混凝土结构设计原理上册__课后习题答案(中国建筑工业出版社)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《混凝土结构设计原理》
第1章绪论
思考题
1.1钢筋混凝土梁破坏时的特点是:受拉钢筋屈服,受压区混凝土被压碎,破坏前变形较大,有
明显预兆,属于延性破坏类型。
在钢筋混凝土结构中,利用混凝土的抗压能力较强而抗拉能力很弱,钢筋的抗拉能力很强的特点,用混凝土主要承受梁中和轴以上受压区的压力,钢筋主要承受中和轴以下受拉区的拉力,即使受拉区的混凝土开裂后梁还能继续承受相当大的荷载,直到受拉钢筋达到屈服强度以后,荷载再略有增加,受压区混凝土被压碎,梁才破坏。
由于混凝土硬化后钢筋与混凝土之间产生了良好的粘结力,且钢筋与混凝土两种材料的温度线膨胀系数十分接近,当温度变化时,不致产生较大的温度应力而破坏二者之间的粘结,从而保证了钢筋和混凝土的协同工作。
1.2钢筋混凝土结构的优点有:1)经济性好,材料性能得到合理利用;2)可模性好;3)耐久
性和耐火性好,维护费用低;4)整体性好,且通过合适的配筋,可获得较好的延性;5)刚度大,阻尼大;6)就地取材。
缺点有:1)自重大;2)抗裂性差;3)承载力有限;4)施工复杂;5)加固困难。
1.3本课程主要内容分为“混凝土结构设计原理”和“混凝土结构设计”两部分。
前者主要讲述
各种混凝土基本构件的受力性能、截面设计计算方法和构造等混凝土结构的基本理论,属于专业基础课内容;后者主要讲述梁板结构、单层厂房、多层和高层房屋、公路桥梁等的结构设计,属于专业课内容。
学习本课程要注意以下问题:1)加强实验、实践性教学环节并注意扩大知识面;2)突出重点,并注意难点的学习;3)深刻理解重要的概念,熟练掌握设计计算的基本功,切忌死记硬背。
第2章混凝土结构材料的物理力学性能
思考题
2.1①混凝土的立方体抗压强度标准值f cu,k是根据以边长为150mm的立方体为标准试件,在
(20±3)℃的温度和相对湿度为90%以上的潮湿空气中养护28d,按照标准试验方法测得的具有95%保证率的立方体抗压强度确定的。
②混凝土的轴心抗压强度标准值f ck是根据以150mm×150mm×300mm的棱柱体为标准试件,在与立方体标准试件相同的养护条件下,按照棱柱体试件试验测得的具有95%保证率的抗压强度确定的。
③混凝土的轴心抗拉强度标准值f tk是采用直接轴心抗拉试验直接测试或通过圆柱体或立方体的劈裂试验间接测试,测得的具有95%保证率的轴心抗拉强度。
④由于棱柱体标准试件比立方体标准试件的高度
大,试验机压板与试件之间的摩擦力对棱柱体试件高度中部的横向变形的约束影响比对立方体试件的小,所以棱柱体试件的抗压强度比立方体的强度值小,故f ck 低于f cu,k 。
⑤轴心抗拉强度标准值f tk 与立方体抗压强度标准值f cu,k 之间的关系为:
245.055.0k cu,tk )
645.11(395.088.0αδ⨯-⨯=f f 。
⑥轴心抗压强度标准值f ck 与立方体抗压强度标准值f cu,k 之间的关系为:k cu,21ck 88.0f f αα=。
2.2 混凝土的强度等级是根据立方体抗压强度标准值确定的。
我国新《规范》规定的混凝土强度
等级有C15、C20、C25、C30、C35、C40、C45、C50、C55、C60、C65、C70、C75和C80,共14个等级。
2.3 根据约束原理,要提高混凝土的抗压强度,就要对混凝土的横向变形加以约束,从而限制混凝
土内部微裂缝的发展。
因此,工程上通常采用沿方形钢筋混凝土短柱高度方向环向设置密排矩形箍筋的方法来约束混凝土,然后沿柱四周支模板,浇筑混凝土保护层,以此改善钢筋混凝土短柱的受力性能,达到提高混凝土的抗压强度和延性的目的。
