E
AB 当 1 BC
A A B C C B D
D E E F F
C
F
当
AB 1 BC
E
C
定理 平行于三角形一边的直线截其它两边, 所得的对应线段成比例。
F
A
F/
/ E E
D B
C/
怎样用文字把以上发现表述出来?
平行线分线段成比例定理:
三条平行线截两条直线,所得的 对应 线段成比例.
A
B C
D
形象记忆
AB BC l2 E BC AB l3 AB F AC BC AC
l1
综上所述:若l 则: 1//l 2 //l 3,
上 上 下 下 下 下 上 上 上 上 全 全 下 下 全 全 AB BC 左 左 DE EF 右 右
DE EF EF DE DE DF EF DF
. . . .
. . . .
平行线等分线段定理: 两条直线被三条平行线所截,如果在其中一条上截得的 线段相等,那么在另一条上截得线段也相等。
22.1.4平行线分线段成比例定理
![22.1.4平行线分线段成比例定理](https://img.taocdn.com/s3/m/aece42b37f1922791788e845.png)
D
L1
B
E L2
C
F L3
1.平行线等分线段定理?
A B C
A1
l1
B1
l2
C1
l3
如果一组平行线在一条直线上截得的线段相等,
那么在其他直线上截得的线段也相等.
2.你会用几何语言表述吗?
思考:
l1 || l2 A1B1
|| l3,AB B1C1 (或
BC AB
BC
A1B1 B1C1
A
中
AD AE 4 2 AB AC 6 3
间 ∵DF//AC 比 AD CF 2 CF ,
D
E
AB CB AE CF
AC CB
38 即:CF 16
3
B
F
C
AECB ACCF BF 8 - 16 8
33
例 2 如图,△ABC中,DE//BC,EF//CD.
Ak
Bk
lk
B1Bk (k 1)b k 1 ,
Bk Bn (n k)b n k
An-1 An
Bn-1 Bn
ln-1 A1Ak B1Bk
ln
Ak An Bk Bn
如平图行,线有分一线组段平行成直比线例:定l1 |理| l2:|| l3 … lk || … || ln-1 || ln ,另外, 直线A1两An条与直直线线B被1B一n被组这平一行组平线行所直截线,分所别得截于的点对A应1,线A段2, A成3 …比例Ak。… An-1,An和点B1,B2,B3 … Bk … Bn-1,Bn.
平行于三角形一边的直线截其他两边(或两边延
长线),所得的对应线段成比例。
高中数学选修4-1-1.2《平行线分线段成比例定理》 (1)
![高中数学选修4-1-1.2《平行线分线段成比例定理》 (1)](https://img.taocdn.com/s3/m/134d6653561252d380eb6edb.png)
DF
E
O
B
G
C
BG FE GC DF BG DF GC FE
BG2 GC2 BG GC.
作业1.2
例:3 如图,△ABC中,DE//BC,DF//AC,AE=4,EC=2,
BC=8.求BF和CF的长.
分析:运用平行线分线段成比例定理的推论分
DC AE
练习、填空题
1、已知AB∥CD∥EF, AF交BE于O,且AO=OD=DF,
若BE=60厘米,那么BO= 20 厘米.
A
E C
O
B D
F
2、已知AD∥EF∥BC,
且AE=BE, 那么DF= CF .
