初三数学专题训练(9)
最新初三上数学培优专题讲义九AB------相似三角形
初三上数学培优专题讲义九AB 相似三角形提高训练一.相似三角形中的几个基本图形:两个三角形相似,一般说来必须具备下列六种图形之一:二、典例分析:考点(一)-------有关三角形的内接矩形或正方形的计算问题例题1、已知:如图,正方形DEFG 内接于△ABC ,AM ⊥BC 于M 交DG 于N ,BC=18,AM=12。
求正方形边长.变式:如图,在△ABC 中,∠ACB=90°,AC=3,BC=4,试比较图中正方形CDEF 和正方形PQRS 的面积的大小考点(二)------ 两个三角形相似的判定 例题2.如图,四边形ABCD 是平行四边形,AE ⊥BC 于E ,AF ⊥CD 于F.(1)ΔABE 与ΔADF 相似吗?说明理由.(2)ΔAEF 与ΔABC 相似吗?说说你的理由.变式:如图,⊿ABC 是等边三角形,点D,E 分别在BC,AC 上,且BD=CE,AD 与BE 相交于点F.(1)试说明⊿ABD≌⊿BCE。
(2)⊿AEF 与⊿ABE 相似吗?说说你的理由。
(3)BD 2=AD·DF 吗?请说明理由。
考点(三)------相似三角形中的面积问题EF AFFC FD +例题3. 如图,在□ABCD 中,E 为CD 中点,AE 与BD 相交于点O ,S △DOE =12cm 2,求S △AOD 、 S △AOB .变式:(2011•丹东,16,3分)已知:如图,DE 是△ABC 的中位线,点P 是DE 的中点,CP 的延长线交AB 于点Q ,求S △DPQ :S △ABC .考点(四)------作平行线构造相似三角形例题4.如图,E 是ABC ∆中线AD 上的一点,CE 交AB 于F ,已知AE :ED=1:2,求AF :BF 的值。
变式:如图,已知△ABC 中,AE:EB=1:4,BD:DC=2:1,AD 与CE 相交于F.求: 的值.考点(5)------利用相似三角形测高例5. 某测量工作人员眼睛A 与标杆顶端F 、电视塔顶端E 在同一直线上,已知此人眼睛距地面1.5米,标杆为3米,且BC=1米,CD=6米,求电视塔的高ED 。
初三数学《反比例函数》复习题
9(上)第五章 反比例函数复习(一)一、 反比例函数的定义例1 下列函数中是反比例函数的是( )A y=x+1,B y=x8, C y= —2x, D y=2x 2 【说明】本题的四个选项呈现了一次函数、反比例函数、正比例函数(也是一次函数)、二次函数的表达形式,应让学生会识别、区分它们。
本题答案:B例2 已知函数12y y y =+,1y 与x 成正比例,2y 与x 成反比例,且当1x =时,1y =-;当3x = 时,5y =.求y 关于x 的函数关系式.【说明】由于正比例函数定义式是y=kx,反比例函数定义式是y=xk,两式都使用了字母k,受此影响,学生解答此题时易犯的错误是:设y 1=kx 、设y 2=xk,而本题中的正比例和成反比例的比例系数未必相同,因此应设y 1=k 1x 、设y 2=xk 2,以示两个比例系数的不同。
尽管本题最后结论y 关于x 的函数关系式是复合函数的形式,但这类型的题目还是比较常见的,有时也会考到这种题型,还是建议在复习中作补充训练。
本题答案:y=2x-x3二、 反比例函数的图像和性质例3(1)图象经过点(2,-3)的反比例函数是( )A y= -x 6B y=x 6C y= x 23D y=-x23 (2) 已知反比例函数y=xk的图象经过点(2,3),那么下列在函数的图象上的点是( )A (4,1)B (21,-1)C (-23,-11) D (-3 ,-21)【说明】本例是已知图像上一点的坐标,用待定系数法确定反比例函数解析式。
例4(1)已知反比例函数21m y x-=的图象在一,三象限,那么m 的 取值范围是______________.(2)已知反比例函数xm21-=y 的图像上两点A (x 1,y 1)、B (x 2,y 2),当x 1<0<x 2是,有y 1<y 2.则m 的取值范围是( ).A.m <0, B .m >0,C.m<21,D.m>21【说明】本例是考察对反比例函数图像和性质的理解,并与解不等式知识结合。
江苏初三初中数学专题试卷带答案解析
江苏初三初中数学专题试卷班级:___________ 姓名:___________ 分数:___________一、解答题1.如图,在平面直角坐标系中,已知点A(8,1)、B(0,-3),反比例函数y=(x>0)的图像经过点A,过点(t,0)且平行于y轴的直线(0<t<8),与反比例函数的图像交于点M,与直线AB交于点N.(1)当t=2时,求△BMN面积;(2)若MA⊥AB,求t的值。
2.甲、乙两人沿同一路线登山,图中线段OC、折线OAB分别是甲、乙两人登山的路程y(米)与登山时间x (分)之间的函数图象.请根据图象所提供的信息,解答如下问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?3.如图,已知点A、C在反比例函数的图象上,点B、D在反比例函数(0<<4)的图象上,AB∥CD∥x 轴,AB、CD在x轴的两侧,A、C的纵坐标分别为()、().(1)若,求证:四边形ABCD为平行四边形;(2)若AB=,CD=,,求的值.4.某天早晨,张强从家跑步去体育锻炼,同时妈妈从体育场晨练结束回家,途中两人相遇,张强跑到体育场后发现要下雨,立即按原路返回,遇到妈妈后两人一起回到家(张强和妈妈始终在同一条笔直的公路上行走).如图是两人离家的距离y(米)与张强出发的时间x(分)之间的函数图象,根据图象信息解答下列问题:(1)求张强返回时的速度;(2)妈妈比按原速返回提前多少分钟到家?(3)请直接写出张强与妈妈何时相距1000米?5.如图,已知点A在反比例函数上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E ,若△BCE 的面积为8。
(1)求证:△EOB ∽△ABC ;(2)求反比例函数的解析式。
6.如图,在直角坐标系xOy 中,一直线y=2x+b 经过点A (-1,0)与y 轴正半轴交于B 点,在x 轴正半轴上有一点D ,且OB=OD ,过D 点作DC ⊥x 轴交直线y=2x+b 于C 点,反比例函数y=(x >O )经过点C . (1)求b ,k 的值;(2)求△BDC 的面积;(3)在反比例函数y=(x >0)的图象上找一点P (异于点C ),使△BDP 与△BDC 的面积相等,求出P 点坐标.7.同时点燃甲乙两根蜡烛,蜡烛燃烧剩下的长度y (cm )与燃烧时间x (min )的关系如图所示.(1)求乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式;(2)求点P 的坐标,并说明其实际意义;(3)求点燃多长时间,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍.8.如图,在平面直角坐标系xOy 中,一次函数y=ax+b 的图象与x 轴相交于点A (-2,0),与y 轴交于点C ,与反比例函数在第一象限内的图象交于点B (m ,n ),连结OB .若S △AOB =6,S △BOC =2.(1)求一次函数的表达式;(2)求反比例函数的表达式.9.某工厂甲、乙两个车间同时开始生产某种产品,产品总任务量为m 件,开始甲、乙两个车间工作效率相同.乙车间在生产一段时间后,停止生产,更换新设备,之后工作效率提高.甲车间始终按原工作效率生产.甲、乙两车间生产的产品总件数y 与甲的生产时间x (时)的函数图象如图所示.(1)甲车间每小时生产产品 件,a= . (2)求乙车间更换新设备之后y 与x 之间的函数关系式,并求m 的值.(3)若乙车间在开始更换新设备时,增加两名工作人员,这样可便更换设备时间减少0.5小时,并且更换后工作效率提高到原来的2倍,那么两个车间完成原任务量需几小时?10.如图,四边形ABCD为正方形,点A的坐标为(0,2),点B的坐标为(0,-3),反比例函数的图象经过点C,一次函数y=ax+b的图象经过点A、C(1)求反比例函数和一次函数的解析式(2)若点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,请直接写出P点的坐标. 11.有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是米,甲机器人前2分钟的速度为米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段FG∥x轴,则此段时间,甲机器人的速度为米/分;(4)求A、C两点之间的距离;(5)直接写出两机器人出发多长时间相距28米.12.一列快车由甲地开往乙地,一列慢车由乙地开往甲地, 两车同时出发,匀速运动.快车离乙地的路程y(km)与行驶1(km)与行驶的时间x(h)之间的函数关系,如的时间x(h)之间的函数关系,如图中线段AB所示;慢车离乙地的路程y2图中线段OC所示。
二轮基础专题9 图形的变换_李亭亭
专题九图形的变换姓名_____________学号______________知识点一中心对称、轴对称1.下列图形中,既是轴对称又是中心对称图形的是()2.下列图形中是中心对称但不是轴对称的图形是()A.正方形B.菱形C.平行四边形D.矩形3.如图,若△A′B′C′与△ABC关于直线AB对称,则点C的对称点C′的坐标是()A.(0,1) B.(0,﹣3)C.(3,0)D.(2,1)4.如图,△ABC与△ADC关于AC所在的直线对称,∠BCA=35°,∠D=80°,则∠BAD的度数为()A.170°B.150°C.130°D.110°第3题图第4题图第6题图第7题图第8题图知识点二平移5.在平面直角坐标系中,点A'(2,﹣3)可以由点A(﹣2,3)通过两次平移得到,正确的是()A.先向左平移4个单位长度,再向上平移6个单位长度B.先向右平移4个单位长度,再向上平移6个单位长度C.先向左平移4个单位长度,再向下平移6个单位长度D.先向右平移4个单位长度,再向下平移6个单位长度6.如图,在平面直角坐标系中,△ABC位于第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是()A.(﹣2,3)B.(3,﹣1)C.(﹣3,1)D.(﹣5,2)7.如图,将△ABC向右平移5个单位长度得到△DEF,且点B,E,C,F在同一条直线上,若EC=4,则BC的长度是()A.8 B.9 C.10 D.118.如图,将△ABC沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.42 B.96 C.84 D.489.如图,点A 、B 、C 、D 、O 都在方格纸上,若△COD 是由△AOB 绕点O 按逆时针方向旋转而得,则旋转的角度为( )A .30°B .45°C .90°D .135°第9题图 第10题图10.如图,将△ABC 绕点A 旋转后得到△ADE ,则旋转方式是( )A.顺时针旋转90°B.逆时针旋转90°C.顺时针旋转45°D.逆时针旋转45°知识点四 图形的缩放11.在直角坐标系中,已知点A (6,﹣3),以原点O 为位似中心,相似比为31,把线段OA 缩小为OA ′,则点A ′的坐标为( )A .(2,﹣1),(﹣2,﹣1)B .(﹣2,1),(2,1)C .(2,1),(﹣2,﹣1)D .(2,﹣1),(﹣2,1)12.如图,△ABC 中AB 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0),以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A ’B ’C ’,且△A ’B ’C ’与△ABC 的位似比为2:1.设点B 的对应点B ’的横坐标是a , 则点B 的横坐标是( )A .B .C .D .知识点五 黄金分割点,三角函数的计算13.点P 是长度为1的线段上的黄金分割点,则较短线段的长度为( )A .B .C .D .14.如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则tan ∠AOD=_________.第14题图 第15题图15.如图,在平面直角坐标系中,直线OA 过点(4,2),则tan α的值是( )A .B .C .D .216.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1;②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2;③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.。
中考数学初三数学复习宝典
数学小题训练11.下列各数中比﹣1小的数是( ) A .2- B .1-C .13-D .12.由四舍五入得到的近似数0.630,下列说法正确的是( )A .精确到百分位,有2个有效数字B .精确到千分位,有2个有效数字C .精确到百分位,有3个有效数字D .精确到千分位,有3个有效数字 3.下列说法中正确的是( ) A .9的平方根是3B .4平方根是2±C .16的算术平方根是4D .8- 的立方根是2± 4.下列图形中,∠1与∠2是同位角的是( )A B C D5.长为 10 , 7 , 5 , 3 的四根木条,选其中三根组成三角形,有几种选法 ( ) A .1种 B .2种 C .3种 D .6种 6.下列说法正确的是( ) A .一个游戏中奖的概率是1100,则做100次这样的游戏一定会中奖 B .若甲组数据的方差20.2S 甲= ,乙组数据的方差20.5S 乙=,则乙组数据比甲组数据稳定C .顺次连结平行四边形各边的中点所得的四边形一定是菱形D .三角形的重心是三角形三条中线的交点 7.实数,a b 在数轴上的位置如图所示,化简()()2222++-a b 结果是( )A .a b +B .4a b --C .4a b -+-D .4a b -+8.如图,在ABC ∆中,45A ∠︒=,30B ∠︒=,CD AB ⊥,垂足为D ,1CD =,则AB 的长为( )A .3B .23C .31+D .231+9.已知关于x 的一元二次方程()2210x bx a +++=有两个相等的实数根,下列判断正确的是( )A .1一定不是关于x 的方程20x bx a ++=的根B .0一定不是关于x 的方程20x bx a ++=的根C .1和1-都是关于x 的方程20x bx a ++=的根D .1和1-不都是关于x 的方程20x bx a ++=的根10.以半径为1的圆的内接正三角形、正方形、正六边形的边心距(圆心到边的距离)为三边作三角形,则该三角形的面积是( ) A .38B .34C .24D .2811.函数ky x=与0y kx k k =-+≠()在同一平面直角坐标系中的大致图象是( )A B C D12.如图,在ABC ∆中,点,D E F ,分别在边AB AC BC ,,上,//DE BC ,//DF AC ,则下列结论一定正确的是( )A .DE CEBF AE =B .AE CECF BF =C .AD AB CF AC=D .DF AD AC AB=13.单项式25mn 的次数为 .14.已知()2,32P x x +-到x 轴的距离是到y 轴的距离的2倍,则x 的值为 .15.若关于x 的多项式291x kx -+是一个完全平方式,则k 的值是 .16.在ABC ∆中,13AB AC ==,ABC ∆的面积为78,则tanB 的值为 . 17.如图,一棵大树在离地3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是 米.18.如图,在边长为6cm 的正方形ABCD 中,点E F G H ,,,分别从点A B C D ,,,同时出发,均以1/cm s 的速度向点B C D A ,,,匀速运动,当点E 到达点B 时,四个点同时停止运动,在运动过程中,当运动时间为 s 时,四边形EFGH 的面积最小,其最小值是 2cm .(第17题图) (第18题图)数学小题训练21.下列式子中,不是最简二次根式的是( ) A .2x B .1x + C .21x +D .2xy2.下列单项式中,与3a 2b 为同类项的是( ) A .2a b -B .2abC .3abD .33.下列说法正确的是( )A .“367人中有2人同月同日生”为必然事件B .可能性是1%的事件在一次试验中一定不会发生C .数据3,5,4,1,2-的中位数是4D .检别某批次灯泡的使用寿命,适宜用普查4.下列几组数中,不能作为直角三角形三边长度的是( ) A .3,4,5 B .5,7,8C .8,15,17D .1,2,35.如图在一块长为12,宽为6的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是2)则空白部分表示的草地面积是( ) A .70 B .60C .48D .186.若一个正n 边形的每个内角为144︒,则n 等于( ) A .10B .8C .7D .57.如图是一个立体图形的三视图,则原立体图形是( )A B C D8.已知,x y 是二元一次方程组31238x y x y +=⎧⎨+=⎩的解,那么x y +的值是( )A .0B .5C .1-D .19.如图,在Rt ABC ∆中,90ABC ∠︒=,点D 是BC 边的中点,分别以B C ,为圆心,大于线段BC 长度一半的长为半径画圆弧.两弧在直线BC 上方的交点为P ,直线PD 交AC 于点E ,连接BE ,则下列结论:①ED BC ⊥;②A EBA ∠∠=;③EB 平分AED ∠.一定正确的是( )A .①②③B .①②C .①③D .②③10.下边给出的是某年4月份的日历表,任意圈出一竖列上相邻的三个数,请你运用方程思想来研究,这三个数的和不可能是 ( ) A .69 B .54 C .40D .2711.如图,在平面直角坐标系中,P 与x 轴相切,与y 轴相交于()0,2A ,()0,8B ,则圆心P 的坐标是( )A .()5,3B .()5,4C .()3,5D .()4,5(第9题图) (第10题图) (第11题图) 12.如图,////AB CD EF ,4AC =,6CE =,3BD =,则DF 的值是( ) A .4.5 B .5C .2D .1.513.计算:45396541︒'+︒'= . 14.