2.4 单向受力状态下,混凝土的强度与水泥强度等级、水灰比有很大关系,骨料的性质、混凝土
的级配、混凝土成型方法、硬化时的环境条件及混凝土的龄期也不同程度地影响混凝土的强度。
混凝土轴心受压应力—应变曲线包括上升段和下降段两个部分。
上升段可分为三段,从加载至比例极限点A 为第1阶段,此时,混凝土的变形主要是弹性变形,应力—应变关系接近直线;超过A 点进入第2阶段,至临界点B ,此阶段为混凝土裂缝稳定扩展阶段;此后直至峰点C 为第3阶段,此阶段为裂缝快速发展的不稳定阶段,峰点C 相应的峰值应力通常作为混凝土棱柱体的抗压强度f c ,相应的峰值应变0ε一般在0.0015~0.0025之间波动,通常取0.002。
下降段亦可分为三段,在峰点C 以后,裂缝迅速发展,内部结构的整体受到愈来愈严重的破坏,应力—应变曲线向下弯曲,直到凹向发生改变,曲线出现拐点D ;超过“拐点”,随着变形的增加,曲线逐渐凸向应变轴方向发展,此段曲线中曲率最大的一点称为收敛点E ;从“收敛点”开始以后直至F 点的曲线称为收敛段,这时贯通的主裂缝已很宽,混凝土最终被破坏。
常用的表示混凝土单轴向受压应力—应变曲线的数学模型有两种,第一种为美国E.Hognestad 建议的模型:上升段为二次抛物线,下降段为斜直线;第二种为德国Rusch 建议的模型:上升段采用二次抛物线,下降段采用水平直线。
2.5 连接混凝土受压应力—应变曲线的原点至曲线任一点处割线的斜率,即为混凝土的变形模
量。
在混凝土受压应力—应变曲线的原点作一切线,其斜率即为混凝土的弹性模量。
2.6 混凝土在荷载重复作用下引起的破坏称为疲劳破坏。
当混凝土试件的加载应力小于混凝土疲
f时,其加载卸载应力—应变曲线形成一个环形,在多次加载卸载作用下,应力—劳强度f
c
应变环越来越密合,经过多次重复,这个曲线就密合成一条直线。
当混凝土试件的加载应力
f时,混凝土应力—应变曲线开始凸向应力轴,在重复荷载过程中逐大于混凝土疲劳强度f
c
渐变成直线,再经过多次重复加卸载后,其应力—应变曲线由凸向应力轴而逐渐凸向应变轴,以致加卸载不能形成封闭环,且应力—应变曲线倾角不断减小。
2.7结构或材料承受的荷载或应力不变,而应变或变形随时间增长的现象称为徐变。
徐变对混凝
土结构和构件的工作性能有很大影响,它会使构件的变形增加,在钢筋混凝土截面中引起应力重分布的现象,在预应力混凝土结构中会造成预应力损失。
影响混凝土徐变的主要因素有:1)时间参数;2)混凝土的应力大小;3)加载时混凝土的龄期;4)混凝土的组成成分;5)混凝土的制作方法及养护条件;6)构件的形状及尺寸;7)钢筋的存在等。
减少徐变的方法有:1)减小混凝土的水泥用量和水灰比;2)采用较坚硬的骨料;3)养护时尽量保持高温高湿,使水泥水化作用充分;4)受到荷载作用后所处的环境尽量温度低、湿度高。
2.8当养护不好以及混凝土构件的四周受约束从而阻止混凝土收缩时,会使混凝土构件表面出现
收缩裂缝;当混凝土构件处于完全自由状态时,它产生的收缩只会引起构件的缩短而不会产生裂缝。
影响混凝土收缩的主要因素有:1)水泥的品种;2)水泥的用量;3)骨料的性质;
4)养护条件;5)混凝土制作方法;6)使用环境;7)构件的体积与表面积的比值。
减少收缩的方法有:1)采用低强度水泥;2)控制水泥用量和水灰比;3)采用较坚硬的骨料;4)在混凝土结硬过程中及使用环境下尽量保持高温高湿;5)浇筑混凝土时尽量保证混凝土浇捣密实;6)增大构件体表比。
工的方法有冷拉和冷拔。
冷拉可提高钢筋的抗拉强度,但冷拉后钢筋的塑性有所降低。
冷拔可同时提高钢筋的抗拉及抗压强度,但塑性降低很多。
2.11钢筋混凝土结构对钢筋性能的要求如下:1)钢筋的强度必须能保证安全使用;2)钢筋具有