A
D
EF
CB
3、已知AD∥EF∥BC,E是AB的中点,
则DG= BG , H是 AC 的中点,
F是 CD 的中点. A
D
E G HF
B
C
三、定理的运用
(一、基础题)
1、已知: L1∥L2∥L3 则:
A
AB ( DE) BC ( EF)
B
BC ( EF) AC ( DF) F AB (BC) ( AC)
DE (EF ) ( DF)
2、如图L1∥L2∥L3 ,
A
(1)已知BC=3,DEEF 3,则AB=(9) B
AB AE
D AF AE
AD AC
F
D
E
B
C
例题:1:已知:如图,梯形ABCD中,
AD∥BC,∠ABC=90。M是CD的中点
C
求证:AM=BM
M D
分析:过M点作ME∥AD交AB
平行线分线段成比例定理(通用12篇)
![平行线分线段成比例定理(通用12篇)](https://img.taocdn.com/s3/m/3f2cc41f2e60ddccda38376baf1ffc4ffe47e2eb.png)
平行线分线段成比例定理(通用12篇)平行线分线段成比例定理篇1教学建议学问结构重难点分析本节的重点是平行线分线段成比例定理.平行线分线段成比例定理是讨论相像形的最重要和最基本的理论,它一方面可以直接判定线段成比例,另一方面,当不能直接证明要证的比例成立时,常用这个定理把两条线段的比“转移”成另两条线段的比.本节的难点也是平行线分线段成比例定理.平行线分线段成比例定理变式较多,同学在找对应线段时常常消失错误;另外在讨论平行线分线段成比例时,常用到代数中列方程度方法,利用已知比例式或等式列出关于未知数的方程,求出未知数,这种运用代数方法讨论几何问题,同学接触不多,也常常消失错误.教法建议1.平行线分线段成比例定理的引入可考虑从旧学问引入,先复习平行线等分线段定理,再转变其中的条件引出平行线分线段成比例定理2.也可考虑探究式引入,对给定几组图形由同学测量得出各直线与线段的关系,从而得到平行线分线段成比例定理,并加以证明,较附和同学的认知规律(第一课时)一、教学目标1.使同学在理解的基础上把握平行线分线段成比例定理及其推论,并会敏捷应用.2.使同学把握三角形一边平行线的判定定理.3.已知线的成已知比的作图问题.4.通过应用,培育识图力量和推理论证力量.5.通过定理的教学,进一步培育同学类比的数学思想.二、教学设计观看、猜想、归纳、讲解三、重点、难点l.教学重点:是平行线分线段成比例定理和推论及其应用.2.教学难点:是平行线分线段成比例定理的正确性的说明及推论应用.四、课时支配1课时五、教具学具预备投影仪、胶片、常用画图工具.六、教学步骤复习提问找同学叙述平行线等分线段定理.讲解新课在四边形一章里,我们学过平行线等分线段定理,今日,在此基础上,我们来讨论平行线平分线段成比例定理.首先复习一下平行线等分线段定理,如图: ,且 ,∴由于问题:假如 ,那么是否还与相等呢?老师可带领同学阅读教材p211的说明,然后强调:(该定理是用举例的方法引入的,没有给出证明,严格的证明要用到我们还未学到的学问,通过举例证明,让同学们承认这个定理就可以了,重要的是要求同学们正确地使用它)因此:对于是任何正实数,当时,都可得到:由比例性质,还可得到:为了便于记忆,上述6个比例可使用一些简洁的形象化的语言“ ”.另外,依据比例性质,还可得到 ,即同一比中的两条线段不在同始终线上,也就是“ ”,这里不要让同学死记硬背,要让同学会看图,达到依据图作出正确的比例即可,可多找几个同学口答练习.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.平行线等分线段定理可看作是这个定理的特例.依据此定理,我们可以写出六个比例,为了便于应用,在以后的论证和计算中,可依据状况选用其中任何一个,参见下图.,∴ .其中后两种状况,为下一节学习推论作了预备.例1 已知:如图所示, .求:bc.解:让同学来完成.