直线1y x =-+不经过第 象限.15.如图将一条两边都互相平行的纸带进行折叠,设∠1为45°,则∠2= °. 16.若分式65m m -+-的值是负整数,则整数m 的值是 . 17.若函数()2142y a x x a -=-+的图象与x 轴有且只有一个交点,则a 的值为 . 18.若10x y +=,1xy =,则33x y xy +的值是 .数学小题训练31.有理数4-的绝对值等于( ) A .4B .4-C .0D .4±2.一组数据10,9,12,10,9的平均数和中位数分别是( ) A .10,12B .9,11C .9,9D .10,103.下列说法正确的是( )A .“品尝一勺汤,就知道一锅汤的味道“其蕴藏的数学知识知识是“通过样本可以估计总体”B .今年春节前4天(农历初一至初四)一位滴滴可机平均每天的纯收入为800元,则由此推算他2月份的月纯收人为56000元C .为掌握我市校外培训机构是否具备应有的资质可采用抽样调查的方式D .为了解我市市民对创建全国文明城市的知晓情况,适宜采用普查方式4.如图,四边形ABCD 的对角线,AC BD 相交于点O ,且//AB CD ,添加下列条件后仍不能判断四边形ABCD 是平行四边形的是( ) A .AB CD = B .//AD BC C .OA OC =D .AD BC =5.在下列方程中315x -=,1xy =,16x y -=,()175x y +=,20x y -=,二元一次方程的个数是( ) A .1个B .2个C .3个D .4个6.若23-是方程240x x c +=-的一个根,则c 的值是( )A .1B .33-C .13+D .23+7.如图,用直尺和圆规作一个角的平分线,是运用了“全等三角形的对应角相等”这一性质,由作图所得条件,判定三角形全等运用的方法是( ) A .SSSB .ASAC .AASD .SAS8.如图,将正方形ABCD 放于平面直角坐标系中,已知点()4,2A -,()2,2B -,以原点O 为位似中心把正方形ABCD 缩小得到正方形A B C D '''',使OA ′:OA =1:2,则点D 的对应点D ′的坐标是( )A .()8,8-B .()8,8-或()8,8-C .()2,2-D .()2,2-或()2,2-9.如图,点A 是反比例函数()30y x x=>的图象上任意一点,//AB x 轴交反比例函数2y x=-的图象于点B ,以AB 为边作平行四边形ABCD ,其中C D ,在x 轴上,则ABCDS为( )A .2B .3C .4D .5(第7题图) (第8题图) (第9题图) 10.如图所示的网格是正方形网格,点,A B C ,都在格点上,则tan BAC ∠的值为( )A .2B .12C .255D .5511.张老板以每颗a 元的单价买进水蜜桃100颗.现以每颗比单价多两成的价格卖出70颗后,再以每颗比单价低b 元的价格将剩下的30颗卖出,则全部水蜜桃共卖( ) A .()7030a a b +-元B .()70120%30a b ⨯+⨯+元C .()()100120%30a a b ⨯+⨯--元D .()()100120%30a a b ⨯+⨯+-元12.如图,二次函数2y ax bx c =++的图象经过点()1,0A -、点()3,0B 、点()14,C y ,若点()22,D x y 是抛物线上任意一点,有下列结论:①二次函数2y ax bx c =++的最小值为4a -;②若214x -≤≤,则205y a ≤≤;③若21y y >,则24x >;④一元二次方程20cx bx a ++=的两个根为1-和13;其中正确结论的个数是( ) A .1个 B .2个C .3个D .4个13.使代数式213x x--有意义的x 的取值范围是 .14.若10x y +=,1xy =,则33x y xy +的值是 .15.等腰三角形的腰长5cm ,底长8cm ,则底边上的高为 cm .16.汽车刹车后行驶的距离s (单位:m )关于行驶的时间t (单位:s )的函数解析式是2156s t t =-,汽车刹车后到停下来前进了 m .17.在ABC ∆中,6AB =,5AC =,点,D E 分别在边,AB AC 上,若ADE ∆与ABC ∆相似,且4:2:1ADE BCED S S ∆=四边形,则AD = .18.在平面直角坐标系xOy 中,对于点(),P x y ,我们把点()1,1P y x '-++叫做点P 的伴随点.已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得点1A ,2A ,3A …,n A ,…若点1A 的坐标为()3,1,则点2019A 的坐标为 .数学小题训练41.已知两个有理数,a b ,如果0ab <且0a b +>,那么( ) A .00a b >>, B .00a b <>,C .,a b 同号D .,a b 异号,且正数的绝对值较大2.下面的多项式中,能因式分解的是( ) A .268a a -+B .224a a -+C .224a b +D .2216a b --3.已知实数x y ,满足6150x y -+-=,则以x y ,的值为两边的等腰三角形的周长为( )A .27或36B .27C .36D .以上答案都不对4.如图,某同学沿直线将三角形的一个角(阴影部分)剪掉后,发现剩下部分的周长比原三角形的周长小,能较好地解释这一现象的数学知识是( ) A .两点确定一条直线 B .线段是直线的一部分 C .经过一点有无数条直线D .两点之间,线段最短5.过点B 画线段AC 所在直线的垂线段,其中正确的是( )A BC D6.过n 边形的其中一个顶点有5条对角线,则n 为( ) A .5B .6C .7D .87.某种气球内充满了一定质量的气体,当温度不变时,气球内气体的气压()P kPa 是气球体积V 的反比例函数,其图象如图所示,当气球内的气压大于160kPa 时,气球将爆炸,为了安全,气球的体积应该( )A .不小于335mB .小于353mC .不大于353mD .小于335m8.如图,一架无人机航拍过程中在C 处测得地面上,A B 两个目标点的俯角分别为30︒和60︒.若,A B 两个目标点之间的距离是120米,则此时无人机与目标点A 之间的距离(即AC 的长)为( )A .120米B .1203米C .60米D .603米9.对于抛物线()2213y ax a x a =+-+-,当1x =时,0y >,则这条抛物线的顶点一定在( )A .第一象限B .第二象限C .第三象限D .第四象限10.如图,从一块直径为2的圆形铁皮上剪出一个圆心角为90︒的扇形CAB ,且点,,C A B 都在O 上,将此扇形围成一个圆锥,则该圆锥底面圆的半径是( )A .12 B .2C .22D .2411.对于一次函数24y x =-+,下列结论错误的是( ) A .函数的图象不经过第三象限B .函数的图象与x 轴的交点坐标是()0,4C .函数的图象向下平移4个单位长度得2y x =-的图象D .函数值随自变量的增大而减小12.如图,在平面直角坐标系中,123A A A ∆,345A A A ∆,567A A A ∆,789A A A ∆,…,都是等腰直角三角形,且点13579,,,,A A A A A 的坐标分别为()13,0A ,()31,0A ,()54,0A ,()70,0A ,()95,0A ,依据图形所反映的规律,则102A 的坐标为( )A .()2,25B .()2,26C .553,22⎛⎫-⎪⎝⎭ D .555,22⎛⎫- ⎪⎝⎭13.写出一个数,使这个数的绝对值等于它的相反数: . 14.函数21y x =+的自变量x 的取值范围是 . 15.《孙子算经》有这样一道题:今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?大意是:用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条长度多一尺,则木条长 尺.16.把直线32y x =+向下平移3个单位后得到的直线解析式是 .17.若方程()()3x m x n --=(,m n 为常数,且m n <)的两实数根分别为a b ,(a b <),则,,,m n a b 的大小关系是 .18.如图,在Rt ABC ∆中,90ACB ∠=︒,CD 为AB 边上的中线,过点A 作AE CD ⊥交BC 于点E .若2AC =,4BC =,则AE 的长为 .数学小题训练51.如图,在数轴上,小手遮挡住的点表示的数可能是( ) A .﹣1.5 B .﹣2.5C .﹣0.5D .0.52.直角三角形的两边分别为1和2,则另一边长为( ) A .5B .3C .5或3D .不确定3.若关于x 的不等式组21x ax a <⎧⎨>+⎩无解,则a 的取值范围是( )A .1a ≤B .1a <C .1a ≥D .1a >4.已知,a b 分别是613-的整数部分和小数部分,则2a b -的值是( ) A .132-B .213-C .13D .913-5根据等式的性质,下列变形正确的是( ) A .若2x a =,则2a x = B .若123x x+=,则321x y += C .若ab bc =,则a c =D .若a bc c=,则a b =6.如图,是作线段AB 的垂直平分线的尺规作图,其中没有用到依据是( ) A .同圆或等圆的半径相等 B .两点之间线段最短C .到线段两端距离相等的点在线段的垂直平分线上D .两点确定一条直线 7.已知O 的半径为5cm ,圆心O 到直线l 的距离为3cm ,则直线l 与O 的位置关系为( ) A .相交B .相切C .相离D .无法确定8.如图,在等腰ABC ∆中,120A ∠︒=,4AB =,则ABC ∆的面积为( ) A .23B .4C .43D .839.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角 形.若正方形,,A B C D ,的面积分别是5、7、3、5,则最大正方形E 的面积是( ) A .108 B .50C .20D .1210.已知12x x ,是一元二次方程2310x x +=-的两实数根,则12111313x x +--的值是( )A .7-B .1-C .1D .711.如图,在ABC ∆中,点,D E 分别在边,AB AC 上,下列条件中不能判断AED ABC ∆∆∽ 的是( ) A .AED ABC ∠=∠B .ADE ACB ∠=∠C .AD EDAC BC=D .AD AEAC AB=12.已知两个函数11y k x b =+与22k y x=的图象如图所示,其中()1,2A -,()2,1B -,则不等式21k k x b x+>的解集为( ) A .1x <-或2x > B .1x <-或02x << C .12x -<< D .10x -<<或02x <<(第9题图) (第11题图) (第12题图) 13.已知3x =,则x 的值是 .14.某人从火车站向南走300米到平价超市,再从平价超市向西走100米,再向北走500米到汽车站,若将平价超市标记为()0,300-,则汽车站的坐标为 . 15.sin60cos45︒︒= .16.约分:22222a aba b ab+=+ . 17.若一次函数()12y m x m =-+的图象经过点()11,A x y 和点()22,B x y ,当12x x <时,12y y <,且与y 轴相交于正半轴,则m 的取值范围是 .18.如图,一段抛物线:()()202y x x x =--≤≤记为1C ,它与x 轴交于两点1,O A ;将1C 绕1A 旋转180︒得到2C ,交x 轴于2A ;将2C 绕2A 旋转180︒得到3C ,交x 轴于3A ;…如此进行下去,直至得到6C ,若点()11,P m 在第6段抛物线6C 上,则m = .数学小题训练61.经中国旅游研究院综合测算,今年“五一”假日期间全国接待国内游客1.47亿人次,1.47亿用科学记数法表示为( ) A .714.710⨯B .71.4710⨯C .81.4710⨯D .90.14710⨯2.整数n 满足135n n -<<,则n 的值为( ) A .7B .8C .9D .103.下列说法正确的是( )A .如果两条直线被第三条直线所截,那么同位角相等B .点到直线的距离是指直线外一点到这条直线的垂线段的长度C .同旁内角相等,两直线平行D .经过一点有且只有一条直线与已知直线平行 4.图中有几个三角形( )A 3个B 4个C 5个D 6个 5.下列计算正确的是( ) A .321-= B .()211?x x x -=- C .()325x x =D .826x x x ÷=6.如图,在ABC ∆中,90C ∠=︒,点,D E 分别在边,AC AB 上.若B ADE ∠=∠,则下列结论正确的是( ) A .A ∠和B ∠互为补角 B .B ∠和ADE ∠互为补角 C .A ∠和ADE ∠互为余角D .AED ∠和DEB ∠互为余角7.在Rt ABC ∆中,90C ∠=︒,如果A α∠=,3AB =,那么AC 等于( )A .3sin αB .3cos αC .3sin αD .3cos α8.已知圆锥的侧面积是28cm π,若圆锥底面半径为()R cm ,母线长为()l cm ,则R 关于l 的函数图象大致是( )A B C D9.如图,矩形ABCD 中,7AB =,4BC =,按以下步骤作图:以点B 为圆心,适当长为半径画弧,交,AB BC 于点,E F ;再分别以点,E F 为圆心,大于12EF 的长为半径画弧,两弧在ABC ∠内部相交于点H ,作射线BH ,交DC 于点G ,则DG 的长为( ) A .2B .3C .4D .510.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?”译文:“有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(水平距离)时,秋千的踏板就和人一样高,这个人的身高为5尺,秋千的绳索始终拉得很直,试问绳索有多长?”.设这个人的身高是5尺,秋千的绳索始终拉的很直,则绳索长为( ) A .12.5尺B .13.5尺C .14.5尺D .15.5尺11.如图,有一张矩形纸片,长10cm ,宽6cm ,在它的四角各剪去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是232cm ,求剪去的小正方形的边长.设剪去的小正方形边长是xcm ,根据题意可列方程为( ) A .1064632x ⨯-⨯=B .()()1026232x x --=C .()()10632x x --=D .2106432x ⨯-=(第9题图) (第10题图) (第11题图)12.一人沿坡比为1:3的斜边AB 滑下,滑下的距离S 米与时间t 秒的关系式2102S t t =+,如果滑到坡底的时间为4秒,则此人水平移动的距离为( ) A .36 米 B .183米C .72 米D .363米13.若代数式4xx -有意义,则实数x 的取值范围是 . 14.如图,点D 是线段AB 的中点,点C 是线段AD 的中点,若1CD =,则AB = . 15.如图,1AD =,点M 表示的实数是 .(第14题图) (第15题图)16.在平面直角坐标系中,已知()0,1A ,点B 在y 轴上,且3AB =,则点B 的坐标为 . 17.已知2x =是关于x 的一元二次方程()222240kx k x k +++=-的一个根,则k 的值为 .18.如图,小芸用灯泡O 照射一个矩形相框ABCD ,在墙上形成影子A B C D ''''.现测得20OA cm =,50OA cm '=,相框ABCD 的面积为280cm ,则影子A B C D ''''的面积为 cm 2.数学小题训练71.不等式0a >表示的意义是( ) A .a 不是负数B .a 是负数C .a 是非负数D .a 是正数2.如图,数轴上的点,A B 分别对应实数,a b ,下列结论正确的是( )A .0a b +<B .a b >C .0a b +>D .•0a b >3.下列说法正确的是( ) A .过一点有一条直线平行于已知直线B .两条直线不相交就平行C .两点之间,直线最短D .在平面内过一点有且只有一条直线垂直于已知直线4.如果把分式23x yx y+中的x 和y 都扩大2倍,那么分式的值( )A .扩大2倍B .缩小2倍C .缩小4倍D .扩大4倍5.在体育中考模拟测试中,某10名女生仰卧起坐测试成绩(1分钟仰卧起坐次数)如下表所示:编号 1 2 3 4 5 6 7 8 9 10 成绩 48495247515352495149那么这10名女生测试成绩的众数与中位数分别是( ) A .52,51B .51,51C .49,49D .49,506.如图所示,8块相同的小长方形地砖拼成一个大长方形,若其中每一个小长方形的长为x ,宽为y ,则依据题意可得二元一次方程组为( )A .153x y x y +=⎧⎨=⎩B .1523x y x y +=⎧⎨=⎩C .1523x y x x y -=⎧⎨=+⎩D .21523x y x x y -=⎧⎨=+⎩7.根据下列已知条件,能唯一画出ABC ∆的是( )A .538AB BC AC ==,=, B .4330AB BC A ==∠=︒,, C .906C AB ∠=︒=,D .60454A B AB ∠=︒∠=︒=,,8.在平面直角坐标系中,点A 的坐标为()1,3,以原点O 为中心,将点A 顺时针旋转60︒得到点'A ,则点'A 的坐标为( )A .()0,3B .()1,3-C .()1,3-D .()2,09.已知O 的半径为10,圆心O 到弦AB 的距离为5,则弦AB 所对的圆周角的度数是( ) A .30︒B .60︒C .30︒或150︒D .60︒或120︒10.如图,某工厂加工一批无底帐篷,设计者给出了帐篷的三视图(图中尺寸单位:m ).根据三视图可以得出每顶帐篷的表面积为( ) A .6πm 2 B .9πm 2C .12πm 2D .18πm 211.王老师从家门口骑车去单位上班,先走平路到达A 地,再上坡到达B 地,最后下坡到达工作单位,所用的时间与路程的关系如图所示.若王老师下班时,还沿着这条路返回家中,回家途中经过平路、上坡、下坡的速度不变,那么王老师回家需要的时间是( ) A .15分钟 B .14分钟C .13分钟D .12分钟12.