一定的塑性;3)钢筋的可焊性较好;4)钢筋的耐火性能较好;5)钢筋与混凝土之间有足够的粘结力。
2.12钢筋混凝土受力后会沿钢筋和混凝土接触面上产生剪应力,通常把这种剪应力称为钢筋和混
凝土之间的粘结力。
影响钢筋与混凝土粘结强度的主要因素有:混凝土强度、保护层厚度及钢筋净间距、横向配筋及侧向压应力、钢筋表面形状以及浇筑混凝土时钢筋的位置等。
保证钢筋和混凝土之间有足够的粘结力的构造措施有:1)对不同等级的混凝土和钢筋,要保证最小搭接长度和锚固长度;2)为了保证混凝土与钢筋之间有足够的粘结,必须满足钢筋最小间距和混凝土保护层最小厚度的要求;3)在钢筋的搭接接头范围内应加密箍筋;4)为了保证足够的粘结在钢筋端部应设置弯钩。
此外,对高度较大的混凝土构件应分层浇注或二次浇捣,另外,对于锈蚀钢筋,一般除重锈钢筋外,可不必除锈。
第3章按近似概率理论的极限状态设计法
思考题
3.1结构在规定的时间内,在规定的条件下,完成预定功能的能力称为结构的可靠性。
它包含安
全性、适用性、耐久性三个功能要求。
结构超过承载能力极限状态后就不能满足安全性的要求;结构超过正常使用极限状态后就不能保证适用性和耐久性的功能要求。
建筑结构安全等级是根据建筑结构破坏时可能产生的后果严重与否来划分的。
3.2所有能使结构产生内力或变形的原因统称为作用,荷载则为“作用”中的一种,属于直接作
用,其特点是以力的形式出现的。
影响结构可靠性的因素有:1)设计使用年限;2)设计、施工、使用及维护的条件;3)完成预定功能的能力。
结构构件的抗力与构件的几何尺寸、配筋情况、混凝土和钢筋的强度等级等因素有关。
由于材料强度的离散性、构件截面尺寸的施工误差及简化计算时由于近似处理某些系数的误差,使得结构构件的抗力具有不确定的性质,所以抗力是一个随机变量。
3.3整个结构或构件的一部分超过某一特定状态就不能满足设计指定的某一功能要求,这个特定
状态称为该功能的极限状态。
结构的极限状态可分为两类,一类是承载能力极限状态,即结构或构件达到最大承载能力或者达到不适于继续承载的变形状态。
另一类是正常使用极限状态,即结构或构件达到正常使用或耐久性能中某项规定限值的状态。
3.4建筑结构应该满足安全性、适用性和耐久性的功能要求。
结构的设计工作寿命是指设计规定
的结构或结构构件不需进行大修即可按其预定目的使用的时期,它可按《建筑结构可靠度设计统一标准》确定,业主可提出要求,经主管部门批准,也可按业主的要求确定。
结构超过其设计工作寿命并不意味着不能再使用,只是其完成预定功能的能力越来越差了。
3.5 正态分布概率密度曲线主要有平均值μ和标准差σ两个数字特征。
μ越大,表示曲线离纵轴
越远;σ越大,表示数据越分散,曲线扁而平;反之,则数据越集中,曲线高而窄。
正态分布概率密度曲线的主要特点是曲线呈钟形,并以x =μ为对称轴呈对称分布,峰点横座标为平均值μ,峰点两侧μ±σ处各有一个反弯点,且曲线以x 轴为渐近线。
3.6 P(x >x 0)=1-P(x ≤x 0)=1-⎰∞-0)(x dx x f 。
3.7 保证结构可靠的概率称为保证率,如95%、97.73%。
结构的可靠度就是结构可靠性的概率度
量。
结构的可靠指标β=μz /σz ,它和失效概率一样可作为衡量结构可靠度的一个指标。
我国《建筑结构设计统一标准》定义结构可靠度是结构在设计工作寿命内,在正常条件下,完成预定功能的概率。
3.8 设R 表示结构构件抗力,S 表示荷载效应,Z =R -S 就是结构的功能函数。
整个结构或构件
的一部分超过某一特定状态就不能满足设计指定的某一功能要求,这个特定状态就是该功能的极限状态。
Z >0表示结构处于可靠状态;Z <0表示结构处于失效(破坏)状态;Z =0表示结构达到极限状态。