注:在列比例式求某线段长时,尽可能将要求的线段写成比例的第一项,以削减错误,如例1可列比例式为:例2 已知:如图所示,求证: .有了5.1节例4的教学,同学作此例题不会有困难,建议让同学来完成.小结1.平行线分线段成比例定理正确性的的说明.2.娴熟把握由定理得出的六个比例式.(对比图形,并注意变化)七、布置作业教材p221中3(练习同学克服图形中各线段的干扰).八、板书设计标题复习:平行线等分线段定理问题:……平行线等分线段定理:……4个变式图形(投影仪)板书:形象语言……例1.……例2.……平行线分线段成比例定理篇2教学建议学问结构重难点分析本节的重点是.是讨论相像形的最重要和最基本的理论,它一方面可以直接判定线段成比例,另一方面,当不能直接证明要证的比例成立时,常用这个定理把两条线段的比“转移”成另两条线段的比.本节的难点也是.变式较多,同学在找对应线段时经常消失错误;另外在讨论平行线分线段成比例时,常用到代数中列方程度方法,利用已知比例式或等式列出关于未知数的方程,求出未知数,这种运用代数方法讨论几何问题,同学接触不多,也经常消失错误.教法建议1.的引入可考虑从旧学问引入,先复习平行线等分线段定理,再转变其中的条件引出2.也可考虑探究式引入,对给定几组图形由同学测量得出各直线与线段的关系,从而得到,并加以证明,较附和同学的认知规律(第一课时)一、教学目标1.使同学在理解的基础上把握及其推论,并会敏捷应用.2.使同学把握三角形一边平行线的判定定理.3.已知线的成已知比的作图问题.4.通过应用,培育识图力量和推理论证力量.5.通过定理的教学,进一步培育同学类比的数学思想.二、教学设计观看、猜想、归纳、讲解三、重点、难点l.教学重点:是和推论及其应用.2.教学难点:是的正确性的说明及推论应用.四、课时支配1课时五、教具学具预备投影仪、胶片、常用画图工具.六、教学步骤【复习提问】找同学叙述平行线等分线段定理.【讲解新课】在四边形一章里,我们学过平行线等分线段定理,今日,在此基础上,我们来讨论平行线平分线段成比例定理.首先复习一下平行线等分线段定理,如图:,且,∴由于问题:假如,那么是否还与相等呢?老师可带领同学阅读教材P211的说明,然后强调:(该定理是用举例的方法引入的,没有给出证明,严格的证明要用到我们还未学到的学问,通过举例证明,让同学们承认这个定理就可以了,重要的是要求同学们正确地使用它)因此:对于是任何正实数,当时,都可得到:由比例性质,还可得到:为了便于记忆,上述6个比例可使用一些简洁的形象化的语言“ ”.另外,依据比例性质,还可得到,即同一比中的两条线段不在同始终线上,也就是“ ”,这里不要让同学死记硬背,要让同学会看图,达到依据图作出正确的比例即可,可多找几个同学口答练习.:三条平行线截两条直线,所得的对应线段成比例.平行线等分线段定理可看作是这个定理的特例.依据此定理,我们可以写出六个比例,为了便于应用,在以后的论证和计算中,可依据状况选用其中任何一个,参见下图.,∴ .其中后两种状况,为下一节学习推论作了预备.例1 已知:如图所示, .求:BC.解:让同学来完成.注:在列比例式求某线段长时,尽可能将要求的线段写成比例的第一项,以削减错误,如例1可列比例式为:例2 已知:如图所示,求证: .有了5.1节例4的教学,同学作此例题不会有困难,建议让同学来完成.【小结】1.正确性的的说明.2.娴熟把握由定理得出的六个比例式.(对比图形,并留意变化)七、布置作业教材P221中3(训练同学克服图形中各线段的干扰).八、板书设计标题复习:平行线等分线段定理问题:……平行线等分线段定理:……4个变式图形(投影仪)板书:形象语言……例1.……例2.……平行线分线段成比例定理篇3(其次课时)一、教学目标1.使同学在理解的基础上把握平行线分线段成比例定理及其推论,并会敏捷应用.2.使同学把握三角形一边平行线的判定定理.3.已知线的成已知比的作图问题.4.通过应用,培育识图力量和推理论证力量.5.通过定理的教学,进一步培育同学类比的数学思想.二、教学设计观看、猜想、归纳、讲解三、重点、难点l.