螺旋桨基础理论分解

合集下载

螺旋桨基础理论分解

螺旋桨基础理论分解
2-9
作用在桨叶上的力及力矩
三、螺旋桨的作用力 由上面的分析可知,在给定螺旋桨的进速VA和转速n时. 如能求得诱导速度ua及ut,则可根据机翼理论求出任意半 径处叶元体上的作用力,进而求出整个螺旋桨的作用力。 取半径r处dr 段的叶元体进行讨论,其速度多角形如图3 一10 所示。当水流以合速度VR、攻角α K流向此叶元体时 ,便产生了升力dL和阻力dD。将升力dL分解为沿螺旋桨轴 向的分力dLa和旋转方向的分力dLt,阻力dD 相应地分解 为dDa和dDt 。因此该叶元体所产生的推力dT及遭受的旋 转阻力dF是:
对于有限翼展机翼,由于机翼上下表面的压差作用, 下表面高压区的流体会绕过翼梢流向上表面的低压区.翼 梢的横向绕流与来流的共同作用,使机翼后缘形成旋涡层 。这些旋涡称为自由涡。它们在后方不远处卷成两股大旋 涡而随流速V 延伸至无限远处,如图3 一8 所示。
2-7
作用在桨叶上的力及力矩
由于自由涡的存在,在空间产生一个诱导速度场。在机翼 后缘处,诱导速度垂直于运动方向,故也称下洗速度。由 于产生下洗速度,使机翼周围的流动图形有所改变,相当 于无限远处来流速度V 发生偏转,真正的攻角发生变化, 如图3 一9 所示。由于机翼处下洗速度un/2 ,使得原来 流速V 改变为VR,真正的攻角由α ’k改变为α k, α ’k为 三元的名义弦线攻角,α k 称为有效几何攻角。 △α =α ’k-α k称为下洗角, 一般约为2º ~3º,因此可近 似地2认- 8为
3 一3 作用在桨叶上的力及力矩
一、速度多角形 在讨论螺旋桨周围的流动情况时,除考虑螺旋桨本身的前 进速度及旋转速度外,还需要考虑轴向诱导速度和周向诱 导速度。在绝对运动系统中、轴向诱导速度的方向与螺旋 桨的前进方向相反,而周向诱导速度的方向与螺旋桨的转 向相同。以半径为r 的共轴 圆柱面与桨叶相交并展成平 面,则叶元体的倾斜角θ 即 为螺距角,且可据下式决定:

关于螺旋桨的一些知识

关于螺旋桨的一些知识

关于螺旋桨的一些知识螺旋桨是船舶和飞机等交通工具的重要部件,具有推动物体前进的功能。

在本文中,我们将介绍螺旋桨的工作原理、结构构造、选材等相关知识。

一、螺旋桨的工作原理螺旋桨依靠空气或水流动的原理产生推力,从而推动船舶或飞机前进。

其工作原理可简单归纳为以下几个方面:1. 流体动力学理论:根据流体动力学理论,螺旋桨叶片受到流体的作用会形成载荷,通过迎角改变和旋转速度调节,将动力转化为推进力。