3.9 Z =R -S <0(即构件失效)出现的概率即为失效概率p f ,可靠概率p s =1-p f ,目标可靠指标就
是使结构在按承载能力极限状态设计时其完成预定功能的概率不低于某一允许的水平时的可靠指标。
可靠指标β与失效概率p f 之间有一一对应的关系,它们都可以用来衡量结构可靠度。
可靠指标β可按公式β=μz /σz =(μR -μS )/2S
2R σσ+确定。
我国“规范”采用的概率极限状态设计法是一种近似方法,因为其中用到的概率统计特征值只有平均值和均方差,并非实际的概率分布,并且在分离导出分项系数时还作了一些假定,运算中采用了一些近似的处理方法,因而计算结果是近似的,所以只能称为近似概率设计法。
3.10 我国“规范”承载力极限状态设计表达式如下:
1) 对由可变荷载效应控制的组合,其表达式一般形式为:
...),,(...),/,/()(k C S k C Ck S Sk 2ik Ci Qi Qi 1k Q1Q1k G G 0a f f R a f f R Q C Q C G C n
i =≤++∑=γγψγγγγ
2) 对由永久荷载效应控制的组合,其表达式一般形式为:
...),,(...),/,/()(k C S k C Ck S Sk 1ik Ci Qi Qi k G G 0a f f R a f f R Q C G C n
i =≤+∑=γγψγγγ
式中,0γ——结构构件的重要性系数,与安全等级对应,对安全等级为一级或设计使用年
限为100年及以上的结构构件不应小于1.1;对安全等级为二级或设计使用年
限为50年的结构构件不应小于1.0;对安全等级为三级或设计使用年限为5
年及以下的结构构件不应小于0.9;在抗震设计中,不考虑结构构件的重要性
系数;
G k ——永久荷载标准值;
Q 1k ——最大的一个可变荷载的标准值;
Q ik ——其余可变荷载的标准值;
G γ、Q1γ、Qi γ——永久荷载、可变荷载的分项系数,当永久荷载效应对结构不利时,对由可变
荷载效应控制的组合一般G γ取1.2;对由永久荷载效应控制的组合一般G γ取
1.35,当永久荷载效应对结构有利时,取G γ=1.0;可变荷载的分项系数Q1γ、
Qi γ一般取1.4;
C G 、C Q1、C Qi ——分别为永久荷载、第一种可变荷载、其他可变荷载的荷载效应系数,即由荷载
求出荷载效应(如荷载引出的弯矩、剪力、轴力和变形等)须乘的系数;
Ci ψ——可变荷载组合值系数。
不等式右侧为结构承载力,用承载力函数R (…)表示,表明其为混凝土和钢筋强度标准值(f Ck 、f Sk )、分项系数(C γ、S γ)、几何尺寸标准值(a k )以及其他参数的函数。
式中可靠指标体现在了承载力分项系数C γ、S γ及荷载分项系数G γ、Q γ中。
3.11 荷载标准值是荷载的基本代表值。
它是根据大量荷载统计资料,运用数理统计的方法确定具
有一定保证率的统计特征值,这样确定的荷载是具有一定概率的最大荷载值,称为荷载标准值。
可变荷载的频遇值系数乘以可变荷载标准值所得乘积称为荷载的频遇值,可变荷载的准永久值系数乘以可变荷载标准值所得乘积称为荷载的准永久值。
考虑到两个或两个以上可变荷载同时出现的可能性较小,引入荷载组合值系数对基本标准值进行折减,即可变荷载的组合值系数乘以可变荷载标准值所得乘积即为荷载的组合值。
因为根据实际设计的需要,常须区分荷载的短期作用(标准组合、频遇组合)和荷载的长期作用(准永久组合)下构件的变形大小和裂缝宽度计算,所以,对正常使用极限状态验算,要按不同的设计目的,区分荷载的标准组合和荷载的准永久组合。
按荷载的标准组合时,荷载效应组合的设计值S 取为永久荷载及第一个可变荷载的标准值与其他可变荷载的组合值之和。