教学重点:是平行线分线段成比例定理和推论及其应用.2.教学难点:是平行线分线段成比例定理的正确性的说明及推论应用.四、课时支配1课时五、教具学具预备投影仪、胶片、常用画图工具.六、教学步骤【复习提问】叙述平行线分线段成比例定理(要求:结合图形,做出六个比例式).【讲解新课】在黑板上画出图,观看其特点:与的交点A在直线上,依据平行线分线段成比例定理有:……(六个比例式)然后把图中有关线擦掉,剩下如图所示,这样即可得到:平行于的边BC的直线DE截AB、AC,所得对应线段成比例.在黑板上画出左图,观看其特点:与的交点A在直线上,同样可得出:(六个比例式),然后擦掉图中有关线,得到右图,这样即可证到:平行于的边BC的直线DE截边BA、CA的延长线,所以对应线段成比例.综上所述,可以得到:推论:(三角形一边平行线的性质定理)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.如图,(六个比例式).此推论是判定三角形相像的基础.注:关于推论中“或两边的延长线”,是指三角形两边在第三边同一侧的延长线,假如已知,DE是截线,这个推论包含了下图的各种状况.这个推论不包含下图的状况.后者,教学中如同学不提起,可不必向同学交待.(考虑改用投影仪或小黑板)例3 已知:如图,,求:AE.教材上采纳了先求CE再求AE的方法,建议在列比例式时,把CE写成比例第一项,即: .让同学思索,是否可直接未出AE(找同学板演).【小结】1.知道推论的探究方法.2.重点是推论的正确运用七、布置作业(1)教材P215中2.(2)选作教材P222中B组1.八、板书设计平行线分线段成比例定理篇4教学建议学问结构重难点分析本节的重点是.是讨论相像形的最重要和最基本的理论,它一方面可以直接判定线段成比例,另一方面,当不能直接证明要证的比例成立时,常用这个定理把两条线段的比“转移”成另两条线段的比.本节的难点也是.变式较多,同学在找对应线段时经常消失错误;另外在讨论平行线分线段成比例时,常用到代数中列方程度方法,利用已知比例式或等式列出关于未知数的方程,求出未知数,这种运用代数方法讨论几何问题,同学接触不多,也经常消失错误.教法建议1.的引入可考虑从旧学问引入,先复习平行线等分线段定理,再转变其中的条件引出2.也可考虑探究式引入,对给定几组图形由同学测量得出各直线与线段的关系,从而得到,并加以证明,较附和同学的认知规律(第一课时)一、教学目标1.使同学在理解的基础上把握及其推论,并会敏捷应用.2.使同学把握三角形一边平行线的判定定理.3.已知线的成已知比的作图问题.4.通过应用,培育识图力量和推理论证力量.5.通过定理的教学,进一步培育同学类比的数学思想.二、教学设计观看、猜想、归纳、讲解三、重点、难点l.教学重点:是和推论及其应用.2.教学难点:是的正确性的说明及推论应用.四、课时支配1课时五、教具学具预备投影仪、胶片、常用画图工具.六、教学步骤【复习提问】找同学叙述平行线等分线段定理.【讲解新课】在四边形一章里,我们学过平行线等分线段定理,今日,在此基础上,我们来讨论平行线平分线段成比例定理.首先复习一下平行线等分线段定理,如图:,且,∴由于问题:假如,那么是否还与相等呢?老师可带领同学阅读教材P211的说明,然后强调:(该定理是用举例的方法引入的,没有给出证明,严格的证明要用到我们还未学到的学问,通过举例证明,让同学们承认这个定理就可以了,重要的是要求同学们正确地使用它)因此:对于是任何正实数,当时,都可得到:由比例性质,还可得到:为了便于记忆,上述6个比例可使用一些简洁的形象化的语言“ ”.另外,依据比例性质,还可得到,即同一比中的两条线段不在同始终线上,也就是“ ”,这里不要让同学死记硬背,要让同学会看图,达到依据图作出正确的比例即可,可多找几个同学口答练习.:三条平行线截两条直线,所得的对应线段成比例.平行线等分线段定理可看作是这个定理的特例.依据此定理,我们可以写出六个比例,为了便于应用,在以后的论证和计算中,可依据状况选用其中任何一个,参见下图.,∴ .