2. 套氏定理:套氏定理指出,在涉及固定的螺旋桨时,液体或气体在进入螺旋桨以前,质量流率保持不变,但速度和压力会发生变化。

这种速度和压力的变化使得螺旋桨产生了推力。

二、螺旋桨的结构构造螺旋桨的结构构造通常由叶片、轴、轴套等组成。

1. 叶片:螺旋桨叶片是螺旋桨的最重要部分,其形状和数量会直接影响推力的大小和效率的高低。

通常,螺旋桨叶片会根据具体设计要求进行定制,以达到最佳的推进效果。

2. 轴和轴套:螺旋桨的轴起到支撑和固定作用,通常由高强度合金钢或碳纤维材料制成,以确保其在高速旋转时的安全可靠性。

轴套则用于固定轴与螺旋桨叶片的连接。

三、螺旋桨的选材螺旋桨的选材对于其使用寿命和推进效果有着重要影响。

常见的螺旋桨选材有以下几种:1. 铝合金:铝合金螺旋桨具有重量轻、制造成本低的优点,适用于速度较低的船舶和小型飞机。

2. 不锈钢:不锈钢螺旋桨在耐蚀性、强度和硬度方面表现出众,适用于海洋环境和高速航行的船舶和飞机。

3. 青铜:青铜螺旋桨具有较好的耐腐蚀性和抗磨损性能,适用于大型船舶和高负荷工况下的飞机。

四、螺旋桨的维护保养为了确保螺旋桨的正常运行和延长其使用寿命,维护保养工作至关重要。

以下是一些建议:1. 定期清洗:螺旋桨表面容易附着赘物,定期清洗可以减少其阻力,提高推进效率。

2. 检查叶片状态:定期检查螺旋桨叶片的变形、裂纹和磨损情况,及时修复或更换叶片,以确保其正常工作。

3. 螺母紧固:定期检查螺旋桨的连接螺母是否紧固,防止因螺母松动而导致螺旋桨脱落或异常运转。

螺旋桨水动力学性能分析与优化设计

螺旋桨水动力学性能分析与优化设计

螺旋桨水动力学性能分析与优化设计螺旋桨是水上船只中最重要的推进装置,其性能直接关系到船舶的推进效率和航行速度。

螺旋桨水动力学性能分析与优化设计是船舶研究领域中的重要分支,对于减少能源消耗、提高运输效率、降低污染排放具有重要作用。

一、螺旋桨水动力学性能分析的基础理论1.1 计算流体力学计算流体力学(CFD)是一种通过数字计算方法来解决流体力学问题的数学模型。

在螺旋桨被设计和研究时,CFD成为了一种重要的工具。

其模型基于Navier-Stokes方程和欧拉方程,模拟了流场和流动的变化,从而分析了流体运动的影响和经济性能的评估。

1.2 螺旋桨理论螺旋桨的理论基础是流体力学中的速度势流和双曲型等势流。

速度势流指的是在流体中的一个点上速度向量可以分解为势函数的梯度,而双曲型等势流涉及到一个坐标系中,速度的散度和旋度是相等的。

1.3 失速失速指的是在较小的流速下,螺旋桨进入了抵抗气蚀和附面效应的状态。

能够有效地分析并求出失速将对设计螺旋桨的截面和轴设置具有重要意义。

二、螺旋桨水动力学性能分析的关键参数2.1 推力和速度推力和速度是螺旋桨水动力学性能分析中的两个关键参数。

推力是螺旋桨提供给船体的推进力,影响到船舶的加速度和航行速度。

速度可以用来计算泥和水的扰动实体质量。

2.2 轮廓设计螺旋桨轮廓设计对其性能影响非常大,包括叶片的数量、截面形状和翼型等。

良好的轮廓设计能够提高螺旋桨的效率,减小水动力噪音,提高抵抗力和附面效应。

2.3 旋转速度旋转速度是螺旋桨的打动驱动力,影响了传动效率和螺旋桨效率。

高速旋转通常会导致较大的失速和流量噪音,而低速旋转也可能会导致螺旋桨产生过多垂直力。

2.4 推力系数推力系数是推力与密度、直径、旋转速度和旋转等效面积的关系。

推力系数是成尺寸和旋转速度的一种无因次数,用于描述螺旋桨的推进效率。

三、螺旋桨水动力学性能优化的方法3.1 优化设计算法优化设计算法是一种通过数学模型和计算机程序来找到最优解的方法。

船舶推进螺旋桨基础理论课件

船舶推进螺旋桨基础理论课件
用于测量桨叶表面压力和温度变化。
螺旋桨性能测试案例分析
案例一
某型船用螺旋桨在实验水池中的性能测试,分析推力系数、效率系数、空泡系数 和振动系数的变化规律。
案例二
某大型油轮在实际航行中的螺旋桨性能测试,结合数值模拟和理论分析,评估其 实际运行性能。
05
船舶推进螺旋桨的应用与发展趋 势
螺旋桨在船舶推进中的应用
螺旋桨作为船舶推进器,能够将主机 产生的动力转化为船舶前进的推力, 是船舶航行中的重要组成部分。
螺旋桨的安装角度、位置和数量等参 数需要根据船舶的具体需求进行合理 配置,以实现最佳的推进效果。
螺旋桨的设计和制造需考虑船舶的航 速、航程、载重量等要求,以及水域 、气候等环境因素,确保推进效率和 使用寿命。
螺旋桨的修复与更换
修复
对损坏的螺旋桨进行修复 ,如焊接、填补等。
更换
若螺旋桨损坏严重或无法 修复,需更换新的螺旋桨 。
注意事项
更换或修复后需进行动平 衡测试,确保船舶安全。
04
船舶推进螺旋桨的性能评价与测 试
螺旋桨性能评价指标
推力系数
衡量螺旋桨推力与流体动力的比值, 用于评估螺旋桨推力性能。
效率系数
铸造法
适用于大型螺旋桨,但精度较低 。
锻造法
适用于小型螺旋桨,精度高,但工 艺复杂。
焊接法
适用于大型螺旋桨,成本低,但易 产生焊接缺陷。
螺旋桨的维护与保养
定期检查
检查螺旋桨的表面磨损、裂纹等情况。
润滑
定期润滑螺旋桨的轴承和轴套,减少磨损。
清洗
定期清洗螺旋桨,去除附着物和腐蚀产物。
防腐处理
对螺旋桨进行涂层保护,防止腐蚀。
新型船舶推进系统的研究与发展