如图,点()2,P a a -是反比例函数()0ky k x=<与O 的一个交点,图中阴影部分的面积为5π,则反比例函数的解析式( ) A .4y x= B .5y x=C .10y x= D .8y x=(第11题图) (第12题图) 13.若3m -为二次根式,则m 的取值范围是 .14.某商场要招聘电脑收银员,竞聘者需通过计算机、语言和商品知识三项测试,小明的三项成绩(百分制)依次是70分,50分,80分,其中计算机成绩占50%,语言成绩占30%,商品知识成绩占20%,则小明最终的成绩是 .15.如图所示,把正方形ABCD 中的A ∠折叠,折痕为EF ,则12∠+∠的度数为 . 16.如图,在Rt ACB ∆中,90ACB ∠=︒,12BC =,2BD CD =,AD 平分BAC ∠,则点D 到AB 的距离等于 .(第15题图) (第16题图)17.已知点()12,y -,()23,y -,()32,y 在函数8y x=-的图象上,则123,,y y y 的大小关系为 . 18.以下四个命题:①每一条对角线都平分一组对角的平行四边形是菱形. ②当0m >时,1y mx =-+与y xπ=两个函数都是y 随着x 的增大而减小.③甲、乙两射击运动员分别射击10次,他们射击成绩的方差分别为24S =甲,29S =乙,这过程中乙发挥比甲更稳定.④在一个不透明的袋子中装有标号为1,2,3,4的四个完全相同的小球,从袋中随机摸取一个然后放回,再从袋中随机地摸取一个,则两次取到的小球标号的和等于4的概率为18. 其中正确的命题是 (只需填正确命题的序号)数学小题训练81.当0a =时,方程0ax b +=(其中x 是未知数,b 是已知数)( ) A .有且只有一个解 B .无解C .有无限多个解D .无解或有无限多个解2.若关于x 的不等式x a <恰有2个正整数解,则a 的取值范围为( ) A .23a <≤ B .23a ≤<C .03a <<D .02a <≤311xxx x =-- ) A .0x ≥B .1x ≥C .0x >D .1x >4.下列说法正确的是( ) A .过一点有一条直线平行于已知直线 B .两条直线不相交就平行 C .两点之间,直线最短D .在平面内过一点有且只有一条直线垂直于已知直线 5.下面各图中,不能证明勾股定理正确性的是( )A .B .C .D .6.如图,ABC ∆中,90C ∠=︒,6BC =,8AC =,点E 是AB 的中点,2BD CD =,则BDE ∆ 的面积是( ) A .4B .6C .8D .127.将一幅三角板如图所示摆放,若//BC DE ,那么1∠的度数为( ) A .45︒B .60︒C .75︒D .80︒8.如图,在Rt ABC ∆中,90ACB ∠=︒,60A ∠=︒,6AC =,将ABC ∆绕点C 按逆时针方向旋转得到''A B C ∆,此时点A 恰好在AB 边上,则点'B 与点B 之间的距离为( ) A .12 B .6 C .62 D .63(第6题图) (第7题图) (第8题图) 9.已知ABC DEF ∆∆,若面积比为4:9,则它们对应高的比是( )A .4:9B .16:81C .3:5D .2:310.如图,在直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与x 轴平行,点()4,P a a 是反比例函数(0)ky k x=≠的图象上与正方形的一个交点,若图中阴影部分的面积等于16,则k 的值为( ) A .16 B .1C .4D .﹣1611.如图,AC 是O 的直径,10BAC ∠=︒,P 是AB ̂的中点,则PAB ∠的大小是( )A .35︒B .40︒C .60︒D .70︒(第10题图) (第11题图) 12.一次函数y kx k =+的图象可能是( )A B C D13.多项式2123x xy xy ++-的次数是 .14.若24m n +=,则代数式62m n --的值为 . 15.一个凸多边形共有20条对角线,它是 边形.16.《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有干钱,如果甲得到乙所有钱的一半,那么甲共有48文;如果乙得到甲所有钱的23,那么乙共有钱48文,甲、乙二人原来各有多少钱?试求甲原有 文钱.17.如图,以正方形ABCD 的对角线AC 为一边,延长AB 到E ,使AE AC =,以AE 为一边作菱形AEFC ,若菱形的面积为92,则正方形边长为 . 18.如图,在直角坐标平面内,射线OA 与x 轴正半轴的夹角为α,如果5OA =,tan 2α=,那么点A 的坐标是 .(第17题图) (第18题图)数学小题训练91.实数,,a b c 在数轴上的对应点的位置如图所示,如果0a b +=,那么下列结论错误的是( ) A .a b =B .0a c +>C .1ab=- D .0abc >2.下列性质中,菱形具有而平行四边形不具有的性质是( ) A .对边平行且相等 B .对角线互相平分 C .对角线互相垂直D .对角互补3.在2006年德国世界杯足球赛中,32支足球队将分为8个小组进行单循环比赛,小组比赛规则如下:胜一场得3分,平一场得1分,负一场得0分.若小组赛中某队的积分为5分,则该队必是( )A .两胜一负B .一胜两平C .一胜一平一负D .一胜两负4.下列说法不正确的是( ) A .两点之间的连线中,线段最短B .若点B 为线段AC 的中点,则AC BC = C .若AP BP =,则点P 为线段为AB 的中点D .直线与射线不能比较大小5.如图,一个含有30︒角的直角三角形的30︒角的顶点和直角顶点放在一个矩形的对边上,若1117∠=︒,则2∠的度数为( ) A .27︒B .37︒C .53︒D .63︒6.若点P 是正比例函数2y x =-图象上的一点,点O 为原点且3OP =,则点P 的坐标为( )A .()1,2-B .()1,2-C .()1,2或()1,2--D .()1,2- 或 ()1,2-7.下列调查中,最适合采用全面调查(普查)的是( )A .对全国中学生睡眠时间的调查B .对玉兔二号月球车零部件的调查C .对重庆冷饮市场上冰淇淋质量情况的调查D .对重庆新闻频道“天天630”栏目收视率的调查 8.如图,四边形ABCD 内接于O ,点I 是ABC ∆的内心,124AIC ∠=︒,点E 在AD 的延长线上,则CDE ∠的度数为( ) A .56︒B .62︒C .68︒D .78︒9.已知反比例函数8y x=-,下列结论错误的是( ) A .y 随x 的增大而减小 B .图象位于二、四象限内C .图象必过点()2,4-D .当10x -<<时,8y >10.如图是由相同的小正方体木块粘在一起的几何体,它的左视图是( )A B C D11.如图所示,利用尺规作“与已知角相等的角”的过程中,用到的数学原理是( )A .SASB .AASC .SSSD .HL12.如图,一扇窗户打开后,用窗钩AB 可将其固定,这里所运用的几何原理是( )A .三角形的稳定性B .两点之间线段最短C .两点确定一条直线D .垂线段最短(第11题图) (第12题图)13.用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱 (写出所有正确结果的序号).14.若实数,x y 满足()2221x x x y -+-=+-,则x y -的值为 .15.已知正比例函数()110y k x k =≠与反比例函数()220k y k x=≠的图象有一个交点的坐标为()2,1--,则它们的另一个交点的坐标是 .13.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为4的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点,A B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点'D 处,则点C 的对应点'C 的坐标为 .17.已知二次函数24y x x k -=+的图象的顶点在x 轴下方,则实数k 的取值范围是 .18.观察图形,并阅读相关的文字,回答:10条直线相交,最多有 交点.数学小题训练101.21a =,b 是2的相反数,则a b +的值为( )A .3-B .1-C .1-或3-D .1或3-2.下列各式中,是最简分式的是( )A .ab aB .42x yC .211x x --D .22x x +- 3.点()3,1P a b ++在平面直角坐标系的x 轴上,并且点P 到y 轴的距离为2,则a b +的值为( )A .1-B .2-C .1- 或6-D .2-或6-4.下列从左边到右边的变形中,是因式分解的是( )A .()()2224a a a +--=B .x ()()()()3443x x x x --=---C .()2421221ab a a b a -=---D .()()22m n m n m n -=+-5.下列图形的主视图与左视图不相同的是( )A .B .C .D .6.已知关于x 的不等式40x a -≤的非负整数解是0,1,2,则a 的取值范围是( )A .34a ≤<B .34a ≤≤C .812a ≤<D .812a ≤≤7.下列叙述中:①任意一个三角形的三条高至少有一条在此三角形内部;②以,,a b c 为边(,,a b c 都大于0,且a b c +>)可以构成一个三角形;③一个三角形内角之比为3:2:1,此三角形为直角三角形;④有两个角和一条边对应相等的两个三角形全等;正确的有( )个.A .1B .2C .3D .4 8.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x 尺,则可列方程为( )A .()22610x x --=B .()222610x x --= C .()22610x x +-= D .()222610x x +-= 9.如图,一科珍贵的乌稔树被台风“山竹”吹歪了,处于对它的保护,需要测量它的高度.现采取以下措施:在地面选取一点C ,测得45BCA ∠=︒,20AC =米,60BAC ∠=︒,则这棵乌稔树的高AB 约为( )2 1.4≈3 1.7≈)A .7米B .14米C .20米D .40米10.如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD ,若测得A C ,之间的距离为6cm ,点,B D 之间的距离为8cm ,则线段AB 的长为( )A .5cmB .4.8cmC .4.6cmD .4cm11.如图,ABC ∆内接于O ,若1sin 3BAC ∠=,26BC =O 的半径为( ) A .36B .66 C .42 D .2212.如图,已知菱形OABC 的顶点()0,0O ,()2,2B ,若菱形绕点O 逆时针旋转,每秒旋转45︒,则第60秒时,菱形的对角线交点D 的坐标为( )A .()1,1-B .()1,1--C .2,0D .(0,2(第9题图) (第10题图) (第11题图) (第12题图)13.若单项式22m x y 与413n x y -可以合并成一项,则m n = . 14.将50个数据分成3组,其中第一组和第三组的频率之和为0.7,则第二小组的频数是 .15.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,DE AB ⊥于点E ,连接OE ,若3DE =1BE =,则AOE ∠的度数是( )A .30︒B .45︒C .60︒D .75︒ 16.已知:2210m m --=,2210n n +-=且1mn ≠,则1mn n n++的值为 . 17.如图.在正方形ABCD 的边长为3,以A 为圆心,2为半径作圆弧.以D 为圆心,3为半径作圆弧.若图中阴影部分的面积分为12,S S .则12S S -= .18.如图,正方形ABCD 的顶点,A D 分别在x 轴、y 轴的正半轴上,若反比例函数k y x =()0k >的图象经过另外两个顶点,B C ,且点()6,B n ,(06n <<),则k 的值为 .(第15题图) (第17题图) (第18题图)初中毕业复习冲刺---知识要点复习(基础篇)一、实数的分类:1、(1) 按定义分: 正整数__________ _____________________ 负整数 有限小数或无限循环小数实数 ________________________————无限不循环小数(2) 按正负分:实数分为正实数、0和负实数(3)我们常见的无理数一般包括_____ ________几类,特别注意:分数是 数。
九年级数学二次函数专项训练含答案-精选5篇
九年级数学二次函数专题精练含答案一、单选题1.关于二次函数22(4)6y x =-+的最大值或最小值,下列说法正确的是( ) A .有最大值4 B .有最小值4 C .有最大值6 D .有最小值6 2.已知抛物线24y x x c =-++经过点(4,3),那么下列各点中,该抛物线必经过的点是( )A .(0,2)B .(0,3)C .(0,4)D .(0,5) 3.在平面直角坐标系中,已知抛物线245y x x =-+,将该抛物线沿y 轴翻折所得的抛物线的表达式为( )A .245y x x =--+B .245y x x =++C .245y x x =-+-D .245y x x =--- 4.正方形的边长为4,若边长增加x ,那么面积增加y ,则y 关于x 的函数表达式为( ) A .216y x =+ B .2(4)y x =+ C .28y x x =+ D .2164y x =- 5.把抛物线22y x =向右平移2个单位,然后向下平移1个单位,则平移后得到的抛物线解析式是( )A .22(2)1y x =-+-B .22(2)1y x =--+C .22(2)1y x =++D .22(2)1y x =--6.如图,二次函数2y ax bx c =++的图象关于直线1x =对称,与x 轴交于1(,0)A x ,2(,0)B x 两点,若121x -<<-,则下列四个结论:①234x <<,①320a b +>,①24b a c ac >++,①a c b >>.正确结论的个数为( )A .1个B .2个C .3个D .4个7.对于抛物线23(1)2y x =-+-,下列说法正确的是( )A .抛物线开口向上B .当1x >-时,y 随x 增大而减小C .函数最小值为﹣2D .顶点坐标为(1,﹣2)8.关于二次函数()215y x =-+,下列说法正确的是( )A .函数图象的开口向下B .函数图象的顶点坐标是()1,5-C .该函数有最大值,是大值是5D .当1x >时,y 随x 的增大而增大 9.已知A (−3,−2) ,B (1,−2),抛物线y =ax 2+bx +c (a >0)顶点在线段AB 上运动,形状保持不变,与x 轴交于C ,D 两点(C 在D 的右侧),下列结论:①c ≥−2 ;①当x >0时,一定有y 随x 的增大而增大;①若点D 横坐标的最小值为−5,点C 横坐标的最大值为3;①当四边形ABCD 为平行四边形时,a =12. 其中正确的是( )A .①①B .①①C .①①D .①①① 10.已知二次函数2243y mx m x =--(m 为常数,0m ≠),点(),p p P x y 是该函数图象上一点,当04p x ≤≤时,3p y ≤-,则m 的取值范围是( )A .m 1≥或0m <B .m 1≥C .1m ≤-或0m >D .1m ≤-11.已知函数()211y ax a x =-++,则下列说法不正确的个数是( )①若该函数图像与x 轴只有一个交点,则1a =①方程()2110ax a x -++=至少有一个整数根①若11x a<<,则()211y ax a x =-++的函数值都是负数 ①不存在实数a ,使得()2110ax a x -++≤对任意实数x 都成立A .0B .1C .2D .312.如图,在正方形ABCD 中,4AB =,点P 从点A 出发沿路径A B C →→向终点C 运动,连接DP ,作DP 的垂直平分线MN 与正方形ABCD 的边交于M ,N 两点,设点P 的运动路程为x ,PMN 的面积为y ,则下列图象能大致反映y 与x 函数关系的是( )A .B .C .D .二、填空题13.已知点(3,a )在抛物线y =-2x 2+2x 上,则=a ______.14.如图是二次函数21y ax bx c =++ 和一次函数y 2=kx +t 的图象,当y 1≥y 2时,x 的取值范围是_____.15.小亮同学在探究一元二次方程2ax bx c 0++=的近似解时,填好了下面的表格:根据以上信息请你确定方程2ax bx c 0++=的一个解的范围是________.16.已知二次函数223y x x =--+,当12a x时,函数值y 的最小值为1,则a 的值为_______.17.已知抛物线2122y x bx =+-与x 轴交于A ,B 两点,与y 轴交于C 点.(1)若(1,0)A -,则b =______.(2)若(1,0)M -,(1,0)N ,抛物线2122y x bx =+-与线段MN 没有交点,则b 的取值范围为______.三、解答题18.已知抛物线经过点()1,0A -,()5,0B ,()0,5C ,求该抛物线的函数关系式 19.如图,抛物线212y x bx c =++与直线132y x =+分别相交于A 、B 两点,其中点A 在y 轴上,且此抛物线与x 轴的一个交点为()3,0C -.(1)求抛物线的解析式(2)在抛物线对称轴l 上找一点M ,使MBC ∆的周长最小,请求出这个周长的最小值.20.如图,一次函数y A 、B ,二次函数2y bx c ++图象过A 、B 两点.(1)求二次函数解析式;(2)点B 关于抛物线对称轴的对称点为点C ,点P 是对称轴上一动点,在抛物线上是否存在点Q ,使得以B 、C 、P 、Q 为顶点的四边形是菱形?若存在,求出Q 点坐标;若不存在,请说明理由.21.如图,二次函数y =ax 2+bx +c 的图象与x 轴交于点A (﹣2,0)和点B (8,0),与y 轴交于点C (0,﹣8),连接AC ,D 是抛物线对称轴上一动点,连接AD ,CD ,得到①ACD .(1)求该抛物线的函数解析式.(2)①ACD 周长能否取得最小值,如果能,请求出D 点的坐标;如果不能,请说明理由.(3)在(2)的条件下,在抛物线上是否存在点E ,使得①ACE 与①ACD 面积相等,如果存在,请求出点的坐标;如果不存在,请说明理由.参考答案1--10DBCCD BBDDA 11--12CA13.