按荷载的准永久组合时,荷载效应组合的设计值S 取为永久荷载的标准值与可变荷载的准永久值之和。
3.12 根据《建筑结构设计统一标准》规定混凝土强度标准值取混凝土强度平均值减1.645倍的标
准差。
混凝土材料强度分项系数是根据轴心受压构件按照目标可靠指标经过可靠度分析而确定的,混凝土强度的分项系数C γ规定取为1.4。
混凝土强度标准值除以混凝土强度的分项系数,即得到混凝土强度设计值。
3.13 《混凝土结构设计规范》中取国家冶金局标准规定的钢筋废品限值作为钢筋的强度标准值。
钢筋强度标准值除以钢筋强度的分项系数即得到钢筋强度设计值。
混凝土的材料强度标准值是取其强度平均值减1.645倍的标准差所得,其强度设计值则是取强度标准值除以混凝土材料强度的分项系数;钢筋的材料强度标准值是取其强度平均值减2倍的标准差所得,其强度设计值则是取强度标准值除以钢筋材料强度的分项系数。
第4章 受弯构件的正截面受弯承载力
思 考 题
4.1 混凝土弯曲受压时的极限压应变cu ε的取值如下:当正截面处于非均匀受压时,cu ε的取值
随混凝土强度等级的不同而不同,即cu ε=0.0033-0.5(f cu,k -50)×10-5,且当计算的cu ε值大于0.0033时,取为0.0033;当正截面处于轴心均匀受压时,cu ε取为0.002。
4.2 所谓“界限破坏”,是指正截面上的受拉钢筋的应变达到屈服的同时,受压区混凝土边缘纤
维的应变也正好达到混凝土极限压应变时所发生的破坏。
此时,受压区混凝土边缘纤维的应变c ε=cu ε=0.0033-0.5(f cu,k -50)×10-5,受拉钢筋的应变s ε=y ε=f y /E s 。
4.3 因为受弯构件正截面受弯全过程中第Ⅰ阶段末(即Ⅰa 阶段)可作为受弯构件抗裂度的计算依
据;第Ⅱ阶段可作为使用荷载阶段验算变形和裂缝开展宽度的依据;第Ⅲ阶段末(即Ⅲa 阶段)可作为正截面受弯承载力计算的依据。
所以必须掌握钢筋混凝土受弯构件正截面受弯全过程中各阶段的应力状态。
正截面受弯承载力计算公式正是根据Ⅲa 阶段的应力状态列出的。
4.4 当纵向受拉钢筋配筋率ρ满足b min ρρρ≤≤时发生适筋破坏形态;当min ρρ<时发生少
筋破坏形态;当b ρρ>时发生超筋破坏形态。
与这三种破坏形态相对应的梁分别称为适筋梁、少筋梁和超筋梁。
由于少筋梁在满足承载力需要时的截面尺寸过大,造成不经济,且它的承载力取决于混凝土的抗拉强度,属于脆性破坏类型,故在实际工程中不允许采用。
由于超筋梁破坏时受拉钢筋应力低于屈服强度,使得配置过多的受拉钢筋不能充分发挥作用,造成钢材的浪费,且它是在没有明显预兆的情况下由于受压区混凝土被压碎而突然破坏,属于脆性破坏类型,故在实际工程中不允许采用。
4.5 纵向受拉钢筋总截面面积A s 与正截面的有效面积bh 0的比值,称为纵向受拉钢筋的配筋百分
率,简称配筋率,用ρ表示。
从理论上分析,其他条件均相同(包括混凝土和钢筋的强度等级与截面尺寸)而纵向受拉钢筋的配筋率不同的梁将发生不同的破坏形态,显然破坏形态不同的梁其正截面受弯承载力也不同,通常是超筋梁的正截面受弯承载力最大,适筋梁次之,少筋梁最小,但超筋梁与少筋梁的破坏均属于脆性破坏类型,不允许采用,而适筋梁具有较好的延性,提倡使用。
另外,对于适筋梁,纵向受拉钢筋的配筋率ρ越大,截面抵抗矩系
数s α将越大,则由M =20c 1s bh f αα可知,截面所能承担的弯矩也越大,即正截面受弯承载力越大。
4.6 单筋矩形截面梁的正截面受弯承载力的最大值M u,max =)
5.01(b b 2
0c 1ξξα-bh f ,由此式分析
可知,M u,max 与混凝土强度等级、钢筋强度等级及梁截面尺寸有关。