船舶推进螺旋桨基础理论

船舶推进螺旋桨基础理论
2、推动器工作时,单位时间内尾流所取得旳能量为:
船舶推动第二章 螺旋桨几何特征
3、推动器消耗旳功率:
4、理想推动器旳效率:
船舶推动第二章 螺旋桨几何特征
5、理想推动器旳效率旳另一种体现式:
船舶推动第二章 螺旋桨几何特征
6、理想推动器旳效率曲线
载荷系数愈小效率愈高。增大直径D可减小载荷系数,从而提升效率。着一结论具有主要意义
3、当进速再增大到某一数值时,螺旋桨不遭受旋转阻力,其实质乃是升力dL及阻力dD在周向旳分力大小相等方向相反。但在此种情况下螺旋桨产生负推力。
螺旋桨不遭受旋转阻力时旋转一周所迈进旳距离称为无转矩进程或无转矩螺距 。
船舶推动第三章 螺旋桨基础理论
对于一定旳螺旋桨,有:
船舶在航行时,螺旋桨必须产生向前旳推力以克服船舶阻力,才干使船以一定旳速度迈进。所以螺旋桨在实际操作时,其每旋转一周迈进旳距离不大于实效螺距。
经过运动转换后来,叶元体即变为固定不动,而水流以轴向速度和周向速度流向桨叶切面。
船舶推动第三章 螺旋桨基础理论
结论:浆叶切面旳复杂运动最终可归结为水流以速度 、攻角 流向浆叶切面。
船舶推动第三章 螺旋桨基础理论
二、作用在机翼上旳升力和阻力
船舶推动第三章 螺旋桨基础理论
试验证明,在使用范围内,升力系数与几何攻角约成线性关系。
为几何攻角
为无升力角
为流体动力攻角或绝对攻角
当几何攻角等于零时,升力系数不等于零。这是因为机翼剖面不对称旳缘故。
船舶推动第三章 螺旋桨基础理论
自由涡:翼梢旳横向绕流与来流旳共同用,使机翼后缘形成旋涡层,这些旋涡称为自由涡。
船舶推动第三章 螺旋桨基础理论
因为自由涡旳存在,在空间产生一种诱导速度场。在机冀后缘处,诱导速度垂直于运动方向,故也称下洗速度。