-1214.﹣1≤x ≤215.3.24x 3.25<<16.1-17. 32- 3322b -<< 18.解:①抛物线经过点()1,0A -,()5,0B ,()0,5C ,①设抛物线的表达式为()()15y a x x =+-,将点()0,5C 代入得:55a =-,解得:1a =-,①()()21545y x x x x =-+-=-++.①该抛物线的函数关系式为245y x x =-++.19..解:(1)抛物线212y x bx c =++与直线132y x =+交于y 轴上一点A , 令0,x = 则3,y = ∴ 点()0,3A把()0,3A ,()3,0C -代入212y x bx c =++得: 39302c b c =⎧⎪⎨-+=⎪⎩, 解得:523b c ⎧=⎪⎨⎪=⎩, ∴抛物线的解析式是215322y x x =++; (2)将直线132y x =+与二次函数215322y x x =++联立得方程组: 213215322y x y x x ⎧=+⎪⎪⎨⎪=++⎪⎩ 215133,222x x x ∴++=+ 240,x x ∴-=解得:0x =或4x =-,04,,31x x y y ==-⎧⎧∴⎨⎨==⎩⎩()0,3A ,()4,1B ∴-BC ∴==如图,要使MBC △的周长最小,则MB MC +最小,设二次函数215322y x x =++与x 轴的另一交点为D ,抛物线的对称轴为:552,1222x=-=-⨯()3,0C-∴点()2,0D-,连接,BD交对称轴于,MMD MC∴=,此时,MB MC MB MD BD+=+=最小,此时:BD=MBC∴20.解:(1)对于y x=x=0时,y=当y=0时,03x-=,妥得,x=3①A(3,0),B(0,把A(3,0),B(0,2y bx c++得:+=0b cc⎧⎪⎨=⎪⎩解得,bc⎧=⎪⎨⎪=⎩①抛物线的解析式为:2y x x=-(2)抛物线的对称轴为直线12bxa=-==故设P(1,p),Q(m,n)①当BC为菱形对角线时,如图,①B ,C 关于对称没对称,且对称轴与x 轴垂直,①①BC 与对称轴垂直,且BC //x 轴①在菱形BQCP 中,BC ①PQ①PQ ①x 轴①点P 在x =1上,①点Q 也在x =1上,当x =1时,211y①Q (1,); ①当BC 为菱形一边时,若点Q 在点P 右侧时,如图,①BC //PQ ,且BC =PQ①BC //x 轴,①令y =2y 解得,120,2x x ==①(2,C①PQ=BC=22①PB=BC=2①迠P在x轴上,①P(1,0)①Q(3,0);若点Q在点P的左侧,如图,同理可得,Q(-1,0)综上所述,Q点坐标为(1,)或(3,0)或(-1,0)21.解:(1)由题意可得:0=4206488a b ca b cc-+⎧⎪=++⎨⎪=-⎩,解得:1238abc⎧=⎪⎪=-⎨⎪=-⎪⎩,①抛物线的解析式为:y=12x2﹣3x﹣8;(2)△ACD周长能取得最小值,①点A(﹣2,0),点B(8,0),①对称轴为直线x=3,①①ACD周长=AD+AC+CD,AC是定值,①当AD+CD取最小值时,△ACD周长能取得最小值,①点A,点B关于对称轴直线x=3对称,①连接BC交对称轴直线x=3于点D,此时AD+CD有最小值,设直线BC 解析式为:y =kx ﹣8,①0=8k ﹣8,①k =1,①直线BC 解析式为:y =x ﹣8,当x =3,y =﹣5,①点D (3,﹣5);(3)存在,①点A (﹣2,0),点C (0,﹣8),①直线AC 解析式为y =﹣4x ﹣8,如图,①①ACE 与①ACD 面积相等,①DE ①AC ,①设DE 解析式为:y =﹣4x +n ,①﹣5=﹣4×3+n ,①n =7,①DE 解析式为:y =﹣4x +7, 联立方程组可得:2471382y x y x x =-+⎧⎪⎨=--⎪⎩,解得:12111x y ⎧=⎪⎨=-⎪⎩,22111x y ⎧=⎪⎨=⎪⎩, ①点E1,﹣1,).九年级上册数学二次函数同步练习一、单选题1.下列函数中,是二次函数的是( ) A .y =(2x ﹣1)2 B .y =(x +1)2﹣x 2 C .y =ax 2D .y =2x +32.若抛物线258(3)23m m y m x x -+=-+-是关于x 的二次函数,那么m 的值是( )A .3B .2-C .2D .2或33.若抛物线y =x 2-x -2经过点A (3,a ),则a 的值是( ) A .2B .4C .6D .84.已知二次函数2135y x x =-+,则其二次项系数a ,一次项系数b ,常数项c 分别是( ) A .1,3,5a b c ==-= B .1,3,5a b c ===C .5,3,1a b c ===D .5,3,1a b c ==-=5.如果函数2(2)25y a x x =-+-是二次函数,则a 的取值范围是( ) A .2a ≠ B .a≥0C .a=2D .a>06.下列函数中①31y x ;①243y x x =-;①1y x=;①225=-+y x ,是二次函数的有() A .①①B .①①C .①①D .①①7.若抛物线2y x bx c =-++经过点()2,3-,则247c b --的值是( ) A .6B .7C .8D .208.函数y=ax2+bx+c(a ,b ,c 是常数)是二次函数的条件是( ) A .a≠0,b≠0,c≠0 B .a<0,b≠0,c≠0 C .a>0,b≠0,c≠0 D .a≠0二、填空题 9.若()2321m m y m x --=+是二次函数,则m 的值为______.10.若22ay x -=是二次函数,则=a ________.11.在二次函数21y x =-+中,二次项系数、一次项系数、常数项的和为_____. 12.下列函数一定是二次函数的是__________.①2y ax bx c =++;①3y x =-;①2431y x x =-+;①2(1)y m x bx c =-++;①y =(x -3)2-x 213.当常数m ≠______时,函数y =(m 2﹣2m ﹣8)x 2+(m +2)x +2是二次函数;当常数m =___时,这个函数是一次函数. 14.已知函数2135m y x -=-① 当m = _________时,y 是关于x 的一次函数; ① 当m =_________时,y 是关于x 的二次函数 .15.二次函数()22339y m x x m =+++-的图象经过原点,则m =__________.16.已知二次函数2y x bx 3=-++,当x 2=时,y 3=.则这个二次函数的表达式是________. 三、解答题17.下列函数中(x ,t 是自变量),哪些是二次函数? 22322113,25,22,1522y x y x x y x s t t =-+=-+=+=++.18.已知函数y =(m 2-2)x 2+(m x +8. (1)若这个函数是一次函数,求m 的值; (2)若这个函数是二次函数,求m 的取值范围.19.若函数y=(a -1)x b+1+x 2+1是二次函数,试讨论a 、b 的取值范围.20.篱笆墙长30m ,靠墙围成一个矩形花坛,写出花坛面积y(m 2)与长x 之间的函数关系式,并指出自变量的取值范围.参考答案:1.A 2.C 3.B 4.D 5.A 6.B 7.B 8.D 9.4 10.2± 11.0 12.①13. 4,-2 4 14. 1 3215.316.2y x 2x 3=-++17.2132y x =-+和215s t t =++是二次函数18.(1)m (2)m ≠m ≠19.①a≠0;①b=0或-1,a 取全体实数①当a=1,b 为全体实数时,y=x 2+1是二次函数 20.y= 21152x x -+, x 的取值范围为0<x<30.九年级数学上册二次函数的图象与性质练习题(附答案)一.选择题1.如果在二次函数的表达式y =ax 2+bx +c 中,a >0,b <0,c <0,那么这个二次函数的图象可能是( )A.B.C.D.2.已知y=(m+2)x|m|+2是关于x的二次函数,那么m的值为()A.﹣2B.2C.±2D.03.已知A(,y1),B(2,y2),C(﹣,y3)是二次函数y=3(x﹣1)2+k图象上三点,则y1、y2、y3的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y2>y1D.y2>y3>y14.二次函数的部分图象如图所示,对称轴是直线x=﹣1,则这个二次函数的表达式为()A.y=﹣x2+2x+3B.y=x2+2x+3C.y=﹣x2+2x﹣3D.y=﹣x2﹣2x+3 5.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()A.B.C.D.6.关于抛物线y=﹣x2+2x﹣3的判断,下列说法正确的是()A.抛物线的开口方向向上B.抛物线的对称轴是直线x=﹣1C.抛物线对称轴左侧部分是下降的D.抛物线顶点到x轴的距离是27.已知二次函数y=x2﹣4x+5(0≤x≤3),则它的最大值是()A.1B.2C.3D.58.如图为二次函数y=ax2+bx+c的图象,给出下列说法:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③a+b+c>0;④当x<1时,y随x值的增大而增大;⑤当y>0时,x<﹣1或x>3.其中,正确的说法有()A.①②④B.①②⑤C.①③⑤D.②④⑤9.已知函数y=2(x+1)2+1,则()A.当x<1 时,y随x的增大而增大B.当x<1 时,y随x的增大而减小C.当x<﹣1 时,y随x的增大而增大D.当x<﹣1 时,y随x的增大而减小10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中不正确的有()个.①abc>0;②2a+b=0;③9a+3b+c<0;④4ac﹣b2<0;⑤a+b≥m(am+b)(m为任意实数).A.3B.2C.1D.0二.填空题11.已知四个二次函数的图象如图所示,那么a1,a2,a3,a4的大小关系是.(请用“>”连接排序)12.抛物线y=3x2+6x+11的顶点坐标为.13.二次函数y=3(x﹣1)2+5的最小值为.14.已知二次函数y=2x2+bx+4顶点在x轴上,则b=.15.二次函数y=x2﹣2x+1在2≤x≤5范围内的最小值为.16.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x轴的另一个交点为(3,0);④abc>0.其中正确的结论是(填写序号).三.解答题17.已知二次函数的顶点坐标为A(1,﹣4),且经过点B(3,0).(1)求该二次函数的解析式;(2)判断点C(2,﹣3)是否在该函数图象上,并说明理由.18.如图,已知直线l过点A(4,0),B(0,4)两点,它与二次函数y=ax2的图象在第一象限内交于点P,若S△AOP=4,试求二次函数的表达式.19.如图,直线L1:y=bx+c与抛物线L2:y=ax2的两个交点坐标分别为A(m,4),B(1,1).(1)求m的值;(2)过动点P(n,0)且垂直于x轴的直线与L1,L2的交点分别为C,D,当点C位于点D上方时,请直接写出n的取值范围.20.已知二次函数y=a(x+a)(x+a﹣1).(1)当a=2时,求该二次函数图象的对称轴.(2)当a<0时,判断该二次函数图象的顶点所在的象限,并说明理由.(3)当0<x<3时,y随着x增大而增大,求a的取值范围.21.已知二次函数y=ax2(a≠0)与一次函数y=kx﹣2的图象相交于A、B两点,如图所示,其中A(﹣1,﹣1),求△OAB的面积.22.抛物线y=﹣x2+bx+c经过点A(3,0)和点B(0,3),且这个抛物线的对称轴为直线l,顶点为C.(1)求抛物线的解析式;(2)连接AB、AC、BC,求△ABC的面积.23.如图,在平面直角坐标系中,直线AB与抛物线y=﹣x2+bx+c交于A(﹣1,0)和B(2,3)两点,抛物线与y轴交于点C.(1)求一次函数和二次函数的解析式;(2)求△ABC的面积.参考答案一.选择题1.解:∵a>0,b<0,c<0,∴﹣>0,∴抛物线的图象开口向上,对称轴在y轴的右边,交y轴于负半轴,故选:C.2.解:∵y=(m+2)x|m|+2是y关于x的二次函数,∴|m|=2且m+2≠0.解得m=2.故选:B.3.解:∵二次函数y=3(x﹣1)2+k图象的对称轴为直线x=1,而A(,y1)到直线x=1的距离最近,C(﹣,y3)到直线x=1的距离最远,∴y3>y2>y1.故选:C.4.解:由图象知抛物线的对称轴为直线x=﹣1,设抛物线解析式为y=a(x+1)2+k,将(﹣3,0)、(0,3)代入,得:,解得:,则抛物线解析式为y=﹣(x+1)2+4=﹣x2﹣2x+3,故选:D.5.解:A、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;B、由抛物线可知,a>0,由直线可知,a<0,故本选项错误;C、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;D、由抛物线可知,a>0,由直线可知,a<0,故本选项错误.故选:A.6.解:∵y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴抛物线开口向下,对称轴为x=1,顶点坐标为(1,﹣2),在对称轴左侧,y随x的增大而增大,∴A、B、C不正确;∵抛物线顶点到x轴的距离是|﹣2|=2,∴D正确,故选:D.7.解:y=x2﹣4x+5=(x﹣2)2+1,由于0≤x≤3,所以当x=2时,y有最小值1,当x=0时,y有最大值5.故选:D.8.解:根据图象可知:①对称轴﹣>0,故ab<0,正确;②方程ax2+bx+c=0的根为x1=﹣1,x2=3,正确;③x=1时,y=a+b+c<0,错误;④当x<1时,y随x值的增大而减小,错误;⑤当y>0时,x<﹣1或x>3,正确.正确的有①②⑤.故选:B.9.解:∵y=2(x+1)2+1,∴当x>﹣1时,y随x的增大而增大,故选项A错误,当x<﹣1时,y随x的增大而减小,故选项B错误、选项C错误、选项D正确;故选:D.10.解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a>0,∵抛物线与y轴的交点坐标在x轴上方,∴c>0,∴abc<0,所以①错误;∵b=﹣2a,∴2a+b=0,所以②正确;∵x=3时,y<0,∴9a+3b+c<0,所以③正确.∵抛物线与x轴有2个交点,∴Δ=b2﹣4ac>0,即4ac﹣b2<0,所以④正确;∵抛物线的对称轴为直线x=1,∴函数的最大值为a+b+c,∴a+b+c≥am2+bm+c(m为任意实数),即a+b≥m(am+b),所以⑤正确.故选:C.二.填空题11.解:如图所示:①y=a1x2的开口小于②y=a2x2的开口,则a1>a2>0,③y=a3x2的开口大于④y=a4x2的开口,开口向下,则a4<a3<0,故a1>a2>a3>a4.故答案为:a1>a2>a3>a412.解:∵y=3x2+6x+11=3(x+1)2+8,∴抛物线y=3x2+6x+11的顶点坐标为(﹣1,8),故答案为(﹣1,8).13.解:由于二次函数y=3(x﹣1)2+5中,a=3>0,所以当x=1时,函数取得最小值为5,故答案为5.14.解:∵二次函数y=2x2+bx+4顶点在x轴上,∴=0,解得b=,故答案为:±4.15.解:∵二次函数y=x2﹣2x+1=(x﹣1)2,∴当x>1时,y随x的增大而增大,∴在2≤x≤5范围内,当x=2时,y取得最小值,此时y=(2﹣1)2=1,故答案为:1.16.解:∵抛物线的对称轴为直线x=﹣=1,∴2a+b=0,所以①正确;∵x=﹣1时,y<0,∴a﹣b+c<0,即a+c<b,所以②错误;∵抛物线与x轴的一个交点为(﹣2,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(4,0),所以③错误;∵抛物线开口向上,∴a>0,∴b=﹣2a<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以④正确.故答案为①④.三.解答题17.解:(1)设二次函数的解析式是y=a(x﹣h)2+k,∵二次函数的顶点坐标为A(1,﹣4),∴y=a(x﹣1)2﹣4,∵经过点B(3,0),∴代入得:0=a(3﹣1)2﹣4,解得:a=1,∴y=(x﹣1)2﹣4,即二次函数的解析式为y=x2﹣2x﹣3;(2)点C(2,﹣3)在该函数图象上,理由是:把C(2,﹣3)代入y=x2﹣2x﹣3得:左边=﹣3,右边=4﹣4﹣3=﹣3,即左边=右边,所以点C在该函数的图象上.18.解:设直线l的解析式为y=kx+b,把A(4,0),B(0,4)分别代入得,解得,∴直线l的关系式为y=﹣x+4,设P(t,﹣t+4),∵S△AOP=4,∴×4×(﹣t+4)=4,解得t=2,∴P(2,2),把P(2,2)代入y=ax2得4a=2,解得a=,∴二次函数的表达式为y=x2.19.解:(1)把B(1,1)代入y=ax2得:a=1,∴抛物线解析式为y=x2.把A(m,4)代入y=x2得:4=m2,∴m=±2.∵点A在二象限,∴m=﹣2.(2)观察函数图象可知:当﹣2<x<1时,直线在抛物线的上方,∴n的取值范围为:﹣2<n<1.20.解:(1)当a=2时,y=2(x+2)(x+1),∴二次函数的对称轴为x=.(2)由题知二次函数与x轴的交点坐标为(﹣a,0),(1﹣a,0);∵a<0,∴二次函数的开口方向向下;又﹣a>0,1﹣a>0,所以对称轴所在直线为x==>0,当x=时,y=﹣>0,所以顶点坐标(,﹣)在第一象限.(3)由(2)知,二次函数的对称轴为直线x=,∵当0<x<3时,y随着x增大而增大,∴当a>0时,≤0,解得a≥;当a<0,≥3,解得a≤﹣.∴a的取值范围为a≥或a≤﹣.21.解:∵一次函数y=kx﹣2的图象相过点A(﹣1,﹣1),∴﹣1=﹣k﹣2,解得k=﹣1,∴一次函数表达式为y=﹣x﹣2,∴令x=0,得y=﹣2,∴G(0,﹣2),∵y=ax2过点A(﹣1,﹣1),∴﹣1=a×1,解得a=﹣1,∴二次函数表达式为y=﹣x2,由一次函数与二次函数联立可得,解得,,∴S△OAB=OG•|A的横坐标|+OG•点B的横坐标=×2×1+×2×2=1+2=3.22.