其中后两种状况,为下一节学习推论作了预备.例1 已知:如图所示, .求:BC.解:让同学来完成.注:在列比例式求某线段长时,尽可能将要求的线段写成比例的第一项,以削减错误,如例1可列比例式为:例2 已知:如图所示,求证: .有了5.1节例4的教学,同学作此例题不会有困难,建议让同学来完成.【小结】1.正确性的的说明.2.娴熟把握由定理得出的六个比例式.(对比图形,并留意变化)七、布置作业教材P221中3(训练同学克服图形中各线段的干扰).八、板书设计标题复习:平行线等分线段定理问题:……平行线等分线段定理:……4个变式图形(投影仪)板书:形象语言……例1.……例2.……平行线分线段成比例定理篇5教学建议学问结构重难点分析本节的重点是.是讨论相像形的最重要和最基本的理论,它一方面可以直接判定线段成比例,另一方面,当不能直接证明要证的比例成立时,常用这个定理把两条线段的比“转移”成另两条线段的比.本节的难点也是.变式较多,同学在找对应线段时经常消失错误;另外在讨论平行线分线段成比例时,常用到代数中列方程度方法,利用已知比例式或等式列出关于未知数的方程,求出未知数,这种运用代数方法讨论几何问题,同学接触不多,也经常消失错误.教法建议1.的引入可考虑从旧学问引入,先复习平行线等分线段定理,再转变其中的条件引出2.也可考虑探究式引入,对给定几组图形由同学测量得出各直线与线段的关系,从而得到,并加以证明,较附和同学的认知规律(第一课时)一、教学目标1.使同学在理解的基础上把握及其推论,并会敏捷应用.2.使同学把握三角形一边平行线的判定定理.3.已知线的成已知比的作图问题.4.通过应用,培育识图力量和推理论证力量.5.通过定理的教学,进一步培育同学类比的数学思想.二、教学设计观看、猜想、归纳、讲解三、重点、难点l.教学重点:是和推论及其应用.2.教学难点:是的正确性的说明及推论应用.四、课时支配1课时五、教具学具预备投影仪、胶片、常用画图工具.六、教学步骤【复习提问】找同学叙述平行线等分线段定理.【讲解新课】在四边形一章里,我们学过平行线等分线段定理,今日,在此基础上,我们来讨论平行线平分线段成比例定理.首先复习一下平行线等分线段定理,如图:,且,∴由于问题:假如,那么是否还与相等呢?老师可带领同学阅读教材P211的说明,然后强调:(该定理是用举例的方法引入的,没有给出证明,严格的证明要用到我们还未学到的学问,通过举例证明,让同学们承认这个定理就可以了,重要的是要求同学们正确地使用它)因此:对于是任何正实数,当时,都可得到:由比例性质,还可得到:为了便于记忆,上述6个比例可使用一些简洁的形象化的语言“ ”.另外,依据比例性质,还可得到,即同一比中的两条线段不在同始终线上,也就是“ ”,这里不要让同学死记硬背,要让同学会看图,达到依据图作出正确的比例即可,可多找几个同学口答练习.:三条平行线截两条直线,所得的对应线段成比例.平行线等分线段定理可看作是这个定理的特例.依据此定理,我们可以写出六个比例,为了便于应用,在以后的论证和计算中,可依据状况选用其中任何一个,参见下图.,∴ .其中后两种状况,为下一节学习推论作了预备.例1 已知:如图所示, .求:BC.解:让同学来完成.注:在列比例式求某线段长时,尽可能将要求的线段写成比例的第一项,以削减错误,如例1可列比例式为:例2 已知:如图所示,求证: .有了5.1节例4的教学,同学作此例题不会有困难,建议让同学来完成.【小结】1.正确性的的说明.2.娴熟把握由定理得出的六个比例式.(对比图形,并留意变化)七、布置作业教材P221中3(训练同学克服图形中各线段的干扰).八、板书设计标题复习:平行线等分线段定理问题:……平行线等分线段定理:……4个变式图形(投影仪)板书:形象语言……例1.……例2.……平行线分线段成比例定理篇6教学建议学问结构重难点分析本节的重点是.是讨论相像形的最重要和最基本的理论,它一方面可以直接判定线段成比例,另一方面,当不能直接证明要证的比例成立时,常用这个定理把两条线段的比“转移”成另两条线段的比.