螺旋桨工作原理

螺旋桨工作原理

螺旋桨工作原理螺旋桨是船舶和飞机等交通工具中常见的推进装置,其工作原理是通过螺旋桨的旋转来产生推力,从而推动交通工具前进。

本文将详细介绍螺旋桨的工作原理及其相关知识。

一、螺旋桨的结构和组成螺旋桨一般由螺旋叶片、轴、轴套等部分组成。

螺旋叶片是螺旋桨的核心部分,其形状呈螺旋状,负责将水或空气推向后方。

轴是螺旋桨的支撑部分,负责将螺旋叶片与动力源相连接。

轴套则是螺旋桨的固定部分,负责固定螺旋叶片和轴。

二、螺旋桨的工作原理螺旋桨的工作原理可以分为两个方面:流体动力学和牛顿第三定律。

1.流体动力学当螺旋桨旋转时,螺旋叶片将水或空气推向后方。

根据流体动力学的原理,当螺旋叶片推动水或空气后退时,水或空气会产生相等大小的反作用力向前推动螺旋桨。

这种反作用力就是推力,它推动交通工具向前移动。

2.牛顿第三定律牛顿第三定律指出,任何作用力都会有一个同大小、反向的反作用力。

当螺旋桨旋转时,螺旋叶片向后推动水或空气的同时,水或空气也会向前推动螺旋叶片,产生一个相等大小的反作用力。

这个反作用力正是推力,用于推动交通工具前进。

三、螺旋桨的调整和优化为了使螺旋桨能够更有效地工作,需要对其进行调整和优化。

1.螺旋叶片角度的调整螺旋叶片角度的调整可以改变螺旋桨的推力大小和方向。

通过调整螺旋叶片的角度,可以使螺旋桨产生更大的推力,从而提高交通工具的速度和效率。

2.螺旋叶片数量的优化螺旋叶片数量的优化可以提高螺旋桨的效率。

一般情况下,螺旋桨叶片数量越多,推力越大,效率越高。

但是过多的叶片数量也会增加螺旋桨的阻力,影响交通工具的速度和效率。

3.螺旋桨材料的选择螺旋桨材料的选择可以影响螺旋桨的耐用性和性能。

常见的螺旋桨材料有铝合金、不锈钢等。

根据实际需求选择合适的材料,可以提高螺旋桨的使用寿命和性能。

四、螺旋桨的应用领域螺旋桨广泛应用于船舶、飞机、潜水艇等交通工具中,推动这些交通工具前进。

在船舶中,螺旋桨通过推动水的力量使船舶前进;在飞机中,螺旋桨通过推动空气的力量使飞机前进;在潜水艇中,螺旋桨通过推动水的力量使潜水艇下潜或浮起。

螺旋桨的工作原理

螺旋桨的工作原理

螺旋桨的工作原理
螺旋桨是一种用于推动船舶或飞行器的装置,其工作原理基于牛顿第三定律和流体力学原理。

螺旋桨的工作原理可以分为推进理论和螺旋桨理论两个方面。

推进理论是基于牛顿第三定律,即“作用力与反作用力相等,
方向相反”。

当螺旋桨转动时,它会通过切入流体(水或空气)并加速流体质量的运动。

由于牛顿第三定律,被加速的流体将产生相反的反作用力,从而推动船舶或飞行器前进。

螺旋桨理论基于流体力学原理。

当螺旋桨旋转时,在螺旋桨叶片上形成气流或水流。

这些流体会在螺旋桨叶片上产生压力差。

根据伯努利方程,流体在速度较高的地方压力较低,而在速度较低的地方压力较高。

因此,螺旋桨叶片的一个侧面产生了较高的压力,而另一个侧面则产生了较低的压力。

由于压力差的存在,螺旋桨受到了一个推力,从而推动船舶或飞行器前进。

此外,螺旋桨的形状和设计也对其工作原理起着重要作用。

螺旋桨叶片的形状和角度可以调整流体的流动情况,以获得更高的效率和推进力。

一般来说,螺旋桨的叶片越长,推进力越大,但也会增加转动的阻力。

因此,螺旋桨的设计需要在推进力和阻力之间进行权衡。

总的来说,螺旋桨是通过加速流体质量和利用压力差来实现推动船舶或飞行器的装置。

它的工作原理基于牛顿第三定律和流体力学原理,同时受到螺旋桨的形状和设计的影响。

螺旋桨知识

螺旋桨知识

当前位置:首页> 网络课堂> 第八章> 螺旋桨的工作原理螺旋桨的几何特征鱼雷螺旋桨位于鱼雷的尾部,由发动机带动以产生推力,利用该推力克服鱼雷运动时的阻力,使鱼雷以既定的速度航行。