解:(1)∵抛物线经过A、B(0,3)∴由上两式解得∴抛物线的解析式为:;(2)由(1)抛物线对称轴为直线x=把x=代入,得y=4则点C坐标为(,4)设线段AB所在直线为:y=kx+b,则有,解得∴AB解析式为:∵线段AB所在直线经过点A、B(0,3)抛物线的对称轴l于直线AB交于点D∴设点D的坐标为D将点D代入,解得m=2∴点D坐标为,∴CD=CE﹣DE=2过点B作BF⊥l于点F∴BF=OE=∵BF+AE=OE+AE=OA=∴S△ABC=S△BCD+S△ACD=CD•BF+CD•AE∴S△ABC=CD(BF+AE)=×2×=23.解:(1)∵抛物线y=﹣x2+bx+c交于A(﹣1,0)和B(2,3)两点∴,解得:,∴抛物线解析式为y=﹣x2+2x+3,设直线AB的解析式为y=mx+n(m≠0),则,解得,∴直线AB的解析式为y=x+1;(2)令x=0,则y=﹣x2+2x+3=3,∴C(0,3),则OC=3,BC=2,BC∥x轴,∴S△ABC=×BC×OC==3.九年级数学上册二次函数单元综合测试卷一.选择题(共10小题)1.下列各式中,是y关于x的二次函数的是()A.y=4x B.y=3x﹣5C.y=D.y=2x2+12.已知:a>b>c,且a+b+c=0,则二次函数y=ax2+bx+c的图象可能是下列图象中的()A.B.C.D.3.二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是()A.(2,6)B.(4,6)C.(3,﹣5)D.(3,5)4.将二次函数y=x2+2x﹣1转化为y=a(x﹣h)2+k的形式,结果为()A.y=(x﹣1)2B.y=(x+1)2C.y=(x+1)2﹣1D.y=(x+1)2﹣2 5.已知0≤x≤,则函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣66.顶点坐标为(3,1),形状与函数y=的图象相同且开口方向相反的抛物线的解析式为()A.y=+1B.y=+1C.y=﹣+1D.y=﹣+17.已知点A(﹣1,y1),B(1,y2),C(2,y3)都在二次函数y=(x﹣1)2的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1 8.抛物线y=ax2+bx+c纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…则下列说法中正确的个数是()①方程ax2+bx+c=0,有两根为x1=﹣2,x2=3;②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=1;④抛物线开口向上.A.1B.2C.3D.49.如图,在正方形ABCD中,AB=4,AC与BD交于点O,E,F分别为边BC,CD上的点(点E,F不与线段BC,CD的端点重合),BE=CF,连接OE,OF,EF.关于以下三个结论,下列判断正确的是()结论Ⅰ:∠BOF始终是90°;结论Ⅱ:△OEF面积的最小值是2;结论Ⅲ:四边形OECF的面积始终是8.A.结论Ⅰ和Ⅱ都对,结论Ⅲ错B.结论Ⅰ和Ⅱ都对,结论Ⅱ错C.结论Ⅱ和Ⅲ都对,结论Ⅰ错D.三个结论都对10.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0<x≤90)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.37.5°B.40°C.42.5°D.45°二.填空题(共6小题)11.函数是二次函数,则m的值为.12.已知抛物线y=x2﹣4x+c.与直线y=m相交于A,B两点,若点A的横坐标;x A=﹣1,则点B的横坐标.x B的值为.13.已知二次函数y=ax2开口向上,且|2﹣a|=3,则a=.14.已知抛物线y=x2﹣3x+1的图象上有一点A(m,n),则m﹣n的最大值是.15.如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c与x轴交于点A、B,与y轴交于点C,过点C作CD∥x轴,交抛物线于另一点D,若AB+CD=3,则c的值为.16.如图,在矩形ABCD中,AB=12,BC=16,点E、F分别是边AB、BC上的动点,且EF=10,点G是EF的中点,AG、CG,则四边形AGCD面积的最小值为.三.解答题(共7小题)17.看图回答.(1)当y=0时,求x的值;(2)当y>5时,求x的范围;(3)y随x的增大而增大时,求x的范围.18.已知二次函数y=x2﹣6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小.19.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5r2+20t,求小球飞行高度达到最高时的飞行时间.20.“阳光玫瑰葡萄”品种是近几年来广受各地消费者青睐的优质新品种,在云南省广泛种植.长沙市某品牌水果经销商计划在2023年五一期间进行商业促销活动,经过调查往年的统计数据发现,云南省批发“阳光玫瑰葡萄”的最低价格为每斤15元若按每斤30元的价格到市区销售,平均每天可售出60斤若每斤“阳光玫瑰葡萄”的售价每降低1元,那么平均每天的销售量会增加10斤,为了尽快减少库存,该水果商决定降价销售.(1)若降价2元,则每天的销售利润是多少元(2)若该经销商计划销售“阳光玫瑰葡萄”每天盈利1100元,那么每斤“阳光玫瑰葡萄”的售价应降至每斤多少元?(其它成本忽略不计)(3)将商品的销售单价定为多少元时,商场每天销售该商品获得的利润w最大?最大利润是多少元?21.如图,抛物线与x轴交于A(﹣1,0)、B(4,0),与y轴交于C.(1)求抛物线的解析式;(2)如图1,已知线段DE与线段BC关于平面内某点成中心对称,其中DE的两端点刚好一个落在抛物线上,一个落在对称轴上,求落在对称轴上的点的坐标;(3)如图2,点M为第二象限抛物线上,作MN∥BC交抛物线于点N,直线NB、MC 交于点P,求P点的横坐标.22.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y'),给出如下定义:若y'=,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)点(﹣5,﹣2)的“可控变点”坐标为;(2)若点P在函数y=﹣x2+16的图象上,其“可控变点”Q的纵坐标y′是7,求“可控变点”Q的横坐标;(3)若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16≤y′≤16,求实数a的取值范围.23.在平面直角坐标系中,抛物线y=x2+bx+c经过A(﹣4,0),点M为抛物线的顶点,点B在y轴上,直线AB与抛物线在第一象限交于点C(2,6),如图①.(1)求抛物线解析式;(2)直线AB的函数解析式为,点M的坐标为.(3)在y轴上找一点Q,使得△AMQ的周长最小,具体作法如图②,作点A关于y轴的对称点A',连接MA′交y轴于点Q,连接AM,AQ,此时△AMQ的周长最小,请求出点Q的坐标;(4)在坐标平面内是否存在点N,使以点A,O,C,N为顶点的四边形是平行四边形?若存在请直接写出点N的坐标;若不存在,请说明理由.参考答案一.选择题(共10小题)1.下列各式中,是y关于x的二次函数的是()A.y=4x B.y=3x﹣5C.y=D.y=2x2+1解:A.根据二次函数的定义,y=4x是一次函数,不是二次函数,故A不符合题意.B.根据二次函数的定义,y=3x﹣5不是二次函数,是一次函数,故B不符合题意.C.根据二次函数的定义,y=是反比例函数,不是二次函数,故C不符合题意.D.根据二次函数的定义,y=2x2+1是二次函数,故D符合题意.故选:D.2.已知:a>b>c,且a+b+c=0,则二次函数y=ax2+bx+c的图象可能是下列图象中的()A.B.C.D.解:A、由图知a>0,﹣=1,c>0,即b<0,∵已知a>b>c,故本选项错误;B、由图知a<0,而已知a>b>c,且a+b+c=0,必须a>0,故本选项错误;C、图C中条件满足a>b>c,且a+b+c=0,故本选项正确;D、∵a+b+c=0,即当x=1时a+b+c=0,与图中与x轴的交点不符,故本选项错误.故选:C.3.二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是()A.(2,6)B.(4,6)C.(3,﹣5)D.(3,5)解:∵二次函数可化为y=(x﹣3)2+5,∴二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是(3,5),故选:D.4.将二次函数y=x2+2x﹣1转化为y=a(x﹣h)2+k的形式,结果为()A.y=(x﹣1)2B.y=(x+1)2C.y=(x+1)2﹣1D.y=(x+1)2﹣2解:y=x2+2x﹣1=(x2+2x+1)﹣2=(x+1)2﹣2,即y=(x+1)2﹣2.故选:D.5.已知0≤x≤,则函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣6解:y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2,∴当x<2时,y随着x增大而增大,∴当x=时有最大值y=﹣2(﹣2)2+2=﹣2.5,故选:C.6.顶点坐标为(3,1),形状与函数y=的图象相同且开口方向相反的抛物线的解析式为()A.y=+1B.y=+1C.y=﹣+1D.y=﹣+1解:设所求的抛物线解析式为y=a(x﹣3)2+1,∵所求抛物线与函数y=的图象相同且开口方向相反,∴a=﹣,∴所求的抛物线解析式为y=﹣(x﹣3)2+1.故选:D.7.已知点A(﹣1,y1),B(1,y2),C(2,y3)都在二次函数y=(x﹣1)2的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1解:当x=﹣1时,y1=(x﹣1)2=(﹣1﹣1)2=4;当x=1时,y2=(x﹣1)2=(1﹣1)2=0;当x=2时,y3=(x﹣1)2=(2﹣1)2=1,所以y2<y3<y1.故选:C.8.抛物线y=ax2+bx+c纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…则下列说法中正确的个数是()①方程ax2+bx+c=0,有两根为x1=﹣2,x2=3;②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=1;④抛物线开口向上.A.1B.2C.3D.4解:根据表格数据可知:抛物线的对称轴是直线x==,∴③错误;∵抛物线与x轴的一个交点为(﹣2,0),∴抛物线与x轴的另一个交点为(3,0),∴方程ax2+bx+c=0有两根为x1=﹣2,x2=3;故①正确;从表格可知当x=0时,y=6,∴抛物线与y轴的交点为(0,6);∴②正确;从表格可知:当x<时,y随x的增大而增大,当x>时,y随x的增大而减小,∴抛物线开口向下,故④错误.故选:B.9.如图,在正方形ABCD中,AB=4,AC与BD交于点O,E,F分别为边BC,CD上的点(点E,F不与线段BC,CD的端点重合),BE=CF,连接OE,OF,EF.关于以下三个结论,下列判断正确的是()结论Ⅰ:∠BOF始终是90°;结论Ⅱ:△OEF面积的最小值是2;结论Ⅲ:四边形OECF的面积始终是8.A.结论Ⅰ和Ⅱ都对,结论Ⅲ错B.结论Ⅰ和Ⅱ都对,结论Ⅱ错C.结论Ⅱ和Ⅲ都对,结论Ⅰ错D.三个结论都对解:∵四边形ABCD是正方形,∴OB=OC,∠BOC=90°,∴∠OBE=∠OCF=45°,∵BE=CF,∴△BOE≌△COF,∴OE=OF,∠BOE=∠COF,∴∠BOE+∠COE=∠COF+∠COE,即∠EOF=∠BOC=90°,且S△COE+S△COF=S△COE+S△BOE,即S四边形OECF=S△BOC=S正方形ABCD=×4×4=4,由垂线段最短可得,当OE⊥BC时,OE=BC=×4=2,△OEF面积取最小值为×2×2=2,∴结论Ⅰ和Ⅱ都对,结论Ⅲ错,故选:A.10.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0<x≤90)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.37.5°B.40°C.42.5°D.45°解:把(25,0.725),(50,0.06),(60,0.09)代入y=ax2+bx+c得:,解得,∴y=0.0001x2﹣0.008x+0.21=0.0001(x﹣40)2+0.05,∵0.0001>0,∴x=40时,y最小为0.05,∴燃气灶烧开一壶水最节省燃气的旋钮角度约为40°,故选:B.二.填空题(共6小题)11.函数是二次函数,则m的值为3.解:∵函数是二次函数,∴m2﹣7=2且m+3≠0,解得:m=3.则m的值为3.故答案为:3.12.已知抛物线y=x2﹣4x+c.与直线y=m相交于A,B两点,若点A的横坐标;x A=﹣1,则点B的横坐标.x B的值为5.解:∵y=x2﹣4x+c,∴抛物线开口向上,对称轴为直线x=﹣=2,∴点A,B关于直线x=2对称,∵点A横坐标为﹣1,∴点B横坐标为5,故答案为:5.13.已知二次函数y=ax2开口向上,且|2﹣a|=3,则a=5.解:∵|2﹣a|=3,∴2﹣a=±3,解得:a=﹣1或5,又二次函数y=ax2开口向上,则a>0,故a=5.故答案为:5.14.已知抛物线y=x2﹣3x+1的图象上有一点A(m,n),则m﹣n的最大值是3.解:∵点A(m,n)在抛物线y=x2﹣3x+1上,∴n=m2﹣3m+1,∴m﹣n=﹣m2+4m﹣1=﹣(m﹣2)2+3,∴当m=2时,m﹣n有最大值为3,故答案为:3.15.如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c与x轴交于点A、B,与y轴交于点C,过点C作CD∥x轴,交抛物线于另一点D,若AB+CD=3,则c的值为﹣.解:设A(x1,0),B(x2,0),令y=0,则y=﹣x2+2x+c=0,由根与系数的关系得:x1+x2=2,x1•x2=﹣c,则AB=|x1﹣x2|===2,令x=0,则y=c,∴C(0,c),∵CD∥x轴,∴点D纵坐标为c,当y=c时,则﹣x2+2x+c=c,解得:x=2,或x=0,∴D(2,c),∴CD=2,∵AB+CD=3,∴2+2=3,解得:c=﹣,故答案为:﹣.16.如图,在矩形ABCD中,AB=12,BC=16,点E、F分别是边AB、BC上的动点,且EF=10,点G是EF的中点,AG、CG,则四边形AGCD面积的最小值为142.解:连接AC,过B作BH⊥AC于H,以B为圆心,BG为半径作圆,交BH于G',如图:∵四边形ABCD是矩形,∴∠EBF=90°,∵EF=10,点G是EF的中点,∴BG=EF=10=5,∴G在以B为圆心,5为半径的弧上,当G运动到G'时,S△ACG最小,此时四边形AGCD 面积的最小值,最小值即为四边形AG'CD的面积,∵AB=12=CD,BC=16=AD,∴AC=20,S△ACD=×12×16=96,∴BH==,∴G'H=BH﹣5=﹣5=,∴S△ACG'=AC•G'H=×20×=46,∴S四边形AG'CD=S△ACD+S△ACG'=46+96=142,即四边形AGCD面积的最小值是142.故答案为:142.三.解答题(共7小题)17.看图回答.(1)当y=0时,求x的值;(2)当y>5时,求x的范围;(3)y随x的增大而增大时,求x的范围.解:(1)由图象可知,抛物线经过点(﹣1,0),对称轴为直线x=1,∴抛物线与x轴的另一个交点为(3,0),∴当y=0时,x的值为﹣1和3;(2)∵抛物线经过点(﹣1,0),(3,0),(0,﹣3),∴设抛物线的解析式为y=a(x+1)(x﹣3),代入(0,﹣3)得,﹣3=﹣3a,解得a=1,∴抛物线的解析式为y=(x+1)(x﹣3),令y=5得5=(x+1)(x﹣3),解得x1=4,x2=﹣2,∴当y>5时,求x的范围是x>4或x<﹣2;(3)∵y=(x+1)(x﹣3)=(x﹣1)2+4,∴抛物线开口向上,顶点为(1,4),对称轴为直线x=1,∴y随x的增大而增大时,x的范围是x>1.18.已知二次函数y=x2﹣6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小.解:(1)y=x2﹣6x+8=x2﹣6x+9﹣1=(x﹣3)2﹣1;(2)开口向上,对称轴是直线x=3,顶点坐标是(3,﹣1);(3)x>3时,y随x的增大而增大;x<3时,y随x增大而减小.19.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5r2+20t,求小球飞行高度达到最高时的飞行时间.解:∵h=﹣5t2+20t=﹣5(t﹣2)2+20,且﹣5<0,∴当t=2时,h取最大值20,答:小球飞行高度达到最高时的飞行时间为2s.20.“阳光玫瑰葡萄”品种是近几年来广受各地消费者青睐的优质新品种,在云南省广泛种植.长沙市某品牌水果经销商计划在2023年五一期间进行商业促销活动,经过调查往年的统计数据发现,云南省批发“阳光玫瑰葡萄”的最低价格为每斤15元若按每斤30元的价格到市区销售,平均每天可售出60斤若每斤“阳光玫瑰葡萄”的售价每降低1元,那么平均每天的销售量会增加10斤,为了尽快减少库存,该水果商决定降价销售.(1)若降价2元,则每天的销售利润是多少元(2)若该经销商计划销售“阳光玫瑰葡萄”每天盈利1100元,那么每斤“阳光玫瑰葡萄”的售价应降至每斤多少元?(其它成本忽略不计)(3)将商品的销售单价定为多少元时,商场每天销售该商品获得的利润w最大?最大利润是多少元?解:(1)根据题意,降价2元则销售量为60+2×10=80(斤),销售利润为:(30﹣15﹣2)×80=1040(元),。
(完整版)初三中考数学计算题训练及答案
1 23 8 3 ﹣ ﹣1.计算:22+|﹣1|﹣ 9.2 计算:( 13)0 -( 2 )-2 + tan45°13.计算:2×(-5)+23-3÷2.4. 计算:22+(-1)4+(5-2)0-|-3|;5.计算: Sin 450 -+ 6.计算: - 2 + (-2)0 + 2 s in 30︒ .( 1)0 + ∣2 3∣ + 2sin 60° 7.计算 ,8.计算:a(a-3)+(2-a)(2+a)∣﹣5∣ + 22﹣( + 1)00 39.计算:10. 计算: -- (-2011) + 4 ÷(-2)11.解方程 x 2﹣4x+1=0.12.解分式方程2 =x + 23x - 23 13.解方程:x=2x-1.14.已知|a﹣1|+ab + 2=0,求方裎x+bx=1 的解.x 315.解方程:x2+4x-2=0 16.解方程:x - 1 - 1 - x = 2.{2x+3<9-x,) 17.(2011.苏州)解不等式:3﹣2(x﹣1)<1.18.解不等式组:2x-5>3x.⎧x - 2 6(x + 3) ⎧⎪x + 2 > 1, 19.解不等式组⎨( -1)- 6 ≥ 4(x +1) 20.解不等式组⎨x +1 < 2.⎩5 x ⎩⎪ 2初中计算题训练2 12 1 2 1 21 2 1 2答案1.解: 原式=4+1﹣3=22.解:原式=1-4+1=-2.3.解:原式=-10+8-6=-84.解:原式=4+1+1-3=3。