本节的难点也是.变式较多,同学在找对应线段时经常消失错误;另外在讨论平行线分线段成比例时,常用到代数中列方程度方法,利用已知比例式或等式列出关于未知数的方程,求出未知数,这种运用代数方法讨论几何问题,同学接触不多,也经常消失错误.教法建议1.的引入可考虑从旧学问引入,先复习平行线等分线段定理,再转变其中的条件引出2.也可考虑探究式引入,对给定几组图形由同学测量得出各直线与线段的关系,从而得到,并加以证明,较附和同学的认知规律(第一课时)一、教学目标1.使同学在理解的基础上把握及其推论,并会敏捷应用.2.使同学把握三角形一边平行线的判定定理.3.已知线的成已知比的作图问题.4.通过应用,培育识图力量和推理论证力量.5.通过定理的教学,进一步培育同学类比的数学思想.二、教学设计观看、猜想、归纳、讲解三、重点、难点l.教学重点:是和推论及其应用.2.教学难点:是的正确性的说明及推论应用.四、课时支配1课时五、教具学具预备投影仪、胶片、常用画图工具.六、教学步骤【复习提问】找同学叙述平行线等分线段定理.【讲解新课】在四边形一章里,我们学过平行线等分线段定理,今日,在此基础上,我们来讨论平行线平分线段成比例定理.首先复习一下平行线等分线段定理,如图:,且,∴由于问题:假如,那么是否还与相等呢?老师可带领同学阅读教材P211的说明,然后强调:(该定理是用举例的方法引入的,没有给出证明,严格的证明要用到我们还未学到的学问,通过举例证明,让同学们承认这个定理就可以了,重要的是要求同学们正确地使用它)因此:对于是任何正实数,当时,都可得到:由比例性质,还可得到:为了便于记忆,上述6个比例可使用一些简洁的形象化的语言“ ”.另外,依据比例性质,还可得到,即同一比中的两条线段不在同始终线上,也就是“ ”,这里不要让同学死记硬背,要让同学会看图,达到依据图作出正确的比例即可,可多找几个同学口答练习.:三条平行线截两条直线,所得的对应线段成比例.平行线等分线段定理可看作是这个定理的特例.依据此定理,我们可以写出六个比例,为了便于应用,在以后的论证和计算中,可依据状况选用其中任何一个,参见下图.,∴ .其中后两种状况,为下一节学习推论作了预备.例1 已知:如图所示, .求:BC.解:让同学来完成.注:在列比例式求某线段长时,尽可能将要求的线段写成比例的第一项,以削减错误,如例1可列比例式为:例2 已知:如图所示,求证: .有了5.1节例4的教学,同学作此例题不会有困难,建议让同学来完成.【小结】1.正确性的的说明.2.娴熟把握由定理得出的六个比例式.(对比图形,并留意变化)七、布置作业教材P221中3(训练同学克服图形中各线段的干扰).八、板书设计标题复习:平行线等分线段定理问题:……平行线等分线段定理:……4个变式图形(投影仪)板书:形象语言……例1.……例2.……平行线分线段成比例定理篇7教学建议学问结构重难点分析本节的重点是.是讨论相像形的最重要和最基本的理论,它一方面可以直接判定线段成比例,另一方面,当不能直接证明要证的比例成立时,常用这个定理把两条线段的比“转移”成另两条线段的比.本节的难点也是.变式较多,同学在找对应线段时经常消失错误;另外在讨论平行线分线段成比例时,常用到代数中列方程度方法,利用已知比例式或等式列出关于未知数的方程,求出未知数,这种运用代数方法讨论几何问题,同学接触不多,也经常消失错误.教法建议1.的引入可考虑从旧学问引入,先复习平行线等分线段定理,再转变其中的条件引出2.也可考虑探究式引入,对给定几组图形由同学测量得出各直线与线段的关系,从而得到,并加以证明,较附和同学的认知规律(第一课时)一、教学目标1.使同学在理解的基础上把握及其推论,并会敏捷应用.2.使同学把握三角形一边平行线的判定定理.3.已知线的成已知比的作图问题.4.通过应用,培育识图力量和推理论证力量.5.通过定理的教学,进一步培育同学类比的数学思想.二、教学设计观看、猜想、归纳、讲解三、重点、难点l.