不难理解,为了经商鱼雷的速度,不仅要求鱼雷具有阻力最小的雷体外形,还须要配置效率较高的螺旋桨,才能获得较好的推进效果。

螺旋桨通过推进轴直接由发动机驱动,当螺旋桨旋转时,将水流推向鱼雷后方。

根据作用与反作用原理,水便对螺旋桨产生反作用力,该反作用力即称为螺旋桨的推力。

我们研究螺旋桨的几何特征时,首先要对螺旋面有所了解。

设有一水平线AB(图8-1),匀速地绕线EE旋转,同时又以均匀速度向上移动,则线AB上每一个点就形成一条螺旋线,由这些螺旋线所组成的面叫做螺旋面。

线段AB称为螺旋面的母线,它可以是直线或曲线。

展开了的螺旋线与圆柱体底线间的角度称为螺旋角,以表示,其值可按下式求得(8-1)式中H为螺距。

图8-1 螺旋面的形成(螺旋面的形成演示动画)当母线的圆周运动和直线运动均为匀速运动时,所得到的螺旋面称为等螺距螺旋面。

其螺旋线的展开图形如图8-1所示,不同半径处具有相同的螺距。

图8-2a 径向变螺距螺旋面螺旋线的展开图螺旋面也可以由不同螺距的螺旋线组成。

例如母线AB以均匀的速度绕EE轴线旋转。

也以均匀速度直线上升,只是在不同的半径上具有不同的上升速度,则得到径向变螺距螺旋面,不同的半径处螺距是不同的,其螺旋线的展开图如图8-2(a)所示。

假若母线的旋转运动和前进运动不是均匀的.或者其中任一种运动不是均匀的,则得到轴向变螺距螺旋面,其螺旋线的展开图如图8-2(b)所示。

图8-2b 轴向变螺距螺旋面螺旋线的展开图图8-3 螺旋桨的结构参数(螺旋桨的结构参数演示动画)螺旋桨的结构参数如图8-3所示。

螺旋桨与推进轴联接的部分称为桨毂以一定的角度联按于轮毅上。

鱼雷的桨叶一般为2-7片。

叶片数主要决定于螺旋桨推力的大小。

螺旋桨概述

螺旋桨概述

螺旋桨概述1.概念1.1结构图1 螺旋桨示意图图2 螺旋桨结构螺旋桨由桨叶、浆毂、、整流帽和尾轴组成,如上图所示。

滑失:如果螺旋桨旋转一周,同时前进的距离等于螺旋桨的螺距P,设螺旋桨转速为n,则理论前进速度为nP。

也就是说将不产生水被螺旋桨前后拨动的现象,然而事实上,螺旋桨总是随船一起以低于nP的进速V s对水作前进运动。

那么螺旋桨旋转一周在轴向上前进的实际距离为h p(=V s/n),称为进距。

于是我们把P与h p之差(P-h p)称为滑失。

滑失与螺距P之比为滑失比:S r=(P-h p)/P=(nP-V s)/nP=1-V s/nP式中V s/nP称为进距比。

从式中可以得出,当V s=nP时,S r=0。

即P=h,也就是螺旋桨将不产生对水前后拨动的现象,螺旋桨给水的推力为零。

因此我们可以得出结论:滑失越大,滑失比越高,则螺旋桨推水的速度也就越高,所得到的推力就越大。

1.2工作原理船用螺旋桨工作原理可以从两种不同的观点来解释,一种是动量的变化,另一种则是压力的变化。

在动量变化的观点上,简单地说,就是螺旋桨通过加速通过的水,造成水动量增加,产生反作用力而推动船舶。

由于动量是质量与速度的乘积,因此不同的质量配合上不同的速度变化,可以造成不同程度的动量变化。

另一方面,由压力变化的观点可以更清楚地说明螺旋桨作动的原理。

螺旋桨是由一群翼面构建而成,因此它的作动原理与机翼相似。

机翼是靠翼面的几何变化与入流的攻角,使流经翼面上下的流体有不同的速度,且由伯努利定律可知速度的不同会造成翼面上下表面压力的不同,因而产生升力。

而构成螺旋桨叶片的翼面,它的运动是由螺旋桨的前进与旋转所合成的。

若不考虑流体与表面间摩擦力的影响,翼面的升力在前进方向的分量就是螺旋桨的推力,而在旋转方向的分量就是船舶主机须克服的转矩力。

1.3推力和阻力以一片桨叶的截面为例:当船艇静止时,螺旋桨开始工作,把螺旋桨看成不动,则水流以攻角α流向桨叶,其速度为2πnr(n为转速;r为该截面半径)。

4-2螺旋桨的工作原理

4-2螺旋桨的工作原理

121【上一节】【下一节】【返回主页】§4-2 螺旋桨的工作原理动量理论:环流理论:一、动量理论1.理想推进器理论鼓动盘:图4-2-1 流管内水流流动图形伯努里定理:122鼓动盘前:21120)(2121a A A u V p V p ++=+ρρ鼓动盘后:21120)(21)(21a A a A u V p u V p ++'=++ρρ由上两式相减,得:])[(212211A a A V u V p p -+=-'ρ 鼓动盘前后压力差即形成推力:)(110p p A T -'=将式(4-2-3)代入上式,得:002)21(]2[21A u u V A u u V T a a A a a A +=+=ρρ根据动量定理,推力等于动量的变化率,可得:a A a A mu V u V m T =-+=])[(式中:01)(A u V m a A +=ρ将此关系式代入a mu T =后,得:a a A u A u V T 01)(+=ρ123aa u u 211=。

理想推进器的效率:Aaa A A a A A i V u Tu TV TV mu TV TV 211121212+=+=+=η推进器的载荷系数:221/A V T C A T ρ=Ti C ++=112η2. 理想螺旋桨理论124 图4-2-2 尾流扭转现象单位时间内流过此圆环的流体质量:)21(0a A u V dA dm +=ρ图4-2-3 理想螺旋桨运动模型桨盘紧前方的动量矩:0='L桨盘紧后方的动量矩:t u dmr L '=''单位时间内动量矩的增量:t u dmr L L '='-''根据动量矩定理:流体在单位时间内流经流管两截面的动量矩增量等于作用在流管上的力矩。

在我们所讨论的情形下,是指对螺旋桨轴线所取的力矩。

即:125dQ L L ='-''作用在流体上的力矩:rdF dQ = t u dm dF '=t t u u ='根据动能定理可知,质量为dm 的流体在旋转运动时动能的改变应等于旋转力dF 在单位时间内所作的功,即:221tt udmdFu =tt u u 211=能量守恒:222121ta A dmu dmu dTV rdF ++=ω126 22aA tta u V u r u u +-=ω结论:诱导速度n u 垂直于合速R V 。

推进第3章 螺旋桨基础理论

推进第3章 螺旋桨基础理论

A.有效功率: dTi VA dm ua VA
B.流体轴向运动损失的动能:
1 2
dm
u
a
2
C.流体周向运动损失的动能:
1 2
dm
ut
2
(3)根据能量守恒定律:(消耗功率=有效功率+损失动能)
整理得:
dm
ut ua
r dm ua r ut 2
VA
1 2
dm(ua 2
ut
2
)
(4)
ut VA ua 2
A0 (VA
1 2 ua )ua
(5)
5.将(1)式与(5)式对比得到盘面处的诱导速度:
其中:
u a1
1 2 ua
(6)
ua1 ————盘面处流体的轴向诱导速度
u a ————远后方流体的轴向诱导速度
----------------------------------------------------------------------------------------------------------------------
否则, ua 0 , Ti 0 ; u a ↗, Ti↗ 。
2.盘面处诱导速度等于远后方诱导速度的一半。
由(6)式,
u a1
1 2
ua
3.理想推进器的效率也总是小于 1 的一个值。
iA
1 1 ua
1
2V A
4.诱导速度越大则理想效率将下降。
由(7)式: ua ↗, iA ↙
5.推进器的直径越大,效率将越高。
B.盘面处: 假设盘面处的周向诱导速度为 ut1
C.盘面紧后方至远后方:因为对于理想螺旋桨忽 略了离心力和尾流收缩的影响,理想螺旋桨的周向诱