1 5.解:原式= -2 + 2 = 2 . 6. 解:原式=2+1+2× =3+1=4.2 27. 解:原式=1+2﹣ 3+2× 2 =1+2﹣ 3+ 3=3.8.解: a (a - 3)+ (2 - a )(2 + a )= a 2 - 3a + 4 - a 2 =4 - 3a9. 解:原式=5+4-1=810. 解:原式= 3 -1- 1=0.2211. 解:(1)移项得,x 2﹣4x=﹣1,配方得,x 2﹣4x+4=﹣1+4,(x ﹣2)2=3,由此可得 x ﹣2=± 3,x =2+3,x =2﹣ 3;(2)a=1,b=﹣4,c=1.b 2﹣4ac=(﹣4)2﹣4×1×1=12>0.4 ± 12x=2 =2± 3, x =2+ 3,x =2﹣ 3.12.解:x=-10 13.解:x=314. 解:∵|a﹣1|+1b + 2=0,∴a﹣1=0,a=1;b+2=0,b=﹣2.1 ∴x ﹣2x=1,得 2x 2+x ﹣1=0,解得 x =﹣1,x =2. 1 1经检验:x =﹣1,x =2是原方程的解.∴原方程的解为:x =﹣1,x =2. 15.解: x =-4 ±16 + 8 = -4 ± 2 6 = - 2 ± 2 216. 解:去分母,得 x +3=2(x -1) . 解之,得 x =5. 经检验,x =5 是原方程的解. 17. 解:3﹣2x+2<1,得:﹣2x <﹣4,∴x>2. 18.解:x <-519.解: x ≥ 1520. 解:不等式①的解集为 x >-1;不等式②的解集为 x +1<4 x <3故原不等式组的解集为-1<x <3.2 36。
初三数学 二次函数与x轴的交点
初三数学二次函数与x轴的交点专题训练一.选择题(共32小题)1.若二次函数y=ax2+bx+c的图象与x轴相交于(1,0)(4,0)两点,则一元二次方程ax2+bx+c =0的解为()A.x1=﹣1,x2=﹣4 B.x1=1,x2=4C.x1=﹣1,x2=4 D.x1=1,x2=﹣42.抛物线的部分图象如图所示,它与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则它与x轴的另一个交点坐标为()A.(4,0)B.(3,0)C.(2,0)D.(1,0)3.二次函数y=x2+x+1与x轴的交点情况是()A.一个交点B.两个交点C.三个交点D.没有交点4.二次函数y=ax2+bx+c如图,则ax2+bx+c+2=0的根的情况是()A.无实根B.有两个不相等的实根C.有两个相等的实根D.有两个同号不等实根5.二次函数y=ax2+bx+c(a≠0)的图象如图所示,△=b2﹣4ac,则下列四个选项正确的是()A.b<0,c<0,Δ>0B.b>0,c<0,Δ>0C.b>0,c<0,Δ>0D.b<0,c>0,Δ<06.关于二次函数y=x2﹣2x﹣3,下列说法错误的是()A.顶点坐标为(1,﹣4)B.对称轴为x=1C.抛物线与x轴有两个交点D.x=2与x=﹣2时函数值一样大7.抛物线的部分图象如图所示,它与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,当y >0时,则x的取值范围是()A.x<﹣3B.x>1C.﹣3<x<1D.x<﹣3或x>18.若函数y=ax2+bx的图象如图所示,则关于x的一元二次方程ax2+bx+5=0的根的情况为()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根9.二次函数y=x2﹣ax+b的图象如图所示,对称轴为直线x=1,它的图象与x轴交于A、B两点,与y轴交于C点,顶点为D.且A(﹣1,0),则下列结论不正确的是()A.a=2B.它的图象与y轴的交点坐标C为(0,﹣3)C.图象的顶点坐标D为(1,﹣4)D.当x>0时,y随x的增大而增大10.若一元二次方程ax2+bx+c=0有两个相等的实数根,则二次函数y=ax2+bx+c与x轴()A.只有一个交点B.至少有一个交点C.有两个交点D.无交点11.抛物线y=2(x﹣3)(x+4)与x轴交点的横坐标分别为()A.﹣3,﹣4B.3,4C.﹣3,4D.3,﹣412.抛物线y=x2﹣2x﹣3与x轴的一个交点是(﹣1,0),那么抛物线与x轴的另一个交点坐标是()A.(0,0)B.(3,0)C.(﹣3,0)D.(0,﹣3)13.如图,二次函数y=ax2+bx+c的图象与x轴相交于(﹣2,0)和(4,0)两点,当函数值y <0时,自变量x的取值范围是()A.x<﹣2B.x>4C.﹣2<x<4D.x<﹣2或x>4 14.如图是二次函数y=﹣x2﹣2x+3的图象,使y≥0成立的x的取值范围是()A.﹣3≤x≤1B.x≥1C.x<﹣3或x>1D.x≤﹣3或x≥1 15.对于二次函数y=(x+1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是直线x=﹣1C.顶点坐标是(1,2)D.与x轴有两个交点16.二次函数y=x2﹣2x﹣3图象如图所示.当y<0时,自变量x的取值范围是()A.x<﹣1B.﹣1<x<3C.x>3D.x<﹣1或x>317.已知二次函数y=x2﹣5x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为()A.(﹣1,0)B.(4,0)C.(5,0)D.(﹣6,0)18.已知二次函数y=kx2﹣6x﹣9的图象与x轴有两个不同的交点,则k的取值范围为()A.k>﹣1B.k>﹣1且k≠0C.k≥﹣1D.k≥﹣1且k≠019.二次函数y=ax2+bx+c的部分图象如图所示,由图象可知方程ax2+bx+c=0的根是()A.x1=﹣1,x2=5B.x1=﹣2,x2=4C.x1=﹣1,x2=2D.x1=﹣5,x2=520.已知二次函数y=kx2﹣7x﹣7的图象与x轴没有交点,则k的取值范围为()A.k >﹣B.k ≥﹣且k≠0C.k <﹣D.k >﹣且k≠021.若二次函数y=kx2﹣2x﹣1与x轴有交点,则k的取值范围是()A.k>﹣1B.k≤1且k≠0C.k<﹣1D.k≥﹣1且k≠022.二次函数y=4x2﹣x+1的图象与x轴的交点个数是()A.1个B.2个C.0个D.无法确定23.已知二次函数y=mx2+(2m+1)x+m﹣1的图象与x轴有两个交点,则m的取值范围是()A.m <B .C.m >﹣且m≠0D.m ≤且m≠024.二次函数y=kx2﹣6x+3的图象与x轴有交点,则k的取值范围是()A.k<3B.k<3且k≠0C.k≤3D.k≤3且k≠025.抛物线y=x2+4x﹣m2+2(m是常数)与坐标轴交点的个数为()A.0B.1C.3D.2或3 26.抛物线y=x2﹣2x﹣1的图象与x轴交点有()A.两个交点B.一个交点C.无交点D.无法确定27.若二次函数y=x2+2x+m的图象与坐标轴有3个交点,则m的取值范围是()A.m>1B.m<1C.m>1且m≠0D.m<1且m≠028.二次函数y=ax2+bx+c(a≠0)的图象如图所示,一元二次方程ax2+bx+c=0(a≠0)的根的判别式为Δ=b2﹣4ac,则下列四个选项正确的是()A.b<0,c<0,Δ>0B.b>0,c>0,Δ>0C.b>0,c<0,Δ>0D.b<0,c>0,Δ<029.二次函数y=x2﹣2x﹣2与x轴的交点个数是()A.0个B.1个C.2个D.3个30.函数y=ax2+bx+c的图象如图所示,那么关于x的一元二次方程ax2+bx+c﹣4=0的根的情况是()A.有两个不相等的实数根B.有两个异号的实数根C.有两个相等的实数根D.没有实数根31.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是()A.﹣4<x<1B.﹣3<x<1C.﹣2<x<1D.x<132.二次函数y=﹣x2+bx+c的部分图象如图所示,若y>0,则自变量x的取值范围是()A.x<﹣3B.x>0C.﹣3<x<1D.x>1二.填空题(共28小题)33.已知抛物线y=x2+bx+c与x轴交点的坐标分别为(﹣1,0),(3,0),则一元二次方程x2+bx+c =0的根为.34.二次函数y=x2﹣3x+c的图象与x轴有且只有一个交点,c=.35.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则关于x的一元二次方程ax2+bx+c=0(a≠0)的根为.36.若函数y=x2+x+c的图象与x轴有两个交点,则c 的取值范围是.37.如图是二次函数y=ax2+bx+c(a≠0)的图象,图象过点A(﹣3,0)对称轴为直线x=﹣1,求另一个与x轴的交点坐标是.38.若抛物线y=x2﹣2x+k与x轴的一个交点为(3,0),则与x轴的另一个交点的坐标为.39.二次函数y=﹣x2+3x﹣2与x轴的交点坐标是.40.若抛物线y=ax2+bx+c与x轴的两个交点坐标是(﹣6,0)和(4,0),则该抛物线的对称轴是.41.二次函数y=x2﹣4x+k的图象与x轴有两个交点,则实数k的取值范围是.42.如果抛物线y=x2+bx+c经过原点,且它的对称轴是直线x=2,那么抛物线与x轴的另一个交点坐标是.43.已知关于x的一元二次方程ax2+bx+c=0的一个根是x1=2,且二次函数y=ax2+bx+c的对称轴是直线x=1,则此方程ax2+bx+c=0的另一个解为.44.如果函数y=x2+4x﹣m的图象与x轴有公共点,那么m的取值范围是.45.抛物线y=ax2+bx+c的部分图象如图所示,则当y>0时,x的取值范围是46.二次函数y=﹣x2+4x+1的图象与x轴有个交点.47.已知二次函数y=2x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则m=.48.已知二次函数y=ax2﹣2x+1的图象与x轴只有一个公共点,则a的值是.49.二次函数y=x2﹣3x+2的图象与x轴的交点坐标是.50.抛物线y=ax2+bx+c经过点A(﹣4,0),B(3,0)两点,则关于x的一元二次方程ax2+bx+c =0的解是51.若二次函数y=x2+2x+a的图象与x轴有两个不相同的交点,则a的取值范围是.52.抛物线y=3(x﹣1)2+k与x轴的一个交点坐标是(﹣1,0),则另一个交点坐标是.53.若抛物线y=x2+6x+m与x轴只有两个交点,则m的值为.54.若抛物线y=x2﹣6x+m与x轴有两个公共点,则m的取值范围是.55.抛物线y=x2﹣4与x轴交于A、B两点,则A、B两点之间的距离是.56.抛物线y=ax2﹣3ax﹣2与x轴交于两点,分别是(m,0)、(n,0),则m+n的值为.57.关于x的函数y=ax2﹣2x+1与x轴有唯一交点,则a的值是.58.若二次函数y=ax2﹣2ax+c与x轴的一个交点坐标为(3,0),则关于x的方程ax2﹣2ax+c=0的实数根是.59.已知二次函数y=ax2+6ax+c(a≠0)的图象与x轴一个交点的横坐标为﹣1,则与x轴的另一个交点的横坐标为.60.抛物线y=﹣2x2+2(k+1)x﹣k(k为常数)与x轴交点的个数是.。
初三数学专题复习试题九年级最新中考专题训练试卷含答案解析(20套)
1.32的倒数是( ). A .32 B .23 C .32- D .23-2.据报道,2010年苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1 300 000)这个数用科学记数法可表示为( ).A .1.3×104B .1.3×105C .1.3×106D .1.3×1073.记n S =n a a a +++ 21,令12n n S S S T n+++=,称n T 为1a ,2a ,……,n a 这列数的“理想数”。
已知1a ,2a ,……,500a 的“理想数”为2004,那么8,1a ,2a ,……,500a 的“理想数”为 ( ). A .2004 B .2006 C .2008 D .20104.某汽车维修公司的维修点环形分布如图。
公司在年初分配给A 、B 、C 、D 四个维修点某种配件各50件。
在使用前发现需将A 、B 、C 、D 四个维修点的这批配件分别调整为40、45、54、61件,但调整只能在相邻维修点之间进行。
那么要完成上述调整,最少的调动件次(n 件配件从一个维修点调整到相邻维修点的调动件次为n )为 ( ).A .15B .16C .17D .185.在2,1,0,1-这四个数中,既不是正数也不是负数的是…………………………( )A )1- B )0 C )1 D )26. 2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是( )A )2.89×107.B )2.89×106 .C )2.89×105.D )2.89×104.7.下面两个多位数1248624……、6248624……,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。
对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的。
初三数学专题九~综合练习(4)
FEDCB A 第九讲:综合练习(四)1.如图,已知⊙O 是以数轴的原点O 为圆心,半径为1的圆,45AOB ∠=︒,点P 在数轴上运动,若过点P 且与OA 平行的直线与⊙O 有公共点, 设x OP =,则x 的取值范围是( ) A .-1≤x ≤1 B.x ≤2 C .0≤x ≤2 D .x >22.在正方形ABCD 中,点E 为BC 边的中点,点F 在对角线AC 上,连接FB 、FE .当点F 在AC 上运动时,设AF=x ,△BEF 的周长为y ,下列图象中,能表示y 与x 的函数关系的图象大致是( )3.若关于x 的方程kx 2+(k +2)x +4k=0有两个不相等的实数根,则k 的取值范围是 .4.如图,在梯形ABCD 中,AB ∥CD ,AB =a ,CD =b ,E 为边AD 上的任意一点,EF ∥AB ,且EF 交BC 于点F .若E 为边AD 上的中点,则EF = (用含有a ,b 的式子表示);若E 为边AD 上距点A 最近的n 等分点(2n ≥,且n 为整数),则EF = (用含有n ,a ,b 的式子表示).5.已知22150a a +-=,求221412213a a a a a a --⋅++-++的值.6.在Rt △ABC 中,AD=BC ,CD=BE , 求:∠BOE 的度数。
7.如图,ABC∆中,AB>AC,D为AB,上一点,且AD=BC,设βα=∠=∠BBCD,(1)若︒=30β,βα+=∠ACD,则α=_________(2)若︒=+18032βα,试用含βα,的代数式表示ACD∠8.在Rt△ABC中,∠C=90°,D,E分别为CB,CA延长线上的点,BE与AD的交点为P.(1)若BD=AC,AE=CD,在图1中画出符合题意的图形,并直接写出∠APE的度数;(2)若AC,CD,求∠APE的度数.9.如图,AB是⊙O 的直径,AC是弦,CD⊥AB于点D,E是圆上一点,且BE=AC,点F在OE上,FG⊥AB于点G.(1)求证:△COD∽△FOG;(2)若cos A=35,FG=4,AG=6.求⊙O的半径长.10. 如图, ,1,90==︒=∠AC AB A E 为AC 的中点,EF BE ⊥求: EFC ∆的面积11.已知.关于x 的方程0)4(22=-++a ax x ①的两个实数根是x 1、x 2(x 1<x 2),若关于x 的另一个方程022=++k ax x ②的两个实数根都在x 1与x 2之间,试比较:代数式442++a a k 、、之间的大小关系.12.直线434:1--=x y l 和直线1431:2-=x y l 相交于点Q ,抛物线b ax ax y +-=62经过点Q ,与x 轴交于点A 、B ,且点A 在直线1l 上 (1) 求抛物线的解析式;(2) 直线1l 、2l 分别与抛物线的对称轴交于点M 、N ,若点P 为抛物线对称轴上一点,使∠MAB=∠NPQ ,求点P 的坐标;(3) 若点F 是直线2l 上的动点,且在抛物线对称轴的左侧,点F 到直线1l 的距离为1d ,到抛物线对称轴的距离为2d ,探究1d 和2d 之间的数量关系。
初三数学总复习资料_分专题试题及答案(90页)
(2) 已知| x | a(a 0) ,求 x 时,要注意 x a
考点 3 平方根与算术平方根
1、 若 x 2 a(a 0) ,则 x 叫 a 做的_________,记作______;正数 a 的__________叫做算术平 方根,0 的算术平方根是____。当 a 0 时, a 的算术平方根记作__________。
2
y
5、 实数 a, b, c 在数轴上对应点的位置如图 2 所示,下列式子中正确的有( )
c
ba
-2 -1 0 1 2 3
图2
① b c 0 ② a b a c ③ bc ac ④ ab ac
A.1 个
B.2 个 C.3 个 D.4 个
6、 ①数轴上表示-2 和-5 的两点之间的距离是______数轴上表示 1 和-3 的两点之间的距离是
用根号形式表示的数并不都是无理数(如 4 ),也不是所有的无理数都可以写成根号的形
式(如 )。
练习: 1、 把下列各数填入相应的集合内:
7.5,
15, 4,
8 ,
2 ,
3 8,
,
0.25,
0.1 5
13 3
有理数集{ 正实数集{
},无理数集{
}
}
2、 在实数 4, 3 , 0, 2
2 1,
64, 3 27 , 1 中,共有___ 27
2、 幂的运算法则:(以下的 m, n 是正整数)
(1)a m a n _____ ; (2)(a m )n ____ ; (3)(ab)n _____ ; (4)a m a n ______(a 0) ;
(5)(b )n ______ a
3、 乘法公式:
初三数学专题复习教案第9讲:平面直角坐标系及函数.