教学重点:是和推论及其应用.2.教学难点:是的正确性的说明及推论应用.四、课时支配1课时五、教具学具预备投影仪、胶片、常用画图工具.六、教学步骤【复习提问】找同学叙述平行线等分线段定理.【讲解新课】在四边形一章里,我们学过平行线等分线段定理,今日,在此基础上,我们来讨论平行线平分线段成比例定理.首先复习一下平行线等分线段定理,如图:,且,∴由于问题:假如,那么是否还与相等呢?老师可带领同学阅读教材P211的说明,然后强调:(该定理是用举例的方法引入的,没有给出证明,严格的证明要用到我们还未学到的学问,通过举例证明,让同学们承认这个定理就可以了,重要的是要求同学们正确地使用它)因此:对于是任何正实数,当时,都可得到:由比例性质,还可得到:为了便于记忆,上述6个比例可使用一些简洁的形象化的语言“ ”.另外,依据比例性质,还可得到,即同一比中的两条线段不在同始终线上,也就是“ ”,这里不要让同学死记硬背,要让同学会看图,达到依据图作出正确的比例即可,可多找几个同学口答练习.:三条平行线截两条直线,所得的对应线段成比例.平行线等分线段定理可看作是这个定理的特例.依据此定理,我们可以写出六个比例,为了便于应用,在以后的论证和计算中,可依据状况选用其中任何一个,参见下图.,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
2、填空题:
ED
如图:DE∥BC,
已知:
—AACE—
=
—2 5
求:
—AADB—
=
—2 —5—
A B
C
3.已知:DE//BC, AB=15,AC=9, BD=4 . 求:AE=?
解: ∵ DE∥BC
∴ —AB— = —A—C (推论)
BD CE
即 —15—=——9
B
4
CE
∴ CE = —152
D
∴ AE= AC+CE=9+ 1—2 =11—2
5
5
A
C E
(五、提高题:)
C
1、如图:EF∥AB,BF:FC= 5 :4, AC=3厘米,则CE=(4 c m )
EF
2、已知在△ABC中,D3 E∥BC,EF∥DC, A 那么下列结论不成立的是( B )
A
B
A
AD AF
AB AD
C AF AD
DF DB
B AD AC
AB AE
D AF AE
AD AC
怎样由AB DE得到其它比例式? BC EF
平行线分线段成比例定理
两条直线被三条平行线所截,所得的对应线段成比例.
符号语言:l1∥l2∥l3
AB DE BC EF
上上 下 下
AB DE AC DF
上上 全 全
BC EF AC DF
下下 全 全
可以推广到被n条 平行线所截
讨论:平行线分线段成比例定理得到的比例式中,所截的 四条线段与两直线的位置有没有关系?!
教学目标:
1、复习回顾平行线等分线段定理,了解定理的证明。
2、正确理解“对应线段成比例”,能正确写出需要的 比例式。
3 了解平行线分线段成比例定理是一般情况,平行线 等分线段定理的特殊情况,明确我们的研究是采 用从特殊到一般的数学方法
4 掌握平行线分线段成比例定理的推论。
一、复习导入
如图:l1//l2//l3//l4//l5//,l6
L5 L4 L1 L2
L3
L5
L4
L1
L2
L3
L5
L4
E
D
L1
A
L2
B
C
L3
几何语言:
DE // BC E D
A
AD AB
=AACE
B
C
L5 L4
L5 L4
A
L1
ED
L1
DE
L2
A
L2
B
C L3 B
C
L3
几何语言: ∵ DE∥BC
几何语言: ∵ DE∥BC
∵
AD AB
=
AE AC
∵
AD AB
A
D
L1
且AP=PB=BQ=QR=RC.
P
S
L2
(1)你能推出怎样的结论?
B
E L3
由为平什行么线?等分线段定理可知32 .如果一组平CR行Q 线在一条TGF直LL线L564
DS=SE=ET=TG=GF
上截得的线段相等,
(2)三条距离不相等的平行那线么截在其它直线上截得 两条直线会有什么结果? 的线段也相等.