螺旋桨基础理论.ppt分解共27页

螺旋桨基础理论.ppt分解共27页
螺旋桨基础理论.ppt分解
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的。——雨果
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。—周 恩来

船舶推进_螺旋桨基础理论

船舶推进_螺旋桨基础理论
' 1 1 2 2 1 2
2
上两式相减:
p p 1 ( V A 12 u a ) u a
' 1
得出推力Ti的另一种表达形式为:
T i ( p p 1 ) A 0 A 0 ( V A 12 u a ) u a
' 1
17
3.1 理想推进器理论
T i m u a A 0 (V A u a 1 ) u a
③ 水为不可压缩的理想流体。 根据这些假定而得到的推进器理论,称为理想推进器 理论,适于螺旋桨、明轮、喷水推进器等。
7
3.1 理想推进器理论
理想推进器力学模型
远前方 盘面 远后方
诱导速度 离盘面愈近, 由于推进器的抽吸 作用, 水流的速度愈大而压力下 降; 水流流过盘面后压力突增。
3.2 理想螺旋桨理论
根据动量矩定理:流体在单位时间内流经流管两截 面的动量矩增量等于作用在流管上的力矩。
L '' L ' d Q
作用在流体上的力矩:
d Q rd F i
其中,作用在流体上的旋转力
d Fi d m u
' t
u t' u t
桨盘紧后方的周 向诱导速度。 桨盘远后方的周 向诱导速度。
12
伯努利方程
v2 p z H 2g g
适用条件:只受到重力的不可压缩 的理想流体,定常流动。
13
物理意义
v2 p z H 2g g
单 位 重 力流体的 动能
位势能
压强势能
沿着同一根流线,流体的动能、位势能和 压强势能可以相互转变,三者之和保持不 变。
14
几何意义

螺旋桨原理

螺旋桨原理

于相邻桨叶之间的干扰,会使旋转阻力力矩增加的倍数
大于拉力增加的倍数,螺旋桨的效率降低,反而不利。
• (六)桨叶切面形状和平面形状的影响
• 在一定范围内,桨叶切面的厚弦比(桨叶切面的最 大厚度与桨弦的比值)和中弧曲度 (桨叶切面的最大弧 高与桨弦的比值)增大,拉力和旋转阻力力矩都增大。 其道理同翼型对机翼升力和阻力的影响一样。
叶迎角不变,则θ角也保持不变,于是桨叶空气动力(R)
与合速度(W)之间的夹角(
)也9保0 持不变。因此,
在桨叶迎角不变的条件下,若合速度偏离旋转面的角度
越大则桨叶空气动力偏离桨轴的夹角也越大。

(五)桨叶数目的影响

桨叶数目增多,桨叶的总面积加大,拉力系数和旋
转阻力系数都会变大。但桨叶数目不能过多,否则,由
D 2

• 由(3-5-3)式中可见,前进比(λ )越大, 角也越大,说明合
速度的方向越偏离旋转面。反之,前进比越小,说明合速度的方 向越接近旋转面。
三、桨叶迎角的变化
• 称为桨桨叶叶切角面,的也相以对气表流示方。向桨与叶桨迎弦角方也向就之是间桨的叶夹切角面,
合速度与桨弦方向之间的夹角,如图3—5—6所示。桨 叶迎角是随桨叶角、飞行速度和切向速度的改变而变化 的。
向速度变大,合速度增大,因此螺旋桨拉力和旋转阻力力矩也
随之增大。反之,转速减小,合速度减小,拉力和旋转阻力力
矩也随之减小。
• 如果合速度的大小和桨叶迎角都保持不变,当合速度的方
向改变时,由于桨叶空气动力的方向随之改变。螺旋桨的力和 旋转阻力力矩也会变化。从图3—5—14可以看出,合速度的方 向越是偏离旋转面,则桨叶空气动力的方向越偏离桨轴,从而