第9讲平面直角坐标系与函数一、教学目标:1.掌握平面直角坐标系中各象限点的坐标特征,会求一个点关于坐标轴和原点对称的点的坐标;会用平面直角坐标系下点的平移规律解决实际问题2.会求一个函数的自变量的取值范围,会根据实际问题情境分析函数的大致图象二、教学重难点:重点:特殊点的坐标特征难点:函数自变量的取值范围及函数值,函数图象的分析三、教学用具:多媒体四、学情分析:“平面直角坐标系”作为“数轴”的进一步发展,实现了认识上从一维空间到二维空间的跨越,构成更广范围内的数形结合、数形互相转化的理论基础。
是今后学习函数、函数与方程、函数与不等式关系的必要知识。
五、教学方法:启发引导法、归纳分析六、教学资源:课本、PPT七、教学过程:考点一平面直角坐标系及点的坐标特征平面直角坐标系的有关概念在平面内由两条互相垂直、原点重合的数轴组成平面直角坐标系,水平的数轴为x轴或①,竖直方向的数轴为y轴或②,两坐标轴的交点为平面直角坐标系的原点坐标轴上的点x轴、y轴上的点不属于任何象限对应关系坐标平面内的点与有序实数对是③对应的平面内点P(x,y)的坐标特征(1)各象限内点的坐标的特征:点P(x, y)在第一象限⇔④点P(x, y)在第二象限⇔⑤点P(x, y)在第三象限⇔⑥点P(x, y)在第四象限⇔⑦(2)坐标轴上点的坐标的特征:点P(x, y)在x轴上⇔⑧点P(x, y)在y轴上⇔⑨;点P(x, y)既在x轴上,又在y轴上⇔x,y同为0,即点P的坐标为(0, 0)平行于坐标轴的直线上的点的坐标特征(1)平行于x轴(或垂直于y轴)的直线上的点的纵坐标相同,横坐标为不相等的实数(2)平行于y轴(或垂直于x轴)的直线上的点的横坐标相同,纵坐标为不相等的实数各象限的角平分线上的点的坐标特征(1)第一、三象限的角平分线上的点:第一、三象限的角平分线上的点的横、纵坐标⑩(2)第二、四象限的角平分线上的点:第二、四象限的角平分线上的点的横、纵坐标【思政元素】:通过复习平面直角坐标系知识,介绍法国数学家笛卡尔在数学中的卓越贡献,激发学生学习数学的热情,树立远大的学习目标考点二点到坐标轴的距离到x轴的距离点P(a,b)到x轴的距离等于点P的①即到y轴的距离点P(a,b)到y轴的距离等于点P的②即到原点的距离点P(a,b)到坐标原点的距离为考点三平面直角坐标系中的平移与对称点的坐标用坐标表示平移平移规律在平面直角坐标系中,将点(x,y)向右(或向左)平移a个单位长度,可以得到对应点①(或②);将点(x,y)向上(或向下)平移b个单位长度,可以得到对应点③(或④)某点的对称点的坐标关于x轴对称点P(x,y)关于x 轴对称的点P 1的坐标为规律可简记为:关于谁对称谁不变,另一个变号,原点对称都变号关于y轴对称点P(x,y)关于y轴对称的点P2的坐标为关于原点对称点P(x,y)关于原点对称的点P3的坐标为考点四函数的有关概念1.常量与变量:在一个变化过程中,我们称数值发生①的量为变量,数值始终②的量为常量.如s=vt,当v一定时,v是常量,s,t都是变量.2.函数的概念:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与之对应,我们就说x是自变量,y是x的函数.3.自变量的取值范围:(1)函数解析式有意义的条件;(2)实际问题有意义的条件.4.函数值:对于一个函数,如果当自变量x=a时,因变量y=b,那么b叫做自变量的值为a时的函数值.5.函数的三种表示法:③法、④法和⑤法.6.描点法画函数图象的一般步骤:(1)⑥; (2)⑦; (3)⑧.例1.点A(3,-2)关于x轴对称的点的坐标是; 关于y轴对称的点的坐标是; 关于原点对称的点的坐标是; 把点A向左平移2个单位,再向下平移3个单位得到的点的坐标是; 把点A绕着原点顺时针旋转90°后的点的坐标是.探究三函数图象例2如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的( )A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时的路程相等D.在4至8秒内甲的速度都大于乙的速度【思政元素】:生活中的行车安全,注意遵守道路交通规则,不超速,文明行车例3.[2017·北京] 小苏和小林在如图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如图②所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15 s跑过的路程大于小林前15 s跑过的路程D.小林在跑最后100 m的过程中,与小苏相遇2次例4.[2017·丽水] 在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象.下列说法错误的是( )A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早小时八、布置作业:九、板书设计:平面直角坐标系与函数1.知识点2.例题十、教学反思:。
(完整word版)初三数学基础训练题
练习题(一)1。
计算:()12121138121-⎪⎭⎫⎝⎛+-+++2。
16的平方根是3。
分式112+-x x 的值为零,则=x4。
等腰三角形的两边是6cm 和9cm ,则周长是5。
若直角三角形的斜边长10,那么它的重心与外心之间的距离是6.函数112++=x x y 的定义域是 ,若113)(-+=x x x f 则=)4(f 7。
相切两圆的圆心距是5cm ,其中一个圆的半径是3cm ,则另一圆的半径是8。
在一陡坡上前进40米,水平高度升高9米,则坡度=i9。
把抛物线32-=x y 向右平移2个单位后,所得抛物线顶点是10.设m 、n 是方程0122=--x x 的两个根,那么=+n m 1111。
方程38151622=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+x x x x 设y x x =+1原方程可变形关于y 的整式方程是12.如图弓形ACB 所在圆的半径是5, C 弦AB=8,则弓形的高CD 是A D B13.若正多边形的中心角是036,则这个正多边形的边数是14.分式方程01112=-+-xx x 的根是 15.分解因式=+--2221a ax x16。
数据5,-3,0,4,2的中位数是 方差是 17.不等式组 52+x ≤()23+x 的解集是21-x <3x18.已知四边形ABCD 中,AB//CD ,AB=BC 请填上一个适当的条件 使得四边形ABCD 是菱形。
19。
已知一次函数b kx y +=过点()1,1-与()4,2,则y 的值随x 的增大而 20。
两个相似三角形的周长之比是1∶9,则它们的面积之比是 21.上海市现有人口约一千七百万,用科学记数法表示是22。
在边长为2的菱形ABCD 中,045=∠B AE 为BC 边上的高,将△ABE 沿AE 所在直线翻折后得△AB ′E,那么△AB ′E 与四边形AECD 重叠部分的面积是 23。
已知222=-x x 代简求值 24。
解方程:31066=+++x x x x ()()()()()133312--+-++-x x x x x练习题(二)1。
初三数学第9讲:圆的有关性质(学生版)
第九讲 圆的有关性质1、垂径定理垂径定理:垂直于弦的直。
推论1:(1)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过,并且平分弦所对的;(3)平分弦所对的一条弧的直径,弦,并且弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。
推论2:圆的两条平行弦所夹的弧相等。
即:在⊙O 中,∵AB ∥CD∴弧AC =弧BD2、圆心角定理 圆心角定理:同圆或等圆中,相等的圆心角所对的相等,所对的相等,相等。
此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论,即:①AOB DOE ∠=∠;②AB DE =;O EDCOD A B FE CBAO③OC OF =;④ 弧BA =弧BD 3、圆周角定理1、圆周角定理:同弧所对的圆周角等于它所对的的一半。
即:∵AOB ∠和ACB ∠是弧AB 所对的圆心角和圆周角 ∴2AOB ACB ∠=∠2、圆周角定理的推论:推论1:所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;即:在⊙O 中,∵C ∠、D ∠都是所对的圆周角 ∴C D ∠=∠推论2:半圆或直径所对的圆周角是;圆周角是直角所对的弧是,所对的弦是。
即:在⊙O 中,∵AB 是直径 或∵90C ∠=︒ ∴90C ∠=︒ ∴AB 是直径推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
即:在△ABC 中,∵OC OA OB ==∴△ABC是 三角形或注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。
1、垂径定理及推论的应用2、圆心角定理及推论的应用3、圆周角定理及推论的应用例1、如图,⊙O 的直径AB=12,CD 是⊙O 的弦,CD ⊥AB ,垂足为P ,且BP :AP=1:5,则CD 的长为( ).A.24B.28C.52D.54解析:考点是垂径定理与勾股定理.连接圆的半径,构造直角三角形,再利用勾股定理与垂径定理解决.CB AODCB A OCBAOCBAO答案:D .例2、如右图,在Rt ABC V 中,90ACB ∠=o ,3AC =,4BC =,以点C 为圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为A.95 B. 245 C. 185 D. 52解析:由勾股定理得AB =5,则sinA =45,作CE ⊥AD 于E ,则AE =DE ,在Rt △AEC 中,sinA =CE AC ,即453CE=,所以,CE =125,AE =95,所以,AD =185答案:C例3、已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB=8cm ,求AC 的长。
九年级最新数学中考一轮复习测试题初三数学复习检测题带图文答案100篇一轮复习9期四边形同步练习
中考一轮复习:四边形同步练习平行四边形同步练习(答题时间:30分钟)1.(广东)如图,平行四边形ABCD 中,下列说法一定正确的是( )A. AC =BDB. AC ⊥BDC. AB =CDD. AB =BC2.(新疆)四边形ABCD 中,对角线AC 与BD 交于点O ,下列条件不能判定这个四边形是平行四边形的是( )A. OA =OC ,OB =ODB. AD ∥BC ,AB ∥DCC. AB =DC ,AD =BCD. AB ∥DC ,AD =BC*3.(孝感)如图,在平行四边形ABCD 中,对角线AC 、BD 相交成的锐角为α,若AC =a ,BD =b ,则平行四边形ABCD 的面积是( )A. 21ab sinαB. ab sinαC. ab cosαD. 21ab cosα **4.(浙江湖州)在连接A 地与B 地的线段上有四个不同的点D 、G 、K 、Q ,下列四幅图中的实线分别表示某人从A 地到B 地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是( )A BC D**5.(襄阳)在平行四边形ABCD 中,BC 边上的高为4,AB =5,AC =25,则平行四边形ABCD 的周长等于__________。
**6. (安徽)如图,在平行四边形ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中一定成立的是__________。
(把所有正确结论的序号都填在横线上)①∠DCF=12∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF。
7. (广西贺州)如图,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2。
(1)求证:BE=DF;(2)求证:AF∥CE。
8. (广东汕尾)如图,在平行四边形ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F。
初三数学每日一练第9-11讲
20秋季班每日一练第9讲1.在下列各点中,一定在二次函数y=(x﹣1)2+2图象上的是()A.(1,2)B.(0,2)C.(﹣1,2)D.(1,0)2.二次函数y=ax2+bx﹣2(a≠0)的图象经过点(﹣1,4),则代数式3﹣a+b的值为.3.已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣3x+m=0的两实数根是()A.x1=1,x2=﹣1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=34.已知二次函数y=2x2,若其图象抛物线不动,把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下该抛物线的解析式是()A.y=2(x﹣2)2+2 B.y=2(x+2)2﹣2C.y=2(x﹣2)2﹣2 D.y=2(x+2)2+25.二次函数y=ax2+bx+c的图象如图所示,则下列结论中正确的是()A.a>0 b<0 c>0 B.a<0 b<0 c>0C.a<0 b>0 c<0 D.a<0 b>0 c>06.用适当的方法解方程:(1)(2x﹣5)2﹣9=0 (2)2x2﹣3x﹣2=0(3)x2+2x﹣399=0 (4)2(x﹣3)=2x(x﹣3)7.方成同学要利用长为24m的篱笆围成一个长方形花圃,形状如图,一边靠墙(墙的最大可用长度为15m),中间隔有一道篱笆,设AB长为x米,围成的花圃面积为S平方米.(1)求S关于x的函数解析式;(2)求自变量x的取值范围;(3)长方形花圃面积为21时,求AB的长.8.在2020年新冠肺炎抗疫期间,小李决定销售一批口罩,经市场调研:某类型口罩进价每个为10元,当售价为每个12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请解答以下问题:(1)直接写该类型口罩销售量y(个)与售价x(元)之间的函数关系(12≤x≤30).(2)小李为了让利给顾客,并获得840元利润,售价应定位多少?(3)当售价定为多少时,小李获得利润最大,最大利润是多少?20秋季班每日一练第10讲1.已知二次函数y=ax2+bx+c的图象如图所示,那么实数a、b、c的取值范围是()A.a>0,b>0,c>0 B.a>0,b<0,c>0C.a>0,b>0,c<0 D.a<0,b<0,c>0.2.二次函数y=x2﹣4x+5﹣m2的图象过点(0,4),则m的值为.3.二次函数y=kx2﹣6x+3的图象与x轴有交点,则k的取值范围是()A.k<3 B.k<3且k≠0 C.k≤3 D.k≤3且k≠04.已知点M(m,2018),N(n,2018)是二次函数y=ax2+bx+2017图象上的两个不同的点,则当x=m+n 时,其函数值y=()A.2019 B.2018 C.2017 D.20165.将抛物线y=2x2向左平移3个单位得到的抛物线的解析式是()A.y=2x2+3 B.y=2x2﹣3 C.y=2(x+3)2D.y=2(x﹣3)26.解下列方程.(1)(x﹣2)2﹣4=0 (2)x2﹣4x﹣396=0(3)2x2﹣2=3x(4)2(2x﹣3)=3x(2x﹣3)7.学校准备在围墙边设计一个长方形的自行车车棚ABCD,一边利用围墙,墙长为18米,并且已有总长为32m的铁围栏,为了出入方便,在平行于墙的一边留有一个2米宽的门(门另用其他材料做好)设与墙垂直的一边长AB为x米.(1)如果要使这个自行车车棚的面积为104米2,求AB的长?(2)如果要使这个自行车车棚的面积最大,请你设计搭建的方案.8.某超市销售一种饮料,平均每天可售出100箱,每箱利润为120元,为了扩大销售,尽快减少库存,超市准备适当降价,据测算,若每箱降价2元,则每天多售出4箱.(1)如果要使每天销售饮料获利14000元,则每箱应该降价多少元?(2)每天销售该饮料获利能达到14500元吗?若能,则每箱应该降价多少?若不能,请说明理由.(3)要使每天销售饮料获利最大,每箱应该降价多少元?最大获利是多少?20秋季班每日一练第11讲1.抛物线y=﹣x2+2x﹣5与y轴的交点坐标为.2.抛物线y=﹣x2+2kx+2与x轴交点的个数为()A.0个B.1个C.2个D.以上都不对3.如图是二次函数y=ax2+bx+c的图象,下列关系中,正确的是()A.a>0且c<0 B.a<0且c<0 C.a<0且c>0 D.a>0且c>04.如果点A(1,3),B(m,3)是抛物线y=a(x﹣4)2+h上两个不同的点,那么m的值为()A.4 B.5 C.6 D.75.在平面直角坐标系中,平移二次函数y=x2+4x+3的图象能够与二次函数y=x2的图象重合,则平移方式为()A.向左平移2个单位,向下平移1个单位B.向左平移2个单位,向上平移1个单位C.向右平移2个单位,向下平移1个单位D.向右平移2个单位,向上平移1个单位6.用适当的方法解下列方程:(1)2(x﹣1)2=18;(2)x2﹣2x=2x+1;(3)(3y﹣1)(y+1)=4;(4)x(2x+3)=2x+3.7.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为40米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米.(1)若苗圃园的面积为102平方米,求x;(2)若使这个苗圃园的面积最大,求出x和面积最大值.8.某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件.为了增加利润,减少库存,商店决定采取适当的降价措施.经市场调查发现,如果每件童装降价1元,那么可多售出2件.设每件童装降价x元.(1)降价后,每件盈利元,每天可销售件;(用含x的代数式填空)(2)每件童装降价多少元时,每天盈利1200元;(3)每件童装降价多少元时,每天可获得最大盈利,最大盈利是多少元?姑苏学堂-初三数学-20秋季班每日一练第9-11讲参考答案与试题解析一.20秋季班每日一练第9讲(共8小题)1.【解答】解:当x=1时,y=2,故A正确;D错误;当x=0时,y=3,故B错误;当x=﹣1时,y=6,故C错误;故选:A.2.【解答】解:∵二次函数y=ax2+bx﹣2的图象经过点(﹣1,4),∴a﹣b﹣2=4,∴a﹣b=6,∴3﹣a+b=3﹣(a﹣b)=3﹣6=﹣3,故答案为﹣3.3.【解答】解:∵二次函数的解析式是y=x2﹣3x+m(m为常数),∴该抛物线的对称轴是:x=.