4、如图2:△ABC中,DE ∥BC,如果
AE :EC=7 :3,则DB :AB=( 3:10 )
A
D L1
B
E L2
F
C L3
图1
A
DE
B
C
图2
例2
A
1、判断题:
如图:DE∥BC, 下列各式是否正确
A: —AA—DB = —AAEC— ( )B: —ABDD—= —AC—EE ( ) D
E
C: —AA—CD = —AA—BE ( ) D: —AA—ED = —AA—CB ( )B
=
AE AC
推论:
A
平行于三角形一边的直线 截其他两边(或两边的延长
D
E
线),所得的对应线段成
比例。
B
C
推论的几何语言:
ED
∵ DE∥BC
A
∴ —AD— = —A—E (推论)
AB AC
B
C
四.例题
例1(一、基础题)
1、已知: L1∥L2∥L3 则:
A
B
AB ( DE) BC ( EF)
BC ( EF) AC ( DF) F
以 AB
BC
2为例,说明
3
DE EF
?2 3
l l
A
D
设线段AB的中点为P1,线 段BC的三等分点为P2、P3. AP1=P1B, BP2= P2P3= P3C
P1
B
P2 P3
C
Q1
E
l1 a1
Q2
l2 a1
Q3
F
a3
分别过点P1,P2, P3作直线
l3
a1,a2,a3平行于l1,与l1 的交
点分别为Q1,Q2,Q3.
L5 L4 L1 L2 L3
L5 L4 L1 L2
L3
L5 L4
A
L1
D
E
L2
B
C
L3
几何语言:
DE // BC
D
AD AB
=AACE
B
A
E
C
L4 L5
A
D
L1
B
E
L2
C
F
L3
L4 L5 L1 L2 L3
L5L4 L1 L2 L3
L5 L4 L1 L2 L3
L5 L4 L1 L2
L3
这时你想到了什么?
DQ1=Q1E, EQ2=Q2Q3=Q3F 平行线等分线段定理
则: AB DE 2. BC EF 3
我 们们已经得到
若
l1 //l
2
//l
3
,
AB BC
2, 3
则 DE 2 即:AB DE
EF 3
BC EF
l A B
C
l
D
l1
E
l2
F
l3
除此之外,还有其它对应线段成比例吗?
F
D
E
B
C
作业:《同步》 P50--51
总结
1.平行线分线段成比例定理:两条直线被一组平行线所 截,所得的对应线段成比例。
2.推论:平行于三角形一边的直线截其他两边(或两边 的延长线),所得的对应线段成比例。
AQ 3 DT
思考并猜想:根据上述结论,QC 2
TF
你还能发现什么新的结论?
二、定理的引入及推导
l
三条距离不相等的平行线
A
截两条直线会有什么结果?
B
猜 想 :
若B AB C3 2,那 么 ,D EF E ? 32 C
若AB3,那 么 ,DE ?3
BC4
EF 4
l
D
l1
E
l2
F
l3
你能否利用所学过的相关知识进行说明?
AB (BC) ( AC)
DE (EF ) ( DF)
2、如图L1∥L2∥L3 ,
A
(1)已知BC=3,DEEF 3,则AB=(9) B
(2)已知AB=a,BC=b,EF= c, ac
C
则DE=( b )
D L1 E L2
C L3
D L1 E L2
L3 F
3、如图1:已知L1∥L2∥L3 , AB=3厘米,BC=2厘米,DF=4.5厘米. 则EF=(1.8厘米),DE=(2.7厘米).
A
D
L1
A (D)
L1
B
E
L2
B
E
L2
C
F1 L3
C
F
2L3D来自AL1B
E
L2
D
A
L1
B (E) L2
C
F
3
L3
C
无任何关系!
F
4
L3
三.探索:既然一组平行线在两条直线上截得对应线 段的比与两条直线的位置无关,那么我们移动两条 直线,观察有什么发现?
L4 L5 L1
L2
L3
L5L4 L1 L2 L3