4.7 在双筋梁计算中,纵向受压钢筋的抗压强度设计值采用其屈服强度'y f ,但其先决条件是:'s 2a x ≥或's 0a h z -≤,即要求受压钢筋位置不低于矩形受压应力图形的重心。
4.8 双筋截面梁只适用于以下两种情况:1)弯矩很大,按单筋矩形截面计算所得的ξ又大于b ξ,
而梁截面尺寸受到限制,混凝土强度等级又不能提高时;2)在不同荷载组合情况下,梁截面承受异号弯矩时。
应用双筋梁的基本计算公式时,必须满足x ≤b ξh 0和 x ≥2'
s a 这两个适用条件,第一个适用条件是为了防止梁发生脆性破坏;第二个适用条件是为了保证受压钢筋在
构件破坏时达到屈服强度。
x ≥2's a 的双筋梁出现在受压钢筋在构件破坏时达到屈服强度'y
f 的情况下,此时正截面受弯承载力按公式:)()2/('s 0's 'y 0c 1u a h A f x h bx f M -+-=α计算;x <2's a 的双筋梁出现在受压钢筋在构件破坏时不能达到其屈服强度'y f 的情况下,此时正截
面受弯承载力按公式:)('s 0s y u a h A f M -=计算。
4.9 T 形截面梁有两种类型,第一种类型为中和轴在翼缘内,即x ≤'f h ,这种类型的T 形梁的受
弯承载力计算公式与截面尺寸为'f b ×h 的单筋矩形截面梁的受弯承载力计算公式完全相同;第二种类型为中和轴在梁肋内,即x >'
f h ,这种类型的T 形梁的受弯承载力计算公式与截
面尺寸为b ×h ,'s a ='f h /2,'s A =A s1(A s1满足公式'f 'f c 1s1y )(h b b f A f -=α)的双筋矩形截面梁的受弯承载力计算公式完全相同。
4.10 在正截面受弯承载力计算中,对于混凝土强度等级等于及小于C50的构件,1α值取为1.0;
对于混凝土强度等级等于及大于C80的构件,1α值取为0.94;而对于混凝土强度等级在C50~C80之间的构件,1α值由直线内插法确定,其余的计算均相同。
习 题
4.1 查表知,环境类别为一类,混凝土强度等级为C30时梁的混凝土保护层最小厚度为25mm 。
故设a s =35mm ,则h 0=h -a s =500-35=465mm
由混凝土和钢筋等级,查表得:
f c =14.3N/mm 2,f t =1.43 N/mm 2,f y =300N/mm 2,
1α=1.0,1β=0.8,b ξ=0.55
求计算系数
116.04652503.140.110902
6
201=⨯⨯⨯⨯==bh f M c s αα
M 1=)(2Qik Ci Qi Q1k Q1Gk G 0∑=++n
i M M M ψγγγγ
=]8
1)(81[2k Q 2'k k G
0l q l g g ⋅++⋅γγγ =1.0×[222.58814.12.5)25.25.9(812.1⨯⨯⨯+⨯+⨯⨯] =85.514kN ·m
M 2=)(1
Qik Ci Qi Gk G 0∑=+n i M M ψγγγ
=]8
1)(81[2k Ci Q 2'k k G
0l q l g g ψγγγ⋅++⋅ =1.0×[222.58817.04.12.5)25.25.9(8135.1⨯⨯⨯⨯+⨯+⨯⨯] =80.114 kN ·m
M =max {M 1,M 2}=85.514 kN ·m
查表知,环境类别为二类,混凝土强度等级为C40,梁的混凝土保护层最小厚度为30mm ,故设a s =40mm ,则h 0=h -a s =450-40=410mm
由混凝土和钢筋等级,查表得:
f c =19.1 N/mm 2,f t =1.71 N/mm 2,f y =360N/mm 2,
1α=1.0,1β=0.8,b ξ=0.518
M 砼板=25×0.06×1×1×0.5+25×1/2×0.02×1×1×(1/3×1)=0.83kN ·m