航模螺旋桨基础知识

航模螺旋桨基础知识

一、工作原理可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。

流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。

在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。

V—轴向速度;n—螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。

显而易见β=α+φ。

空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。

ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。

将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。

从以上两图还可以看到。

必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。

螺旋桨工作时。

轴向速度不随半径变化,而切线速度随半径变化。

因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。

而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。

螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。

所以说螺旋桨是一个扭转了的机翼更为确切。

从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。

对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。

迎角变化,拉力和阻力矩也随之变化。

用进矩比“J”反映桨尖处气流角,J=V/nD。

式中D—螺旋桨直径。

理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算:T=Ctρn2D4P=Cpρn3D5η=J·Ct/Cp式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。

其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。

图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。

特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。

螺旋桨基础理论分解课件

螺旋桨基础理论分解课件
相似参数
螺旋桨的相似参数包括桨叶角、螺距比、转速、雷诺数等,这些参 数在相似理论中起着重要作用。
相似定理
根据相似理论,可以通过改变螺旋桨的相似参数来研究其性能变化规 律,从而实现对实尺度螺旋桨性能的预测。
螺旋桨的尺度效应及其影响
定义及内涵
螺旋桨的尺度效应是指螺旋桨的性能随其尺寸变化而变化的现象。当螺旋桨的尺寸增大或 减小时,其周围的流场、湍流度、粘性等也会发生变化,从而影响螺旋桨的性能。
01
采用主动流动控制技术,如涡流 发生器、射流控制等,对螺旋桨 叶尖涡进行主动干预,提高螺旋 桨失速性能。
02
通过以上改进措施,可以有效提 高螺旋桨的空化和失速性能,保 证螺旋桨在各种工况下的稳定工作。
05
螺旋桨的相似理论与尺度效应
螺旋桨的相似理论
相似定 义
螺旋桨的相似理论基于流体力学的相似原理,即两个螺旋桨在几何 形状、运动状态、动力特性等方面完全相似,则它们的性能也将相 似。
• 试验设计与执行:在进行螺旋桨模型试验时,需要选择合适的模型尺寸、试验 设备等,并精确控制试验条件,以获得准确的试验数据。
• 数据处理与误差分析:对试验数据进行处理时,需要考虑各种误差来源,如测 量误差、环境干扰等,并采取合适的误差分析方法,以提高数据的可靠性。
• 换算方法与公式:为了实现螺旋桨模型试验数据与实尺度性能的换算,可以采 用相似的换算公式或方法。这些方法通常基于相似理论和尺度效应的研究成果, 通过调整相关参数来实现换算。换算过程中需要注意单位统一和适用范围。
形状优化
通过参数化建模和CFD评 估,可以对螺旋桨的叶型、 弦长、扭角等参数进行优 化,以寻求最佳性能。
控制策略优化
考虑螺旋桨与飞行器的相 互作用,CFD可用于优化 控制策略,如变速、变距等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作用在桨叶上的力及力矩
二、作用在机翼上的升力和阻力 简单回顾一下作用在机翼上的升力和阻力,将有助于 桨叶上受力情况的讨论,对于二因次机翼,我们可以 用环量为P 的一根无限长的涡线来代替机翼,这根祸 线称为附着涡。在理想流体中,作用在单位长度机翼 上的只有垂直于来流方向的升力L ,其值
式中:ρ为流体的密度; v 为来流速度。
3 一3 作用在桨叶上的力及力矩