又∵二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),∴根据抛物线的对称性质知,该抛物线与x轴的另一个交点的坐标是(2,0),∴关于x的一元二次方程x2﹣3x+m=0的两实数根分别是:x1=1,x2=2.故选:B.4.【解答】解:抛物线不动,把x轴、y轴分别向上、向右平移2个单位,即把抛物线向下、向左平移2个单位,则该抛物线的解析式是y=2(x+2)2﹣2,故选:B.5.【解答】解:∵抛物线开口向下,∴a<0;又∵抛物线的对称轴在y轴的右侧,∴x=﹣>0,∴b>0,而抛物线与y轴的交点在x轴上方,∴c>0.故选:D.6.【解答】解:(1)(2x﹣5)2﹣9=0,(2x﹣5+3)(2x﹣5﹣3)=0,2x﹣5+3=0,2x﹣5﹣3=0,x1=1,x2=4;(2)2x2﹣3x﹣2=0,(2x+1)(x﹣2)=0,2x+1=0,x﹣2=0,x1=﹣,x2=2;(3)x2+2x﹣399=0,(x+21)(x﹣19)=0,x+21=0,x﹣19=0,x1=﹣21,x2=19;(4)2(x﹣3)=2x(x﹣3),2(x﹣3)﹣2x(x﹣3)=0,2(x﹣3)(1﹣x)=0,x﹣3=0,1﹣x=0,x1=3,x2=1.7.【解答】解:(1)S=x(24﹣3x)=﹣3x2+24x;(2)∵0<24﹣3x≤15,∴3≤x<8;(3)当S=21时,即21=﹣3x2+24x,解得:x1=1(不合题意舍去),x2=7,∴AB=7米.8.【解答】解:(1)由题意得:y=180﹣10(x﹣12)=﹣10x+300(12≤x≤30),故答案为:y=﹣10x+300.(2)设利润为w,则w=(﹣10x+300)(x﹣10)=840,解得:x1=16,x2=24(舍去)答:小李为了让利给顾客,售价应定为16元;(3)w=(﹣10x+300)(x﹣10)=﹣10(x﹣20)2+1000,∵12≤x≤30,a=﹣10<0,∴x=20 时,w最大值为1000,答:当售价定为20元时,最大利润为1000元.二.20秋季班每日一练第10讲(共8小题)1.【解答】解:∵图象开口向上,∴a>0∵对称轴在y轴左侧,∴b>0∵图象与y轴交于正半轴,∴c>0,故选:A.2.【解答】解:∵根二次函数y=x2﹣4x+5﹣m2的图象过点(0,4),∴5﹣m2=4,解得m=±1.故答案为±1.3.【解答】解:∵二次函数y=kx2﹣6x+3的图象与x轴有交点,∴方程kx2﹣6x+3=0(k≠0)有实数根,即△=36﹣12k≥0,k≤3,由于是二次函数,故k≠0,则k的取值范围是k≤3且k≠0.故选:D.4.【解答】解:∵当x=m和x=n时,y的值相等,∴x=﹣=,∴m+n=﹣,当x=m+n时,则y=a(﹣)2+b(﹣)+2017=2017∴当x=m+n时,二次函数y的值是2017.故选:C.5.【解答】解:将抛物线y=2x2向左平移3个单位所得直线解析式为:y=2(x+3)2;故选:C.6.【解答】解:(1)∵(x﹣2)2﹣4=0,∴x﹣2=±2,∴x=2±2;(2)∵x2﹣4x﹣396=0,∴x2﹣4x+4=400,∴(x﹣2)2=400,∴x﹣2=±20,∴x=22或x=﹣18;(3)∵2x2﹣2=3x,∴2x2﹣3x﹣2=0,(x﹣2)(2x+1)=0,∴x=2或x=;(4)∵2(2x﹣3)=3x(2x﹣3),∴2(2x﹣3)﹣3x(2x﹣3)=0,∴(2x﹣3)(2﹣3x)=0,∴x=或x=;7.【解答】解:(1)设宽为xm,则长为32﹣2x+2=(34﹣2x)m,依题意可列方程x(34﹣2x)=104,解之得x1=13,x2=4.当x1=13时,32﹣2x+2=8,当x2=4时,32﹣2x+2=26>18(不合题意,舍去),所以这个车棚的长为8m,宽为13m;(2)设这个车棚的面积为ym2,由题意得y=x(34﹣2x)=﹣2x2+34x=﹣2(x﹣8.5)2+144.5;要使面积最大,长为17m,宽为8.5m.8.【解答】解:(1)设每箱应该降价x元,则平均每天可售出(100+2x)箱,依题意,得:(120﹣x)(100+2x)=14000,整理,得:x2﹣70x+1000=0,解得:x1=20,x2=50.∵为了扩大销售,尽快减少库存,∴x1=20舍去.答:每箱应该降价50元.(2)设每箱应该降价y元,则平均每天可售出(100+2y)箱,依题意,得:(120﹣y)(100+2y)=14500,整理,得:y2﹣70y+1250=0,∵△=(﹣70)2﹣4×1×1250=﹣100<0,∴该方程无解,∴每天销售该饮料获利不能达到14500元.(3)设每箱应该降价m元,每天获得的利润为n元,则平均每天可售出(100+2m)箱,依题意,得:n=(120﹣m)(100+2m)=﹣2m2+140m+12000=﹣2(m﹣35)2+14450.∵﹣1<0,∴当m=35时,n取得最大值,最大值为14450.答:要使每天销售饮料获利最大,每箱应该降价35元,最大获利是14450元.三.20秋季班每日一练第11讲(共8小题)1.【解答】解:把x=0代入y=﹣x2+2x﹣5,求得y=﹣5,则抛物线y=﹣x2+2x﹣5与y轴的交点坐标为(0,﹣5).故答案为(0,﹣5).2.【解答】解:当与x轴相交时,函数值为0.0=﹣x2+2kx+2,△=b2﹣4ac=4k2+8>0,∴方程有2个不相等的实数根,∴抛物线y=﹣x2+2kx+2与x轴交点的个数为2个,故选:C.3.【解答】解:∵抛物线开口向上,∴a>0;∵抛物线与y轴的交点在x轴下方,∴c<0.故选:A.4.【解答】解:∵点A(1,3)、B(m,3)是抛物线y=a(x﹣4)2+h上两个不同的点,∴A(1,3)与B(m,3)关于对称轴x=4对称,∴=4,解得m=7,故选:D.5.【解答】解:二次函数y=x2+4x+3=(x+2)2﹣1,将其向右平移2个单位,再向上平移1个单位得到二次函数y=x2.故选:D.6.【解答】解:(1)方程两边除以2,得:(x﹣1)2=9,则x﹣1=3或﹣3,则x1=4,x2=﹣2;(2)原方程可整理为:x2﹣4x+4=5,则(x﹣2)2=5,则x﹣2=或﹣,解得:x1=2+,x2=2﹣;(3)整理,得:3y2+2y﹣5=0,分解因式得:(y﹣1)(3y+5)=0,则y﹣1=0或3y+5=0,解得:y1=1,y2=﹣;(4)移项,得:x(2x+3)﹣(2x+3)=0,分解因式得:(2x+3)(x﹣1)=0,则2x+3=0或x﹣1=0,解得:x1=﹣,x2=1.7.【解答】(1)解:根据题意得:(40﹣2x)x=102,解得:x=3或x=17,∵40﹣2x≤18,∴x≥11,∴x=17;(2)解:设苗圃园的面积为y平方米,则y=x(40﹣2x)=﹣2x2+40x=﹣2(x﹣10)2+200∵二次项系数为负,∴苗圃园的面积y有最大值.∴当x=10时,即平行于墙的一边长是20米,20>18,不符题意舍去;∴当x=11时,y最大=198平方米;答:当x=11米时,这个苗圃园的面积最大,最大值为198平方米.8.【解答】解:(1)设每件童装降价x元时,每天可销售20+2x件,每件盈利40﹣x元,故答案为:(40﹣x),(20+2x);(2)根据题意,得:(20+2x)(40﹣x)=1200解得:x1=20,x2=10答:每件童装降价20元或10元,平均每天赢利1200元;(3)设每件童装降价x元,盈利y元,根据题意得,y=(20+2x)(40﹣x)=﹣2x2+60x+800=﹣2(x﹣15)+1250,答:每件童装降价15元时,每天可获得最大盈利,最大盈利是1250元.。
初三数学练习(9)——锐角三角比
;
3、如果等腰三角形中的两条边长分别是 2 和 5 ,那么底角的余弦为
;
4、在 ABC 中, AB AC , BC 边上高为 8 ,三角形周长为 32 ,则 sin C ________ ;
5、点 G 是 ABC 的重心,若 AC 3 , BC 4 , AB 5 ,则 tan ACG
;
6、 A
3 (1)求证: CE BC ;
AB BD (2)若 S1, S2 分别表示 SBCE , SABD 的面积,求 S1 S2 的值;
(3)当 AEB ACD 时,求 S ACD 的面积;
2
A D
B
D
C
8、
如图,在 ABC 中, AB AC ,cos B 1 ,BC 2 ,把 ABC 绕点 C
4
E
旋转,使点 B 落在边 AB 上的点 E 处,则 AE=
;
B
C
二、解答题:
9、如图,延长 RtABC 斜边 AB 至 D 点,使 BD AB ,连结 CD ,若 cot BCD 3 ,求 tan A
初三数学练习(九)
(锐角的三角比二)
一、填充题:
1、若 tan
5
,则
sin sin
2 cos 3cos
__________
;
2、矩形 ABCD 中, AB 5 , BC 12 ,将对角线 BD 绕点 B 旋转,点 D 落在 BC 的延长线上的
点 D 处,那么 tan BD ' A 的值等于
的值
10、如图:已知在 ABC 中, D 是 AC 的中点, ABC 1350 , DBC 450 , 求 sin ADB ;
B
C
D
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学专题训练(九)一、填空题1、在等号左边填一个合适的数,再分解因式:_____________________2=--x x 2、 函数113-+-=x x y 的定义域是_________. 3、 在坡度为4.2:1=i 的斜坡上每走13米就上升________米. 4、如图,直升机飞行时,高度保持为100米。
飞机在点A 处看到地面控制点C 的俯角为11018’。
从点A 到达控制点C 上空B 处,飞机还要飞_______米.5、已知△ABC 中,AB=AC ,∠BAC=120°,点D 是边AC 上一点,连BD ,若沿直线BD 翻折,点A 恰好落在边BC 上,则AD :DC= 。
6、如图,Rt △ABC 中,∠C=900,AC=1,BC=2。
将△ABC 绕顶点C 旋转,点A 转到BC 边上的点A ’ 处,点B 转到点B ’处。
延长B ’ A ’交AB 于点D ,则S △BA ’D =_____________.7、将一副直角三角尺如图摆放在一起,连接AD,则∠DAC 的余切值为: 。
8、如图2,把腰长为4的等腰直角三角形折叠两次后,得到一个小三角形的周长是 .图29、要使正五边形绕着它的中心旋转后能与它本身重合,至少要旋转 度.10、在Rt ABC ∆中,90C ︒∠=,如果5,12BC AC ==,那么ABC ∆的内心到斜边的距离是 .二、选择题11、已知x >y >0,则下列不等式中错误..的是( ) A 、yx 11> B 、y x -<- C 、22y x > D 、y x > 12、下列图形中, 既是中心对称图形, 又是轴对称图形的是…………………………( )(A) 等边三角形 (B) 等腰梯形 (C) 圆 (D) 平行四边形13、下列命题中真命题是………………………………………………………………( ) (A )两直线被第三条直线所截,同位角相等; (B )既是中心对称又是轴对称的多边形是正多边形;(C )如果三角形一边上的中线等于这一边的一半,那么这个三角形是直角三角形。
(D )如果一直线截三角形两边所得的三角形与原三角形相似,那么这条直线平行于三角形的第三边;14、下列命题中,是假命题的是 ( ) (A )任意一个直角三角形一定能分成两个等腰三角形(B )任意一个等腰三角形一定能分成两个全等的直角三角形 (C )两个全等的直角三角形一定能组成一个等腰三角形 (D )两个等腰三角形一定能组成一个直角三角形 三、解答题 15、如图2,已知四边形ABCD 是梯形,DC ∥AB ,四边形ACED 是平行四边形,延长DC 交BE 于点G ,延长EC 交AB 于点H .(1)求证:CE HC =;(2)若3CG =,求BH 的长.16、某厂现有40台机器,平均每台机器每天生产300个零件,现准备增加一批同型号的机器(不超过15台)以提高生产总量,在试生产过程中发现,由于其他生产条件没变,因此每增加一台机器,就会使所有机器平均每天每台少生产4个零件.若每天需要生产12600个零件,则需要增加多少台机器?17、如图,CD 是一幢3米高的温室,其南面窗户的底框E 距地面1米,CD 在地面上留下的最大影长CF 为2米,现欲在距C 点7米的正南方A 点处建一幢12米高的楼房AB (A 、C 、F 在同一水平线上)(1)试按比例作出楼房AB 及它的最大影长AG ;(2)大楼AB 建成后是否会影响温室通过窗户DE 的采光?试说明理由。
DH G E DC B A 图218、已知二次函数n mx x y ++-=221,顶点为)89,25(. (1)求n m 、的值;(2)设这个二次函数的图象与x 轴的交点是A 、B (B 在点A 右边),与y 轴的交点是C ,求A 、B 、C 的坐标;(3)求证:⊿OAC ∽⊿OCB ;(4)⊙P 是经过A 、B 两点的一个动圆,当⊙P 与y 轴相交,且在y 轴上两交点的距离为3时,求圆心P 的坐标.19、如图,抛物线2y ax bx c =++顶点为P (1,-1),与x 轴交于O 、A 两点,其中O 为原点,点C 是对称轴与x 轴的交点。
(1)求抛物线的解析式和点C 的坐标;(2)试在抛物线上找点D ,在对称轴上找点Q ,使得以P 、D 、Q 为顶点的三角形与△OPC 相似。
请求出所有可能的点D 和点Q 的坐标。
20、如图,在Rt △ABC 中,∠C =90°,∠B =30°,BC =4.左右做平行移动的等边三角形DEF 的两个顶点E 、F 始终在边BC 上,DE 、DF 分别与AB 相交于点G 、H .当点F 与点C 重合时,点D 恰好在斜边AB 上. (1)求△DEF 的边长;(2)在△DEF 做平行移动的过程中,图中是否存在与线段CF 始终相等的线段?如果存在,请指出这条线段,并加以证明;如果不存在,请说明理由;(3)假设点C 与点F 的距离为x ,△DEF 与△ABC 重叠部分的面积为y ,求y 与x 的函数解析式,并写出它的定义域.21、已知:如图,在梯形ABCD 中,AD ∥BC ,AB =CD =5,AD =6,BC =12,点E 在 AD 边上,且AE :ED =1:2,连接CE ,点P 是AB 边上的一个动点,(P 不与A ,B 重合) 过点P 作PQ ∥CE ,交BC 于Q ,设BP =x ,CQ =y , (1)求CosB 的值;(2)求 y 与x 的函数解析式,并写出函数的定义域;(3)连接EQ ,试探索△EQC 有无可能是直角三角形,若可能,试求出x 的值,若不能,请简要说明理由。
B Q CB E F17、(1)如图所示。
………………(3分) [注:图形的精确程度,不作过高要求; 主要看:光线BG 与DF 基本平行; 比例大致吻合。
如AB 的高度基本是CD 的4倍。
] (2)影响。
理由如下: 设BG 交CD 于点M ,过点M 作MH ⊥AB ,垂足为H , 则MH=AC=7, ………(5分) ∵BG ∥DF , ∴∠BMH=∠BGA=∠DFC , 又∠BHM=∠DCF=90°∴ △BHM ∽△DCF ………(7分) ∴23==CF DC MH BH ……………(8分) 又MH =7 ∴ BH=10.5 ……………(9分) 从而 CM=AH=12-10.5=1.5>1∴ 点M 在点E 的上方,从而影响采光。
………………(10分)24、解:(1) ∵ 抛物线2y ax bx c =++的顶点为P (1,-1),∴ 1)1(2--=x a y …………………………………………(2分) 又抛物线经过原点O ,∴1)10(02--=a ∴ 1=a …………………………………(3分) ∴ 抛物线的解析式为 1)1(2--=x y即:x x y 22-= ……………………………………(4分)对称轴为:直线x=1, ∴ C 点坐标为(1,0)……………………(5分)(2)由(1)知,OC=1,PC=1,∠OCP =90°∴ △OPC 为等腰直角三角形。
…………………………(6分)要使以P 、D 、Q 为顶点的三角形与 △OPC 相似,则△PDQ 也一定为等腰直角三角形。
显然,∠DPQ 不可能是90°,所以∠DPQ = 45°……………(7分) ∴ 点P 在直线PO 或直线PB 上。
∴ 点D 只能是(0,0),或(2,0)…………………………(9分) 当D 为(0,0)时,若∠DQP = 90°,则点Q 与点 C 重合,从而△PDQ 与△OPC 重合,不合,舍去;若∠PDQ = 90°,则点Q 的坐标为(1,1)……………(10分) 当D 为(2,0)时,若∠DQP = 90°,则点Q 与点 C 重合,即点Q 的坐标为(1,0); 若∠PDQ = 90°,则点Q 的坐标为(1,1)……………(11分) 所以,符合题意的点D 和点Q 为:D (0,0)、Q (1,1);D (2,0)、Q (1,0);D (2,0)、Q (1,1); ……………(12分)25.解:(1)过点A 作AH ⊥BC ,则BH=3,从而cosB=53。
…………(3分)(2)过点E 作EF ∥AB ,则BF=AE=2,EF=AB=5,FC=10,又BP=x ,BQ=12-y, 不难得△BPQ ∽△FEC ,∴FCFE BQ BP =,即10512=-y x ,…………(6分)∴122+-=x y ,)50(<<x …………(8分) (3)显然 ∠ECQ ≠90°,且tg ∠ECQ=74,CE=65,cos ∠ECQ=65657,…(9分)若∠EQC=90°,则 CQ=7,即y=7, 从而 x=25;…………(11分)若∠QEC=90°,则 cos ∠ECQ=QC EC =65657,即6565765=y , y=765, 从而 x=1419;…………((13分)综上,x=25或x=1419 …………(14分)25.解:(1)∵∠DCE =60°,∠B =30°,∴∠CDB =90°.……………………(1分) ∵BC =4,∴CD =2,即△DEF 的边长等于2.……………………………(1分) (2)CF =GD . ……………………………………………………………………(1分) 证明:∵BC =4,EF =2,∴BE =2-CF .∵∠DEF =60°,∠B =30°,∴∠BGE =30°.…………………………(1分) ∴∠BGE =∠B .……………………………………………………………(1分) ∴GE =BE =2-CF .…………………………………………………………(1分) ∴DG =2-GE =2-(2-CF )=CF .……………………………………………(1分) (3)∵∠DGH =∠BGE =30°,∠D =60°,∴∠DHG =90°.………………(1分)∴x DG DH 2121==,x HG 23=. ∴S △DHG =283232121x x x =⋅⋅.…………………………………………(1分)而S △DEF =33221=⨯⨯.………………………………………………(1分)∴y =S △DEF - S △DHG =2833x -,即所求函数的解析式为2833x y -=.…………………………………(1分) 定义域为20≤≤x .…………………………………………………………(1分)。