M Gk =0.4+0.83=1.23 kN ·m
方法二:
M Gk =⎰⎰=-=⨯⨯⨯-101
023.1)5.08.2(1)5.08.2(dx x x x dx x kN ·m 又M Qk =P ×l =1×1=1 kN ·m
故雨篷板根部处的最大弯矩设计值:
M 1=)(2Qik Ci Qi Q1k Q1Gk G 0∑=++n
i M M M ψγγγγ
=1.0×(1.2×1.23+1.4×1)=2.876 kN ·m
M 2=)(1Qik Ci Qi Gk G 0∑=+n
i M M ψγγγ
=1.0×(1.35×1.23+1.4×0.7×1)=2.6405 kN ·m
M =max {M 1,M 2}=2.876 kN ·m
(2)查表知,环境类别为二类,混凝土强度等级为C25时,板的混凝土保护层最小厚度为25mm ,
故设a s =30mm ,则h 0=h -a s =80-30=50mm
由砼和钢筋的强度等级,查表得:
f c =11.9 N/mm 2,f t =1.27 N/mm 2,f y =300 N/mm 2
1α=1.0,b ξ=0.550
则 097.050
10009.110.110876.226
201=⨯⨯⨯⨯==bh f M c s αα 518.0102.0211b s =<=--=ξαξ,可以。
949.02
211s s =-+=αγ 故 20250949.030010876.260s y s =⨯⨯⨯==h f M
A γmm 2
4.152801000=⨯mm 2 160=mm 2,满足要求。
c t y 2,1α=1.0,b ξ=0.55
查表知,环境类别为一类,混凝土强度等级为C30,梁的混凝土保护层最小厚度为25mm ,故设a s =35mm ,则h 0=h -a s =450-35=415mm
s A =804mm 219345020030043.145.0)45
.0(y t =⨯⨯⨯=>bh f f mm 2 且180450200002.0002.0=⨯⨯=>bh A s mm 2,满足要求。
又203.03
.140.13000097.0c 1y
=⨯⨯==f f αρξ<b ξ=0.55 满足适用条件。
故 M u =)5.01(20c 1ξξα-bh f
=)203.05.01(203.04152003.140.12⨯-⨯⨯⨯⨯⨯
=89.84kN ·m >M =70kN ·m ,安全。
4.5 f c =11.9N/mm 2,f y ='y f =300N/mm 2,1α=1.0,1β=0.8,b ξ=0.55
查表知,环境类别为二类,混凝土强度等级为C25,梁的混凝土保护层最小厚度为25mm ,故设'
s a =35mm 。
假设受拉钢筋放两排,故a s =60mm ,则h 0=h -a s =500-60=440mm 取ξ=b ξ,则
'
s A =
)5.01(''b b 20c 1bh f M --ξξα
f c =19.1N/mm 2,f t =1.71N/mm 2,
f y ='y f =360N/mm 2,1α=1.0,1β=0.8,b ξ=0.518
鉴别类型:
假设受拉钢筋排成两排,故取a s =60mm ,则
h 0=h -a s =750-60=690mm
)10021690(1005501.190.1)2('f 0'f
'
f c 1⨯-⨯⨯⨯⨯=-h h h b f α =672.32kN ·m >M =500kN ·m
属于第一种类型的T 形梁。
以'
f b 代替b ,可得 100.06905501.190.1105002
6
20'f c 1s =⨯⨯⨯⨯==h b f M αα 则 518.0106.0211b s =<=--=ξαξ,可以。