一、速度多角形 在讨论螺旋桨周围的流动情况时,除考虑螺旋桨本身的前 进速度及旋转速度外,还需要考虑轴向诱导速度和周向诱 导速度。在绝对运动系统中、轴向诱导速度的方向与螺旋 桨的前进方向相反,而周向诱导速度的方向与螺旋桨的转 向相同。以半径为r 的共轴 圆柱面与桨叶相交并展成平 面,则叶元体的倾斜角θ 即 为螺距角,且可据下式决定:
式(23--322)即为著名的茹柯夫际上流体是有粘性的,所以无限翼展机翼除了产生与运 动方向相垂直的升力L 外,尚有与运动方向相反的阻力D 。机翼在实际流体中所受的升力、阻力和力矩可以借风筒 试验来测定。图3-7是某一机翼的CL 、CD 和α k的关系曲 线.
2-4
就可以将叶元体效率η or表达为另一种简单而有用的形式 也就是说,叶元体的理想效率 将式(3 一30 )沿半径方向从桨毅至叶梢进行积分并乘
以叶数Z 以后,便可得到整个螺旋桨的推力和转矩, 即
2 - 14
作用在桨叶上的力及力矩
式中:rh为桨毅半径. R 为螺旋桨半径。
式(3 一34 )把螺旋桨的推力、转矩与流场及螺旋桨的 几何特征联系起来。因而比动量理论的结果要精密完整得 多。 当螺旋桨以进速vA和转速n 进行工作时,必须吸收主机所 供给的转矩Q 才能发出推力T ,其所作的有用功率为TVA ,而吸收的功率为2ПnQ ,故螺旋桨的效率为
作用在桨叶上的力及力矩
考虑了尾涡的诱导速度后,我们可以将有限翼展的机翼微 段近似地看作二元机翼的一段,如果在y 处的环量为 ,从茹柯夫斯基升力公式可知,dy 段机翼所受的升力dL 垂直于来流VR ,其大小为
也就是说,有限翼展的机翼微段相当于来流速度为VR 、 攻角为α k ,的二因次机翼,故机翼微段将受到与VR垂直 的升力dL 和与VR方向一致的粘性阻力dD 。
2 - 12
作用在桨叶上的力及力矩
式中:η A、η T为轴向诱导效率和周向诱导效率;
为叶元体的结构效率,是因螺旋桨运转于具有枯性的实际
流体中所引起。在实际流体中,因:
,说明螺
旋桨在实际流体中工作的效率比在理想流体中要低。
图3-6中曾定义β 为进角,β i为水动力螺距角,利用关系 式:
2 - 13
作用在桨叶上的力及力矩
2 - 10
作用在桨叶上的力及力矩
根据茹柯夫斯基升力公式,升元体上dr 段产生的升力 将式(3-28)代入式(3-27),并考虑到dD=єdL (є为
叶元体的阻升比),叶元体转矩dQ=rdF , 可得
2 - 11
作用在桨叶上的力及力矩
从图3 一10可得到如下关系式: 将这些关系式代入式(3 一29 ) ,可得 类似地,可以求得叶元体的效率
作用在桨叶上的力及力矩
图中:
阻力系数 式中:V 为来流的速度(即机翼前进的速度);
S 为机翼平面的面积. L为机翼的升力; D为机翼的阻力;
2-5
作用在桨叶上的力及力矩
2-6
作用在桨叶上的力及力矩
实验证明,在实用范围内,升力系数CL与几何攻角α k约 略成线性关系。当几何攻角为零时,Q 不等子零,这是因 为机翼剖面不对称之故。升力为零时的攻角称为无升力角 ,以α 0表示。升力为零的来流方向称为无升力线,来流 与此线的夹角。称为流体动力攻角或绝对攻角,如图3 一 7 ( b )所示。显然,α =α 0+α k 。
对于有限翼展机翼,由于机翼上下表面的压差作用, 下表面高压区的流体会绕过翼梢流向上表面的低压区.翼 梢的横向绕流与来流的共同作用,使机翼后缘形成旋涡层 。这些旋涡称为自由涡。它们在后方不远处卷成两股大旋 涡而随流速V 延伸至无限远处,如图3 一8 所示。
2-7
作用在桨叶上的力及力矩
由于自由涡的存在,在空间产生一个诱导速度场。在机翼 后缘处,诱导速度垂直于运动方向,故也称下洗速度。由 于产生下洗速度,使机翼周围的流动图形有所改变,相当 于无限远处来流速度V 发生偏转,真正的攻角发生变化, 如图3 一9 所示。由于机翼处下洗速度un/2 ,使得原来 流速V 改变为VR,真正的攻角由α ’k改变为α k, α ’k为 三元的名义弦线攻角,α k 称为有效几何攻角。 △α =α ’k-α k称为下洗角, 一般约为2º ~3º,因此可近 似地2认- 8为
2-1
作用在桨叶上的力及力矩
设螺旋桨的进速为VA ,转速为n ,则叶元体将以进速VA 、周向速度U=2пrn在运动。经过运动转换以后,叶元体 即变为固定不动,而水流以轴向速度VA 和周向速度U 流 向桨叶切面.轴向诱导速度ua/ 2 的方向与迎面水流的轴 向速度VA 相同,而周向诱导速度ut/ 2 的方向则与周向速 度U 相反,从而得到与图3 一5 相类似的叶元体的速度多 角形(图3 一6 )。图中:β称为进角, βi称为水动力螺距 角,VR为相对来流的合成速度。由图3 一6 所示的速度多 角形可知,桨叶切面的复杂运动最后可归结为水流以速度 VR、攻角αk流向桨叶切面。因此,在讨论桨叶任意半径处 叶元体上的作用力时,可以把它作为机翼剖面来进行研究 。 2-2
2-9
作用在桨叶上的力及力矩
三、螺旋桨的作用力 由上面的分析可知,在给定螺旋桨的进速VA和转速n时. 如能求得诱导速度ua及ut,则可根据机翼理论求出任意半 径处叶元体上的作用力,进而求出整个螺旋桨的作用力。 取半径r处dr 段的叶元体进行讨论,其速度多角形如图3 一10 所示。当水流以合速度VR、攻角α K流向此叶元体时 ,便产生了升力dL和阻力dD。将升力dL分解为沿螺旋桨轴 向的分力dLa和旋转方向的分力dLt,阻力dD 相应地分解 为dDa和dDt 。因此该叶元体所产生的推力dT及遭受的旋 转阻力dF是:
相关文档
最新文档