947.02
211s s =-+=αγ 故 2126690947.03601050060s y s =⨯⨯⨯==h f M
A γmm 2
401750
=⨯mm 2 mm 2,满足要求。
360N/mm 2,
鉴别类型:
假设受拉钢筋排成两排,故取a s =60mm ,则
h 0=h -a s =750-60=690mm
5.2798.0)2('f 0'f
'
f c 1⨯=-h h h b f α=948.64kN ·m >M 仍然属于第一种类型的T A s =2200mm 2。
由此可见,对于此T 形梁,选用C40对增大受弯构件正截面受弯承载力的作用不显著。
4.7 f c =14.3N/mm 2,
y f ='y f =300N/mm 2,1α=1.0,b ξ=0.55
鉴别类型:
假设受拉钢筋排成两排,故取a s =60mm ,则
h 0=h -a s =500-60=440mm )8021440(804003.140.1)2('f 0'f
'
f c 1⨯-⨯⨯⨯⨯=-h h h b f α =183.04kN ·m <M =250kN ·m
属于第二种类型的T 形梁。
)2()('0''
11f f f c h h h b b f M --=α
=)802
1440(80)200400(3.140.1⨯-
⨯⨯-⨯⨯ =91.52kN ·m
M 2=M -M 1=250-91.52=158.48kN ·m 286.0440
2003.140.11048.15826
20c 12s =⨯⨯⨯⨯==bh f M αα 则 55.0346.0211b s =<=--=ξαξ,可以。
827.02211s s =-+=αγ
1452440
827.03001048.1586
0s y 2s2=⨯⨯⨯==h f M A γmm 2
763
80)200400(3.140.1)('
f 'f c 1=⨯-⨯⨯-h b b f αmm 2 5.1 ①集中力到临近支座的距离a 称为剪跨,剪跨a 与梁截面有效高度h 0的比值,称为计算剪跨比,
用λ表示,即λ=a /h 0。
但从广义上来讲,剪跨比λ反映了截面上所受弯矩与剪力的相对比值,因此称λ=M /Vh 0为广义剪跨比,当梁承受集中荷载时,广义剪跨比λ=M /Vh 0=a /h 0;当梁承受均匀荷载时,广义剪跨比λ可表达为跨高比l /h 0的函数。
②剪跨比λ的大小对梁的斜截面受剪破坏形态有着极为重要的影响。
对于无腹筋梁,通常当λ<1时发生斜压破坏;当1<λ<3时常发生剪压破坏;当λ>3时常发生斜拉破坏。
对于有腹筋梁,剪跨比λ的大小及箍筋配置数量的多少均对斜截面破坏形态有重要影响,从而使得有腹筋梁的受剪破坏形态与无腹筋梁一样,也有斜压破坏、剪压破坏和斜拉破坏三种。
5.2 钢筋混凝土梁在其剪力和弯矩共同作用的剪弯区段内,将发生斜裂缝。
在剪弯区段内,由于
截面上同时作用有弯矩M 和剪力V ,在梁的下部剪拉区,因弯矩产生的拉应力和因剪力产生的剪应力形成了斜向的主拉应力,当混凝土的抗拉强度不足时,则开裂,并逐渐形成与主拉应力相垂直的斜向裂缝。
5.3 斜裂缝主要有两种类型:腹剪斜裂缝和弯剪斜裂缝。
腹剪斜裂缝是沿主压应力迹线产生于梁
腹部的斜裂缝,这种裂缝中间宽两头细,呈枣核形,常见于薄腹梁中。
而在剪弯区段截面的下边缘,由较短的垂直裂缝延伸并向集中荷载作用点发展的斜裂缝,称为剪弯斜裂缝,这种裂缝上细下宽,是最常见的。
5.4 梁斜截面受剪破坏主要有三种形态:斜压破坏、剪压破坏和斜拉破坏。
斜压破坏的特征是,
混凝土被腹剪斜裂缝分割成若干个斜向短柱而压坏,破坏是突然发生的。
剪压破坏的特征通常是,在剪弯区段的受拉区边缘先出现一些垂直裂缝,它们沿竖向延伸一小段长度后,就斜。